@article{AFST_1990_5_11_2_67_0,
author = {Benkirane, A.},
title = {Approximations de type {Hedberg} dans les espaces $W^m L \log L\left( \Omega \right)$ et applications},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {67--78},
year = {1990},
publisher = {Universit\'e Paul Sabatier},
address = {Toulouse},
volume = {5e s{\'e}rie, 11},
number = {2},
zbl = {0731.46016},
language = {fr},
url = {https://www.numdam.org/item/AFST_1990_5_11_2_67_0/}
}
TY - JOUR AU - Benkirane, A. TI - Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1990 SP - 67 EP - 78 VL - 11 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://www.numdam.org/item/AFST_1990_5_11_2_67_0/ LA - fr ID - AFST_1990_5_11_2_67_0 ER -
%0 Journal Article %A Benkirane, A. %T Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1990 %P 67-78 %V 11 %N 2 %I Université Paul Sabatier %C Toulouse %U https://www.numdam.org/item/AFST_1990_5_11_2_67_0/ %G fr %F AFST_1990_5_11_2_67_0
Benkirane, A. Approximations de type Hedberg dans les espaces $W^m L \log L\left( \Omega \right)$ et applications. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 11 (1990) no. 2, pp. 67-78. https://www.numdam.org/item/AFST_1990_5_11_2_67_0/
[1] ) .- Sobolev spaces, Acad. Press (1975) | Zbl | MR
[2] ) .- On the Orlicz-Sobolev Imbedding theorem, J. Func. Analysis, 24 (1977) pp. 241-257 | Zbl | MR
[3] ) . - Potentiel de Riesz et problèmes elliptiques dans les espaces d'Orlicz, Thèse de Doctorat, Université libre de Bruxelles (1988)
[4] ) and ) .- An approximation theorem in higher order Orlicz-Sobolev spaces and applications, Studia Math., 92 (1989) pp. 231-255 | Zbl | MR
[5] ) et ) .- Some properties of higher-order Sobolev spaces, J. Math. Pures Appl., 61 (1982) pp. 245-259 | Zbl | MR
[6] ) and ) .- Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8 (1971) pp. 52-75 | Zbl | MR
[7] ) .- Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Soc., 190 (1974) pp. 163-2?? | Zbl | MR
[8] ) . - Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982) pp. 17-24 | Zbl | MR
[9] ) .- A strongly non linear elliptic boundary value problem, in Orlicz-Sobolev spaces Proc. Sympos. Pure. Math., 45, Amer. Math. Soc. (1986) pp. 455-462 | Zbl | MR
[10] ) . - Two approximation properties in functions spaces, Ark. Math., 16 (1978) pp. 51-81 | Zbl
[11] ) .- Approximation in Sobolev spaces and non linear potential theory, Proc. symp. Pur. Math. Amer. Math. Soc., 45 (1986) pp. 473-480 | Zbl | MR
[12] ) .- Convex fonctions and Orlicz spaces, Noordhoff (1961)
[13] ) .- Fractional intégration in Orlicz spaces, Trans. Amer. Math. Soc. 115 (1965) pp. 300-328 | Zbl | MR
[14] ) . - Boundary value problems for strongly non linear elliptic equations, J. London Math. Soc. 21 (1980) pp. 123-132 | Zbl | MR





