@article{AFST_1995_6_4_2_339_0,
author = {Jianfu, Yang},
title = {Positive solutions of an obstacle problem},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {339--366},
year = {1995},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 4},
number = {2},
mrnumber = {1344725},
zbl = {0866.49017},
language = {en},
url = {https://www.numdam.org/item/AFST_1995_6_4_2_339_0/}
}
TY - JOUR AU - Jianfu, Yang TI - Positive solutions of an obstacle problem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1995 SP - 339 EP - 366 VL - 4 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://www.numdam.org/item/AFST_1995_6_4_2_339_0/ LA - en ID - AFST_1995_6_4_2_339_0 ER -
Jianfu, Yang. Positive solutions of an obstacle problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 4 (1995) no. 2, pp. 339-366. https://www.numdam.org/item/AFST_1995_6_4_2_339_0/
[1] and .- Positive solutions of elliptic obstacle problems, Preprint.
[2] ) and ) .- Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), pp. 349-381. | Zbl | MR
[3] ) and ) .- Positive solutions of some nonlinear elliptic problems in unbounded domains, Arch. Rational Mech. and Anal. 99 (1987), pp. 283-300. | Zbl | MR
[4] ) and ) .- Nonlinear scalar field equations, I and II, Arch. Rational Mech. and Anal. 82, No 4 (1983), pp. 313-375. | Zbl | MR
[5] ) and ) .- A relation between pointwise convergence of functions and convergence of integrals, Proc. Amer. Math. Soc. 88 (1983), pp. 486-490. | Zbl | MR
[6] ) and ) .- An introduction to variational inequalities and their applications, Academic Press, New York (1980). | Zbl | MR
[7] ) .- Uniqueness of positive solution of Δu - u + up = 0 in IRN, Arch. Rational Mech. and Anal. 105 (1989), pp. 243-266. | Zbl | MR
[8] ) .- The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 and part 2, Ann. Inst. H.-Poincaré Anal. Non linéaire 1 (1984), pp. 109-145, 223-283. | Zbl | MR | Numdam
[9] ) and ) .- A free boundary problem involving limiting Sobolev exponents, Manuscripta Math. 58 (1987), pp. 77-93. | Zbl | MR
[10] ) and ) .- Holes and obstacles, Ann. Inst. H.-Poincaré Anal. Non linéaire 5 (1988), pp. 323-345. | Zbl | MR | Numdam
[11] ) .- Obstacle problems in mathematical physics, Mathematics Studies 134, The Netherlands (1987). | Zbl | MR
[12] ) .- Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), pp. 149-162. | Zbl | MR
[13] ) .- Bifurcation in Lp(IRN) for a semilinear elliptic equation, Proc. London Math. Soc. 57 (1988), pp. 511-541. | Zbl | MR
[14] ) .- Minimax principle for lower semicontinous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré Anal. Non linéaire 3 (1986), pp. 77-109. | Zbl | Numdam
[15] ) .- Positive solutions of semilinear elliptic problems in exterior domains, J. Diff. Equas. 106 (1993), pp. 40-69. | Zbl | MR
[16] ) and ) .- Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburg 115 A (1990), pp. 301-318. | Zbl | MR





