Nous montrons qu’une surface minimale complété, plongée dans , de courbure totale finie et homéomorphe a moins deux points est l’hélicoïde.
We show that a complete minimal surface embedded in with finite total curvature which is homeomorphic to minus two points is the “hélicoïde”’.
@article{AIF_1988__38_4_121_0,
author = {Toubiana, Eric},
title = {Un th\'eor\`eme d'unicit\'e de l'h\'elico{\"\i}de},
journal = {Annales de l'Institut Fourier},
pages = {121--132},
year = {1988},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {38},
number = {4},
doi = {10.5802/aif.1151},
mrnumber = {90a:53015},
zbl = {0645.53032},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.1151/}
}
TY - JOUR AU - Toubiana, Eric TI - Un théorème d'unicité de l'hélicoïde JO - Annales de l'Institut Fourier PY - 1988 SP - 121 EP - 132 VL - 38 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1151/ DO - 10.5802/aif.1151 LA - fr ID - AIF_1988__38_4_121_0 ER -
Toubiana, Eric. Un théorème d'unicité de l'hélicoïde. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 121-132. doi: 10.5802/aif.1151
[1] , , The topology of complete minimal surfaces of finite total Gaussian curvature. Topology, Vol. 22, n° 2 (1983), 203-221. | Zbl | MR
[2] , , , Complete minimal surfaces with long lines boundary. A paraître dans Duke Mathematical Journal. | Zbl
[3] , Lectures on minimal submanifolds, Vol. 1, Math-lecture Series 9, Publish or Perish. | Zbl
[4] , A survey of minimal surfaces. Van Nostrand Reinhold Math. Studies, 25, 1969. | Zbl | MR
[5] , Global properties of minimal surfaces in E3 and En, Annals of Math., Vol. 80 (1964), 340-364. | Zbl | MR
[6] , uvres complètes, tome XIII des mémoires de la société royale de Goettinguen (1987), p. 305.
[7] , Thèse de doctorat.
Cité par Sources :





