There exist infinitely many integers such that the greatest prime factor of is at least . The proof is a combination of Hooley’s method – for reducing the problem to the evaluation of Kloosterman sums – and the majorization of Kloosterman sums on average due to the authors.
Il existe une infinité d’entiers tels que le plus grand facteur premier de soit au moins . La démonstration de ce résultat combine la méthode de Hooley – pour ramener le problème à l’évaluation de sommes de Kloosterman – et la majoration de sommes de Kloosterman en moyenne obtenue par les auteurs.
@article{AIF_1982__32_4_1_0,
author = {Deshouillers, Jean-Marc and Iwaniec, Henryk},
title = {On the greatest prime factor of $n^2+1$},
journal = {Annales de l'Institut Fourier},
pages = {1--11},
year = {1982},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {32},
number = {4},
doi = {10.5802/aif.891},
mrnumber = {84m:10033},
zbl = {0489.10038},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.891/}
}
TY - JOUR AU - Deshouillers, Jean-Marc AU - Iwaniec, Henryk TI - On the greatest prime factor of $n^2+1$ JO - Annales de l'Institut Fourier PY - 1982 SP - 1 EP - 11 VL - 32 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.891/ DO - 10.5802/aif.891 LA - en ID - AIF_1982__32_4_1_0 ER -
Deshouillers, Jean-Marc; Iwaniec, Henryk. On the greatest prime factor of $n^2+1$. Annales de l'Institut Fourier, Tome 32 (1982) no. 4, pp. 1-11. doi: 10.5802/aif.891
[1] and , Kloosterman sums and Fourier coefficients of cusp forms, Inv. Math. (to appear). | Zbl
[2] , On the greatest prime factor of a quadratic polynomial, Acta Math., 117 (1967), 281-299. | Zbl | MR
[3] , Applications of sieve methods to the theory of numbers, Cambridge Univ. Press, London, 1976. | Zbl
[4] , Rosser's sieve, Acta Arith., 36 (1980), 171-202. | Zbl
[5] , Report on the theory of numbers, Collected Mathematical Papers, vol. I, reprinted, Chelsea, 1965.
Cité par Sources :






