Let be a Banach space and the ball of radius centered at . Can any holomorphic function on be approximated by entire functions, uniformly on smaller balls ? We answer this question in the affirmative for a large class of Banach spaces.
Soit un espace de Banach et la boule de rayon centrée en 0. Étant donnés et une fonction holomorphe dans , existe-t-il toujours une fonction , holomorphe dans , telle que sur ? On démontre que c’est bien le cas pour une certaine classe d’espaces, en particulier pour la plupart des espaces de Banach classiques.
@article{AIF_2000__50_2_423_0,
author = {Lempert, L\'aszl\'o},
title = {Approximation of holomorphic functions of infinitely many variables {II}},
journal = {Annales de l'Institut Fourier},
pages = {423--442},
year = {2000},
publisher = {Association des Annales de l'Institut Fourier},
volume = {50},
number = {2},
doi = {10.5802/aif.1760},
mrnumber = {2001g:32052},
zbl = {0969.46032},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1760/}
}
TY - JOUR AU - Lempert, László TI - Approximation of holomorphic functions of infinitely many variables II JO - Annales de l'Institut Fourier PY - 2000 SP - 423 EP - 442 VL - 50 IS - 2 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1760/ DO - 10.5802/aif.1760 LA - en ID - AIF_2000__50_2_423_0 ER -
%0 Journal Article %A Lempert, László %T Approximation of holomorphic functions of infinitely many variables II %J Annales de l'Institut Fourier %D 2000 %P 423-442 %V 50 %N 2 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1760/ %R 10.5802/aif.1760 %G en %F AIF_2000__50_2_423_0
Lempert, László. Approximation of holomorphic functions of infinitely many variables II. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 423-442. doi: 10.5802/aif.1760
[D1] , Cousin's first problem on certain locally convex topological vector spaces, An. Acad. Brasil. Cienc., 48 (1976), 11-12. | Zbl | MR
[D2] , Complex Analysis in Locally Convex Spaces, North Holland, Amsterdam, 1981. | Zbl | MR
[D3] , Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999. | Zbl | MR
[DS] , , Linear Operators I, John Wiley & Sons, New York, 1988.
[L1] , Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier, 49-4 (1999), 1293-1304. | Zbl | MR | Numdam
[L2] , The Dolbeault complex in infinite dimensions, II, J. Amer. Math. Soc., 12 (1999), 775-793. | Zbl | MR
[L3] , The Dolbeault complex in infinite dimensions III, manuscript.. | Zbl
[M] , Analytic Sets in Locally Convex Spaces, North Holland, Amsterdam, 1984. | Zbl | MR
[MV] and , Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z., 182 (1983), 167-177. | Zbl | MR
[N] , Pseudo-convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland, Amsterdam, 1973. | Zbl | MR
[P] , On the ∂-equation in a Banach space, Bull. Soc. Math. France, to appear. | Zbl | Numdam
[R] , Holomorphic mappings in l1, Trans. Amer. Soc., 302 (1987), 797-811. | Zbl | MR
[S] , Bases in Banach spaces I-II, Springer, Berlin, 1981. | Zbl | MR
Cité par Sources :





