If is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of . The same result is obtained replacing “barrelled” by “quasi-barrelled”.
On démontre que si est le produit topologique d’une famille non dénombrable d’espaces tonnelés de dimension non nulle, il existe un nombre infini de sous-espaces tonnelés de , qui ne sont pas bornologiques. Un résultat semblable est obtenu si l’on change “tonnelé” en “infratonnelé”.
@article{AIF_1972__22_2_27_0,
author = {Valdivia, Manuel},
title = {On nonbornological barrelled spaces},
journal = {Annales de l'Institut Fourier},
pages = {27--30},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {22},
number = {2},
year = {1972},
doi = {10.5802/aif.410},
mrnumber = {49 #1050},
zbl = {0226.46006},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.410/}
}
Valdivia, Manuel. On nonbornological barrelled spaces. Annales de l'Institut Fourier, Volume 22 (1972) no. 2, pp. 27-30. doi: 10.5802/aif.410
[1] , Sur certains spaces vectoriels topologiques, Ann. Inst. Fourier, 5-16 (1950). | Zbl | MR | Numdam
[2] , Recent development in the theory of locally convex spaces, Bull. Amer. Math. Soc., 59, 495-512 (1953). | Zbl | MR
[3] , Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). | Zbl | MR
[4] , Some examples on linear topological spaces, Math. Ann., 153, 150-162 (1964). | Zbl | MR
[5] , Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci., USA, 40, 471-474 (1954). | Zbl | MR
[6] , On locally convex vector spaces of continuous functions, Proc. Jap. Acad., 30, 294-298 (1954). | Zbl | MR
Cited by Sources:






