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Mécanique analytique des milieux continus

Éliane BLANCHETON
Faculté des Sciences de Caen, Laboratoire de Mathématiques.

Ann. Inst. Henri Poincaré,
Vol. VII, n° 3, 1967,

Section A :

Physique théorique.

SOMMAIRE. - Nous montrons qu’il est possible de repérer l’état d’un
milieu continu par un point dans un espace de Banach. Les résultats du calcul
variationnel classique (principe de Maupertuis, théorie d’Hamilton-Jacobi),
généralisés aux espaces de Banach, permettent de développer la mécanique
analytique des milieux continus de façon analogue à la mécanique analy-
tique des systèmes de corps solides.

ABSTRACT. - It is shown that it may be associated to every state of a

continuous medium a point of a Banach space. The results of the classical

calculus of variations (principle of Maupertuis, theory of Hamilton-Jacobi),
after being generalised, allow to expose the analytic Mecanic of continuous
media in a similar way as the analytic mecanic of solid bodys.

Le calcul des variations classiques se généralise sans peine au cas où

l’espace des états est un espace affine F dont l’espace vectoriel associé F
est un espace de Banach. Les dérivations sont alors des dérivations au sens

de Fréchet. Or il est possible de repérer l’état d’un milieu continu à l’instant t
par un point d’un tel espace, et les équations de la mécanique des milieux
continus, lorsqu’on néglige les phénomènes thermodynamiques, la viscosité,
la capillarité, etc., peuvent être obtenues à partir d’un principe variationnel
de ce type. L’extension aux espaces de Banach des études faites en dimension
finie par Hamilton, Jacobi, Maupertuis, études qui ont conduit à la méca-
nique analytique des systèmes de corps solides, permettra donc de développer
une mécanique analytique des milieux continus.

ANN. INST. POINCARÉ, A-Vll-3 14
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1. - PRINCIPE VARIATIONNEL
DANS LES MILIEUX CONTINUS

Nous désignons par E3 l’espace affine euclidien de dimension 3, par E3
son espace vectoriel (espace des vecteurs libres de E3). Soit Ko le domaine
de E3 occupé par le milieu continu à l’instant initial ; Ko sera supposé être
un ensemble compact. Si Mo E Ko désigne la position d’une molécule à
l’instant initial, M celle de la même molécule à l’instant t, nous écrirons

Nous poserons

donc

Précisons que, pour t donné, X est une application de Ko dans E38 Nous
la supposerons prolongeable par une application de classe el sur un ouvert
de E3 contenant Ko, à valeurs dans E38 Sur cet ensemble, on considère la
relation d’équivalence

Nous désignerons par F l’ensemble des classes d’équivalence. Cet ensemble
-+

est un espace affine, la norme sur l’espace vectoriel F associé étant pour
-+

Z ~ F

Notons que )] Z(Mo) Il et Il Z’(Mo) Il désignent les normes usuelles respec-
tivement dans E3 et dans L(E3, E3).

L’application u : t - X est alors une application d’un intervalle [a, b] réel
et compact dans F. Nous la supposerons de classe CB L’ensemble des appli-
cations de classe C~ de [a, b] dans F est un espace affine E lorsqu’on munit

l’espace vectoriel associé E (qui est l’ensemble des applications de classe C1
de [a, bJ dans F) de la norme

où les normes figurant au deuxième membre sont des normes dans F.
Les équations classiques de la mécanique des milieux continus, lorsqu’on
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néglige les phénomènes thermodynamiques, la viscosité, la capillarité...
peuvent être obtenues à partir d’un principe variationnel dans lequel
l’espace des états est F. Le lagrangien est somme de trois termes T, Ut et U~
que nous définirons séparément.

a) Définition de T (énergie cinétique).
On introduit :

K = X(Ko), domaine occupé par le milieu continu à l’instant t,
dvo élément de volume dans E3,
dv = dét(X’(Mo))dvo, où l’abréviation dét désigne le déterminant,
po application donnée de Ko dans R, de classe C2. Le nombre po(Mo)

est la masse spécifique en Mo à l’instant initial, l’intégrale

la masse totale.
Enfin pt(M) désignera la masse spécifique en M à l’intant t; Pt est l’appli-

cation de K dans R définie par

Nous définirons l’application T de F x F dans R par

Nous remarquerons d’ailleurs que T ne dépend en fait que de u’(t).

b) Définition de Ul ( - Ut est l’énergie de gravitation).

On introduit le vecteur accélération de la pesanteur G(e E3). Ut est définie
à une constante près, par

c) Définition de UZ (- U2 est l’énergie élastique).

On donne une application C de £.(£3’ E3) dans R, caractérisant le milieu
étudié. On définit U2 par
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Rappelons par exemple que, pour les fluides parfaits, ~(X’(Mo)) ne dépend
que du déterminant de X’(Mo). Autrement dit,

où f désigne une fonction de classe C~ sur R. La dérivée f’(dét (X’(Mo)))
est la pression du fluide en M.

Les équations classiques des milieux continus s’obtiennent en écrivant
que l’application 1 de E dans R définie par l’équation

est stationnaire pour des fonctions u données aux extrémités.

L’équation d’Euler-Lagrange traduisant la stationnarité de 1 s’écrit

Nous avons supposé jusqu’à présent qu’aucune condition de liaison

n’était imposée à u ou à X. Les deux membres de l’équation (1-1) sont des

éléments de F’ = £(F, R).
Nous ne voulons pas aborder ici l’étude générale des liaisons en méca-

nique des milieux continus. Notons toutefois qu’il existe un cas particuliè-
rement simple : c’est le cas où l’application X est astreinte à vérifier l’équation

quel que soit Mo appartenant au bord ()-Ko de Ko. Dans ce cas en effet,
il suffit de considérer X comme un élément du sous-espace affine FI de F
constitué par les applications de Ko dans E3, de classe el sur Ko, se rédui-
sant à l’application identique sur le bord de Ko. L’espace vectoriel asso-
cié Fi est constitué par l’ensemble des applications de Ko dans E3, de
classe Cl, nulles sur ()-Ko. Dans ce cas, l’équation du mouvement est encore

(I-1), mais les deux membres sont des éléments de R).
A titre d’exemple, donnons la forme explicite de (1-1) pour un fluide

parfait. Partant des expressions de T, U2 données plus haut, un calcul
simple conduit à
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où on a posé

et où Tr désigne la trace ; h désigne un vecteur de F dans le problème libre,
un vecteur de F1 dans le problème lié considéré ci-dessus.
On retrouve les équations classiques en transformant l’intégrale sur Ko

en une intégrale sur K. Il vient

- -

Vh E F (resp. à Fi), ou encore, en désignant par N la normale orientée
au point M du bord ~-K,

Dans le problème lié, l’intégrale sur le bord est nulle. Écrivant que l’inté-

grale sur K est nulle quel que soit h dans F l’ on obtient

qui est l’équation classique où p = f’(a) et r = u"(t)(X-1(M)).
Dans le problème sans liaison, il faut ajouter la condition f’(03B1) = 0 sur

le bord de K.

II. - LE PRINCIPE DE MAUPERTUIS

A. - Le principe de Maupertuis
dans les espaces de Banach.

Considérons l’équation d’Euler-Lagrange pour un lagrangien L satis-
faisant aux hypothèses suivantes : L est la somme de deux termes

T désigne une fonction réelle, définie sur le produit Q1 x F, où n1 désigne
un ouvert de F. L’application X - T(X, Y) est supposée être de classe Ci
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sur L’application Y 2014~ T(X, Y) est supposée être bilinéaire et continue,
et T(X, Y) est supposé strictement positif pour tout Y non nul.
U désigne une fonction réelle, définie et de classe C~ sur Ql.
Notons que le principe variationnel à la base des équations de la méca-

nique des milieux continus est de ce type.

1. L’intégrale de l’énergie.

Nous poserons pour simplifier l’écriture

L’équation d’Euler-Lagrange s’écrit

On applique les deux membres de cette équation (qui sont des éléments
-+

de F’) au vecteur Y. Il vient, après un calcul immédiat

Compte tenu de l’identité d’Euler des fonctions homogènes, qui s’écrit

on obtient, tous calculs faits

ou, en désignant par C une constante réelle, appelée constante de l’énergie

2. Le principe de Maupertuis.
Enoncé du principe de Maupertuis : Soit u une extrémale régulière (c’est-

à-dire telle que u’(t) ~ 0 ~t E [a, b]) de

C’est une géodésique de la variété riemannienne obtenue en munissant F
de la métrique
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où C = T(X, Y) - U(X) est la constante de l’énergie pour le mouvement
considéré.

Démonstration : La démonstration du principe de Maupertuis se fait,
comme en dimension finie, en écrivant les deux équations d’Euler-Lagrange
exprimant respectivement que 1 et J définie par

sont stationnaires. On fait dans la première de ces équations le changement
de variable t = ~(~), est définie, à une constante additive près, par

et dans la seconde le changement de variable T = où cp est définie,
à une constante additive près, par

On constate alors que les fonctions v . ~p -1 et satisfont à la même

équation différentielle. L’équation commune, où

et

s’écrit

Cette équation est l’équation des géodésiques de la variété riemannienne
de métrique (II-1) lorsque le paramètre définissant la géodésique est l’abs-
cisse curviligne. Elle se met sous une forme simple en introduisant les appli-
cations bilinéaires continues, symétriques a(X) et g(X) définies respecti-
vement par

(II-2) devient
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En effectuant la dérivation, on obtient

pour tout h de F.

B. - Dérivation covariante et tenseur de courbure
dans les variétés de Banach.

1. Définition d’une connexion sur un espace fibré localement
trivial.

Soit V une variété de classe Cp+ 1, II : 8 ~ V un espace fibré de classe
sur V, dont les fibres sont isomorphes à un espace de Banach fixe E,

p : T(V) ~ V le fibré tangent de v, dont les fibres sont isomorphes à l’espace
de Banach F. Nous introduirons également le fibré tangent de 8, soit A :
T(8) peut être considéré comme un espace fibré sur T(V), l’appli-
cation canonique T(8) - T(V) étant l’application linéaire tangente II*
associée à II.

Soit alors H l’application de T(8) dans 8 x T(V) qui, à l’élément 0
(V)

de T(8) fait correspondre l’élément (À0, de 8 x T(V) - x désigne le
(V) (V)

produit de deux espaces fibrés sur V -, et 1 l’injection de 8 x 8 dans T(8).
Notons que la suite 

où l’on considère les trois espaces comme fibrés sur 8 est exacte.

Définition : On appelle connexion sur II (ou sur 6) une application K
de 8 x T(V) dans T(8) satisfaisant aux deux conditions

(V)

1) H.K = 

2) K est un CP-morphisme de fibré bivectoriel sur 8 et sur T(V). Dans le

cas trivial où V est un ouvert d’un espace affine F, où T(V) = V x F et

8 = V x E, on a
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L’application H fait correspondre à l’élément (a, ~, y, 5) de T(8) l’élé-

ment (a, fl, y) de V x E x F. On vérifie alors que toute connexion K est
définie par une équation de la forme

où r(x) est une application bilinéaire continue de E x F dans E, et où r est
de classe CP.

Notons aussi que dans ce cas on a

2. Dérivation covariante d’une section locale de 6.

Soit s une section locale de 6, c’est-à-dire une application de V dans 8
telle que = lv. Soit s~ l’application linéaire tangente correspondante,
et (x, v) un point de T(V). L’identité

montre que s*(x, v) - K((x, s(x)), (x, v)) = 0 appartient au noyau de H,
donc à l’image de I. Il existe par suite un élément et un seul 11 de 8 x 8
tel que

Dans le cas trivial, on a

donc

~ est la dérivée covariante au point x de la section s. Nous noterons

ou encore

3. Dérivation covariante des sections locales de 8~ ~(8~ 6)...

On prolonge la définition de l’opérateur V aux sections locales de

8’, £(8, 8), etc. de façon que les règles de dérivation dans les espaces normés
soient vérifiées. De façon plus précise, on écrira, pour tout x e V :
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dsx E hx E T~(Y~ (8;c- et désignent respectivement les fibres en x
de 8 et 

On tire de cette équation, compte tenu de (II-4) et de (II-5)

c) La même technique permet d’obtenir l’expression de la dérivée cova-
riante d’une section A de £(6, E). Sous-entendant systématiquement
l’indice x, on obtient

Enfin la dérivée covariante d’une section gx de £(8, 8; IR) est donnée par
l’équation

4. Courbure et torsion d’une connexion linéaire.

Les connexions linéaires sur la variété V s’obtiennent en prenant
8 = T(V). Notons que si V est de classe C’~, r est de classe cn-2. L’appli-
cation K est alors définie sur T(V) x T(V). La partie antisymétrique de K,
définie par

appartient au noyau de H. Il existe donc un élément 0(h, k) et un seul dans
T(V) x tel que

0 est la torsion de la connexion considérée. Dans le cas trivial, on a

La courbure s’obtient, comme en dimension finie, par antisymétrisation
de la dérivée covariante seconde. On obtient, dans le cas trivial
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5. Variétés hilbertiennes.

Nous dirons que la variété V de classe CP est hilbertienne si on donne
une application g de T(V) dans T’(V) qui soit un isomorphisme d’espaces
fibrés : g(x) = gx est une application linéaire, continue, inversible, de

sur que nous identifierons d’ailleurs canoniquement avec une
application, également notée gx bilinéaire, continue, symétrique de

Tx(V) x Tx(V) dans R. L’application x ~ gx est de classe 
On démontre très simplement la proposition suivante :

Proposition : Il existe une connexion linéaire et une seule possédant les
deux propriétés

a) La torsion associée à cette connexion est nulle (donc r est symétri-
que).

b) La dérivée covariante de g associée à cette connexion est nulle.

Dans le cas trivial, cette connexion est définie par

où est défini par

On l’appellera connexion hilbertienne sur V.
La courbure R est alors donnée, en fonction de g, par l’équation suivante

où g est mis systématiquement à la place de gx :

Compte tenu de la symétrie des applications g, g" et r, on voit que

a) l’application (h2, h3) - g(R(hz, h2, h3), h4) est antisymétrique (cette
antisymétrie vient de la définition de R),

b) l’application (hl, h4) - g(R(hl, h2, h3), h4) est antisymétrique,
c) l’application ((hi , h2), (h3, h4)) - g(R(hl, h2, h3), h4) est symétrique.
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6. Équation des géodésiques de la variété hilbertienne définie
par g.

L’équation différentielle des géodésiques de la variété hilbertienne définie
par g (nous dirons aussi pour une raison évidente la variété hilbertienne de
métrique g) a été obtenue à la fin du paragraphe A. Elle s’écrit

ou encore, puisque g est supposé inversible.

C. - Stabilité infinitésimale des mouvements

à énergie constante.

Soit s - X une solution de (II-7). Nous dirons que cette solution est
stable (au point de vue infinitésimal) si toutes les solutions de l’équation
aux variations associées à la solution particulière s - X de (II-7) sont
bornées.

Théorème de Synge : Soit F un espace affine banachique muni d’une struc-
ture de variété hilbertienne V par la donnée d’une métrique g à laquelle
correspond la courbure R. Soit (II-7) l’équation différentielle des géodé-
siques de cette variété, le paramètre étant l’abscisse curviligne. Soit enfin

s - X = f(s) une des solutions de (II-7) définissant une géodésique (C).
Si, en tout point X de (C), on a

quel que soit h dans F, alors la solution f est instable.

Démonstration : L’équation aux variations associée à (II-7) s’écrit

où

Nous transformerons cette équation en introduisant la dérivée covariante
de © le long de la courbe (C).



201MÉCANIQUE ANALYTIQUE DES MILIEUX CONTINUS

Définition : Soit X 2014~ un champ de vecteurs défini sur un voisinage
d’une courbe (C), de classe C~ sur ce voisinage. La dérivée covariante de ç
en X E (C) prise suivant le vecteur tangent X est

ou

Le deuxième membre de cette équation a encore un sens si X -~ ~ est un
champ de vecteurs défini sur (C). Nous l’appellerons dérivée covariante
du champ de vecteurs X 2014~ sur (C) et noterons

X - est encore un champ de vecteurs sur (C). Si (C) et ç sont de
classe C2, on peut itérer l’opération. On obtient

~2::L’élimination de 03BE = entre (11-8) et (11-9) conduit à l’équation
~y

Pour achever la démonstration du théorème de Synge, nous nous intro-
duirons la norme du vecteur ~ considéré comme vecteur tangent au point X
de la variété V, soit

et le champ de vecteurs unitaires au sens de la norme sur V

On a évidemment

équation qui donne par dérivations le long de (C)

De
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on déduit

puis

Cette équation entraîne

qui s’écrit en utilisant (II-10)

Le théorème de Synge s’en déduit immédiatement.

D. - Expression de la condition d’instabilité
de Synge pour un milieu continu.

Les notations sont celles du paragraphe A. Nous écrirons toutefois

U(X) au lieu de U(X) + C (C est supposé fixé), et remarquerons que, pour
un milieu continu, T est fonction de X’ seul. On a donc

Comme plus haut, nous écrirons systématiquement U, U’, U", g, g’, g",
au lieu de U(X), U’(X), U"(X), g(X), g’(X), g"(X). L’équation (II-6)
devient ici
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Remarquons que, en raison des symétries et antisymétries deg(R(h1, h2, h3)h),
il suffit, pour étudier le signe de la forme quadratique h -~ g(R(X, X, h), h),
de se limiter à des vecteurs h orthogonaux à X au sens de la métrique g,
donc tels que

Supposant cette condition réalisée, on obtient

Mais X est solution de l’équation différentielle (II-7) et, puisque l’abscisse
curviligne est le paramètre définissant la courbe (C), on a

D’autre part T(X, X) = U(X) montre que U est strictement positif
.

pour X différent de 0, ce que nous supposerons. En tenant compte de ces
remarques, la condition d’instabilité de Synge s’écrit

pour tout h orthogonal à X au sens de la métrique g.

Cette même condition, écrite en remplaçant X et X par leurs expressions
en fonction de u’(t) et u"(t) devient

ou encore, en introduisant W = 2014=-,
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Condition d’instabilité de Synge pour un fluide parfait en l’absence de

pesanteur.

Avec les notations du paragraphe I, on a successivement

II faut joindre à ces équations

et

où C désigne la constante de l’énergie du mouvement dont on étudie la
stabilité.

Nous écrirons l’inégalité (II-11) dans le cas où le mouvement étudié est
rectiligne et uniforme

où V désigne un vecteur constant. On a ici

Donc

U’(u’(t)) et U"(u’(t), u’(t)) sont nuls puisque [u’(t)]’(Mo) = 0. Enfin

entraîne

L’inégalité (II-11) se réduit ici à

Cette condition entraîne
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III. - L’ÉQUATION D’HAMILTON-JACOBI

A. - Les équations canoniques.

Soit F un espace affine, F son espace vectoriel associé qui est supposé
être un espace de Banach, V = V1 x V2 un ouvert de F x F, 1 un inter-
valle réel, L une fonction réelle de classe C~ sur 1 x V.

Considérons l’équation d’Euler-Lagrange

Nous introduisons la variable supplémentaire

L’équation

où (t, X, Y) e 1 x V, définit implicitement Y en fonction de (t, X, z).
Soit Xo, Yo) un point de 1 x V, z0 = Xo, Yo). Supposons

~33L(t0, Xo, Yo) inversible de F F’ (condition qui permettrait de
munir F d’une structure d’espace hilbertien). Il existe alors un voisinage

2014~

ouvert D de Xo, Zo) dans R x F x F’, un voisinage ouvert W de Yo
2014~ 

~ ~dans F et un C -isomorphisme A de D sur W tel que

pour tout (t, X, z) de D. Nous supposerons, au besoin en nous limitant
à une restriction de L, que A est définie sur 1 x V1 x D, où Q désigne
l’image de 1 x V par v-3L.
Le système différentiel composé des équations (III-1) et (III-2) est alors

équivalent au système

On met le système (111-4) sous une forme plus symétrique en introduisant
la fonction d’Hamilton H définie sur 1 x VI x D par l’équation

INST. POINCARÉ, A-Vl l-3
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Les dérivées partielles de H sont

ce qui prouve que H est de classe C2. Le système (111-4) devient

Ces deux équations sont appelées équations canoniques ou système
canonique.

B. - L’équation d’Hamilton-Jacobi.

1. Étude d’un problème de géométrie.

Soit S une fonction réelle, de classe C2 sur 1 x Vi, telle que

soit non nul sur 1 x V. S définit une famille Y de surfaces dépendant d’un
paramètre cr par l’équation

On considère la fonction réelle g définie sur 1 x V par l’équation

(t, X) étant supposé donné, nous cherchons les vecteurs Y rendant (III-8)
stationnaire, c’est-à-dire les solutions de l’équation

Cette équation s’écrit

Supposons que pour une certaine valeur (to, Xo) de (t, X), (III-9) admette
une racine Yo. Le théorème de la fonction implicite montre alors que sous
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l’hypothèse Xo, Yo) inversible, il existe un C1-isomorphisme f
d’un voisinage ouvert Dl de (to, Xo) sur un voisinage ouvert de Yo tel que

Nous supposerons dans la suite Dl = 1 x Vi, et associerons au champ
de vecteurs f l’équation différentielle

Remarque : Le problème étudié plus haut est la généralisation du problème
classique : étude des trajectoires orthogonales de la famille ~. La « norme »
au point (t, X) serait donnée par

Proposition : Toute courbe intégrale de (III-11) rencontre localement
toute hypersurface de la famille en un point et un seul.

Démonstration : Soit m = (r, ç) un point de 1 x Vl, X = a(t, m) l’équa-
tion de la courbe intégrale maximale de (III-11) passant par m, (I un point
du domaine de valeurs de S. Les valeurs de t correspondant aux points
d’intersection de la courbe X = a(t, m) et de l’hypersurface S(t, X) = a
sont les racines de l’équation

En raison des hypothèses faites sur S et des propriétés de a, (III-12)
définit implicitement t en fonction de m et de a. On a donc localement

C étant un C1-isomorphisme d’un ouvert de R x F x R sur un ouvert
de R.

2. Cas où g (t,X, f (t, X ) ) est constant sur toute hypersurface de
la famille 5f .

Proposition 1 : Pour que g(t, X, f(t, X)) soit constant sur toute hypersur-
face de la famille ~ il faut et il suffit qu’il existe une fonction réelle #
telle que 

’

De plus t/1 est de classe Cl.
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Démonstration : La proposition est évidente.

Proposition 2 : Si la famille Y d’hypersurfaces satisfait à la condi-

tion (111-13) et si L(t, X, Y) =1= 0 sur 1 x V, il existe une définition S de la
famille F, C2-équivalente à S, telle que, si on définit g par

et si on désigne par f le champ de vecteurs associé à S par (III-10), on ait

Démonstration : On cherche un e2 -isomorphisme lfJ tel que, si S = S,

(III-14) soit vérifiée. Remarquant que f = f car ces deux fonctions satis-
font à des équations (III-10) identiques et la solution de (III-10) est unique,
on trouve immédiatement pour définir l’équation différentielle

ce qui démontre la proposition 2.
Si la famille Y est définie par S, alors l’équation (III-8) devient

et l’équation (III-9)

Introduisons la fonction d’Hamilton H. Les deux dernières équations
deviennent respectivement

Dans toute la suite de cet exposé, nous supprimerons la barre sur S et
nous intéresserons à la famille .~ d’hypersurfaces définie par une fonction S
satisfaisant à l’équation connue sous le nom d’équation d’Hamilton-Jacobi

A chaque solution S de (111-15) on associe l’équation différentielle (III-11)
qui s’écrit ici
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Proposition 3 : L(t, X, Y) est supposé non nul sur 1 x V. Soit S une fonc-
tion de classe C2 sur 1 x Vi, telle que S’(t, X)(l, Y) soit non nul sur 1 x V.
Soit (C) une courbe intégrale de l’équation (111-16), Al (resp. A2) le point
d’intersection de (C) avec l’hypersurface d’équation

On considère l’intégrale, prise sur l’arc AlA2 de (C)

Pour que S soit solution de l’équation d’Hamilton-Jacobi, il faut et il
suffit que

quelle que soit la courbe intégrale (C), quels que soient (11 et a2.

Démonstration : La démonstration de cette proposition généralise tri-

vialement la démonstration faite classiquement en dimension finie.

C. - Relation entre l’équation d’Hamilton-Jacobi
et les équations canoniques.

Proposition 1 : Soit S une solution de classe C2 de l’équation d’Hamilton-
Jacobi et soit

l’équation différentielle associée à S. L’ensemble des solutions de (III-17)
est contenu dans l’ensemble des solutions des équations canoniques.

Démonstration : La première équation canonique résulte de la première
équation (III-17) et de la première équation (III-6). La seconde s’obtient
en dérivant la deuxième équation (III-17) par rapport à t et en éliminant

entre l’équation obtenue et la dérivée par rapport à X de l’équation
d’Hamilton-Jacobi.

Proposition 2 : Soit a (resp. /3) une application d’un ouvert Qo de R x F
dans F (resp. dans F’), de classe CB telle que u) soit une application
inversible de F dans F. Soit alors l’application inverse de u - a(t, u).
Si ce et fi définissent une famille ~ 1, dépendant du paramètre u, de solutions
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du système canonique, et si le champ de covecteurs X -~ P(to, X)
est une 1-forme fermée, alors il existe une solution S de l’équation d’Hamil-
ton-Jacobi, de classe C2, telle que soit l’ensemble des solutions de (III-17).

Démonstration : Nous supposons que les équations

définissent pour tout u une solution du système canonique (III-7). Tirant u
de la première équation et portant dans la seconde, il vient

La fonction S cherchée doit satisfaire à

Autrement dit, la dérivée S’ de S doit satisfaire à

D’après le théorème de Poincaré, pour qu’il existe une fonction S satisfaisant
à (III-19), il faut et il suffit localement que la dérivée extérieure du deuxième
membre soit nulle. Autrement dit, il faut et il suffit que l’on ait

quels que soient ç et ~ dans F.
Un calcul ne présentant aucune difficulté montre que, sous les hypothèses

énoncées dans la proposition, ces deux conditions sont satisfaites. Il existe
donc bien une fonction S satisfaisant à (111-19). Elle est de classe C~ puisque
S’ est par définition même de classe CB Le système différentiel associé à
cette application, qui s’écrit en raison de la troisième identité (III-6)

est alors vérifié identiquement, quel que soit u, par (III-18).
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D. - La condition de Weierstrass.

Proposition : Soient X = vi(t), p = v2(t) une solution du système cano-
nique, (C) la courbe (t, vi(t)), Ai et A2 deux points de (C). Soit (T) une
courbe de classe C1 par morceaux joignant Ai et A2 et dont tous les points
sont dans 1 x Vi. Si, quel que soit (t, X, Y) dans 1 x V, X, Y) est
une forme quadratique positive, alors

C (resp. représente l’intégrale curviligne prise sur (C) (resp. (r)) entre
les points Al et A2.

Démonstration : La courbe (C) appartient certainement à une famille à
un paramètre (III-18) satisfaisant aux conditions de la proposition 2.

En effet, soit X = a(t, Xo, po), p = Xo, po) la solution générale maxi-
male du système canonique pour la condition initiale (Xo, po). Supposons
po = fixé. La famille à un paramètre Xo

contient (C) et satisfait aux conditions de la proposition 2 puisque, pour
t = to, p prend la valeur v2(to) indépendant de Xo.

Soit donc S une solution de l’équation d’Hamilton-Jacobi telle que (C)
soit une courbe intégrale de l’équation différentielle associée (III-16). On
désigne par tl et Xl (resp. t2 et X2) les composantes de Ai (resp. A2). On a,
quelle que soit (r), et en particulier si (F) = (C),

Utilisant d’autre part

l’équation d’Hamilton-Jacobi et la définition (III-5) de H, il vient
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où on a posé

On en déduit

On a donc

Par application de la formule de Taylor à la fonction Y ~ L(t, X, Y~, on

voit qu’il existe ~ E Y tel que

Le deuxième membre de (III-20) est donc négatif par hypothèse. La propo-
sition en résulte.

E. - Application à la mécanique
des milieux continus.

Les notations sont celles du paragraphe I. On a

On en déduit

Soit a-l l’application inverse de a. On a ici

L’équation
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donne après simplification

Les équations canoniques ont la forme très simple

et l’équation d’Hamilton-Jacobi

Enfin la condition de Weierstrass exprime que
,... ,.

où 1 est définie sur l’ensemble des applications de [tl, t2] dans F (resp. F 1),
continues et continûment différentiables par morceaux sur [tl, t2] est

minimum au point u correspondant au mouvement.
Notons aussi que les hypothèses faites dans le paragraphe 1 assurent

l’unicité de la solution maximale des équations canoniques passant par un
point (to, Xo, po) donné. Autrement dit, la donnée des applications u(to)
et u’(to) (champ des positions et champ des vitesses à l’instant to) détermine
le mouvement.
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