Soit un ouvert relativement compact et localement pseudo-convexe de la variété analytique .
Alors,
1) Si le fibré tangent est positif, est -convexe.
2) Si admet une fonction strictement plurisousharmonique, est de Stein.
3) Si est l’espace total d’un morphisme de Stein à base de Stein, est de Stein.
Let be a relatively compact and locally pseudo-convex open subset of the analytic manifold .
We prove the following:
1) If the tangent bundle is positive, then is -convex.
2) If there exists on a strictly plurisubharmonic function, then is Stein.
3) If is the total space of a Stein morphism with Stein basis, then is Stein.
@article{AIF_1975__25_2_295_0,
author = {Elencwajg, Georges},
title = {Pseudo-convexit\'e locale dans les vari\'et\'es kahl\'eriennes},
journal = {Annales de l'Institut Fourier},
pages = {295--314},
year = {1975},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {2},
doi = {10.5802/aif.568},
mrnumber = {52 #8501},
zbl = {0278.32015},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.568/}
}
TY - JOUR AU - Elencwajg, Georges TI - Pseudo-convexité locale dans les variétés kahlériennes JO - Annales de l'Institut Fourier PY - 1975 SP - 295 EP - 314 VL - 25 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.568/ DO - 10.5802/aif.568 LA - fr ID - AIF_1975__25_2_295_0 ER -
Elencwajg, Georges. Pseudo-convexité locale dans les variétés kahlériennes. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 295-314. doi: 10.5802/aif.568
[1] und , Kählersche Mannigfaltigkeiten mit hyper -q-konvexem Rand, in Problems in Analysis, A Symposium in honour of Salom on Bochner, Princeton University Press, 1970. | Zbl
[2] , Hermitian differential geometry, Chern classes, and positive vector bundles, in Global Analysis, Papers in honor of K. Kodaira, Princeton University Press, 1969. | Zbl
[3] , An Introduction to Complex Analysis in Several Variables, Van Nostrand 1966. | Zbl | MR
[4] and , Foundations of differential geometry, Vol I & II, Interscience, New-York, 1963 et 1969. | Zbl
[5] , Analysis on Real and Complex Manifolds, North-Holland, 1968. | Zbl | MR
[6] , Stetige streng pseudo konvexe Funktionen, Math. Annalen, 175, (1968) 257-286. | Zbl | MR
[7] , Domaines pseudo-convexes sur les variétés kählériennes, Jour. Math. Kyoto University, 6-3 (1967), 323-357. | Zbl | MR
Cité par Sources :






