@article{AFST_2005_6_14_1_123_0,
author = {Maciejewski, Andrzej J. and Przybylska, Maria},
title = {Differential {Galois} approach to the non-integrability of the heavy top problem},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {123--160},
year = {2005},
publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
address = {Toulouse},
volume = {Ser. 6, 14},
number = {1},
mrnumber = {2118036},
zbl = {1089.70002},
language = {en},
url = {https://www.numdam.org/item/AFST_2005_6_14_1_123_0/}
}
TY - JOUR AU - Maciejewski, Andrzej J. AU - Przybylska, Maria TI - Differential Galois approach to the non-integrability of the heavy top problem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2005 SP - 123 EP - 160 VL - 14 IS - 1 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/item/AFST_2005_6_14_1_123_0/ LA - en ID - AFST_2005_6_14_1_123_0 ER -
%0 Journal Article %A Maciejewski, Andrzej J. %A Przybylska, Maria %T Differential Galois approach to the non-integrability of the heavy top problem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2005 %P 123-160 %V 14 %N 1 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/item/AFST_2005_6_14_1_123_0/ %G en %F AFST_2005_6_14_1_123_0
Maciejewski, Andrzej J.; Przybylska, Maria. Differential Galois approach to the non-integrability of the heavy top problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 14 (2005) no. 1, pp. 123-160. https://www.numdam.org/item/AFST_2005_6_14_1_123_0/
[1] - Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Springer-Verlag , New York (1978). | Zbl | MR
[2] - Spinning tops, volume 51 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1996). | Zbl | MR
[3] and - On monodromy groups of second-order Fuchsian equations, SIAM J. Math. Anal., 21(6), p. 1642-1652 (1990 ). | Zbl | MR
[4] , , , and - On the infinitesimal geometry of integrable systems, in Mechanics Day (Waterloo, ON, 1992), volume 7 of Fields Inst. Commun, p. 5-56, Amer. Math. Soc., Providence, RI (1996). | Zbl | MR
[5] - Differential Galois theory, in From Number Theory to Physics (Les Houches, 1989), pages 413-439, Springer, Berlin (1992 ). | Zbl | MR
[6] - Double asymptotic trajectories and conditions for integrability of Hamiltonian systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 55-63 (1990). | Zbl | MR
[7] - Variational methods for constructing chaotic motions in the dynamics of a rigid body, Prikl. Mat. Mekh. , 56(2), p. 230-239 (1992). | Zbl | MR
[8] and - Dynamics of rigid body., NITS Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, in Russian (2001). | Zbl
[9] and - On the determination of Ziglin monodromy groups, SIAM J. Math. Anal., 22(6), p. 1790-1802 (1991). | Zbl | MR
[10] , and - Group-theoretic obstructions to integrability, Ergodic Theory Dynam. Systems , 15(1), p. 15-48 (1995). | Zbl | MR
[11] - Resheniya v konechnom vide uravnenii Eilera-Puassona , "Naukova Dumka", Kiev (1992). | MR
[12] - Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (3) p. 70-77 (1990). | Zbl | MR
[13] and - Kovacic's algorithm and its application to some families of special functions, Appl. Algebra Engrg. Comm. Comput., 3(3), p. 211-246 (1992). | Zbl | MR
[14] - Lectures on Integration of Equations of Motion of a Rigid Body about a Fixed Point, Gosud. Isdat. Teh. Teor. Lit., Moscow, in Russian ( 1953). | Zbl | MR
[15] - New integrable cases of integrability of the Euler dynamical equations, Warsaw Univ. Izv., in Russian (1910).
[16] - An Introduction to Differential Algebra , Hermann, Paris, second edition (1976). | MR
[17] - On Riemann's equations which are solvable by quadratures, Funkcial. Ekvac., 12, p. 269-281 (1969/1970). | Zbl | MR
[18] - Elements of the theory of representations , Springer-Verlag, Berlin (1976), translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften , Band 220. | Zbl | MR
[19] - An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput. , 2(1), p. 3-43 (1986). | Zbl | MR
[20] - Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12, p. 177-232 (1888). | JFM
[21] - Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe, Acta Math., 14, p. 81-93 (1890). | JFM
[22] - The nonexistence of an additional analytic integral in the problem of the motion of a nonsymmetric heavy solid body around a fixed point, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 105-110 (1975). | Zbl | MR
[23] - Methods of Qualitative Analysis in the Dynamics of a Rigid Body, Moskov. Gos. Univ., Moscow (1980). | Zbl | MR
[24] and - Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. I, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (6), p. 73-81 (1985). | Zbl | MR
[25] and - Nonintegrability of the general problem of rotation of a dynamically symmetric heavy rigid body with a fixed point. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1), p. 39-44 (1986). | Zbl | MR
[26] - Mécanique analytique, volume 2, Chez La Veuve Desaint, Libraire, Paris (1788).
[27] - The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer-Verlag , Berlin (1965). | Zbl
[28] - Non-integrability in gravitational and cosmological models. Introduction to Ziglin theory and its differential Galois extension, in A. J. Maciejewski and B. Steves, editors, The Restless Universe. Applications of Gravitational N-Body Dynamics to Planetary, Stellar and Galactic Systems, p. 361-385 (2001).
[29] - Non-integrability of a certain problem of rotational motion of a rigid satellite, in H. Prętka-Ziomek, E. Wnuk, P. K. Seidelmann, and D. Richardson, editors, Dynamics of Natural and Artificial Celestial Bodies, p. 187-192, Kluwer Academic Publisher (2001).
[30] , Non-integrability of certain Hamiltonian systems. Applications of Morales-Ramis differential Galois extension of Ziglin theory, in T. Crespo and Z. Hajto, editors, Differential Galois Theory , volume 58, p. 139-150, Banach Center Publication, Warsaw (2002). | Zbl | MR
[31] and - Non-integrability of ABC flow, Phys. Lett. A, 303, p. 265-272 (2002). | Zbl | MR
[32] and - Non-integrability of the Suslov problem, Regul. Chaotic Dyn., 7(1), p. 73-80 (2002). | Zbl | MR
[33] and - Non-integrability of restricted two-body problems in constant curvature spaces, Regul. Chaotic Dyn., 8(4), p. 413-430 (2003). | Zbl | MR
[34] and - Non-integrability of the problem of a rigid satellite in gravitational and magnetic fields , Celestial Mech., 87(4), p. 317-351 (2003). | Zbl | MR
[35] - Lectures on Differential Galois Theory, volume 7 of University Lecture Series, American Mathematical Society, Providence, RI (1994). | Zbl | MR
[36] and - Introduction to Mechanics and Symmetry, number 17 in Texts in Applied Mathematics, Springer Verlag, New York, Berlin, Heidelberg (1994). | Zbl | MR
[37] and - Picard-Vessiot theory and Ziglin's theorem, J. Differential Equations, 107(1), p. 140-162 (1994). | Zbl | MR
[38] - Differential Galois Theory and Non-Integrability of Hamiltonian Systems, volume 179 of Progress in Mathematics, Birkhäuser Verlag, Basel ( 1999). | Zbl | MR
[39] and - Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., 8(1), p. 33-95 (2001). | Zbl | MR
[40] and - Galoisian obstructions to integrability of Hamiltonian systems. II, Methods Appl. Anal., 8(1), p. 97-111 (2001). | Zbl
[41] and - Théorie de Galois différentielle et resommation, in Computer Algebra and Differential Equations, p. 117-214, Academic Press, London (1990). | Zbl
[42] and - Galois groups of second and third order linear differential equations, J. Symbolic Comput., 16(1),p. 9-36 (1993). | Zbl | MR
[43] and - Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput., 6(1), p. 1-22 (1995). | Zbl | MR
[44] - Structure des systèmes dynamiques, Maîtrises de mathématiques, Dunod, Paris (1970). | Zbl | MR
[45] and - A global study of Jordan-Pochhammer differential equations, Funkcial. Ekvac., 19(1), p. 85-99 (1976). | Zbl | MR
[46] and - Note on Kovacic's algorithm , J. Symbolic Comput., 22(2), p. 179-200 (1996). | Zbl | MR
[47] and - Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (2003). | Zbl | MR
[48] and - A Course of Modern Analysis , Cambridge University Press, London (1935). | MR | JFM
[49] - Branching of solutions and the nonexistence of an additional first integral in the problem of an asymmetric heavy rigid body in motion relative to a fixed point., Dokl. Akad. Nauk SSSR, 251(4), p. 786-790 (1980). | Zbl | MR
[50] - Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I, Functional Anal. Appl., 16, p. 181-189 (1982). | Zbl
[51] - Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. II, Functional Anal. Appl., 17, p. 6-17 (1983). | Zbl
[52] - On the absence of a real-analytic first integral in some problems of dynamics, Functional Anal. Appl., 31(1), p. 3-9 (1997). | Zbl | MR





