Soit un domaine borné strictement pseudoconvexe dans à frontière régulière . On montre que tout compact d’une sous-variété de dont l’espace tangent en chaque point de est contenu dans le sous-espace complexe maximal de est un ensemble pic pour , la classe des fonctions analytiques dans dont toutes les dérivées sont continues dans .
Let be a bounded strictly pseudoconvex domain in with smooth boundary . Let be the class of functions analytic in and continuous with all their derivatives in . Let be a -submanifold of whose tangent space lies in the maximal complex subspace of , for every . In this work, we show that every compact subset of is a peak set for .
@article{AIF_1979__29_3_171_0,
author = {Chaumat, Jacques and Chollet, Anne-Marie},
title = {Ensembles pics pour $A^\infty (D)$},
journal = {Annales de l'Institut Fourier},
pages = {171--200},
year = {1979},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {29},
number = {3},
doi = {10.5802/aif.757},
mrnumber = {81c:32036},
zbl = {0398.32004},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.757/}
}
TY - JOUR AU - Chaumat, Jacques AU - Chollet, Anne-Marie TI - Ensembles pics pour $A^\infty (D)$ JO - Annales de l'Institut Fourier PY - 1979 SP - 171 EP - 200 VL - 29 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.757/ DO - 10.5802/aif.757 LA - fr ID - AIF_1979__29_3_171_0 ER -
Chaumat, Jacques; Chollet, Anne-Marie. Ensembles pics pour $A^\infty (D)$. Annales de l'Institut Fourier, Tome 29 (1979) no. 3, pp. 171-200. doi: 10.5802/aif.757
[1] , Les méthodes mathématiques de la mécanique classique, Editions MIR (1976), Moscou. | Zbl | MR
[2] , and , Extending functions from submanifolds of the boundary, Duke Math. J., 43 (1976), 391-404. | Zbl | MR
[3] and , The Neumann problem for the Cauchy-Riemann complex, Princeton University Press (1972). | Zbl | MR
[4] and , Estimates for the ∂b complex and analysis on the Heisenberg group, Com. Pure Appl. Math., 27 (1974), 429-522. | Zbl | MR
[5] , Géométrie symplectique et physique mathématique, Colloque Intern. C.N.R.S, Aix en Provence (1974).
[6] et , Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), 601-617. | Zbl | MR
[7] and , Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | Zbl | MR
[8] , et , C.R. Ecole d'été à Drogobytch (1974).
[9] , Transformation groups in differential geometry, Springer-Verlag (1972), Appendice 1. | Zbl | MR
[10] , Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. | Zbl | MR
[11] , Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., 43 (1976), 323-348. | Zbl | MR
[12] , Peak interpolation sets of classe C1, Pacific J. Math., 75 (1978), 267-279. | Zbl | MR
[13] , Lectures on symplectic manifolds, Regional conference series in mathematics 29, Amer. Math. Soc. | Zbl
Cité par Sources :






