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Mécanique analytique des milieux continus

par

Eliane BLANCHETON
Faculté des Sciences de Caen, Laboratoire de Mathématiques.

SoMMAIRE. — Nous montrons qu’il est possible de repérer 1’état d’un
milieu continu par un point dans un espace de Banach. Les résultats du calcul
variationnel classique (principe de Maupertuis, théorie d’Hamilton-Jacobi),
généralisés aux espaces de Banach, permettent de développer la mécanique
analytique des milieux continus de fagon analogue a la mécanique analy-
tique des systémes de corps solides.

ABSTRACT. — It is shown that it may be associated to every state of a
continuous medium a point of a Banach space. The results of the classical
calculus of variations (principle of Maupertuis, theory of Hamilton-Jacobi),
after being generalised, allow to expose the analytic Mecanic of continuous
media in a similar way as the analytic mecanic of solid bodys.

Le calcul des variations classiques se généralise sans peine au cas ol

I’espace des états est un espace affine F dont 1’espace vectoriel associé F
est un espace de Banach. Les dérivations sont alors des dérivations au sens
de Fréchet. Or il est possible de repérer I’état d>un milieu continu a I’instant ¢
par un point d’un tel espace, et les équations de la mécanique des milieux
continus, lorsqu’on néglige les phénoménes thermodynamiques, la viscosité,
la capillarité, etc., peuvent étre obtenues a partir d’un principe variationnel
de ce type. L’extension aux espaces de Banach des études faites en dimension
finie par Hamilton, Jacobi, Maupertuis, études qui ont conduit a la méca-
nique analytique des systeémes de corps solides, permettra donc de développer
une mécanique analytique des milieux continus.

ANN. INST. POINCARE, A-VII-3 14
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I. — PRINCIPE VARIATIONNEL
DANS LES MILIEUX CONTINUS

Nous désignons par E; 1’espace affine euclidien de dimension 3, par Es
son espace vectoriel (espace des vecteurs libres de E;). Soit K, le domaine
de E; occupé par le milieu continu a I’instant initial; K, sera supposé étre
un ensemble compact. Si My € K, désigne la position d’une molécule a
P’instant initial, M celle de la méme molécule a I’instant ¢, nous écrirons

M = u()(M,).
Nous poserons

X = u(?),
donc

M = X(My).

Précisons que, pour ¢ donné, X est une application de K, dans E;. Nous
la supposerons prolongeable par une application de classe C* sur un ouvert
de E; contenant K, a valeurs dans E;. Sur cet ensemble, on considére la
relation d’équivalence

{X~Y}<e{X=YsurK,}

Nous désignerons par F 1’ensemble des classes d’équivalence. Cet ensemble
est un espace affine, la norme sur 1’espace vectoriel F associé étant pour
ZeF

I Z] = Max (|| ZMo) |, | ZM,) ).

MopeKo

Notons que | Z(M,) || et | Z'(M,) | désignent les normes usuelles respec-

tivement dans E_», et dans £(E3, E_,,).

L’application u : ¢t — X est alors une application d’un intervalle [a, b] réel
et compact dans F. Nous la supposerons de classe C. L’ensemble des appli-
cations de classe C' de [q, b] dans F est un espace affine E lorsqu’on munit
l’espace vectoriel associé E (qui est ’ensemble des applications de classe C*

de [a, b] dans F) de la norme

v = fol = Max (s, 1501

-~
ol les normes figurant au deuxiéme membre sont des normes dans F.
Les équations classiques de la mécanique des milieux continus, lorsqu’on
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néglige les phénoménes thermodynamiques, la viscosité, la capillarité...
peuvent étre obtenues a partir d’un principe variationnel dans lequel
’espace des états est F. Le lagrangien est somme de trois termes T, U, et U,
que nous définirons séparément.

a) Définition de T (énergie cinétique).

On introduit :

K = X(K,), domaine occupé par le milieu continu 3 I’instant ¢,

dv, élément de volume dans E;,

dv = dét(X'(M,))dv,, ol I’abréviation dét désigne le déterminant,

po application donnée de K, dans R, de classe C2. Le nombre py(M,)
est la masse spécifique en M, a I’instant initial, ’intégrale

m= fff pPo(Mo)dvo
Ko
la masse totale.

Enfin p,(M) désignera la masse spécifique en M a I’intant ¢; p, est I’appli-
cation de K dans R définie par
pM)dv = po(Mo)dvo.

Nous définirons I’application T de F x F dans R par

o 1 oM oM
T, w ) = 5 [[[ (G5 S5 ) o
l ’ ’
=3 [[] <wexnto, w1 poMave
0
Nous remarquerons d’ailleurs que T ne dépend en fait que de #'(¢).

b) Définition de U; (— U, est I’énergie de gravitation).

On introduit le vecteur accélération de la pesanteur G(€ E;). U; est définie
a une constante prés, par

U, %) = f f (G XOM0)) polMoi

c) Définition de U, (— U, est ’énergie élastique).

On donne une application ® de £(E3, §3) dans R, caractérisant le milieu
étudié. On définit U, par

Uy(X) = f f fKO(D(X'(MO)de.
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Rappelons par exemple que, pour les fluides parfaits, ®(X'(M,)) ne dépend
que du déterminant de X'(M,). Autrement dit,

D(X'(Mo)) = f(dét (X'(M))),

ol f désigne une fonction de classe C> sur R. La dérivée f'(dét (X'(Mo)))
est 1a pression du fluide en M.

Les équations classiques des milieux continus s’obtiennent en écrivant
que I’application I de E dans R définie par I’équation

I(w) = f *IT@), w(8)) + Uy)) + UsGu(e)lde

est stationnaire pour des fonctions # données aux extrémités.
L’équation d’Euler-Lagrange traduisant la stationnarité de I s’écrit

I-1) % [3,T(u(2), ()] = 2, T(u(t), w'(2)) — Uj(u(t)) — U(u(®)) = 0.

Nous avons supposé jusqu’a présent qu’aucune condition de liaison
n’était imposée a u ou a X. Les deux membres de 1’équation (I-1) sont des
éléments de F' = £(F, R).

Nous ne voulons pas aborder ici ’étude générale des liaisons en méca-
nique des milieux continus. Notons toutefois qu’il existe un cas particulié¢-
rement simple : c’est le cas ou ’application X est astreinte & vérifier 1’équation

X(Mo) = M,

quel que soit M, appartenant au bord 0K, de K,. Dans ce cas en effet,
il suffit de considérer X comme un élément du sous-espace affine F; de F
constitué par les applications de K, dans Ej, de classe C* sur K, se rédui-
sant & P’application identique sur le bord de K,. L’espace vectoriel asso-

— -
cié F; est constitué par ’ensemble des applications de K, dans E;, de
classe C', nulles sur 3K,. Dans ce cas, I’équation du mouvement est encore

(I-1), mais les deux membres sont des éléments de Fl = ﬁ(i:)l, R).

A titre d’exemple, donnons la forme explicite de (I-1) pour un fluide
parfait. Partant des expressions de T, U,, U, données plus haut, un calcul
simple conduit &

gh e ff KOK”"(’)(MO) - a , h(Mo) > po(My)

— /(@) Tr (A~ B/ (Mg)w)lde, |0
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ol on a posé
A =XMy
o = dét (A)
et ol Tr désigne la trace; 4 désigne un vecteur de F dans le probléme libre,

N
un vecteur de F, dans le probléme 1ié considéré ci-dessus.

On retrouve les équations classiques en transformant ’intégrale sur K,
en une intégrale sur K. Il vient

ﬂ KO 0M) = G, [5.X7HM) ) p(M)
— f'(2) div ([h.X_l](M)]dv =0

VieF (resp. a Fl), ou encore, en désignant par N la normale orientée
au point M du bord 2K,

[[] [¢ormeean - Gpan - 5 1@ thx 100 do
K

- ff o '(“>["-X“] (M), N ydo =0

VheF (resp. & _F>1).
Dans le probléme lié, I’intégrale sur le bord est nulle. Ecrivant que 1’inté-

grale sur K est nulle quel que soit # dans l::l, on obtient

X M) — Glp(M) — 52 [/ @] =0,

qui est 1’équation classique ol p = () et I' = w"(£)(X~1(M)).
Dans le probléme sans liaison, il faut ajouter la condition f’(«) = 0 sur
le bord de K.

II. — LE PRINCIPE DE MAUPERTUIS

A. — Le principe de Maupertuis
dans les espaces de Banach.

Considérons 1’équation d’Euler-Lagrange pour un lagrangien L satis-
faisant aux hypothéses suivantes : L est la somme de deux termes
L(t, u(2), u' (1)) = T(u(2), u'()) + Uu(®)).
T désigne une fonction réelle, définie sur le produit Q, x F, ou Q, désigne
un ouvert de F. L’application X — T(X, Y) est supposée étre de classe C!
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sur Q,. L’application Y — T(X, Y) est supposée &tre bilinéaire et continue,
et T(X, Y) est supposé strictement positif pour tout Y non nul.

U désigne une fonction réelle, définie et de classe C* sur Q,.

Notons que le principe variationnel & la base des équations de la méca-
nique des milieux continus est de ce type.

1. L’intégrale de P’énergie.

Nous poserons pour simplifier I’écriture

X = u(t), Y =u'@2).
L’équation d’Euler-Lagrange s’écrit
d
3T, Y) + UX) — — [, T(X, Y)] = 0.
On applique les deux membres de cette équation (qui sont des éléments

de ﬁ’) au vecteur Y. Il vient, aprés un calcul immédiat

2,T(X, Y +2,%, V) 2 1+ Uy - £ 2,7%, V)¥] = 0

Compte tenu de I’identité d’Euler des fonctions homogénes, qui s’écrit
,T(X, Y)Y = 2T(X, Y),

on obtient, tous calculs faits
d
= [UG) - (X, V)] = 0,
ou, en désignant par C une constante réelle, appelée constante de 1’énergie
TX,Y) = UX) + C.

2. Le principe de Maupertuis.

Enoncé du principe de Maupertuis : Soit u une extrémale réguliére (c’est-
a-dire telle que u'(t) # 0Vt e [a, b]) de

I(4) = f "ITX, ) + UK.

C’est une géodésique de la variété riemannienne obtenue en munissant F
de la métrique

(IL-1) ds* = (UX) + OT(X, dX),
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ot C = T(X,Y) — U(X) est la constante de I’énergie pour le mouvement
considéré.
Démonstration : La démonstration du principe de Maupertuis se fait,

comme en dimension finie, en écrivant les deux équations d’Euler-Lagrange
exprimant respectivement que I et J définie par

o) = f "N/ T@) + CVICR, 7 (@)de

sont stationnaires. On fait dans la premiére de ces équations le changement
de variable 7 = Y(s), out Y~ ! est définie, & une constante additive prés, par

s=y"(t) = f[U(u(t)) + Cldt

et dans la seconde le changement de variable 7 = ¢(s), olt ¢ est définie,
a une constante additive prés, par

5= o) = f VUEE) + CAVTEE), v@)de.

On constate alors que les fonctions v.¢ ™! et u.y satisfont 3 la méme
équation différentielle. L’équation commune, oll

X = [v.07Y(s) = [u.9](s)

. dX
X="T

et

s’écrit
d . <, .
(I2) ZI(UX)+C)2,TX, X)]-T(X, XU'(X)— (UX) + )2, T(X, X)=0.
Cette équation est 1’équation des géodésiques de la variété riemannienne
de métrique (II-1) lorsque le paramétre définissant la géodésique est 1’abs-
cisse curviligne. Elle se met sous une forme simple en introduisant les appli-

cations bilinéaires continues, symétriques a(X) et g(X) définies respecti-
vement par

2 a(O(Y, Y) = T(X, ¥)

g(X) = (UX) + Oa(X).
(II-2) devient

2 e, B - £K K) =0 VheF.
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En effectuant la dérivation, on obtient
@3 0O W)+ 5 [ A, B) + 8 IR X) — g (O, ) =0

pour tout 4 de F.

B. — Dérivation covariante et tenseur de courbure
dans les variétés de Banach.

1. Définition d’une connexion sut un espace fibré localement
trivial.

Soit V une variété de classe C?*1, IT : § — V un espace fibré de classe

C?*1 sur V, dont les fibres sont isomorphes a un espace de Banach fixe E,
p : T(V) = V le fibré tangent de v, dont les fibres sont isomorphes a 1’espace

de Banach F. Nous introduirons également le fibré tangent de &, soit 4 :
T(8) — 6.T(6) peut étre considéré comme un espace fibré sur T(V), I’appli-
cation canonique T(E) — T(V) étant l’application linéaire tangente II,
associée a IT.

Soit alors H I’application de T(§) dans & >< T(V) qui, & I’élément 6

de T(6) fait correspondre 1’élément (46, I1,6) de 8 x T(V) — x désigne le
W)

produit de deux espaces fibrés sur V. —, et I I’ 1n_|ect10n de & x & dans T(€).

Notons que la suite v

0 >86x86>TE) B &xT(V) >0
ou I’on considére les trois espaces comme fibrés sur & est exacte.

Définition : On appelle connexion sur IT (ou sur &) une application K
de & x T(V) dans T(6) satisfaisant aux deux conditions
W)

2) K est un CP-morphisme de fibré bivectoriel sur & et sur T(V). Dans le

cas trivial olt V est un ouvert d’un espace affine F, ou T(V) = V x F et
E§=V x E, ona

ExT(V)=VxExF , T@) =VxExF xE.
V)
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L’application H fait correspondre a 1’élément (x, S, y, 6) de T(E) I’élé-

ment («, B, y) de V x E x F. On vérifie alors que toute connexion K est
définie par une équation de la forme

K(x, s, v) = (x, 5, v — T(x)(s, v))

ou I'(x) est une application bilinéaire continue de E x F dans E, et ou I' est
de classe C”.
Notons aussi que dans ce cas on a

I(x, B, 0) = (x: B, o, 0).

2. Dérivation covariante d’une section locale de §.

Soit s une section locale de &, c’est-a-dire une application de V dans &
telle que II.s = 1y. Soit s, ’application linéaire tangente correspondante,
et (x, v) un point de T(V). L’identité

HS*(X, U) - K((x’ S(X)), (x9 U)) =0
montre que s.(x, v) — K((x, s(x)), (x, v)) = 0 appartient au noyau de H,
donc a I'image de I. Il existe par suite un élément et un seul # de & x &

tel que
I(n) = s4(x, v) — K((x, s(x)), (x, v).

Dans le cas trivial, on a

I(n) = (x, 5(x), 0, s'(x)v + T(x)(s(x), v)),
donc
n = (x, 5(x), s'(xX)v + L(x)(s(x), v)).

n est la dérivée covariante au point x de la section s. Nous noterons

Vs(x)(@) = s'(x)v + I(x)(s(x), v),
ou encore

(I1-4) Vs, (0) = 5.0 + T (s,, v).

3. Dérivation covariante des sections locales de &, £(§, §&)...

On prolonge la définition de I’opérateur V aux sections locales de
&, £(8, 8), etc. de fagon que les régles de dérivation dans les espaces normés
soient vérifiées. De fagon plus précise, on écrira, pour tout xeV :

a)sif(x)eR
dI1-5) Vix) =f'(0);
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b) si w(x) = w, €&, fibre de & en x,
V(ws)h, = [V, . hls, + 0,.[Vs,.h]

Vs, €8, h, e T(V), (6, et T,(V) désignent respectivement les fibres en x
de & et T(V)).
On tire de cette équation, compte tenu de (II-4) et de (II-5)

vwx(hx) SI) = w;c(hx’ sx) - wx(rx(sx9 hx))'

¢) La méme technique permet d’obtenir 1’expression de la dérivée cova-
riante d’une section A de £(§, &). Sous-entendant systématiquement
I’indice x, on obtient

VA, s) = A'h, s) + T(As, h) — A(T(s, )
VheTy(V),ses,.

Enfin la dérivée covariante d’une section g, de £(§, &; R) est donnée par
I’équation
Vgx(h)(sla SZ) = g;:(h)(sl, sZ) - gx(r(sb h)9 .5’2) - gx(sh F(Sz, h))
VheTy(V), s; et 5, €&,.

4. Courbure et torsion d’une connexion linéaire.

Les connexions linéaires sur la variété V s’obtiennent en prenant
& = T(V). Notons que si V est de classe C", T est de classe C*~2. L’appli-
cation K est alors définie sur T(V) x T(V). La partie antisymétrique de K,
définie par

sk(K)(h, k) = K(h, k) — K(k, h), h, keT(V),
appartient au noyau de H. Il existe donc un élément 6(h, k) et un seul dans
T(V) x T(V) tel que
1(0(h, k)) = Sk(K)(h, k).
0 est la torsion de la connexion considérée. Dans le cas trivial, on a
0(h, k) = I'(h, k) — T'(k, h).

La courbure s’obtient, comme en dimension finie, par antisymétrisation
de la dérivée covariante seconde. On obtient, dans le cas trivial

R, k, 1) = T'(k)(h, ) — T'(D(h, k) + T(T(h, D), k) — T(T'(h, k), D).
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5. Variétés hilbertiennes.

Nous dirons que la variété V de classe C? est hilbertienne si on donne
une application g de T(V) dans T'(V) qui soit un isomorphisme d’espaces
fibrés : g(x) = g, est une application linéaire, continue, inversible, de

T.(V) sur T,(V), que nous identifierons d’ailleurs canoniquement avec une
application, également notée g, bilinéaire, continue, symétrique de
T, (V) x T,(V) dans R. L’application x — g, est de classe C?~ 1.

On démontre trés simplement la proposition suivante :

Proposition : 1l existe une connexion linéaire et une seule possédant les
deux propriétés

a) La torsion associée a cette connexion est nulle (donc I' est symétri-

que).
b) La dérivée covariante de g associée a cette connexion est nulle.

Dans le cas trivial, cette connexion est définie par
1 —1r s , ,
L(h, k) = 5 [g:] g Wk + gu(k)h — S(g)(h, k)]

ot S(g,) est défini par
S(g:)(h, k)(v) = gx(v)(h, k) Vh, k, v e T(V).

On I’appellera connexion hilbertienne sur V.
La courbure R est alors donnée, en fonction de g, par 1’équation suivante
ol g est mis systématiquement 2 la place de g, :

1 1
(11-6) g(R(hy, hy, h3), hy) = 3 g"(hy, hy)(hs, hy) + 58 (h3s ha)(hy, h3)

1 1,
- 3 g"(hy, hs)(hz, hy) — i‘g (h2, ha)(hy, h3)
+ g(r(hl, h2)a F(h3, h4)) - g(r(hls hs), r(hZ’ h4))s
Vhy, hy, by, by € T (V).
Compte tenu de la symétrie des applications g, g” et I, on voit que

a) Papplication (hy, h3) — g(R(hy, s, h3), hy) est antisymétrique (cette
antisymétrie vient de la définition de R),

b) l’application (hy, hy) = g(R(Ay, hy, h3), hy) est antisymétrique,
(.') l’application ((hl, h2), (h33 h4)) g g(R(hl’ h29 h3)’ h4) est symétrique.
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6. Equation des géodésiques de la variété hilbertienne définie
par g.

L’équation différentielle des géodésiques de la variété hilbertienne définie
par g (nous dirons aussi pour une raison évidente la variété hilbertienne de
métrique g) a été obtenue a la fin du paragraphe A. Elle s’écrit

gX)B) + gTX, XNH) =0  VheTV),

ou encore, puisque g est supposé inversible.

(I1-7) X +I'(X, X) = 0.
C. — Stabilité infinitésimale des mouvements

a énergie constante.

Soit s — X une solution de (II-7). Nous dirons que cette solution est
stable (au point de vue infinitésimal) si toutes les solutions de 1’équation
aux variations associées a la solution particuliére s — X de (II-7) sont
bornées.

Théoréme de Synge : Soit F un espace affine banachique muni d’une struc-
ture de variété hilbertienne V par la donnée d’une métrique g a laquelle
correspond la courbure R. Soit (II-7) I’équation différentielle des géodé-
siques de cette variété, le paramétre étant 1’abscisse curviligne. Soit enfin
s — X = f(s) une des solutions de (II-7) définissant une géodésique (C).
Si, en tout point X de (C), on a

gRX, X, h), h) >0
quel que soit A dans F, alors la solution f est instable.
Démonstration : L’équation aux variations associée a (II-7) s’écrit
(Ir-8) E+TEOX X +21¢X) =0
ou
. d o dE

Nous transformerons cette équation en introduisant la dérivée covariante
de £ le long de la courbe (C).
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Définition : Soit X — ¢ un champ de vecteurs défini sur un voisinage
d’upe courbe (C), de classe C' sur ce voisinage. La dérivée covariante de &

en X € (C) prise suivant le vecteur tangent X est

VEX) = &(X) + T, X)

ou
VEX) = % + (&, X).

Le deuxi¢me membre de cette équation a encore un sens si X — £ est un
champ de vecteurs défini sur (C). Nous I’appellerons dérivée covariante
du champ de vecteurs X — & sur (C) et noterons

dé .
Vel =2 + I X).
X — V£ est encore un champ de vecteurs sur (C). Si (C) et ¢ sont de

classe C2, on peut itérer I’opération. On obtient

2y dzg e . dé . ..
(I1-9) V= =+ I'(X)(, X) + 21“(%, X) + I'(¢, X) + I(T'(¢, X), X).

2
L’élimination de & = 6‘% entre (II-8) et (II-9) conduit a I’équation
/s
(I1-10) V3 + R, & X) = 0.

Pour achever la démonstration du théoréme de Synge, nous nous intro-
duirons la norme du vecteur £ considéré comme vecteur tangent au point X
de la variété V, soit

11y = g O1'7

et le champ de vecteurs unitaires au sens de la norme sur V
X—>n=¢/| ]y

On a évidemment
g, n) =1,

équation qui donne par dérivations le long de (C)

g(Ven,m=0 , gVl n)=—|Venli.

c=nl¢lv
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on déduit
Vb= 2 ([ ¢lon+ 1€l Ten
puis
veze =L lehin+2 L1 EMTar + 1217
Cc —dsz vin as vivch VAL

Cette équation entraine

2
(V6 m =31 - 1¢1vIVen

qui s’écrit en utilisant (II-10)

S UE = ¢ Vo 1 + 8RE X, m), ml

Le théoréme de Synge s’en déduit immédiatement.

D. — Expression de la condition d’instabilité
de Synge pour un milieu continu.

Les notations sont celles du paragraphe A. Nous écrirons toutefois
U(X) au lieu de U(X) + C (C est supposé fixé), et remarquerons que, pour
un milieu continu, T est fonction de X’ seul. On a donc

TX,Y) = a(Y,Y)
g(X) = UX)a.

Comme plus haut, nous écrirons systématiquement U, U’, U”, g, ¢, &',
au lieu de U(X), U'(X), U"(X), gX), gX), g"(X). L’équation (II-6)
devient ici
1
2
- | Q-
~ 3 U'(hy, hy)a(hy, hy) — 3 U’(hy, hy)a(hy, hs)

+ 3 Uy, hdath, hs) = & UTChy, hoYalhs, h)

n 1 n
gR(hy, hy, h3), hy) = 5 U"(hy, hy)a(hs, hy) + 3 U"(hs, hy)a(hy, hy)

+ ‘% BU'(h)U'(hs)a(hy, hs) — 3U'(hs)U'(hy)a(hy, hy)
+ U'(h)U'(hy)alhy, hs) — U'(r) U’ (h2)a(hs, hy)).
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Remarquons que, en raison des symétries et antisymétries de g(R(hy, b5, h3)h),
il suffit, pour étudier le signe de la forme quadratique # — g(R(X, X, h), b),

de se limiter & des vecteurs /4 orthogonaux a X au sens de la métrique g,
donc tels que

a(X, k) = 0.

Supposant cette condition réalisée, on obtient

sRK, X, ), B) = 2 U'CX, Xalh, ) + 5 U"(h, a(k, %)
+ 75 L= UG alh, B = U BFatk, %) - 5 UEK, Kath, b,

Mais X est solution de 1’équation différentielle (II-7) et, puisque ’abscisse
curviligne est le paramétre définissant la courbe (C), on a

X, X) = 1.

D’autre part T(X, ).() = U(X) montre que U est strictement positif

pour X différent de 0, ce que nous supposerons. En tenant compte de ces
remarques, la condition d’instabilité de Synge s’écrit

(U'X)?

UU"(h, h) — ; (Uh)* + [U”(X, X) + UX — 50 ]Uza(h, k=0

pour tout 4 orthogonal a X au sens de la métrique g.

Cette méme condition, écrite en remplagant X et X par leurs expressions
en fonction de #'(¢) et u"(t) devient

Ul ) = o5 (UB? U0, (1) = g (UGN

(H-l 1) a(h, h) + a(u’(t), u’(t))

+U'@@)=0

ou encore, en introduisant W = 1
> = T
4/U

Wk, ) | W@ (D), 2 (D)
al k) T e (@), 4 Q)

+ W'u'(2)) = 0.
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Condition d’instabilité de Synge pour un fluide parfait en I’absence de
pesanteur.

Avec les notations du paragraphe I, on a successivement
Us00n = [[[ e @ Koagad,
Ko

ULX)(h, B) = f f fK ([o"(@) + £ @] [Tr (A~ A M)
’ — £/ Tr (A~ K (M%) } adog.

11 faut joindre a ces équations

a(h, i) = f f (M), H(M) > poMo)dso,

et
U = UZ(X) + C’

ol C désigne la constante de 1’énergie du mouvement dont on étudie la
stabilité.

Nous écrirons ’inégalité (II-11) dans le cas ou le mouvement étudié est
rectiligne et uniforme

ou V désigne un vecteur constant. On a ici

WMy =V , u'(My) =0.
Donc

Uu(r)) = % a@W (@) , @)= %m [V I2

U'(/(1)) et U"(W'(t), #/(£)) sont nuls puisque [/ (1)(M,) = 0. Enfin

X'Mp) = 1gs
entraine
a=1.

L’inégalité (II-11) se réduit ici &
m|V f f {7 + SO T (KM — (1) TR (M) } dog > 0.

Cette condition entraine

?f’(l) <0
S+ =0.
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III. — L’EQUATION D’HAMILTON-JACOBI

A. — Les équations canoniques.

.
Soit F un espace affine, F son espace vectoriel associé qui est supposé

étre un espace de Banach, V = V; x V, un ouvert de F x F), I un inter-
valle réel, L une fonction réelle de classe C* sur I x V.
Considérons 1’équation d’Euler-Lagrange

(I11-1) ‘% [0, X, X)] — 9,L(¢, X, X)=0.
Nous introduisons la variable supplémentaire

(II1-2) p = 2L, X, X)) (peF).
L’équation

z— 9L X,Y)=0,

ou (¢, X,Y)el x V, définit implicitement Y en fonction de (¢, X, z).
Soit (29, Xo, Yo) un point de I x V,z, = O;L(¢y, Xo, Yo). Supposons
33120, Xo, Yo) inversible de F dans F' (condition qui permettrait de
munir F d’une structure d’espace hilbertien). Il existe alors un voisinage
ouvert D de (¢, X,, zo) dans R x F x 1—5’, un voisinage ouvert W de Y,
dans F et un C'-isomorphisme A de D sur W tel que
(I11-3) z— 0L, X, A(t,X,2)) =0
pour tout (¢, X, z) de D. Nous supposerons, au besoin en nous limitant
a une restriction de L, que A est définie sur I x V, x Q, ou Q désigne
I'image de I x V par 9;L.

Le systéme différentiel composé des équations (III-1) et (III-2) est alors
équivalent au systéme

X - AGXp)
(I11-4) p
P _
dt - D'ZL(t, X9 P)

On met le systéme (III-4) sous une forme plus symétrique en introduisant
la fonction d’Hamilton H définie sur I x V; x Q par I’équation

(I1-5) H(., X, 2) = zA(t, X, 2) — L(t, X, A(t, X, 2)).
ANN. INST. POINCARE, A-VII-3 15
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Les dérivées partielles de H sont

o H@E X, 2) = — 2,L(¢, X, A(t, X, 2))
(III'G) aZI-I(t’ X’ Z) == a2]-‘(t’ X9 A(t9 Xa Z))
¥HEL X, 2) = - A, X, 2) (= {h > hA(L, X, 2) }),

ce qui prouve que H est de classe C2. Le systéme (III-4) devient

= 2H0X, p)
(I11-7) d
7’: = — 2,H(t, X, p).

Ces deux équations sont appelées équations canoniques ou systéme
canonique.

B. — L’équation d’Hamilton-Jacobi.

1. Etude d’un probléme de géométrie.
Soit S une fonction réelle, de classe C*> sur I x V,, telle que
S'(e, X)(:{) = 3,5(¢, X) + 2,5(¢, X)Y
soit non nul sur I x V. S définit une famille ¥ de surfaces dépendant d’un
parameétre ¢ par 1’équation
S(t, X) = o.
On considére la fonction réelle g définie sur I x V par I’équation

L(t, X, Y)

(IIL-8) 86X = 556,% + 0,56

(¢, X) étant supposé donné, nous cherchons les vecteurs Y rendant (I11-8)
stationnaire, c’est-a-dire les solutions de 1’équation

932(1, X, Y) = 0.
Cette équation s’écrit -
(II1-9) 3L X, Y) — 52, X, Y)S,(2, X) = 0.

Supposons que pour une certaine valeur (¢o, X,) de (¢, X), (IT1-9) admette
une racine Y. Le théoréme de la fonction implicite montre alors que sous
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I’hypothése &33L(%, Xo, Y,) inversible, il existe un C'-isomorphisme f
d’un voisinage ouvert D, de (¢y, X,) sur un voisinage ouvert de Y, tel que
(1-10)  ?;L(%, X, f(1, X)) — g(t, X, f(1, X))S,(£, X) =0  V(2,X)eD,.

Nous supposerons dans la suite D; = I x V,, et associerons au champ

de vecteurs f I’équation différentielle

dx
(III-11) = =1, %).

Remarque : Le probléme étudié plus haut est la généralisation du probléme
classique : étude des trajectoires orthogonales de la famille . La « norme »
au point (¢, X) serait donnée par

lG@Y) || =]z + L X, Y) - 1.
Proposition : Toute courbe intégrale de (III-11) rencontre localement

toute hypersurface de la famille 5 en un point et un seul.

Démonstration : Soit m = (z, &) un point de I x V,, X = (¢, m) I’équa-
tion de la courbe intégrale maximale de (III-11) passant par m, ¢ un point
du domaine de valeurs de S. Les valeurs de ¢ correspondant aux points
d’intersection de la courbe X = a(t, m) et de I’hypersurface S(¢, X) = ¢
sont les racines de 1’équation

(I11-12) S(t, a(t, m)) — & = O.

En raison des hypothéses faites sur S et des propriétés de o, (III-12)
définit implicitement ¢ en fonction de m et de . On a donc localement

t = ®(m, o),
® étant un C'-isomorphisme d’un ouvert de R x F x R sur un ouvert

de R.

2. Cas ou g(4,X, f(z, X)) est constant sur toute hypersurface de
la famille .

Proposition 1 : Pour que g(t, X, f(¢, X)) soit constant sur toute hypersur-
face de la famille &, il faut et il suffit qu’il existe une fonction réelle ¥

telle que
De plus ¥ est de classe C.
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Démonstration : La proposition est évidente.

Proposition 2 : Si la famille & d’hypersurfaces satisfait a la condi-
tion (III-13) et si L(¢, X, Y) # O sur I x V, il existe une définition S de la
famille ¥, C>-équivalente a S, telle que, si on définit g par

_ L, X, Y)
X f)=_bA 1)
86X = 56300 Y

et si on désigne par f le champ de vecteurs associé a S par (III-10), on ait
(I11-14) g, X, f(t, X)) = 1 Vt, X, o.

Démonstration : On cherche un C?-isomorphisme ¢ tel que, si S = ¢.8,

(I11-14) soit vérifiée. Remarquant que f = f car ces deux fonctions satis-
font a des équations (III-10) identiques et la solution de (III-10) est unique,
on trouve immédiatement pour définir ¢, I’équation différentielle

¢'(0) = Y(o),
ce qui démontre la proposition 2.
Si la famille & est définie par S, alors ’équation (III-8) devient
L(t, X, f(t, X)) = 2,S(2, X) + 2,5(s, X) (2, X),
et I’équation (II1-9)
2,L(¢, X, f(z, X)) = 2,5(¢, X).

Introduisons la fonction d’Hamilton H. Les deux derniéres équations
deviennent respectivement

2,5(t, X) + H(t, X, 2,5(t, X)) =0
f(t> X) = A(t’ X, a2§(t’ X))
Dans toute la suite de cet exposé, nous supprimerons la barre sur S et

nous intéresserons a la famille § d’hypersurfaces définie par une fonction S
satisfaisant a 1’équation connue sous le nom d’équation d’Hamilton-Jacobi

(III-15) 9,8(t, X) + H(t, X, 2,5(t, X)) = 0.
A chaque solution S de (III-15) on associe ’équation différentielle (I1I-11)
qui s’écrit ici

(111-16) ‘% = A(t, X, 2,5(¢, X)).
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Proposition 3 : L(t, X, Y) est supposé non nul sur I x V. Soit S une fonc-
tion de classe C2 sur I x V,, telle que S'(¢, X)(1, Y) soit non nul sur I x V.
Soit (C) une courbe intégrale de 1’équation (III-16), A, (resp. A,) le point
d’intersection de (C) avec I’hypersurface d’équation

S, X) = o,(resp. S(¢, X) = o,).

On considere I’intégrale, prise sur I’arc A; A, de (C)

y= f L(t, X, i’—‘)dz.
A1A2 dt

Pour que S soit solution de 1’équation d’Hamilton-Jacobi, il faut et il
suffit que

J = 01 — Gy
quelle que soit la courbe intégrale (C), quels que soient o, et o,.

Démonstration : La démonstration de cette proposition généralise tri-
vialement la démonstration faite classiquement en dimension finie.

C. — Relation entre I’équation d’Hamilton-Jacobi
et les équations canoniques.

Proposition 1 : Soit S une solution de classe C* de 1’équation d’Hamilton-

Jacobi et soit

92X _ A4, X, p)

(I11-17) dt
P = 9,50, X)

I’équation différentielle associée & S. L’ensemble des solutions de (III-17)
est contenu dans ’ensemble des solutions des équations canoniques.

Démonstration : La premiere équation canonique résulte de la premiére
équation (III-17) et de la premiére équation (III-6). La seconde s’obtient
en dérivant la deuxiéme équation (III-17) par rapport a ¢ et en éliminant
94,S entre ’équation obtenue et la dérivée par rapport & X de I’équation
d’Hamilton-Jacobi.

Proposition 2 : Soit « (resp. f) une application d’un ouvert Q, de R x F

dans F (resp. dans }_5’), de classe C, telle que d,a(z, u) soit une application

inversible de F dans F. Soit alors ¢ 1’application inverse de u — a(?, u).
Si o et B définissent une famille 5, dépendant du paramétre u, de solutions
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du systéme canonique, et si le champ de covecteurs X — B(to, ¢(to, X))
est une 1-forme fermée, alors il existe une solution S de 1’équation d’Hamil-
ton-Jacobi, de classe C?, telle que 5, soit I’ensemble des solutions de (III-17).

Démonstration : Nous supposons que les équations

X = a(t, u)
p =P, u)

définissent pour tout « une solution du systéme canonique (III-7). Tirant u
de la premiére équation et portant dans la seconde, il vient

p = Bt o(t, X)).

La fonction S cherchée doit satisfaire a

(11I-18)

2,8, X)=p (deuxiéme équation (III-17))
9,8(t, X) = — H(t, X, p) (équation d’Hamilton-Jacobi).

Autrement dit, la dérivée S’ de S doit satisfaire &
(II1-19) S'(t, X) = [ H(, X, B¢, 9(t, X)) B(t, (2, X))]

D’apreés le théoréme de Poincaré, pour qu’il existe une fonction S satisfaisant
a (III-19), il faut et il suffit localement que la dérivée extérieure du deuxiéme
membre soit nulle. Autrement dit, il faut et il suffit que I’on ait

>

oo 1= Ht, X, Bt 006, X)) = 2 18G5, (6, X0)

o 180, 96, XNKO) = 532 18G5, 006, XIn)E)

quels que soient & et  dans F.

Un calcul ne présentant aucune difficulté montre que, sous les hypothéses
énoncées dans la proposition, ces deux conditions sont satisfaites. Il existe
donc bien une fonction S satisfaisant & (II1-19). Elle est de classe C> puisque
S’ est par définition méme de classe C'. Le systéme différentiel associé a
cette application, qui s’écrit en raison de la troisiéme identité (III-6)

(. dX
* E = a.’:I_I(t, X, P)
P = 9,8(¢, X)

est alors vérifié identiquement, quel que soit u, par (III-18).
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D. — La condition de Weierstrass.

Proposition ; Soient X = v,(t), p = v,(¢) une solution du systéme cano-
nique, (C) la courbe (¢, v,(?)), A; et A, deux points de (C). Soit (I") une
courbe de classe C! par morceaux joignant A, et A, et dont tous les points
sont dans I x V,. Si, quel que soit (¢, X, Y) dans I x V, 95;L(¢, X, Y) est
une forme quadratique positive, alors

fL(t, X, d—)—()dt < .[L(t, X, -‘Q-()dt.

f (resp. f ) représente P’intégrale curviligne prise sur (C) (resp. (I) entre
c r.
les points A, et A,.

Démonstration : La courbe (C) appartient certainement & une famille a
un paramétre (III-18) satisfaisant aux conditions de la proposition 2.
En effet, soit X = a(t, Xo, Po); 2 = B(te, Xos Po) la solution générale maxi-
male du systéme canonique pour la condition initiale (X, po). Supposons
Do = U,(t,) fixé. La famille & un paramétre X,

X = alt, Xy, v5(%0))
p= ﬂ(t, Xo, Uz(to))

contient (C) et satisfait aux conditions de la proposition 2 puisque, pour
t = t,, p prend la valeur v,(#,) indépendant de X,.

Soit donc S une solution de 1’équation d’Hamilton-Jacobi telle que (C)
soit une courbe intégrale de I’équation différentielle associée (III-16). On
désigne par ¢, et X, (resp. ¢, et X,) les composantes de A; (resp. A,). On a,
quelle que soit (I'), et en particulier si (I') = (C),

J= f ds(t, X) = S(t,, X,) — S(t;, X,)-
r

Utilisant d’autre part

ds(t, X)

dX
220,80, X) + 0,8, 0

I’équation d’Hamilton-Jacobi et la définition (III-5) de H, il vient

J= J. [L(t, X, Y) + o5L(¢, X, Y)(%( - Y)]dt,
r
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ol on a posé
Y = A, X, 2,5(z, X)).
On en déduit

J‘CL(t, X, Y)dt = fr [L(t, X, Y) + 2,L(t, X, Y)(% - Y)]dt.

On a donc

(I11-20) f (tX )dt f (tX )dt

f [L(t X, Y) - L(t X, “;X) 2,L(, X, T)(Y —‘%)]dt.

Par application de la formule de Taylor a la fonction Y — L(¢, X, Y), on
voit qu’il existe £ e [‘fi_)t(’ Y] tel que

L X, Y) - L(t, X, ‘fjt) 2L(t, X, Y)(Y - %)

1 dx\?
- —3oaLex o(Y -5

Le deuxi®éme membre de (III-20) est donc négatif par hypothése. La propo-
sition en résulte.

E. — Application a la mécanique
des milieux continus.

Les notations sont celles du paragraphe I. On a

L, X, Y) = %a(Y, Y) + UX).
On en déduit

p=a(Y)= f f fK°<Y<Mo> , (M) ) po(Mo)dse

Soit a™! I’application inverse de @. On a ici

AW X,p) = a”'(p).
L’équation

H(@, X, p) = pa™'(p) — L(t, X, a”(p))
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donne aprés simplification
1 _ 1 _
H(t, X, p) = 5 pa”'(p) = UX) = 5 a”(p, p) - UX).

Les équations canoniques ont la forme trés simple

dx _

-1
7= (»)
d .,

et I’équation d’Hamilton-Jacobi
o.S(t, X) + % a 1(3,5(¢, X), 2,5(¢, X)) — UX) = 0.
Enfin la condition de Weierstrass exprime que

@= [ [ onn, vem) e
+ <§a u(t)(Mo) ) + D(u(t )'(Mo)] dvo

ol I est définie sur I’ensemble des applications de [¢,, ¢,] dans F (resp. F,),
continues et continiiment différentiables par morceaux sur [¢;, #,] est

minimum au point u correspondant au mouvement.

Notons aussi que les hypothéses faites dans le paragraphe I assurent
I'unicité de la solution maximale des équations canoniques passant par un
point (¢, X, po) donné. Autrement dit, la donnée des applications u(z,)
et u'(¢,) (champ des positions et champ des vitesses a I’instant #,) détermine
le mouvement.
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