@article{AFST_1993_6_2_2_271_0,
author = {Peter Rehm, Hans},
title = {Prime factorization of integral {Cayley} octaves},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {271--289},
year = {1993},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {Ser. 6, 2},
number = {2},
mrnumber = {1253392},
zbl = {0830.17017},
language = {en},
url = {https://www.numdam.org/item/AFST_1993_6_2_2_271_0/}
}
TY - JOUR AU - Peter Rehm, Hans TI - Prime factorization of integral Cayley octaves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1993 SP - 271 EP - 289 VL - 2 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://www.numdam.org/item/AFST_1993_6_2_2_271_0/ LA - en ID - AFST_1993_6_2_2_271_0 ER -
%0 Journal Article %A Peter Rehm, Hans %T Prime factorization of integral Cayley octaves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1993 %P 271-289 %V 2 %N 2 %I Université Paul Sabatier %C Toulouse %U https://www.numdam.org/item/AFST_1993_6_2_2_271_0/ %G en %F AFST_1993_6_2_2_271_0
Peter Rehm, Hans. Prime factorization of integral Cayley octaves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 2 (1993) no. 2, pp. 271-289. https://www.numdam.org/item/AFST_1993_6_2_2_271_0/
[1] ) and ) .- The arithmetics of octaves and the group G2, Proc. Nederl. Akad. Wet. 1959, pp. 406-418. | Zbl | MR
[2] ) .- Integral Cayley numbers, Duke math. J. 13 (1946), pp. 561-578. | Zbl | MR
[3] ) . - Über die Zahlentheorie der Quaternionen, Math. Werke, Bd. 2, pp. 303-330. | JFM
[4] ) Ges. Werke, Bd. 1.
[5] ) .- The number of Cayley integers of given norm, Proc. Edinburgh Math. Soc. 25 (1982). | Zbl | MR
[6] ) and ) .- Factorization of Cayley numbers, J. Number Theory 2 (1970), pp. 74-90. | Zbl | MR
[7] ) . - A certain class of multiplicative functions, Duke Math. J. 13 (1946), pp. 281-306. | Zbl | MR
[8] ) .- An Introduction to Nonassociative Algebras, Academic Press, New York and London (1966). | Zbl | MR
[9] ) .- Alternativkörper und quadratische Systeme, Abh. Math. Sem. Hamburg Univ. 9 (1933), pp. 393-402. | Zbl | JFM





