On démontre que les seuls points rationnels sur de la courbe sont les pointes.
En conséquence, il n’existe pas de courbe elliptique définie sur possédant un sous-groupe cyclique rationnel d’ordre .
We prove that the only rational point of the curve are the cusps.
Consequently, there does not exist any elliptic curve defined over which possesses a rational cyclic subgroup of order .
@article{AIF_1980__30_2_17_0,
author = {Mestre, Jean-Fran\c{c}ois},
title = {Points rationnels de la courbe modulaire $X_0(169)$},
journal = {Annales de l'Institut Fourier},
pages = {17--27},
year = {1980},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {30},
number = {2},
doi = {10.5802/aif.782},
mrnumber = {81h:10036},
zbl = {0432.14017},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.782/}
}
TY - JOUR AU - Mestre, Jean-François TI - Points rationnels de la courbe modulaire $X_0(169)$ JO - Annales de l'Institut Fourier PY - 1980 SP - 17 EP - 27 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.782/ DO - 10.5802/aif.782 LA - fr ID - AIF_1980__30_2_17_0 ER -
Mestre, Jean-François. Points rationnels de la courbe modulaire $X_0(169)$. Annales de l'Institut Fourier, Tome 30 (1980) no. 2, pp. 17-27. doi: 10.5802/aif.782
[1] , The rational points on the Jacobian of modular curves, Mat. Sbornik, 101 (143) (1976) ; traduction anglaise, Math. U.S.S.R. Sbornik, 30, 4 (1976), 478-500. | Zbl
[2] , , Schémas de modules des courbes elliptiques, vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972), Lecture Notes in Mathematics 349, Berlin-Heidelberg-New York, Springer, 1973. | Zbl
[3] , Die elliptischen Funktionen und ihre Anwendungen, II, Leipzig-Berlin, Teubner, 1922. | JFM
[4] , The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philo. Soc., 85, (1979), 21-23. | Zbl | MR
[5] , Parabolic points and zeta functions of modular forms (Russian), Isv. Acad. Nauk., (1972), 19-66. | Zbl
[6] , Rational isogenies of prime degree, Inventiones Mathematicae, 44 (1978), 129-163. | Zbl | MR
[7] , Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., A.M.S., Providence, 24 (1973), 221-231. | Zbl | MR
[8] , , Group schemes of prime order, Ann. Scient. Ec. Norm. Sup., série 4,3 (1970), 1-21. | Zbl | MR | Numdam
Cité par Sources :





