In this paper we prove microlocal version of the equidistribution theorem for Wigner distributions associated to Eisenstein series on . This generalizes a recent result of W. Luo and P. Sarnak who proves equidistribution for . The averaged versions of these results have been proven by Zelditch for an arbitrary finite-volume surface, but our proof depends essentially on the presence of Hecke operators and works only for congruence subgroups of . In the proof the key estimates come from applying Meurman’s and Good’s results on -functions associated to holomorphic and Maass cusp forms. One also has to use classical transformation formulas for generalized hypergeometric functions of a unit argument.
Nous donnons la preuve d’une version microlocale d’un résultat de W. Luo et P. Sarnak concernant la répartition asymptotique des fonctions de Wigner associées aux séries d’Eisenstein sur . La preuve utilise les opérateurs de Hecke, et n’est donc valable que pour les sous-groupes de congruence de .
@article{AIF_1994__44_5_1477_0,
author = {Jakobson, Dmitry},
title = {Quantum unique ergodicity for {Eisenstein} series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$},
journal = {Annales de l'Institut Fourier},
pages = {1477--1504},
year = {1994},
publisher = {Association des Annales de l'Institut Fourier},
volume = {44},
number = {5},
doi = {10.5802/aif.1442},
mrnumber = {96b:11068},
zbl = {0820.11040},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1442/}
}
TY - JOUR
AU - Jakobson, Dmitry
TI - Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$
JO - Annales de l'Institut Fourier
PY - 1994
SP - 1477
EP - 1504
VL - 44
IS - 5
PB - Association des Annales de l'Institut Fourier
UR - https://www.numdam.org/articles/10.5802/aif.1442/
DO - 10.5802/aif.1442
LA - en
ID - AIF_1994__44_5_1477_0
ER -
%0 Journal Article
%A Jakobson, Dmitry
%T Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$
%J Annales de l'Institut Fourier
%D 1994
%P 1477-1504
%V 44
%N 5
%I Association des Annales de l'Institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1442/
%R 10.5802/aif.1442
%G en
%F AIF_1994__44_5_1477_0
Jakobson, Dmitry. Quantum unique ergodicity for Eisenstein series on $PSL_2({\mathbb {Z}}\backslash PSL_2({\mathbb {R}})$. Annales de l'Institut Fourier, Tome 44 (1994) no. 5, pp. 1477-1504. doi: 10.5802/aif.1442
[AS] and , Handbook of Mathematical Functions, AMS 55, 7th ed., 1968.
[Ba] , Generalized hypergeometric series, Cambridge Univ. Press, 1935. | Zbl
[CdV] , Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., 102 (1985), 497-502. | Zbl | MR
[DRS] , and , Density of Integer Points on Affine Homogeneous Varieties, Duke Math. Jour., 71 (1) (1993), 143-179. | Zbl | MR
[Fa] , Fourier coefficients for a resolvent of a Fuchsian Group, J. für die Reine und Angew, Math., 293 (1977), 143-203. | Zbl | MR
[Fo] , Harmonic Analysis in Phase Space, AMS Studies, Princeton Univ. Press, 1989. | Zbl | MR
[G] , The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278-295. | Zbl | MR
[GR] and , Tables of Integrals, Series and Products, 4th ed., Academic Press, 1980.
[K] , Elementary Theory of Eisenstein Series, Kodansha, Ltd., Tokyo and John Wiley & Sons, New York, 1973. | Zbl | MR
[L] , SL2(R), Addison-Wesley, 1975.
[LS] and , Quantum Ergodicity of Eigenfunctions on PSL2(Z)\H2, to appear.
[Me] , The order of the Maass L-function on the critical line, Colloquia mathematica societatis Janos Bolyai 51. Number theory, Budapest (Hungary), (1987), 325-354. | Zbl
[Ro] , Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, I, Math. Annalen, 167 (1966), 293-337. | Zbl
[Sa] , Horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739. | Zbl
[Sn1] , Ergodic Properties of Eigenfunctions, Uspekhi Mat. Nauk, 29 (6) (1974), 181-182.
[Sn2] , On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motions (Addendum to V. F. Lazutkin's book), KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, 1993.
[Ti] , The Theory of of The Riemann Zeta Function, Oxford, 1951. | Zbl | MR
[Z1] , Uniform distribution of Eigenfunctions on compact hyperbolic surfaces, Duke Math. Jour., 55 (1987), 919-941. | Zbl | MR
[Z2] , Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, Journal of Functional Analysis, 97 (1991), 1-49. | Zbl | MR
[Z3] , Selberg Trace Formulas and Equidistribution Theorems for Closed Geodesics and Laplace Eigenfunctions: Finite Area Surfaces, Mem. AMS 90 (N° 465) (1992). | Zbl
Cité par Sources :






