For , a characterization is given of the dual space of weak taken over a non atomic measure space.
Soit . Nous donnons une caractérisation de l’espace dual de -faible sur un espace mesuré non-atomique.
@article{AIF_1975__25_2_81_0,
author = {Cwikel, Michael},
title = {The dual of weak $L^p$},
journal = {Annales de l'Institut Fourier},
pages = {81--126},
year = {1975},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {2},
doi = {10.5802/aif.556},
mrnumber = {53 #11355},
zbl = {0301.46025},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.556/}
}
Cwikel, Michael. The dual of weak $L^p$. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 81-126. doi: 10.5802/aif.556
[1] and , A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97-98.
[2] , On the conjugates of some function space, Studia Math., 45 (1973), 49-55. | Zbl | MR
[3] , Some results in the Lions-Peetre interpolation theory, Thesis, Weizmann Institute of Science, 1973. | Zbl | MR
[4] and , L(p, ∞)*, Indiana Univ. Math. J., 21 (1972), 781-786.
[5] and , Linear Operators, Part I : General Theory, Interscience, New York 1958. | Zbl | MR
[6] , On L(p,q) spaces, L'Enseignement Math., 12 (1966), 249-276. | Zbl | MR
[7] , Reflexivity and the sup of linear functionals, Israël J. Math., 13 (1972), 289-330. | Zbl | MR
[8] , Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | Zbl | MR
Cité par Sources :






