We give a short proof of the extension theorem of Ohsawa-Takegoshi. The same method also gives a generalization of the -theorem of Donnelly and Fefferman for the case of -forms.
On donne une démonstration simple du théorème d’extension d’Ohsawa-Takegoshi. La même méthode donne une généralisation du théorème de Donnelly et Fefferman pour les formes de bidegré .
@article{AIF_1996__46_4_1083_0,
author = {Berndtsson, Bo},
title = {The extension theorem of {Ohsawa-Takegoshi} and the theorem of {Donnelly-Fefferman}},
journal = {Annales de l'Institut Fourier},
pages = {1083--1094},
year = {1996},
publisher = {Association des Annales de l'Institut Fourier},
volume = {46},
number = {4},
doi = {10.5802/aif.1541},
mrnumber = {97k:32019},
zbl = {0853.32024},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1541/}
}
TY - JOUR AU - Berndtsson, Bo TI - The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman JO - Annales de l'Institut Fourier PY - 1996 SP - 1083 EP - 1094 VL - 46 IS - 4 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1541/ DO - 10.5802/aif.1541 LA - en ID - AIF_1996__46_4_1083_0 ER -
%0 Journal Article %A Berndtsson, Bo %T The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman %J Annales de l'Institut Fourier %D 1996 %P 1083-1094 %V 46 %N 4 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1541/ %R 10.5802/aif.1541 %G en %F AIF_1996__46_4_1083_0
Berndtsson, Bo. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Annales de l'Institut Fourier, Tome 46 (1996) no. 4, pp. 1083-1094. doi: 10.5802/aif.1541
[A] , Extension de fonctions holomorphes et courants, Bull. Sciences Mathématiques, 2ème série, 107 (1983), 25-48. | Zbl | MR
[Be1] , Weighted estimates for ∂ in domains in ℂ, Duke Math J., 66 (1992), 239-255. | Zbl | MR
[Be2] , Some recent results on estimates for the ∂-equation, in Contributions to Complex Analysis and Analytic Geometry, Eds. H. Skoda and J-M Trepreau, Vieweg, 1994. | Zbl | MR
[Be3] , Uniform estimates with weights for the ∂-equation, preprint 1994, to appear in J. Geom. Anal. | Zbl
[DH] and , Extension of holomorphic L2-functions with weighted growth conditions, Nagoya Math. J., 126 (1992), 141-157. | Zbl | MR
[DOh] and , An estimate for the Bergman distance on pseudoconvex domains, Annals of Math., 141 (1995), 181-190. | Zbl | MR
[H] , L2-estimates and existence theorems for the ∂-equation, Acta Math., 113 (1965). | Zbl
[KF] and , The Neumann problem for the Cauchy-Riemann complex. | Zbl
[M] , Un théorème de prolongement L2 pour des sections holomorphes d'un fibré hermitien, Math. Z., 212 (1993), 107-122. | Zbl | MR
[McN] , On large values of L2-holomorphic functions, Math. Res. Letters, 3 (1996), 247-260. | Zbl | MR
[OhT] and , On the extension of L2 holomorphic functions, Math. Z., 195 (1987), 197-204. | Zbl | MR
[S] , The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, preprint 1995. | Zbl
[S2] , Complex-Analyticity at harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), 55-138. | Zbl | MR
Cité par Sources :





