We prove that 7. 398 537 is an irrationality measure of . We employ double integrals of suitable rational functions invariant under a group of birational transformations of . The numerical results are obtained with the aid of a semi-infinite linear programming method.
On démontre que 7. 398 537 est une mesure d’irrationalité de . On utilise des intégrales doubles de fonctions rationnelles stables par un groupe de transformations birationnelles de . Les résultats numériques sont obtenus à l’aide d’une méthode de programmation linéaire semi-infinie.
@article{AIF_1993__43_1_85_0,
author = {Rhin, Georges and Viola, Carlo},
title = {On the irrationality measure of $\zeta (2)$},
journal = {Annales de l'Institut Fourier},
pages = {85--109},
year = {1993},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {43},
number = {1},
doi = {10.5802/aif.1322},
zbl = {0776.11036},
mrnumber = {1209696},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1322/}
}
TY - JOUR AU - Rhin, Georges AU - Viola, Carlo TI - On the irrationality measure of $\zeta (2)$ JO - Annales de l'Institut Fourier PY - 1993 SP - 85 EP - 109 VL - 43 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1322/ DO - 10.5802/aif.1322 LA - en ID - AIF_1993__43_1_85_0 ER -
Rhin, Georges; Viola, Carlo. On the irrationality measure of $\zeta (2)$. Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 85-109. doi: 10.5802/aif.1322
[1] and , Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. | Zbl | MR
[2] and , Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987. | Zbl | MR
[3] , Irrationalité de et , Astérisque, 61 (1979), 11-13. | Zbl | Numdam | MR
[4] , A note on the irrationality of and , Bull. London Math. Soc., 11 (1979), 268-272. | Zbl | MR
[5] and , Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84. | Zbl | MR
[6] and , Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232. | Zbl | MR
[7] , Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322. | Zbl | MR
[8] and , Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. | Zbl | MR
[9] , Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. | Zbl | MR
[10] , On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42. | Zbl | MR
[11] , Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. | Zbl | MR | Numdam
[12] and , A simplex method for function minimization, Computer J., 7 (1965), 308-313. | Zbl
[13] , , , , Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986. | Zbl
[14] , Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164. | Zbl | MR
[15] , A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29. | Zbl | MR
Cité par Sources :






