We give a necessary and sufficient condition for an analytic function in to have real part in class . This condition contains the classical one of Zygmund; other variants are also given.
Nous donnons une condition nécessaire et suffisante pour qu’une fonction analytique dans ait une partie réelle dans la classe . Cette condition généralise la condition classique de Zygmund ; on donne aussi d’autres conditions suffisantes.
@article{AIF_1985__35_4_127_0,
author = {Essen, M. and Shea, D. F. and Stanton, C. S.},
title = {A value-distribution criterion for the class $L~{\rm log} L$ and some related questions},
journal = {Annales de l'Institut Fourier},
pages = {127--150},
year = {1985},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {35},
number = {4},
doi = {10.5802/aif.1030},
mrnumber = {87e:30041},
zbl = {0563.30025},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1030/}
}
TY - JOUR
AU - Essen, M.
AU - Shea, D. F.
AU - Stanton, C. S.
TI - A value-distribution criterion for the class $L~{\rm log} L$ and some related questions
JO - Annales de l'Institut Fourier
PY - 1985
SP - 127
EP - 150
VL - 35
IS - 4
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.1030/
DO - 10.5802/aif.1030
LA - en
ID - AIF_1985__35_4_127_0
ER -
%0 Journal Article
%A Essen, M.
%A Shea, D. F.
%A Stanton, C. S.
%T A value-distribution criterion for the class $L~{\rm log} L$ and some related questions
%J Annales de l'Institut Fourier
%D 1985
%P 127-150
%V 35
%N 4
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1030/
%R 10.5802/aif.1030
%G en
%F AIF_1985__35_4_127_0
Essen, M.; Shea, D. F.; Stanton, C. S. A value-distribution criterion for the class $L~{\rm log} L$ and some related questions. Annales de l'Institut Fourier, Tome 35 (1985) no. 4, pp. 127-150. doi: 10.5802/aif.1030
[1] , Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 133-169. | Zbl | MR
[2] , Some sharp inequalities for conjugate functions, Indiana Univ. Math. J., 27 (1978), 833-852. | Zbl | MR
[3] , Positive harmonic functions vanishing on the boundary of certain domains in Rn, Ark. f. Mat., 18 (1980), 53-72. | Zbl | MR
[4] , Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., 26 (1977), 182-205. | Zbl | MR
[5] , Brownian Motion and the Hardy Spaces Hp, in Aspects of Contemporary Complex Analysis, editors Brannan and Clunie, Academic Press 1980, 97-118. | Zbl | MR
[6] , Theory of Hp-spaces, Academic Press, 1970. | Zbl | MR
[7] and , On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fennicae, Series A. I. Math., 4 (1978/1979), 311-340. | Zbl | MR
[8] and , Some recent results on conjugate functions in the unit disk. Proc. of the 18th Scand. Congress of Mathematicians, 1980, Progress in Mathematics, Vol. 11, Birkhäuser. | Zbl
[8a] and , and , Harmonic Majorization and classical analysis, J. London Math. Soc. (to appear). | Zbl
[9] , Estimates of harmonic measure, Ark. f. Mat., 6 (1965), 1-31. | Zbl | MR
[10] , Harmonic Majorization, Report No. 5 (1982), Department of Mathematics, University of Umeå, Sweden.
[11] , Meromorphic Functions, Oxford University Press, 1964. | Zbl | MR
[12] and , Subharmonic Functions, vol. 1, Academic Press, 1976. | Zbl | MR
[13] and , On analytic functions of bounded mean oscillation, Bull. London Math. Soc., 10 (1978), 219-224. | Zbl | MR
[14] and , On the coefficients of functions omitting values, Math. Proc. Cambridge Philos. Soc., 77 (1975), 119-137. | Zbl | MR
[15] , A majorant principle in the theory of functions, Math. Scand., 1 (1953), 5-17. | Zbl | MR
[16] , Analytic functions, Springer-Verlag, 1970. | Zbl
[17] , Brownian motion, Hardy spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Series, 28 (1977). | Zbl | MR
[18] , Introduction to the theory of entire functions of several complex variables, Transl. Math. Monographs, Vol. 44, Amer. Math. Soc., Providence, R. I. 1974. | Zbl | MR
[19] , Riesz mass and growth problems for subharmonic functions, Thesis, University of Wisconsin 1982.
[20] , About entire and meromorphic functions of exponential type, Proc. of Symp. in Pure Math., Vol. XI, Amer. Math. Soc., Providence, R.I. 1968, 392-430. | Zbl | MR
[21] , Potential theory in modern function theory, Maruzen, Tokyo 1959. | Zbl | MR
[22] , Sur les fonctions conjuguées, Fund. Math., 13 (1929), 284-303. | JFM
Cité par Sources :





