Let be harmonic in a bounded domain with smooth boundary. We prove that if the boundary values of belong to , where and denotes the surface measure of , then it is possible to approximate uniformly by function of bounded variation. An example is given that shows that this result does not extend to .
Soit un domaine borné à frontière régulière, et une fonction harmonique dans . On montre que si les valeurs de à la frontière appartiennent à avec ( étant la mesure de surface à la frontière), est approchable uniformément par des fonctions à variation bornée, et on montre que le résultat ne s’étend pas au cas .
@article{AIF_1980__30_2_97_0,
author = {Dahlberg, Bj\"orn E. J.},
title = {Approximation of harmonic functions},
journal = {Annales de l'Institut Fourier},
pages = {97--107},
year = {1980},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {30},
number = {2},
doi = {10.5802/aif.787},
mrnumber = {82i:31010},
zbl = {0417.31005},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.787/}
}
TY - JOUR AU - Dahlberg, Björn E. J. TI - Approximation of harmonic functions JO - Annales de l'Institut Fourier PY - 1980 SP - 97 EP - 107 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.787/ DO - 10.5802/aif.787 LA - en ID - AIF_1980__30_2_97_0 ER -
Dahlberg, Björn E. J. Approximation of harmonic functions. Annales de l'Institut Fourier, Tome 30 (1980) no. 2, pp. 97-107. doi: 10.5802/aif.787
[1] , Interpolation by bounded analytic functions and the Corona problem, Ann. Math., 76 (1962), 547-559. | Zbl | MR
[2] , The Corona Problem, in Lecture Notes in Mathematics, vol 118, Springer Verlag, Berlin, 1969.
[3] , Weighted norm inequalities for the Lusin area integral and the non tangential maximal functions for functions harmonic in a Lipschitz domain, to appear in Studia Math. | Zbl | MR | EuDML
[4] and , Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. | Zbl | MR
[5] , to appear.
[6] and , Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. of Math., 99 (1977), 1345-1360. | Zbl | MR
[7] , The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242. | Zbl | MR
[8] , Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970. | Zbl | MR
[9] , BMO functions and the -equation, Pacific J. Math., 71 (1977), 221-273. | Zbl | MR
Cité par Sources :





