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DEUXIEME PARTIE.

LE CORPS DES NOMBRES DE GALOIS.

CHAPITRE X.

Les idéaux premiers du corps de Galois et de ses sous-corps.

§ 36. — LA DECOMPOSITION UNIQUE DES IDEAUX DU CORPS DE GALOIS EN IDEAUX PREMIERS.

Un corps K qui coincide avec tous ses corps conjugués est dit un corps de Galois.
Soit / un corps quelconque de degré m et soit k', ..., k"' les m corps conjugués a k,
on peut, en réunissant tous les nombres appartenant aux corps k, k', ..., Jefm=1)
former un nouveau corps K; ce corps K est alors nécessairement un corps de Galois,
qui contiént les corps k, k', ..., k™" comme sous-corps. Tout corps k peut donc étre
considéré comme un sous-corps d’un corps de Galois. Par suite de cette circonstance
nous n’apporterions aucune restriction essentielle & I'étude des nombres algébriques
si nous commencions par étudier un corps de Galois, et si nous cherchions & voir
ensuite comment les lois de décomposition des idéaux de ce corps de Galois se modi-
fient lorsqu’on passe 4 un des sous-corps qu’il contient.

Fac. de 7., 30 S., 1I. . 29
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La démonstration de la décomposition unique des idéaux en idéaux premiers est
tres simple pour un corps de Galois [Hilbert*?]. Pour le voir, nous fixerons d’abord le
sens de certaines notations.

Soit @ le nombre entier qui détermine le corps K de degré M; © est une racine
d’une équation irréductible de degré M & coefficients entiers et rationnels. Désignons
les M racines de cette équation par

S‘@:®y SZG)""’ SM®,

ou §,, ..., sy désignent des fonctions rationnelles de © a coeflicients rationnels. Si
Lon considére 5,0, ..., sy® comme des substitutions, elles forment un groupe G de
degré M, car deux substitutions successives prises parmi ces M nous donnent encore
une de ces substitutions. Soit G le groupe du corps de Galois K. Un idéal J qui ne
change pas lorsqu’on y remplace ses nombres par leurs conjugués, c’est-d-dire
lorsqu’on fait les M — 1 substitutions s,, ..., sy sera dit un Idéal invarian!. Un idéal
invariant a les propriétés suivantes :

Lewve 11. — La puissance M!éme de tout idéal invariant J est un nombre entier
rationnel.

Démonstration. — Soit A un nombre de l'idéal J et soient A,, A, ..., Ay les
M fonctions symétriques ¢lémentaires des nombres A =s A, s A, ..., syA. Nous

désignerons par A le plus grand commun diviseur des M nombres rationnels entiers

M! M! M!

(18) AT, AT, L AT

De méme supposons qu’on ait calculé les mémes fonctions symétriques et le
méme plus grand commun diviseur relatifs & tous les nombres B, I, ..., de I'idéal R
et soient B, C, ... ces diviseurs.

Soit J le plus grand commun diviseur de tous les nombres A, B, C, ... ainsi
obtenus.

On a

],

En effet, les nombres conjugués & A étant aussi des nombres de &, on a
A,=0,(3), A,=0,(3%, ..., Ay=o, (I,

et par suite tous les nombres (18) et de plus A sont = o, (IM).
Comme on peut en dire autant de B, C, .... on a aussi J = o d’aprés I .

D’autre part, les coefficients A,, A,, ..., Ay de I'équation de degré M en A sont
1 M 1
divisibles respectivement par J*, ..., J¥ et par suite A est divisible par J*; comme

on peut en dire autant de tous les nombres B, T', ... de I'idéal J, il en résulte que I
est divisible par J.
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TutorEME 67. — A chaque idéal % du corps de Galois K on peut faire corres-
pondre un autre idéal B, tel que le produit W soit un idéal principal.

Démonstration. — L’idéal =AsA ..... syA est un idéal invariant; donc,
d’aprés le lemme 11, I'idéal
B — gM!—l 8291 ..... SMA

est I'idéal indiqué au théoréme 67.

Ce théoréme 67 permet de développer les caractéres de divisibilité dans un corps
de Galois, comme on I'a fait au paragraphe 5 en vertu du théoréme 8 pour un corps
quelconque k.

Pour déduire alors des lois de divisibilité dans un corps de Galois, les lois de divi-
sibilité pour un corps quelconque k, il faudra démontrer d’abord dans un corps de
Galois les théorémes de Kronecker 13 et 14 relatifs aux formes et on en conclura
I'exactitude de ces lois pour un sous-corps k, ou bien on emploiera un moyen
direct et approprié de transposition d'un corps a 'autre. [Hilbert?2.]

§ 37. — LEs ELEMENTS, LA DIFFERENTE ET LE DISCRIMINANT DU CORPS DE GALOIS.

Certaines notions établies antérieurement prennent un sens plus simple dans le
corps de Galois. Ainsi les éléments d'un corps de Galois sont des idéaux dans le corps
lui-méme et on a les faits suivants :

TutorkME 68. — Les éléments d’un corps de Galois K se transforment les uns dans
les autres par les substitutions s,, ..., sy. La différente ® du corps K est un idéad
invariant, et le discriminant D =~ N(®) est comme idéal la Me puissance de D.

Démonstration. — Désignons par Q,, ..., Qy une base du corps K, les éléments
de K sont des idéaux de la forme

€, =(Q,—s59Q,, ..., Qu—35Qu),

Cy=(Q,— SMQ‘ s oeees Oy —5yQy).

Appliquons une substitution quelconque s & I'un de ces éléments &, et remarquons

que les nombres sQ,, ..., sQy forment encore une base du corps; il en résulte que
. .
si I'on pose ss,=s,s :
$€,=(sQ, —5,5Q,, ..., sQu—s,5Qy)=6,.

L’invariance de la différente du corps résulte de sa représentation
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§ 38. — LES SOUS-CORPS DU CORPS DE GALOIS.

Le corps de Galois permet une étude précise des lois de décomposition de ses
nombres en tenant compte des sous-corps qu’il contient, et les résultats qu’on obtient
ainsi sont trés importants lorsqu’on veut appliquer la théorie générale des corps &
des corps algébriques particuliers. [Hilbert?®.]

Pour caractériser simplement un sous-corps du corps de Galois, nous emploierons
les expressions suivantes : Lorsque r substitutions s,=1, s,, ..., s, du groupe G forment
un sous-groupe ¢ de degré r, 'ensemble des nombres de K qui ne changent pas

lorsqu’on applique toutes ces substitutions ¢, forme un corps contenu dans K et de

, M
degré m = —. Nous nommerons ce corps k le sous-corps correspondant au sous-
r

groupe .
Le corps de Galois appartient au groupe formé par s,=—1; au groupe G des M
substitutions s correspond le corps des nombres rationnels. — Réciproquement,

chaque sous-corps k du corps de Galois appartient & un certain sous-groupe ¢ du
groupe G. Le groupe g s’appelle alors le sous-groupe qui détermine le corps k.

§ 39. — LEs CORPS DE DECOMPOSITION ET LE CORPS D'INERTIE D UN IDEAL PREMIER .

Choisissons dans le corps de Galois K un certain idéal premier 9 de degré f; il y
a un certain nombre de sous-corps de K s’emboitant les uns dans les aulres, carac-
térisés par I'idéal premier 9 et donl nous allons développer briévement les merveil-
leuses propriétés.

Soit p le nombre premier rationnel divisible par 9; de plus, soient z, 2/, 2", ...,
les r, substitutions du groupe G qui laissent invariable I'idéal premier 9 ; elles for-
ment un groupe de degré r, que nous nommerons le groupe de décomposition de
lidéal premier 9 et que nous désignerons par g,. Le corps k, correspondant au
groupe ¢, sera dit le corps de décomposition de lidéal premier 9 ; il est de

. M
degré m = —.

De plus, sgient t, ', 1", ... toutes les substitutions s du corps telles que pour tout
nombre entier Q du corps K on ait sQ = Q suivant 9 et soit r, leur nombre, on voit
facilement que ces substitutions forment un groupe de degré r,. Ce groupe, nous le
nommerons le groupe d’inertie de Uidéal premier 3% et nous le désignerons par g,. Le
corps k, qui correspond & ¢, nous le désignerons par corps d’inertie de lidéal pre-

: M
mier 3 ; il est de degré m,— =
t
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Le rapport entre le groupe d’inertie et le groupe de décomposition résulte des
faits suivants :

TutorkME 69. — Le sous-groupe d’inertie ¢, de 'idéal premier 9 est un, sous-
groupe invariant du groupe de décomposition g,. On obtient toutes les substitutions
du groupe de décomposition et on n’obtient qu'une fois chacune d’elles en multi-
pliant les substitutions du groupe d’inertie par 1, z, 2°, ..., 2=, ou z est une substi-
tution appropriée du groupe de décomposition.

Démonstration. — Soit t une substitution quelconque de g, et Q un nombre entier
du corps K divisible par 9. Posons QQ'={"'Q; on a, en vertu de la propriété du corps
d’inertie Q'=1{Q'=Q suivant P, c’est-a-dire Q'=o suivant $¥. L’application de la
substitution ¢ donne Q = o suivant I'idéal premier {95. Comme ceci a lieu pour tous
les nombres Q de I'idéal premier 9, il faut que 9 soit divisible par {9 et, par suite,
P =1, c’est-a-dire que le groupe d’inertie est un sous-groupe du groupe de décom-
position.

Désignons maintenant par P un nombre primitif de I'idéal premier 9 congru & o
suivant tous les idéaux conjugués & 9 et premiers avec 9. Le théoréme 25 montre que
I'on peut former un pareil nombre. Ceci fait, composons la fonction entiére & coeffi-
cients entiers de degré M en x :

Flx)=(x—sP)(x—s,P) ... (x—suP).

Comme P est une racine entiére de la congruence F(x)=o suivant ¥, on sait,
d’aprés le théoréme 27, que P? est aussi racine de cetle congruence, et il résulte de 1a
que, parmi les M substitutions, I'une au moins donne sP=P? suivant 9. Si alors on
avait s7'9 ==, on aurait, en vertu du choix de P, la congruence P = o suivant s~'98,
et, par suite, sSP=o suivant ¥, ce qui est contraire & la congruence trouvée précé-
demment.

A cause de sP =9 la substitution s appartient au groupe’de décomposition ;
posons s =z; en appliquant plusieurs fois de suite la substitution z & la con-
gruence zP = P? suivant 9, nous aurons

ZP="P”, FP=P", ..., Z/P=P"=P (suivant P);

c’est pourquoi z est une substitution du groupe d’inertie, car tout nombre entier du
~corps Q du corps K peut étre mis sous la forme de Q =P* + IT ou =11, oti a est un
nombre entier rationnel et [T un nombre du corps divisible par 9. A cause de z/P=9
on a en effet 2/Q = Q suivant .

La congruence zP = P? suivant 9 nous apprend que z'&zP =P suivant 9, ou ¢
est une substitution quelconque du groupe d’inertie ¢,. Si nous posons z'==2z""tz et
si Q est un nombre entier du corps tel que Q = P*suivant (W), zQ=(:P)*=P*=Q
suivant 99, et de méme si Q =o suivant 9, c’est-d-dire que z' = z7'#z appartient au
groupe d’inertie.
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Soit donc P(P) la fonction entiére & coefficients entiers de degré fde P qui=o
suivant 9 ; alors, d’aprés le théoréme 27, la congruence P(x) = o suivant 9% admet les
racines P, P?, P”f“, et d’aprés le théoréme 26 elle n’en a pas d’autres.

Soit maintenant z* une substitution quelconque du groupe de décomposition;
il résulte de la congruence P(P)=o suivant 9, que P(z*P)=o0, et, par suite,
2*P="P" suivant 9, ot i a I'une des f valeurs o, 1, ..., f— 1. Comme d’autre part
P" — 2P, z7'2*P = P suivant 9, et, par suite, z'z* est une substitution ¢ du
groupe d’inertie, c’est-d-dire z* =2z't.

Toutes les substitutions du groupe de décomposition peuvent donc étre repré-
sentées sous cette forme, et comme réciproquement z't pour i=o, 1, ..., f— 1 repré-
sente des substitutions distinctes, la derniére partie du théoréme 69 est démontrée.
Enfin, Yinvariance du groupe d’inertie résulte de ce fait que z7'tz appartient & ce
groupe. De plus, on a r,=fr,.

§ 40. — UN THEOREME RELATIF AU CORPS DE DECOMPOSITION.

Le théoréme suivant exprime la propriété la plus importante du corps de décom-
position.

TrforiME 70. — L’idéal p = 99" est situé dans le corps k_ et il est un idéal premier
de ce corps du premier degré. Dans le corps de décomposition k,, p=ga, ot a est un
idéal premier avec .

Démonstration. — La norme relative de 1'idéal premier 9% par rapporl au corps k,
est Ny, (9) =9"%. Pour trouver la plus petite puissance de I'idéal premier 9 située
dans k,, supposons qu’on ait trouvé le plus grand commun diviseur des nombres
entiers de k, qui sont divisibles par 9. Ce nombre est nécessairement un idéal pre-
mier p de k,, et comme " est dans k_. p est certainement une puissance de 9, soit
p —=P*. Pour déterminer u, nous ferons les considérations suivantes. Soit A un
nombre de K qui n’est pas divisible par 9 et qui satisfait & A =zA suivant 9 et si
A =P suivant 9, i=pi suivant p’ — 1, et, par suite, i est divisible par 1 + p + p
.o +p™", Cest-d-dire qu’il n’y a que p— 1 nombres incongrus suivant $ de la
forme considérée; on a donc A = a suivant 9, ol a est un nombre entier rationnel.
De 14, il résulte en particulier que tout nombre « du corps k, est congru & un nombre
rationnel a suivant 99, et par suite aussi suivant p, c’est-d-dire que p est un idéal
premier du premier degré du corps k, et la norme de g dans ce corps k,=p.

D’autre part, dans le corps K, la norme de p satisfait & N(p) = n(p)", et & cause
de p =" et de N(9) =p’, il résulte p*/ =p™, c'est-d-dire u=r,.

La définition du corps de décomposition donne N(¥) = P"*A, ou A est un idéal -
premier avec W. Si p=pa, on a N(3) =p’ = p'a’, et, par suite, ' =A, ce qui dé-
montre la derniére partie du théoréme 7o.
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§ 41. — LE CORPS DE RAMIFICATION D'UN IDEAL PREMIER 9.

Nous allons étudier de plus prés la nature du corps d’inertie et désigner par A un
nombre bien déterminé du corps K divisible par 9 et non par 9°, et nous détermi-
nerons pour toutes les substitutions du corps d’inertie ¢, ¢, ¢', ... les congruences

tA = P°A 8
A =PYA} (P,
"A =PYA
oua,a.d,... sontdesnombres de la suite o, 1, 2, ...,pf—— 2.
Parmi ces substitutions ¢, t', ", ..., désignons par v, v, v, ... celles qui corres-

pondent a la valeur zéro des exposants a, a', a’, soit r, leur nombre; elles forment,
il est facile de le voir, un sous-groupe invariant du groupe d’inertie. Nous désigne-
rons ce sous-groupe de degré r, par le nom de sous-groupe de ramification (Verzwei-
gungsgruppe) de Uidéal premier B, et nous écrirons g¢,. Le corps k, qui lui appartient
sera dit le corps de ramification de Uidéal premier 9.

Le théoréme suivant caractérise les rapports du groupe de ramification et du
groupe d’inertie.

TutorkMe 71. — Le groupe de ramification ¢, est un sous-groupe invariant du
groupe d’inertie; son degré est une puissance de p, soit r,=p'. On obtient toutes les
substitutions du groupe d’inertie et on n’obtient qu'une fois chacune d’elles, en
multipliant chaque substitution du groupe de ramification par 1, ¢, 2, ..., {**, ou

r \ . . o . se .
h=—Let ol ¢ est une substitution convenablement choisie du groupe d’inertie;

r

v

h est un diviseur de p’ — 1.

Démonstration. — Soit 9" une puissance assez élevée de 9 pour que pour toute
substitution v du groupe de ramification différente de 1, on ait vA == A suivant 9*.
Posons vA = A + BA® suivant 9%°, B désignant un entier de K, il en résulte que
vPA=A suivant §°, et, de méme, v”’A = A suivant MW* et ainsi de suite; enfin,
prPA=A suivant ¥". 11 en résulte que v?** =1, c'est-d-dire que le degré r, du
groupe de décomposition est une puissance de p; soit r,=p'.

Soit maintenant a le plus petit parmi les exposants a, @', a’, ... qui ne sont pas
nuls, et soit & le nombre de ces exposants distincts. Tous ces nombres seront des
multiples de a et coincident avec o, a, 2a, ..., (h —1)a; et, de plus, ha=p’ — 1.
Nous reconnaissons en méme temps que toutes les substitutions du groupe d’inertie
peuvent étre mises sous la forme ¢'v, ott i prend les valeurs o, 1, ..., A — 1, et ot v
parcourt toutes les substitutions du groupe de ramification g,. On a donc

r,=nhr,.
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§ 42. — UN THEOREME RELATIF AU CORPS D INERTIE.

Le théoréme suivant va nous expliquer comment se comportent les idéaux 99 et p
dans le corps k,.

TutorkME 72. — Tout nombre du corps K est congru suivant 9% & un nombre du
corps d’inertie. Le corps d’inertie ne décompose pas p, mais il en éléve le degré, en
ce que 9, en passant du corps k_, ot il est un idéal premier du premier degré, se
transforme en passant dans le corps supérieur k, en un idéal premier du degré f.

Démonstration. — Posons

—— {vP, v'P, VP, ... }I'”f‘”,
.
'/.:Z(n B I I B OF

nous entendons par P un nombre primitif suivant 9% et par { une substitution comme
au théoréme 71, le nombre = est un nombre du corps k, et le nombre % est situé dans
le corps k,. Pour le démontrer, il suffit de se rappeler que » reste inaltéré lorsqu’on
Iui applique la substitution ¢, car ¢" appartient 4 g, et parce que les nombres %, f=,
..., "'z ne sont pas altérés par une substitution appartenant a ¢,. Ces deux nom-
bres = et x sont tous deux congrus suivant I'idéal premier 9 au nombre primitif P.
Comme par suite &, contient exactement p’ nombres incongrus suivant 9, p=—9": ne
peut se décomposer dans le corps k, et il est dans ce corps un idéal premier de
degré f.

§ 43. — THEOREMES RELATIFS AU GROUPE DE RAMIFICATION ET AU CORPS DE RAMIFICATION.

11 est facile des lors d’établir la propriété caractéristique du groupe de ramification
et qui est la suivante :

TrkorEME 73. — Le groupe de ramification g, se compose de toutes les substitu-
tions s qui, appliquées & tous les nombres entiers Q du corps K, donnent la con-
gruence

sQ = Q suivant 9*.

Démonstration. — Soit £ de K congru & o du corps d’inertie suivant 99, posons
par suite Q — w=BA suivant $*, ott A a le sens du paragraphe 41 et ot B est un
nombre convenablement choisi du corps K. Si nous appliquons une substitution v du
corps de ramification, il vient vQ — 0 =v(BA)=BA =Q — o, cest-a-dire 1Q=Q
suivant 9°.

On reconnait de plus facilement que l'on a :
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TuforkME 74. — L’idéal p,— " est situé dans le corps de ramification, dans
lequel il a le degré f, et I'on voit que, dans le corps de ramification, I'idéal p=p" se

décompose en h facteurs premiers égaux.

§ 44. — LES CORPS DE RAMIFICATION SOULIGNES D'UN IDEAL PREMIER 9.

Nous nous proposons inaintenant d’examiner de plus prés la séparation de
l'idéal p, en facteurs égaux.

Nous désignerons par L le plus grand exposant tel que pour toute substitution v
du groupe de ramification, tous les nombres entiers du corps K satisfassent a vQ =)
suivant 9%, et nous déterminerons toutes les substitutions s du groupe de ramifi-
cation, telles que sQ =€) suivant P'+'; elles forment un sous-groupe g- du groupe
de ramification que nous appellerons le groupe de ramification une fois souligné de
Uidéal premier 9. Le corps k correspondant a g sera ditle corps de ramification une
Sois souligné de U'idéal 3.

Voici les propriétés les plus importantes de ce corps.

Tutorkme 75. — Le groupe de ramification une fois souligné ¢ est un sous-
groupe du groupe de ramification g, . Soit r; = p? son degré. On obtient toutes les
substitutions de g, et on ne les obtient qu'une fois, en multipliant toules les substi-
tutions du groupe de ramification souligné une fois g par certaines substitutions en
nombre p?, v, v,, ..., v,z du groupe de ramification ; ici ces p® substitutions offrent
cette particularité que pour deux quelconques d’entre elles v,, v,, on ail toujours
une relation de la forme v,v; = v, 0,0, ol v est une substitution de g.. L’idéal

e
p; = W0 est un idéal premier dans ky: et, par suite, dans k, I'idéal pl,:pg se
sépare en p¢ facteurs premiers égaux; et e cst un exposant qui ne dépasse pas le
degré fde I'idéal premier 9.

Démonstration. — Soit A un entier de K divisible par 9% et non par ¥°; détermi-
nons un systéme de substitutions v, . ..., v, du groupe de ramification tel que, si 'on

pose
A=A+ BAL, ..., v A=A 4 BAL, (P

les nombres entiers B,, ..., B, soient tous incongrus suivant 9, et tel qu'on ne
puisse ajouter & ce sysiéme v,, ..., v, de nouvelle substitution qui ne soit en con-
tradiction avec la derni¢re condition.

Choisissons alors une substitution quelconque v* du groupe de ramification g, et
posons v*A = A 4 BA! suivant 9+, B sera congru 4 l'un des nombres B,, ..., B,
suivant 9¥; soit, par exemple, B=B, suivant §, il en résulte que v,”'v*A = A sui-
vant P+ Le théoréme 72 nous apprend que tout nombre entier Q de K est congru

Fac. de 7., 3¢ S, 1I. 3o
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a une expression =, + #,\ + ... 4+ 3 A suivant ¥+, o «,, §,. ..., J, sont des nom-
bres entiers du corps d’inerlie, ef il sensuit que Q satisfait & v,"0*Q=Q sui-
vant P+ clest-d-dire que v,7'v =10 ou que v*=vp. Cette égalit¢ démontre les

propri¢tés du groupe g affirmées au théoréme 75.

Posons .= pl el soit e=1—1.

- On voit comment il faut poursuivre la méthode. Soit L 'exposant le plus élevé,
tel que pour toute substitution ¥ tous les nombres du corps K satisfont & la con-
gruence 0Q =0 suivant W*, nous délerminerons toutes les substitutions o pour
lesquelles on a constamment 7Q == Q) suivant §$-+!. Ces subslitutions forment un

sous-groupe invariant ¢z du groupe ¢, le groupe de ramification deux fois souligné

de lidéal premier 9, soit r-= p’ son degré; posons =1 —1, on a po=pr", ol
v
(16 o1 1 . N 1 N A
p, cst un idéal premier du corps k- qui correspond a g .

En continuant ainsi nous atteindrons le groupe de ramification lrois fois souligné
el ainsi de suite. Supposons que le groupe de ramification i fois souligné de lidéal
premier 3 soit celui qui ne contient plus que la substitution 1; le corps de ramifica-
tion i fois souligné de lidéal premier 9 est alors le corps K lui-méme et la nature
de g, nous est alors parfaitement connue. Il est évident qu’il ne peut exister de corps
de ramification soulignés de I'idéal premier 9, que si le degré M du corps K est divi-
sible par p.

§ 45. — U~ RESUME RAPIDE DES THEOREMES RELATIFS A LA DECOMPOSITION D' UN

NOMBRE PREMIER RATIONNEL ) DANS LE CORPS DE GALOIS.

Les théorémes démontrés du paragraphe 39 au paragraphe 44 nous montrent tout
a fait ce qui se passe lorsqu’on décompose un nombre premier rationnel p dans un
corps de Galois.

S'il s’agit d’un facteur déterminé 9% de p, nous commencerons par mettre p sous
la forme p=gya dans le corps de décomposition de 9, ot p est un idéal premier du
premier degré ct ot a est un idéal du corps de décomposition qui n’est pas divisible
parg.

Le corps de décomposition de 9 est contenu comme sous-corps dans le corps
d’inertie de 9, qui, de son cdté, ne produit aucune décomposition de g, mais qui a
fait de  un idéal premier de degré J'. Si le corps K est lui-méme le corps de décom-
position ou le corps d’inertie, ce premier pas termine la décomposition. Sinon $ peut
encore étre décomposé en d’autres facteurs dans K, ainsi p devient d’abord dans le
corps de ramification la puissance d’un idéal premier p,, dont I'exposant est contenu
dans p’ — 1 et n’est par suite pas divisible par p.

La condition nécessaire et suffisante pour que la décomposition de $ soit alors
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terminée, est que p ne soit pas contenu dans le degré du groupe d’inertie et que, par
suite. le corps K soit lui-méme le corps de ramification.

Dans les corps de ramification soulignés, la décomposition se poursuit sans cesse
et les exposants des puissances sont de la forme pf, pi, ... et aucun des expo-
sants ¢, e ne dépasse le degré f de I'idéal premier 9. ‘

La table qui va suivre donne une vue d’ensemble sur les résultats; la premiére
ligne désigne les corps, la seconde les degrés des groupes correspondants, la troisiéme
les degrés des corps, la quatriéme leur degré relatif par rapport au corps immeédia-
tement inférieur, la cinquiéme les idéaux premiers des corps et leurs représentations
au moyen des puissances de 9.

Nous admettrons que K est un corps de ramification trois fois souligné.

Tous les nombres indiquant les degrés ou les exposants dans cette table ont pour
tout idéal premier du corps K qui divise p les mémes valeurs que pour $; ils sont,
par suite, parfaitement déterminés par p.

k k k k k- K
3 t v [0 v
r r 1 r r- I
3 t v v v
M M M M M
m=—=— | m=—=-— | m = m = m —=— M
% r t r ’ r v r. v r-
] t v i v
r r s T ; 5
f:__: h—_¢ pe:__‘_' pc__,, pe:]'l
r r r r
t v v v
e —————”™
h e e Z
— P . Y
? v pv pv pu pl; v % 5p
= %rt = %Tv — %rl' — %rﬂ
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CHAPITRE XI.

Les differentes et les discriminants du corps de Galois et de ses sous-corps.

§ 46. — LES DIFFERENTES DU CORPS D'INERTIE ET DES CGRPS DE RAMIFICATION.

En rapprochant les résultats que nous venons d’acquérir de ceux du chapitre V,
nous aurons une source de vérités nouvelles. C’est ainsi, qu'en vertu du para-
graphe 41, nous pouvons énoncer un théoréme qui va nous donner les propriétés les
plus importantes du corps d’inertie.

Tuforime 76. — La différente du corps d’inertie relatif & I'idéal premier 9 n’est
pas divisible par 9. Le corps d’inertie comprend tous les sous-corps de K dont les
différentes ne sont pas divisibles par 9.

En ce qui concerne les différentes des corps de ramification, on a les théorémes
suivants :

TutorkMe 77. — La différente relative du corps de ramification par rapport au
corps d’inertie est divisible par """ = p"~1, et elle n’est pas divisible par une puis-
sance supérieure de 9.

Démonstration. — Soit o un nombre entier de %, qui est divisible par p, =",
mais qui ne I'est pas par p°, et soit A un nombre de K divisible par 9, mais ne con-
tenant pas 9°.

Posons FEP‘ suivant 9, P désignant un nombre primitif suivant 9, on a

a=P°A"™ suivant p 9. Soit dés lors (* une substitution quelconque du corps
d’inertie qui n’appartient pas & g, et supposons que {*A = P¥A suivant 9¥°, ol a* est
I'un des nombres a, 2a. ..., (h— 1)a [voir § 41], il en résultera que

Fa =P A = P""q, (p,W).

Gomme r, est une puissance de p, P“"*=j=1 suivant 9, et, par suile, x — *» ne
peut étre divisible par p, %, il est donc exactement divisible par p,=W". Si, de
plus, w est un nombre quelconque de k,, ce nombre, d’aprés le théoréme 72, est
nécessairement congru suivant 9 4 un nombre o, du corps d'inertie; il en résulle
que & — *o = o suivant p,. D’oti nous pouvons conclure que la différente considérée
est exactement divisible par g8 =" — q¥re—"v,

On démontre de méme le fait suivant :
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Tutorime 78. — La différente relative du corps de ramification souligné une fois

. . . — Lipf—
par rapport au corps de ramification k,, contient exactement J¥L W =p" " La
différente relative du corps de ramification deux fois souligné k= par rapport & ke

Tir —r Tint— L. .
contient exactement P53 = p"" " et ainsi de suite.

§ [;7 — LES DIVISEURS DES DISCRIMINANTS DU CORPS DE GALOIS.

TutorkME 79. — Le nombre premier rationnel p est contenu dans le discrimi-
nant D du corps K & une puissance dont I'exposant est :

m, | r,—ro 4+ L(ro — re) + L(rs — ry) + e}

Démonstration. — Le théoréme 41 rapproché des théorémes 76, 77. 78 nous
apprend que la différente D du corps K contient I'idéal premier 9% exactement A la
puissance

r,—ry+L(re —rs) + L(rs —rs) + ...
le théoréme 68 exige alors I'exactitude de notre proposition.

Dans le cas ou il n’existe pas de corps ramifié souligné, I'exposant de p prend
dans D la valeur m,(r,— 1).

D’aprés ce qui préecde, ce cas se présentera toutes les fois que p est premier
avec M.

Ce résultat est & comparer aux remarques du paragraphe 12.

Tugorkme 8o. — L'exposant de la puissance du nombre premier rationnel p con-
tenue dans le discriminant D ne dépasse pas une certaine limite qui ne dépend que
du degré M du corps de Galois K.

Démonstration. — Tous les exposants L, L, ... qui correspondent & un certain
idéal premier 9% sont inférieurs & une limite déterminée par le nombre M. Pour
trouver la limite de L. nous désignerons par » un nombre entier de I divisible
par p;, mais non divisible par 2, et nous choisirons un systéme de p? substitutions
v, U,, ..., v,z du groupe de ramification, tels quen les composant avec g5 on ob-
tienne ¢,. Le nombre -
=00+ V,60+ ...+ Vi

ne sera pas altéré par une substitution de g,; il appartient au corps k,. D’autre part,
w=vw suivant P, et, par suite, « = pfw suivant Pr.

Sidonconavait L>>er,+r;, on aurait a=o suivant P79 et == o suivant pep 9.
Si donc l'on fait p=gpa, ot a est un idéal du corps de décomposition premier
avec p, et si I'on désigne par v un nombre de ce corps divisible par a et premier

oyt . . oe e
avec p, .[‘L:—YF est un nombre entier de k,; ce nombre serait divisible par p: et ne
p )
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le serait pas par p, 9, et, par suite, contrairement au théoréme 55, p, serail un idéal
du corps k,. Comme on peut trouver de méme une limite supérieure pour les autres
exposants L, ..., on voit que I'exposant (indiqué au théoréme 79) de la puissance
de p contenue dans D ne peut dépasser une certaine limite qui ne dépend que du
degré M du corps K.

Le théoréme 8o a d’autant plus d’importance qu’il limite a priori le nombre des
nombres premiers contenus dans M. Rangeons dans un méme type tous les corps de
degré M pour lesquels la décomposition en facteurs premiers de M donne les mémes
valeurs pour les nombres considérés précédemment. Nous pouvons affirmer que, pour
une valeur donnée de M, il n’y a qu'un nombre limité de types de corps possibles.

Comme exemple du théoréme 8o, nous indiquerons le corps quadratique (traité
complétement dans la troisiéme partie de ce livre) et dont le discriminant contient
tout nombre premier impair au plus & la premiére puissance et le nombre premier 2
au plus & la troisieme. (Voir § dg, théoréme g5.)

CHAPITRE XII.

Les rapports entre les propriétés arithmétiques et les propriétés algébriques
du corps de Galois.

§ 48. — LE CORPS DE GALOIS RELATIF, LE CORPS ABELIEN RELATIF,
LE CORPS GYCLIQUE RELATIF.

Lorsque le groupe G des substitutions s,, ..., sy d'un groupe de Galois forme
un groupe abélien, c'est-a-dire lorsque les substitutions s,, ..., sy peuvent se per-
muter entre clles, le corps de Galois K est un corps abélien.

En particulier, si ce groupe de substitutions G est cyclique, c’est-a-dire si les M
substitutions s,, ..., sy peuvent toutes étre représentées par des puissances de l'une
d’entre elles, le corps abélien K est dit un corps cyclique.

En appliquant aux substitutions d’'un groupe abélien les considérations faites au
numéro 28 pour les classes d’ideaux, on arrive au théoréme : tout corps abélien est
composé de corps cycliques. D’autre part, les corps cycliques se composent & leur
tour de corps cycliques particuliers, ceux dont le degré est un nombre premier ou la
puissance d'un nombre premier.

Ces notions peuvent étre généralisées ainsi :

Soit ® une racine de 1'équation de degré  :

o' -+ a,@’_‘ + ... +o,=o0,
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dont les coefficients «, ..., «, appartiennent a un corps k de degré m. Supposons de

- plus cetle équation irréductible dans.le domaine k de rationalité et qu'elle ait la

propriété suivante, les [ — 1 autres racines @', ..., @' de celte équation sonl des
fonctions entiéres rationnelles de © dont les coefficients sont des nombres de /.

Le corps de nombre K composé de O et des nombres de k est dit alors un corps
de Galois reMI{fpar rapport au corps I de degré M=1{m.

Le degré I de I'équation précédente est le degré relatif de K.

Silonpose @=8,0, 0'=S,0. 6'"'=S,0, le groupe des substitutions S, S,
.-, S, est appelé le groupe relalif: si ce groupe est abélien, le corps K esl dil un corps
abélien relatif par rapport @ k. Si ce groupe relatif est cyclique, le corps K est dit

cyclique relatif par rapport & k.

§ 49.,— LES PROPRIETES ALGEBRIQUES DU GORPS D'INERTIE ET DU CORPS DE RAMIFI-
CATION. — LA REPRESENTATION DES NOMBRES DU CORPS DE GALOIS PAR DES RADICAUYX

DANS LE DOMAINE DU CORPS DE DEGOMPOSITION.

A T'aide des notions que nous venons de définir, nous pourrons énoncer trés sim-
plement quelques propriétés algébriques importantes du corps de décomposition et
du corps d'inertie, ainsi que des corps de ramification, qui sont d’ailleurs une cons¢-

quence des propriétés de leurs groupes démontrées plus haut.

Tutorkme 81. — Le corps d’inertie %, est un corps cyclique relatif de degré
relatif f par rapport au corps de décomposition k.. Le corps de ramification k, est
cyclique relatif de degré relatif A par rapport & k,. Le corps de ramification une fois
soulign¢ Ly est un corps abélien relatif de degré relatif p? par rapport & k. le
corps k= est un corps abélien relatif de degré relatif p® par rapport & ki et ainsi de
suite. Les groupes abéliens relalifs des corps k., &z ... ne contiennent que des subs-
titutions de degré p.

D’aprés ce théoréme 81, la séparation en facteurs égaux s’opére au moyen d'une
suite d’équations abéliennes, et ce résultat exprime une propriété surprenante et
nouvelle du corps de décomposition.

Tutorime 82. — Le corps de décomposition de tout idéal premier dans K déter-
mine un domaine de rationalité, dans lequel les nombres du corps primitif K s’ex-
priment uniquement au moyen de radicaux.

Ce théoréme 82 met bien en lumiére toute I'importance des équations solubles
par radicaux; car il montre que dans le probléme de la décomposition des nombres
en idéaux premiers, les solutions les plus importantes et les plus difficiles se présen-
tent pour les corps relatifs, dont les nombres peuvent étre représentés au moyen de

radicaux dans certains domaines de rationalité.
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§ 50. — LA DENSITE DES IDEAUX PREMIERS DU PREMIER DEGRE ET LE RAPPORT ENTRE

CETTE DENSITE ET LES PROPRIETES ALGEBRIQUES DU CORPS.

C’est un fait merveilleux que la fréquence de certains idéaux premiers du pre-
mier degré d'un corps permet de conclure des propositions relatives 4 la nature
algébrique de ce corps. [Kronecker '4.]

Soit k un corps quelconque de degré m et soit p, un nombre premier rationnel
qui peut se décomposer exactement en ¢ idéaux premiers distincts du premier degré.
Si la limite

existe, en supposant que la somme écrite au numérateur s’'étende A tous les nombres
premiers p,, nous dirons que les nombres premiers de 'espéce p, ont une densité; si
cette limite a pour valeur A, nous dirons que A, est la densité des nombres premiers
dela forme p,. Kronecker admet implicitement, dans ses recherches, que les nombres
premiers des m sortes p,, p,, ..., p,, ont une densité. La vérité de cette hypothése n’a
pas encore ¢t¢ démontrée (1). Par contre, on arrive & démontrer le théoréme suivant :

Tatorime 83. — Si m—1 sortes de nombres premiers parmi les m sortes p,, ..., Dy,
d’un corps de degré m ont une densité, la m aussi a une densité et on a entre les m
densités la relation

A 42, 4 o+ mA, =1

Démonstration. — Employant la deuxi¢me expression de (s) indiquée au nu-
méro 27 et prenant le logarithme, il vient

1

— S s
iy +

log £(s) =Y

®)

T I
S:A 2\~+% 3x+""
E n(p)* ‘ E n(p)

») ®)

I~

(1) Dans le cas ou le groupe de I’équation qui détermine /% est le groupe symétrique, les
remarques de Kronecker permettent de déterminver les densités A,, ..., A,; Frobenius a
démontré I'existence de ces densités et a déterminé leurs valeurs; ce sont des nombres rationnels
(ui dépendent du groupe de I'équation de A . [Frobenius*.]
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ou les sommes s’étendent & tous les idéaux premiers p du corps. Désignons par p, les
idéaux premiers du premier degré; nous aurons évidemment

O I 1 [ Y 2 OV m
(19) PN R O

“~in(p,) ~p’ ~p, Py

®) (py) (p,) (Pm)
ou la somme du premier membre s’étend & tous les idéaux du premier degré ct
ou la somme du second membre s’étend & tous les nombres premiers ration-
nels p., p,, ..., p,-

Nous remarquons, d’autre part, que pour tous les idéaux p de degré supérieur au

premier n(p) > p*, ¢t qu'un nombre premier quelconque p contient au plus m idéaux
premiers; il en résulte que

ou la derni¢re somme s’étend 4 tous les entiers 2> 1.
On trouve de méme que

x { I U o I o
b<m?2ﬁ—|—4?+... =m h(_h—_x)—m'
(%) (h) ()
On déduit de ces inégalités que
. I
log 19 — X, 7
w

tend vers une limite finie pour s =1.

1 . . .
tend aussi vers une limite finie

D’apres le théoréme 5\6, log {(s)—log pp—

pour s=r1; on peut en dire autant de

ST
Dy~ g =

®)
c’est-d-dire que
Y I
;‘ n(e,)’
L ——— =,
=1 I
=0 log

S

1

d’ot, en tenant compte de (19), la vérité de notre affirmation.
Pour un corps de Galois K de degré M, on a A, =o0,)7,=o0,..,A
suite, en verlu du théoréme 83, le

lac. de 7., 3s S., Il. 31

—=o, et, par

m—1
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TutorkME 84. — Dans un corps de Galois de degré M, les nombres premiers py qui

se décomposent en idéaux premiers du premier degré ont une densité, cette densité

1
L Ay——.
€S M M

Soit /: un corps quelconque et K le corps de Galois de degré M formé de k et de
ses conjugués k', ..., k"7, on reconnait facilement que les nombres premiers p,,
de I coincident avec les nombres premiers py de I, el par suite les nombres pre-

. . r . 14 14 1 I 5 1 . 1 N
miers p_de k ont une densilé, et cette densité est égale & —, c’est-A-dire & I'inverse
m 1

M
du degré de la résolvante de Galois. [Kronecker!.]

CHAPITRE XIII.

La composition des corps de nombres.

§ 51. — LE cOrRps DE GALOIS COMPOSE D UN CORPS /& ET DE SES CONJUGUES.
Tutorkme 85. — Si des deux corps k, et k, on compose un corps K, le discrimi-

nant du corps composé contient comme facleurs premiers ralionnels ceux contenus
dans le discriminant de %,, ou dans celui de k,, ou dans les deux, et ne contient que
ceux-la.

La démonstration de ce théoréme résulte immédiatement du théoréme 3¢. Une
conséquence immédiate du théoréme 85 est la suivante :

TutoriME 86. — Si d'un corps k de degré m et de tous ses corps conjugués I/, ...,

k'™ on compose un corps de Galois K, le discriminant du corps K conlient tous les
facteurs premicrs de k et il n’en contient pas d’autres.

§ 52. — LA COMPOSITION DE DEUX CORPS DONT LES DISCRIMINANTS SONT PREMIERS ENTRE EUX.

Le cas de.deux corps dont les discriminants sont premiers entre eux présente un

intérét particulier. Le théoréme le plus important et le plus fertile de ce cas est le
suivant :

TutoriMe 87. — Deux corps k, et k, de degrés respectifs m,, m,, dont les discri-

27

minants sont premiers entre eux, se composent toujours en un corps de degré m,m,.

Démonstration. — Soit K, le corps de Galois composé de k, et de tous ses conju-
gués; le discriminant de K,, d’apres le théoreme 86, est premier avec celui de £, .

-
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Soit 5 un nombre qui détermine k,; ce nombre est racine d'unc équation irré-

0
ductible de degré m, a coeflicients entiers et rationnels.

Si donc le corps composé¢ de I, et de I, était d'un degré inféricur & m,m,, cette
équation se réduirait dans le domaine k,, c’est-d-dire que 7 serait racine d’une équa-
tion de la forme

F 4+ e, =0

de degré r<Tm, et dont les coefficients o,, ..., «, seraient des nombres de k,. Soit k
le corps de nombres formé avec «,, ..., .. Comme 2, ..., «, peuvent étre exprimées
rationnellement en fonction des racines de la derniére équation, & est un sous-corps
de k,, et comme / est aussi un sous-corps de k,, le discriminant de & d’aprés le théo-
réme 3¢ diviserait celui de i, et celui de k,, et le discriminant de ce corps I serait
égal & 1, ce qui est contraire au théoréme 44.

Nous signalerons encore les faits suivants. faciles & vérifier.

Tutorkme 88. — Si ki, el k, sonl deux corps, le premier de degré m,, le second de
degré m, de discriminants d, et d, premiers entre eux, le discriminant du corps com-
posé K est dm.dm. .

On obtient les nombres d'une base du corps K, en multipliant chacun des m,,
nombres d’une base du corps k,. par chacun des m,, nombres d’une base du corps k,.
Soit p un nombre rationnel qui se décompose en p=p7 92 ... p;" dans k, et en
P=4a,4,.-.q,, ou ., ..., p sont des idéaux premiers distincts de k,, ct g,, q,
des idéaux distincts de k,; on a dans K la décomposition p = 17{ S/, ou le produit

iy -
sétend A i=1, ..., r, =1, ..., 8. et o 3“ est Uidéal de K défini comme élant le
plus grand commun diviseur de p; et de g,. Les idéaux J,, ne sont pas nécessairement
des idéaux premiers de K.

Lorsqu’on part de deux corps k,, k, de discriminants quelconques, la solution de
la question ne devient simple que si I'on fait des hypothéses restrictives sur la nature
du corps et des nombres premiers que I'on veut décomposer. [Hensel *.]

Les résultats exposés dans les chapitres X & XIII me semblent étre les principes
les plus imporlants d'une théorie des idéaux et des discriminants d’'un corps de
Galois. Les méthodes suivies pourraient encore étre développées dans bien des direc-
tions, en particulier on pourrait étendre sans y changer beaucoup au corps de Galois
relatif une série de théorémes démontrés depuis le paragraphe 39 jusqu'au para-

graphe 44. [Dedekind ®.]
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CHAPITRE XIV.

Les idéaux premiers du premier degré et la notion de classe.

§ 53. — LEs IDEAUX PREMIERS DU PREMIER DEGRE ENGENDRENT DES CLASSES D IDEAUX.

Il est intéressant de voir que les principes développés dans les chapitres X-X1I
éclairent aussi la génération et la nature des classes d’idéaux. Nous exposerons dans
ce chapitre et dans le suivant les théorémes généraux importants relatifs & ces ques-
tions. Le premier théoréme concerne la génération des classes d’idéaux d'un corps de
Galois au moyen d’idéaux premiers du premier degré et s’énonce :

TrEortME 89. — Dans toute classe d’idéaux d’un corps de Galois il y a des idéaux
dont tous les facteurs premiers sont des idéaux du premier degré.
Nous démontrerons d’abord le

LemuME 12. — Soit K un corps de Galois de degré M et de discriminant D et 9 un-
idéal premier de ce corps de degré f> 1 qui n’est pas contenu dans DM!; il y a

toujours dans K un nombre entier €} premier avec DM!, divisible par 9 et non par
P°, et dont tous les autres facteurs premiers sont de degré inférieur a f.

Démonstration. — Soit P un entier du corps K, tel que tout autre entier Q soit
congru & une fonction entiére & coefficients entiers de P suivant (3)°. D’apres le théo-
réme 29, ce nombre existe. Désignons par (W), ..., (BI"™) les idéaux conjugués de
P et distincts de 9, et délerminons un nombre A de K qui satisfait aux con-
gruences

A=P (W),
A =o0 (%r%" 5”(171)) ,
A=1 (M.

Et soit z une substitution du groupe de décomposition telle que zP = P? suivant 9,
il est évident que les f— 1 différences A — zA, A — 2°A, A — z/'A sont premiéres
avec Y. Si, d’autre part, s est une substilution n’appartenant pas au groupe de
décomposition, sA est divisible par W, et, par suite, la différence A — sA est pre-
mieére avec Y. La différente de A sera donc aussi premiére avec 9, et il en résulte
que A est un nombre qui détermine K, d’aprés une remarque antérieure. En tenant
compte du théoréme 31, on voit que K est le corps d’inertie de 99 et, par conséquent,
A salisfait & une équation de la forme

AT+ e AT b=,

ol ,, ..., %, sont des nombres du corps de décomposition  de I'idéal premier 3.
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- ) M
Nous désignerons par k'. k", ... les autres sous-corps de méme degré —; A est

S

alors racine des équations
A 4o/ AT+ 42/ =0,
Af + 1‘hAf—-‘l o+ :"f":O’

@'y e, 7.f’ élant des nombresde &/, «.": ..., ocf” des nombres de %", etc. Déterminons,

1

des lors, f nombres entiers rationnels tels que
=, o q,=u, (P);

ceci est possible, car, d’aprés le théoréme 70, 9 est du premier degré dans k. Soient
ensuite b,, ..., b,, f entiers rationnels satisfaisant aux congruences

M!b=a, .., Mlb,=a,. (p),
et pour lesquels, de plus, aucune des différences appartenant a I'indice 1
B,=M!b, —o,, B,/=M!b —>/, ...

ne s’annule.

Nous poserons, de plus,
B=A"+M!I(bA™ +bA ™+ ... +b).

Enfin, nous désignerons par ¢,, ..., ¢, les nombres premiers rationnels tous
différents de p, qui sont contenus dans le discriminant A de A ou dans les normes
des nombres 8,, 8/, ... et qui sont plus grands que M. Soit ¢, un quelconque de ces
nombres, il ne peut contenir dans K que M facteurs premiers au plus: il faudra
donc que I'un des ¢, nombres (¢,>M), B, B+ 1, B+ 2, ..., B+ ¢,— 1, soit pre-
mier avec ¢,; soit, par exemple, B 4 ¢, un nombre premier avec ¢, Si I'on calcule
un nombre entier rationnel ¢ qui satisfait aux ! congruences M!pc=c, suivant ¢,
pouri=t, 2, ..., [,

Q=B+ Ml!pc

est un nombre qui a les propriétés exigées par le lemme 12.

En effet - d’aprés la congruence A =1 suivant M!, le nombre Q est premier
avec tous les nombres premiers rationnels < M; et, & cause des conditions qui nous
ont servies & déterminer ¢, Q est premier avec tous les nombres premiers rationnels
contenus dans A et supérieurs & M. Le nombre Q est donc premier avec tous les
nombres premiers rationnels contenus dans A et différents de p-

De plus, Q est divisible par 9% et non par 9, %, ..., P, car M!b,=a,=lz0

suivant p. Le nombre Q est de la forme

Q=A+mA™ + ... + m,,
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oum, ..., m, sont des entiers ralionnels. Comme A =P suivent * et que P ne peut
satisfaire & aucune congruence de degré inférieur & 2 f suivant 9%, Q ne peut pas
Ctre divisible par . Si, d’autre part, Q était divisible par un idéal premier & de
degré f'> f et si Ton désignait par 1, 2/, 2", ..., 27" les f" substitutions du groupe
de décomposition de & par lesquelles ce dernier groupe résulte du groupe d’inertie,
on aurait les /' congruences
Ald+m, A7+ + m,=o, (),
N+ mEN T+ L+ m=0, (Q),

el ceci exigerait que le discriminant A de A soit divisible par £, ce qui n’a pas lieu.
Enfin, supposons que € soit divisible par un idéal premier £ de degré f; 1'un
des corps k, k', k", ... serait le corps de décomposition de £, soit, par exemple, le
corps k'.
Ecrivons alors Q sous la forme
Q—A+ A"+ . +o)=6/A . +8/),
ot 8/, ..., B sont des nombres de k'. Si 1, 2/, 2", ..., 2! sont les f substitutions
i1 of

qui font résulter le corps de décomposition de & de son corps d’inertie, on voit que
BAT =0, (R,
GEA T 4+ B =0, (),

et ces congruences démontreraient que soit A, soit 8. fut divisible par &, ce qui
est contraire & ce qui précede.

Dans chaque classe on peut trouver un idéal premier avec DM!; on voit alors
facilement, en tenant compte du lemme 12, qu'on a le droit d’affirmer le théo-
réme 89. Kummer l'avait déja démontré pour le corps circulaire (Kreiskorper).
[Kummer®.]

CHAPITRE XV.

Le corps relatif cyclique de degré premier.

§ :)/1 — LA puissaxce SYMBOLIQUE. — UN THEOREME SUR LES NUMBRES DE NORME RELATIVE

EGALE A I.

Nous allons démontrer une série de théorémes fondamentaux concernant les
corps abéliens relatifs. Pour mieux pouvoir les énoncer et les démontrer, nous allons
fixer quelques notations et quelques définitions.

Soit K un corps de nombres de degré {m., cyclique relatif par rapport au corps k
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de degré m, le degré relatif { étant un nombre premier. Soient 1, S, S*, ..., S les
substitutions du groupe cyclique relatif. Enfin, nous définissons ainsi la notion de
puissance symboliqgue d'un nombre A du corps K : Soit A un nombre quelconque
de K entier ou fractionnaire et soient a, «,, a,, ..., a,_, des nombres entiers ration-
nels quelconques, nous écrirons

A“(SAYH(SA*™ ... (S A)Y =

sous la forme abrégée
Aa+a,S+ugS3~;—...+111_l‘1‘4 — AF(S)

ou F(8) désigne la fonction entiére & coefficients entiers qui constitue I'exposant
du premier membre. La puissance symbolique de degré F(S) de A est & son tour un
nombre entier ou {ractionnaire de K. Ces exposants symboliques peuvent étre consi-
dérés comme une généralisation d’une notation introduite par Kronecker au sujet
du corps circulaire. [Kronecker!.]

Ceci posé, nous aurons une suite de théorémes.

TutorEME go. — Tout nombre entier ou fractionnaire A de K dont la norme
relative, par rapport & k, est égale & 1 peul étre considéré comme la puissance sym-
bolique de degré (1 — S) d’un certain nombre B du corps K.

Démonstration. — Soit o une variable et ©® un nombre qui détermine K; posons

4+ 0

SR

A=(x + O)A
et

B, =1+ A+ AY A AT AT

et remarquons qu’en vertu de 'hypothése

1—1

14+S4+...48
A St =1

et que, par suite, on a aussi

VESHt Sy
A =T,

il en résulte que
1—-8
B = A
B, est une fonction rationnelle de x qui n’est pas identiquement nulle; on peut
donc trouver un nombre 2 = «a tel que B, ne soit pas nul dans K. Le nombre

B.
B'=—
a+ 0
satisfait alors &
A— B+

Posons B* =y ou B désigne un entier algébrique de K et b un entier rationnel ;

on a aussi
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§ 55. — LE SYSTEME DES UNITES FONDAMENTALES RELATIVES. — ON DEMONTRE

QU ELLES EXISTENT.

Un deuxiéme théoréme important concerne les unités du corps K. Supposons
que. parmi les m corps conjugués déterminés par k, r, soient réels et qu’il y ait

2

r, couples de corps imaginaires conjugués, d’aprés le théoréme 47 le nombre des

unités fondamentales de % est r=r, + r,— 1. Nous entendrons par systéme d’unités
Jondamentlales relatives du corps K par rapport & & un systéme de r + 1 unités H,,
H,, ---» H,., du corps K, telles quune unité de la forme

Fy(s P (8
R HE e

ne peut étre la puissance symbolique de degré (1 — S) d'une unité de K que si les
entiers algébriques F (7), ..., F () sont tous divisibles par 1 — .

Ici, ¥ (S), ..., F
[z] est une unité quelconque de & ou une unité du corps K dont la puissance lém¢ est

(S) sont des fonctions entiéres & coefficients entiers de S,

(r—1)

une unité dans %; et enfin, { est une racine /"™ de I'unité différente de 1.

TuforEME g1. — Lorsque le degré relatif / du corps K cyclique relatif par rapport
au corps k est un nombre premier impair, K posséde un systéme de r + 1 unités
relatives fondamentales, ou r a par rapport a & le sens du théoréme 47.

Démonstration. — Comme [ =|= 2 parmi les Im corps conjugués déterminds par K.,
il y alr, corps réels et Ir, couples de corps imaginaires. Soient ¢,, ¢,, ..., z un sys-
ttme de r=r, 4 r,— 1 unités fondamentales du corps k. Choisissons parmi les
unités de K une unité E,, telle que E,, z,. ..., . soit un systéme d’unités indépen-

dantes; nous pouvons affirmer qu’alors
3 §l—2
Ei, PRI E1 s Sy eees <,

forment un systéme d’unités indépendantes.

Pour le démontrer, supposons qu’il n’en soit pas ainsi et imaginons E/® = ¢*,
ot F(S) est une fonction entiére a coefficients entiers de degré (I— 2) qui n’est
pas identiquement nulle et ot * est une unité du corps k. Comme la fonction
1+ S + ... + 87" est irréductible (comparer & la remarque qui termine le § g1), on
peut déterminer deux fonctions enti¢res & coefficients entiers, G, et G, de S, et un

nombre entier rationnel a différent de zéro, tels que

FG, + (1 + S+ ... + 857G, =a.
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Il en résulte, en tenant compte de

=<,

E1+S+...+Sl—1 "
1

que

E[lz — e***’

ce qui est contraire & I'hypothése. Ici, ** et €™** sont des unités de k.

Choisissons maintenant E, telles que E,. E,, E}. ..., E}" % ¢,, ..., ¢, forment un
systéme d’unités indépendantes; nous montrerons, comme précédemment, gqu’alors
aussi les unités E,, ES, ..., E¥% E,» ..., EY ¢, ..., ¢, forment un systéme

d'unités indépendantes. En continuant ainsi, nous obtiendrons r, + r,—r + 1 unités

E,, ..., E,_,, telles que les unités
s s )
E., E. .-, Ei &, .0, €, (i=1,2 r+1)

forment un systéme d’unités indépendantes.
Le nombre de ces unités est

r+0d—0+r=iIlr,+1lr,—1.

Soit maintenant [ une puissance assez ¢levée de I, pour que 'expression
F,(S) F,. S

(20) E" ---- EN" [E]
ou F,(8S). ..., F_,(S) sont des fonctions enti¢res & coefficients entiers quelconques
de S et ou [¢] a le sens indiqué au début du paragraphe et ne puisse devenir la
puissance d’exposant " d'une unité de K que si tous les coefficients des fonctions
F.(S), ..., F, (S) sont divisibles par /. On voit qu'un pareil exposant I existe si I’'on
considére les Ir, 4+ Ir, — 1 unités du corps K données par le théoréme 47.

Tenons compte maintenant de I'identité

(1—8)!=1—8 +1G(S)

ol G est une fonction entieére; comme d’aprés cela la (1 — S)™¢&me puissance symbo-
lique d'un nombre de K est aussi une véritable puissance {"¢me, il en résulte que
I'expression (20) ne peut étre la puissance symbolique d’exposant (1 — S)™ d’une
unité que si tous les entiers algébriques F,(¥), ..., F_ ({) sont tous divisibles par
1T— .

Soit e, le plus grand nombre entier rationnel > o, tel qu'une expression de la
forme (20) soit une puissance symbolique d’exposant (1 — S)“ d’une unité, sans
.que tous les nombres I',(7), ..., Fr_,,l(‘;) soient tous divisibles par 1 — {; admettons
que

U—s)*

E:“«(\) . Ep‘r+l(s)[s] — Hl

41

soit une pareille expression ou F (S), ..., F_, (S) sont certaines fonctions entiéres
rationnelles de S et ot F(8), par exemple, n’est pas divisible par 1 — {; [z] a la si-
gnification précédente et H, est une certaine unité de K.

Fac. de T'., 3¢ S., II. 32
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Admettons maintenant que e, est le plus grand entier > o tel quil existe unc
expression correspondante formée des unités E,, .

--» E,.,» qui soit la puissance sym-
bolique de degré (1 — S): d’une unit? de K, soit

FalS) Frp1(8)
Ez e Er+1 {

o
Il
I.

ou F(8), ... F_ (S) sont encore des fonctions rationnelles entiéres de S et ou F,©),
par exemple, n’est pas divisible par 1 — {. En continuant ainsi. nous trouverons
r—+ 1 unités, H,, H,, ..., H,_,. qui forment un systéme d’unités relatives fonda-
mentales de K.

Pour le démontrer, admettons qu’il n’en soit pas ainsi; il y aurait alors r 4 1

fonctions entiéres rationnelles G,(S), ..., G telles que

r+1?

()

Y He Y [ =2,

r+1

ol Z est une unité de K; soit, de plus, parmi les nombres G (%), ..., G, %), par
exemple G,(J), le premier, qui n’est pas divisible par 1 — ¢, il est évident que la
seconde partie du dernier produit, c’est-A-dire

Ga(8) G y(S) GppS
Hh h+414 Hr+l [E]

serait aussi la puissance symbolique de degré 1 — S d’une unité du corps K. Mais
dans la suite des nombres ¢, ¢,, ..., e ., aucun ne dépasse le précédent; en élevant
le dernier produit & la puissance (1 — S)* et en introduisant les unités E,, ..., E,.,
nous nous heurterions & une contradiction.

Ce théoréme g1 esl vrai aussi pour /=2, comme on le voit facilement, si,
parmi les am corps conjugués déterminés par K, il y a deux fois autant de corps
réels que dans les m corps conjugués déterminés par k.

§ 56. — L’EXISTENCE D'UNE UNITE DE K, DONT LA NORME RELATIVE EST EGALE A T ET QUI

CEPENDANT N'EST PAS LE QUOTIENT DE DEUX UNITES RELATIVES CONJUGUEES.

Tutorkme g2. — Dans le cas ou le degré relatif [ du corps cyclique relatif K par
rapport & k est un nombre premier impair, il y a toujours dans K une unité H, dont
la norme relative par rapport & k est égale & 1 et qui n’est pas la puissance symbo-
lique de degré (1 — S) d’une unité du corps K.

Démonstration. — Admettons d’abord que le corps k ne contient pas la racine /™
de T'unité {. Soient «,, ..., m,,, I + 1 unités quelconques de k; il en résulte qu’il
existe toujours r + 1 enliers rationnels «,, ..., a,,,, qui ne sont pas tous divisibles
par [ et tels que v,':‘. r,:':‘ — 1. En effet, si dans cetle derniére égalité tous les

4 It
- . 7
exposants a,, ..., a,,, Haient tous divisibles par [, %, ... 4

! serait racine I'me de
r41
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I'unité, qui serait = 1 en vertu de I'hypothése; de 13, par la répétition du procédé,
résulte la démonstration. Si 4, ..., 7,., sont les normes relatives des H,, ..., H,.,,
unités fondamentales de k et que nous posions

H=H ... H"

r+1
il en résulte que

[FE RS N
Nk(H):H++++ —

et par suite, d’aprés le théoréme go, H—=A'"%; comme H,, ..., H,., sont des unités
fondamentales relatives, il en résulte que A n’est pas une unité.

Pour démontrer le théoréme g2 dans le cas général, nous admettrons que k con-
tient la racine primitive l\h/; = {, mais qu’il ne contient pas la racine primitive d’in-
dice {*"*. On reconnait, par un procédé analogue au précédent, que si 7,, ..., 7

Irie
sont r + 2 unités quelconques de &, on peut toujours trouver un nombre enticr
rationnel o et, de plus, r + 2 entiers rationnels a,, ..., a_, non tous divisibles par [,
tels que

ay Apyo wral

1

U lr+2

I

Considérons, d’autre part, que la norme relative

1

c ey oA hSHsTp st
N =< =1,

ct que par conséquent, d’aprés le théoréme go, { doit étre une puissance symbolique
de degré (1 — S). Si donc il n’y avait aucune unité E de k, telle que {=FE'5, { serait
lui-méme un nombre répondant a la question. Dans le cas contraire, il faut que
E'"Y =1, c’est-a-dire E' = SE', et, par suile, E' serait une unité = de k, tandis que E
lui-méme n’est pas dans k. Comme E :\I/v on a Nk(E):E’ =z¢. SoitH,, ..., H,,,
un systéme d’unités relatives fondamentales dans /&, nous poserons

7;‘1 - Nk(Hx)’ A 4 'qr =1 - Nk(Hwka)’ Tlrié—e - NL(E) - El*
H p— HTi L. H(lr+1 E“r-{—‘l ’;!“’ — H’:l . H”r+l [E],

r+1 r+1
oua,a,, ..., a,,sontlesnombres déterminés précédemment, et otw.[z] est la racine '

d’une unité du corps k; alors N, (H)=r1. Les nombres a,, ..., a,., ne peuvent pas
tous étre divisibles par {. Car de

“ a1
(_,;1[ . 'f,r_:l E0;~+2 :"-—(t)l — 1
on tirerait
a Irit
Till L 'ﬂ,,il Ear+2 :;r_a j— Ch’

ou b est un entier rationnel. Comme d’aprés notre hypothése a, _,, ne peut pas aussi
étre divisible par /, il résulterait des derniéres égalités que E est dans k, ce qui n’a
pas lieu. L'unité H remplit toutes les conditions du théoréme ga.
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Les théorémes go, g1 et g2 ont été démontrés en partie et sous une autre forme
par Kummer, dans le cas ol le sous-corps & est le corps circulaire (Kreiskorper) de
degré { — 1 déterminé par . [Kummer ' 2 2],

§ 57 — LES IDEAUX AMBIGES ET LA DIFFERENTE RELATIVE DU CORPS CYCLIQUE RELATIF K.

Lorsqu'un idéal A du corps cyclique relatif reste inaltéré aprés la substitution S
et qu’il ne contient aucun facteur qui soit un idéal de k&, on dit que A est un idéal
ambige. En particulier, un idéal premier du corps K qui n’est pas altéré par la subs-
titution S et qui n’appartient pas a k est dit un idéal premier ambige.

Tutorive ¢3. — La différente du corps cyclique relatif K par rapport a & contient
tous les idéaux premiers 3 qui sont ambiges et elle n’en contient pas d’autres.

Démonstration. — Soit 9 un idéal ambige; sa norme relative est N, ()= 9.
Comme k ne peut contenir une puissance inférieure de 98, ' = est un idéal pre-
mier de k. Réciproquement, si p idéal premier de k est égal & la ™ puissance d’un
idéal 9 dans K, 99 est un idéal premier ambige.

Nous distinguerons trois espéces d’idéaux premiers $ du corps k : d’abord. ceux
qui sont égaux & la '™ puissance d'un idéal premier 9% de K; deuxiémement, ceux
qui dans K se décomposent en ! idéaux premiers distincts de K, 9,, ..., 9,; et enfin
ceux qui sont aussi des idéaux premiers de K.

Dans le premier cas, la norme N(W)=p’, d’oti N(p)=N(W")=p", et, par suite,
la norme n(p) de I'idéal premier p du corps k est aussi égale & p’. L'égalité des
normes permet d'affirmer que tout nombre entier de K est congru 4 un nombre
entier de & suivant 9 : ceci permet de reconnaitre que la différente relative de K par
rapport & & est nécessairement divisible par 9.

Dans le second cas, on peut toujours trouver dans K un entier A qui n’est pas
divisible par 9,, mais qui V'est par tous les autres idéaux premiers %, ..., 9,_,,
B, - W5 Cest ce qui fait que la différente relative de A, et par suite celle du
corps K, n’est pas divisible par 9,.

Pour ce qui concerne enfin les idéaux g de la troisiéme espéce, soit P un
nombre primitif suivant I'idéal premier p de K et ¢ un nombre primitif suivant p
dans k, et supposons aussi que P soit un nombre qui détermine le corps. P satisfait
alors & une équation de degré ! de la forme

FP) =P + P +... + yy=0,

dont les coefficients =,, ..., , sont des nombres entiers de k.
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Posons

L =006 =S, (9)

ou f,(p), ..., fi(¢) sont des fonctions enticres & coefficients entiers de p. Nous obtien-
drons la congruence

FP)=P + [P + ... + fila) =0, ().

Comme N(p) == (n[p])’, le nombre des entiers de K incongrus suivant ¢ est égal &
la /'™ puissance du nombre des entiers de / incongrus suivant p. P ne peut satis-

faire & aucune congruence de méme espéce et de degré inférieur a I, c’est-d-dire
F(P)
e
oP

=z o suivant 9, ou encore la différente relative du nombre P n’est pas

divisible par p.

Ces considérations nous montrent que la différente relative du corps K est tou-
jours un nombre premier avec les idéaux premiers de seconde et de troisiéme
espece, d’ou le théoréme 3.

§ 58. — LE THEOREME FONDAMENTAL SUR LE CORPS CYCLIQUE RELATIF DONT LA DIFFERENTE
RELATIVE EST EGALE A 1. — ON DESIGNE CE CORPS LE CORPS DE CLASSE.

Les théorémes go, 92, 93 nous apprennent un fait de trés grande importance
pour la théorie des corps de nombres. Ce fait s’énonce :

Tukoriwme g4. — Lorsque le corps cyclique relatif K de degré premier impair I a
par rapport a k sa différente relative égale & 1, il v a toujours dans & un idéal §,
qui n’est pas un idéal principal de %, mais qui devient un idéal principal dans K.
La I'™ puissance de cet idéal j est alors aussi nécessairement un idéal principal dans
I: et le nombre des classes du corps k est divisible par /.

Démonstration. — D’apres le théoréme g2, il y a une unité H de norme relative
¢gale & 1 qui n’est pas la puissance de degré (1 —S) d'une unité. D’aprés le théo-
réme go, H=A'"", ou A est un nombre entier de K, c’est-A-dire que A=HS(A).
L'idéal principal A= (A) est tel que A=SA. L'idéal A fait partie du corps k.
Car, soit 9 un idéal premier de K contenu dans A, qui ne fait pas partie de k, le
théoréme 93, comme I'hypothése nous montre que le discriminant relatif n’a pas
de diviseur, montre que 9 =|= S() et, par suite, A contient aussi la norme relative
N(®), qui est un idéal premier de k. L'idéal A n’est pas un idéal principal du
corps k; car, dans ce cas, on aurait A= H*x, ou H* est une unité et » un nombre
de . 1l en résulterait que H=H"'=%, ce qui est contraire & ce qui précéde. Ce qui

démontre la premiére partie du théoréme 4. Comme N,(A) = « est un nombre de i
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et, par suite, N, (%)= A'=(«) est un idéal principal de k, nous avons la démons-
tration compléte du théoréme g4.

Les théorémes g2 et g4 sont vrais aussi pour /=2, si I'on fait la restriction
indiquée a la fin du § 55.

Il n’y a pas de grandes difficultés de principe lorsqu’on veut étendre le théo-
reme 94 a des corps abéliens relatifs K de différente relative égale & 1 et dont le
degré relatif est un nombre composé.

Les rapports étroits du corps K avec certaines classses d’idéaux du corps k, mis &
jour par le théoréme g4, ont fait appeler ce corps K un corps de classes du corps k.




TROISIEME PARTIE.

LE CORPS DE NOMBRES QUADRATIQUE.

CHAPITRE XVI.

La décomposition des nombres dans le corps quadratique.

§ 59. — LA BASE ET LE DISCRIMINANT DU GORPS QUADRATIQUE.

Soit m un entier rationnel positif ou négatif différent de 1, et qui n’est divisible
par le carré d’aucun nombre autre que 1; 1'équation du second degré

xr*—m=o

est irréductible dans le domaine des nombres rationnels.

Dans ce qui suit, nous désignerons par \/E la racine positive de cette équation
lorsque m>>o et lorsque m<Co sa racine imaginaire positive. Le nombre alge-
brique \/E ainsi bien fixé détermine un corps réel ou imaginaire suivant les cas.
Nous le désignerons par k(\/;) ou, plus simplement, par /; ce corps est toujours un
corps de Galois. En remplagant 4 \/; par — \/E on passe d’'un nombre 4 son con-

Jjugué ou d'un idéal & son conjugué. Nous continuerons & employer la notation s pour
indiquer cette transformation.

Le premier probléme qui se présente & nous est la recherche d’une base du corps
quadratique ainsi que de son discriminant. [Dedekind*.]

TuforkmE 95. — Les nombres 1, », forment une base du corps quadratique k, si
I'on pose

('J:ji# ou ().):\/E

suivant que m= 1(4) ou mzz 1 (4).
Le discriminant de k& est, suivant les deux cas,

d=m, d=/4m.
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Démonstralion. — Le nombre » est toujours un nombre enlier, car il satisfait
toujours soit &
(21) x”—w—b:o, soita x*—m=—o,

4

s0il ' =sw le nombre conjugué de «, le discriminant de o est d= (v — ')
D’apres le paragraphe 3, tout nombre entier du corps k est de la forme
)
A = —_d N
ou u, v sont des entiers rationnels.

Dans le cas ot m=1(4), la congruence 2am—au + v 4 v\/n—zz o suivant m
nous apprend que 2u + v est divisible par \/E et, par suite, 2u 4+ v=o,(m). Cette
derniére congruence, en tenant compte de la premiére U\/;EO, (m), cest-a-dire
que v est divisible par \/m et, par suite, par m. Les deux nombres u et v sont donc
tous les deux divisibles par d=m, et I'on peut débarrasser le nombre z de son
dénominateur.

D’autre part, soit m=j=1(4), la congruence

ham=u 4 U\/;_?—IEO, (m)

nous montre comme précédemment que u et v sont divisibles par m et que, par
suite, m est contenu dans le numérateur et dans le dénominateur de I'expression qui
donne « et qu'on peut simplifier par m.

, woymo o : .
Nous aurons donc « = —Z_ ou u et v' sont des entiers ralionnels. Il est

facile de voir, en formant la norme «.sx, que pour m=2, aussi bien que pour
m == 3 suivant 4, une expression de la forme u' + v’\/a avec u’ el v’ entiers et ration-
nels ne peut étre divisible par 2 que si u' et v’ sont tous les deux pairs. Si on applique
ce résultat d’abord & 4o, puis & 2%, on voit que aussi dans le cas de m=[z1(4) tout
entier du corps k&, s'écrit u + vm avec u et v entiers et rationnels.

La seconde partie du théoréme résulte de la formule

P 0)

d=

I
I

12
‘ =(w—0o')
s )

qui, d’aprés le paragraphe 3, définit le discriminant du corps.

§ 60. — LES IDEAUX PREMIERS DU CORPS.

Le probléme de la décomposition des nombres premiers rationnels en idéaux
premiers du corps k est complétement résolu par le théoréme suivant :

TatorkME g6. — Tout nombre premier rationnel / facteur de d est le carré d'un



-
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idéal premier de k. Tout nombre premier impair rationnel p qui ne divise pas d ou
bien se décompose dans k en un produit de deux idéaux premiers conjugués du pre-
mier degré¢ p et 9’ ou représente un idéal premier du second degré, suivant que d est
reste quadralique de p ou non resle. Lenombre premier 2 est, dans le cas de m=1(4),
le produit de deux idéaux conjugués distincts du premier degré de k, ou est lui-méme
un idéal premier suivant que m =1 ou m==> suivant 8.

Démonstration. — La premiére partie de la proposition, celle qui a rapport aux
facteurs premiers [ de d, est une conséquence du théoréme général 31. Soit [ un fac-
teur premier impair de d, nous trouvons

=1,

ol [= (l, \/m) est un idéal premier du premier degré, qui est égal & son conjugud.
Si 2 divise ¢, on a

a=(2./m)" ou a=(2.1 +Vm)

suivant que m=2 ou m=3 suivant 4.
La décomposition des nombres premiers non contenus dans d s’opére en tenant
compte du théoréme 33 et de la remarque qui s’y rapporte faite au paragraphe 13.
D’aprés ces considérations. tout nombre premier p qui ne divise pas d se décom-
pose dans le corps & en deux idéaux premiers distincts ou est lui-méme un idéal
premier, suivant que le premier membre de I'équation correspondante (21) est réduc-
tible ou irréductible dans le sens de la congruence suivant p-

Si p est impair, nous trouvons que la congruence
(22 —1)*—m=o0 ou x'—m=o (p)

n’est résoluble que si m est reste quadratique de p et qu’elle est irrésoluble si m est
non-reste quadratique de p.
Posons dans le premier cas m = a® suivant p; il vient

p=(p.a+Vm)(pia—ym)=p.y'
Les deux idéaux premiers p et $' sont bien distincts & cause de

([),(,l—if\/;, a—Vm)=r1.

m—ri

Dans le cas de m=1(4), la congruence x* — i — =o0 suivant 2 est évi-

, ., . m—1 . }
demment résoluble ou irrésoluble suivant que ——— =o0 ou=1 suivant 2, cest-

a-dire m=1 ou =5 suivant 8.

Dans le premier cas, on trouve .

2:<2’ 1 +2\/m> <2’ 1—2\//11)

Fac. de 7., 3¢ S, 11. 33
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Les deux idéaux de droite sont différents, car

=1I.

1+ \/m I —\/m
2,
PR 2
Nous pouvons prendre comme nombres de bases des idéaux que nous venons de

trouver, soit

ll+\/ﬁ

2

v
p a__Q\/m

soit l,\/;,
soit p, a + \/E

soil 2, \/E ou 2, 1-}—\/!;,

Ii\/;
* 2

suivant que m= 2, 3(4).
On reconnait facilement ce fait par une réciproque du théoréme 19, si I'on forme
le déterminant obtenu en adjoignant & chacun de ces couples de nombres le couple

conjugué. Dans la deuxiéme ligne du petit tableau que 1'on vieni d’établir, a désigne
un nombre satisfaisant & la congruence

a*=m (p)

et qui, de plus, est supposé impair dans le cas de m=1(4).

a
§ 61. — LE symBOoLE | — |.
w
Pour pouvoir donner un énoncé résumé et complet des résultats acquis, nous

introduirons le symbole suivant : Soit @ un entier quelconque rationnel et w un

. . . . a .
nombre premier rationnel impair, le symbole (—) a la valeur 4 1, — 1 ou o suivant
w

que a est reste quadratique ou non-reste quadratique de p ou qu’il est divisible

par p; de plus, admettons que <—> égale -+ 1, — 1 ou o suivant que ¢ impair est reste
2

quadratique ou non-reste de 2* =38, ou suivant qu’il est divisible par ».

On peut alors donner au théoréme 96 I'énoncé

TutorEME 97. — Un nombre premier rationnel quelconque p (=2 ou =|=2) se¢
décompose dans le corps & en deux idéaux premiers distincts, est lui-méme un idéal
premier, ou est le carré d’un idéal premier suivant que

(§> —4+1,—1 ou o. [Dedekind !.]
p
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Ceci nous améne a considérer trois espéces d’idéaux premiers :

1° Les idéaux premiers du premier degré 9 distincls de leurs conjugués p'.

2° Les idéaux du second degré (p) représentés par les nombres premiers qui ne
se décomposent pas dans k.

3° Les idéaux du premier degré [ dont les carrés sont des nombres premiers con-
tenus dans d.

D’aprés les définitions des paragraphes 3¢ et 41, le corps k est le corps de décom-
position des idéaux premiers p de la premiére espéce, il est le corps d’inerlie
pour les idéaux premiers p de la seconde espéce et enfin le corps de ramification

pour les idéaux [ de la troisiéme espeéce.

§ 62. — LEs UNITES DU CORPS QUADRATIQUE.

Pour ce qui concerne les unités de £, le théoréme 47 nous apprend que nous
avons & considérer deux cas, suivant que & est un corps imaginaire ou un corps réel.
Dans le premier cas, It ne peut contenir d’autres unités que celles qui sont des
racines de I'unité, et comme le corps quadralique ne peut contenir que les racines
primitives de la racine cubique, quatriéme ou sixiéme de I'unité, les seuls corps qua-
dratiques imaginaires qui peuvent contenir d’autres unités que — 1 et -4- 1 sont les

deux corps k(\/— l) et I;(\/— 5) Le premier corps contient les unités -=; le second,

—V+3

. r I
les quatres unités =
2

et —3; d’aprés le théoréme 50, il y a dans toule classe d’idéaux de ces corps un

Les discriminants de ces deux corps sont —4

idéal dont la norme - 2 pour le premier, <3 pour le second. Comme d’ailleurs
dans le corps /c(\/:) le nombre 2 est la norme de I'idéal principal (1 4 i); il en
résulte que chacun de ces deux corps ne posséde qu'une classe d’idéaux. Ces corps
ne renferment donc que des idéaux principaux, et tout nombre positif entier ra-
tionnel qui peut étre pris pour norme d’un idéal de lc(\/:) ou de IL(\/——%) est aussi
la norme d'un entier algébrique dans le corps correspondant, d’ou résultent les
théorémes connus sur la représentation des entiers rationnels sous les formes * 4+ y*
ou x* + xy + y*, x et y étant des entiers rationnels.

Par contre, si k est un corps réel, le théoréme 47 nous apprend qu’il existe tou-
jours une unité fondamentale ¢ différente de +1, et au moyen de laquelle toute
unité du corps peut étre mise d’une seule facon sous la forme =+ :“, oll @ est un entier
rationnel.

Les circonstances dans lesquelles la norme de.cette unité fondamentale est égale
& +1 0u & —1 n'ont été découvertes que dans certains cas particuliers. [Arndt !,
Dirichlet*, Legendre!, Tano!.] — Comparez & ce que nous venons de dire la pre-

miére partie de la démonstration du lemme 13.
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§ 63. — LES CLASSES D'IDEAUX.

Les calculs du paragraphe 24 permetlent d’établir toutes les classes d’idéaux du
corps quadratique & pour chaque valeur particuliéere de m. I1 a été construit des
tables basées sur la théorie des formes quadratiques réduites et qu’il faudrait citer
ici. [Gauss!, Cayley®.]

CHAPITRE XVII.

Les gerres dans le corps quadratique et leurs systémes de caractéres.

n, m
§ 64. — LE SYMBOLE <—>
w

Pour la répartition des classes d’idéaux, nous introduirons dans les développe-
ments de la théorie du corps quadralique un nouveau symbole. Soient n et m deux

entiers rationnels, ot m n’est pas un carré et ot w est un nombre premier rationnel

n, m .
quelconque; nous donnerons au symbole (| — ) la valeur 4 1, dés que le nombre n
w

est congru a la norme d’un entier du corps algébrique If(\/m), et si, de plus, il
existe pour toute puissance plus élevée de w dans If(\/m) un nombre entier dont la

norme est congrue 4 n suivant celte puissance de w; dans tout autre cas, nous pose-

n, m . /n, m .
rons < > — — 1. Les nombres pour lesquels KT> = + 1 seront dits les restes
w
. — . n, m
normiques du corps lc(\/m) suivant w; les nombres n pour lesquels (T> =1
\

seront les non-restes normiques du corps /f(\/ m) suivant w.

’

. . n, m . s )
Lorsque m est carré¢ parfait, <—> sera toujours pris égal a 1.
w

f . . s " n, m .
Le théoréme suivant nous indique les propriétés du symbole (—’—) qui nous
w

permettront de le calculer.

TutorkME g8. — Soient n et m deux entiers rationnels, qui ne sont pas divisibles
parw; on a les régles suivantes :
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Pour les nombres premiers impairs w, on a

(ar) (n, m>:+l’

w

o (B=(5)-2)
) (n m> (- ])"T—“l';:

o (5)=(5)="

De plus, pour des nombres entiers rationnels quelconques n, n’, m, m' par rap-

pour w=2:

port & tout nombre premier w. on a les formules

€] <ﬂ>=+ I,

w
S RCL)
o (=) (),
(B ) ),

Démonsiralion. — D’abord il est évident que si n est la norme d’un entier de /,

n, m
on a =+ 1.
w

De plus, comme — m est la norme de \/m , on en conclut I'exactitude de (c'). De

plus, si n et n' sont deux entiers rationnels == o, dont le quotient est la norme d’un

entier ou d’unc fraction de Ic(\/r;), I'égalité

n, m) <n', m>
w / \ w

est évidente d’apres la définition du symbole.

. n ¢ 3 . . , . . . \
Si — est le carré d’'un nombre rationnel, il en résulte en particulier ce fait trés
n

, m )

simple que la valeur du symbole <£l——u7~> ne change pas si 'on multiplie n ou si on

le divise par le carré d’'un nombre rationnel entier. Nous admettrons, pour plus de
simplicité, que ni n ni m ne contienne le carré d’'un nombre premier.

Pour reconnaitre I'exactitude de notre systéme de formules, nous traiterons dans
I'ordre les trois cas particuliers suivants :
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1) Soit w un nombre premier impair qui divise m.

Si n n’est pas aussi divisible par w, la congruence

(22) hn=(x 4y —my" ou n=x"—my (w),

n’admet de solution entiére en x et y que si <—~> =+ 1. Réciproquement, si la der-
n

niére condition est satisfaite, la congruence n*=a* admet des solutions suivant
toutes les puissances de w, et il en est évidemment de méme de la congruence (22).
Donc, en vertu des hypothéses admises,

) =(%)

D’autre part, si n est divisible par w,

—nm —nm

. m -

<n, m\ (—nm, m> w Ww
w /T w - w - w

2) Soit w un nombre premier impair qui ne divise pas m. Si n aussi n'est pas
divisible par w, la congruence

n=x"—my* (w)

admet toujours des solutions, car le second membre de celte congruence donne tous

. . , . w—1

les restes quadratiques suivant w, lorsqu’on fait x =1, 2, ..., ——, y =o0; et, dans
2

—m . .

le cas de — — 1. elle donne tous les restes non quadratiques suivant w, pour
w—1
r=—o, y=r1, 2, ...,
2

. m - .
Par contre, soit <——U—> =— + 1, désignons par a le plus petit non-reste quadra-
U

lique du nombre premier w, et soit y==0 une racine de la congruence — my*=a— 1(w)

qui a certainement des solulions: comme a=1— mb* suivant w, la forme &* - m(bzx)*

. w—I . .
represente pour x =1, 2, ..., tous les non-restes quadratiques suivant w.
2

Comme la congruence n= x* — my* suivant w admet des solutions, on en conclut
qu’elle en admet aussi suivant toutes les puissances de w, c’est-a-dire qu’avec nos

n, m
( >:+I.
w

Admettons maintenant que n est divisible par w, mais qu’il ne I'est pas par w’;

hypothéses

conformément aux hypothéses du début, une solution de n=x* — my* suivant w® :

a:x—\/z—ny
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représenterait un nombre du corps ky/m, dont la norme «.s«=n(a) contiendrait
en facteur w el non pas w*, c’est-d-dire que w se décomposerait dans le corps k(\/ m)

en deux idéaux premiers distincls v et w', ce qui exige comme condition nécessaire

\ . m
et suffisante, d’apres le théoréme g7, <E> =41

Réciproquement donc, si cetle condition est remplie, w est dans le corps /c(\/m)
un produit ww’ de deux idéaux premiers distincts. Si 1'on désigne alors par « un

nombre entier de I:(\//;) divisible par v, mais non par * ou par w’,

n.n(z)

, 2 ?m
(n. m) _ (n .n(a), m> _ w — 1,

N w w w

c’est-d-dire qu’avec les hypothéses actuelles, on a toujours <n,wm> = <11nl;> .

Les résultats acquis établissent immédiatement l'exactitude des formules (a')
et (a"); de plus, ils donnent pour des nombres premiers impairs les formules (¢')
et (c"), et ils les donnent compléetement si I’on examine dans I'ordre les différents cas
qui peuvent se présenter en tenant compte de la divisibilité ou de la non-divisibilité
des nombres n. n', m par w.

3) Dans le cas de w =2, nous ferons d’abord les considérations suivantes. Soit
J(xy) une fonction homogéne du second degré i coefficients entiers de x et de y, et n
un nombre entier rationnel impair; si la congruence n= f(xy) suivant »* admet
des racines, clle en admet aussi suivant toute puissance supérieure de 2, 27 (e > 3).
Nous le démontrerons en concluant de e & e + 1. Soient a, b deux entiers rationnels,
tels que f(a, b)=n suivant 2°, ou e>3; si l'on n’a pas n= f(a, b) suivant 2*"",
mais bien micux n= f(a, b) + 2° suivant 2°"', nous déterminerons un nombre ¢,
tel que ¢*= 1 + 2 suivant »“"', ce qui est possible & cause de ¢ > 2; et alors

Sflea, cb)y=cf(a, b)=f(a, b) + 2°f(a, b)= f(a, b) + 2°=n (2°"");

c’est ce que nous voulions démonltrer.

’

\ . , . n, m . _—
Des lors, si nous voulons établir la valeur de (——> pour n impair, il nous faut
2

chercher quelles sont les valeurs de n et de m qui se correspondent de maniére a
rendre possibles les congruences

(23) n=u'+ xry — ? y* ou n=x'—my* (2°.

[m =1, (4)) [m =2, 3 (4))

Un calcul tres court nous fournit la table suivante :
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Dans cette table, nous avons mis dans la colonne des m les six restes suivant 2° &
considérer, et, dans la colonne des n, les restes impairs suivant 2° qui leur corres-
pondent et rendent possible la congruence 23 :

m n

I I, 3, b5, 3
2 1, 7

3 1, O

5 I, 3, 5, 7
6 I, 3

7 1. D

Cette table nous montre que pour n et m impairs I'égalité (b) est vraie; elle montre
aussi que pour n impair, m pair—2m’; on a :

1 n2—1 n—1 m'—1
(n, 2m>:(_1)—€-+—‘2—.T.

2

D’autre part, si n est pair = an’ et m impair, il faut distinguer les deux cas m==1
et m==3 suivant 4.

Dans le premier cas, il faut que 2 soit dans le corps /1(\/%) le produit de deux

idéaux premiers distincts deés que n=2n' est reste normique de 2 dans k(y/m), c'est-
. a-dire que <—> doit étre égal & + 1. Si cette condition est remplie, on peut loujours
2

trouver un nombre « dans /1(\/;11_) dont la norme n(«) est divisible par 2 el non par 4;
on a alors

n'. n(x)

— . m
<2n’, m> <2n' . n(w), m> s
— —_— — s
2 2 2

et ce dernier symbole suivant (&') est égal & + 1; on a donc

(57)=()= v
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Dans I'autre cas m=3(4), la valeur du symbole en question dépend de la possi-
bilité de la congruence 2n'= x*— my® suivant une puissance quelconque de 2, 2°.
Une pareille congruence, comme on le voit aisément, n’est possible que s’il en est

ainsi de .
m=x’— an'y

suivant la mérae puissance 2°; c’est-a-dire que

(o) (),

Enfin, si n et m sont tous les deux divisibles par 2, n—2an', m=—2am’, on a

an/, am’' <— 2’n'm', am’ <— n'm, 2m'>
2 o 2 2 ’

Les résultats obtenus ont pour conséquence immeédiate la formule (b"), et nous

reconnaissons en méme temps que les formules (¢”) et (¢") sont exactes pour w = 2.
La formule ¢"” se déduit d’'une combinaison de (c") et (c").

Le théoréme g8 est complétement démontré.

Des formules (a'), (a"), (b'), (b") du théoréme 98, on déduit ce qui suit :

Si T'on considére un systéme complet de nombres premiers avec w et incongrus
suivant w’, ot e > 1 et méme e>>2 dans le cas de w=—2, tous ces nombres sont des
restes normiques du corps A(\/;I-) suivant m, ou bien ils forment la moiti¢ de ces

restes, suivant que w est premier avec le discriminant de Ic(\/m) ou qu’il nel'est pas.

§ 60. — LES SYSTEMES DE CARACTERES D UN IDEAL.

Soit ¢ le nombre des diviseurs premiers rationnels des discriminants de L(\/;)
désignons-les par [, I,, ..., I,.

A chaque nombre entier rationnel correspondent alors des valeurs parfaitement
déterminées (+ 1 ou — 1) des { symboles

(a, m> (a, m
), ()

dont le sens est déterminé par le paragraphe précédent: ces ¢ unités 4= 1 prendront

le nom de systéme des caractéres du nombre « dans le corps h(\/;) Pour pouvoir
attribuer aussi & tout idéal a du corps IL(\/;;) un systéme de caractéres bien déter-
miné, nous distinguerons deux cas suivant que / est un corps imaginaire ou un corps
réel. Dans le premier cas, les normes des nombres de A(\/E) sont toujours positives;
nous poserons r==¢, n=+ n(a), et nous dirons que les r unités

(24) (ﬁ,l‘m>, o <r_1,ltm>

Fac. de T., 3¢ S., 1. ‘ 34
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forment le systéme des caractéres de I'idéal a, il est parfailement déterminé par

I'idéal a. Dans le second cas, nous formerons d’abord le systéme des caractéres du
nombre — 1 :

(25) <:Llﬁ>’ e, <%t’m>

Si toutes ces unités sont égales & + 1, nous poserons, comme dans le premier cas.
n=n(a), r=1, et nous dirons encore que le systéme 24 est le systéme des carac-
téres de a. Par contre, si parmi les / caractéres (25) se trouve l'unité — 1, soit par

—1,m -
exemple <T> — -1, nous poserons r—==1{—1 et n=- n(a) en choisissant le
t
n, m

signe de facon que <-[—> = + 1, et nous désignerons les r unités (24) résultant de
t

ces hypothéses sur r et sur 7 le systéme des caractéres de 1'idéal a.

Les conventions que nous venons de faire nous permettent d’énoncer le théoréme
suivant :

§ 66. — LE SYSTEME DE CARACTERES D' UNE CLASSE D'IDEAUX ET LA NOTION DE GENRE.

Tutorkme g9. — Tous les idéaux d’une méme classe du corps k(\/m) admettent
le méme systéme de caractéres.

Démonslration. — Soient a et a' deux idéaux de lc(\/m) appartenant a la méme
classe; il existe un nombre « entier ou fractionnaire de k(\/m), tel que a'=1a4a. Par
suite, n(a') == n(a2)n(a), ol == désigne le signe de n(x), et, par suite,

<n(a’3, m> _ <i n(;t), m>

pour I=1, ..., l,. En tenant compte des conventions du paragraphe 65, on obtient
le théoréme gg.

De cette fagon, & chaque classe d’idéaux correspond un systéme de caractéres.
Nous rangerons dans le méme genre toutes les classes d’idéaux qui ont le méme sys-
téme de caractéres, et, en particulier, nous définirons genre principal I'ensemble de
toutes les classes dont les systémes de cavactéres est formé d’unités toutes positives.
Comme le systéme de caractéres de la classe principale a évidemment celte propriété,
la classe principale appartient au genre principal. De la formule ¢", paragraphe 64,
nous déduirons facilement ce fait, que la multiplication des classes d’idéaux de deux
genres fournit la classe d’idéaux d’un genre, donl le systéme de caractéres s’obtient
par la multiplication des caractéres correspondants des deux genres. Il en résulte en
particulier que le systéme des caracléres du carré d’une classe d’idéaux d’un genre
quelconque ne contient que des unités positives, et, par suite, le carré de toute classe
d’idéaux appartieﬁt au genre principal.

Tout genre contient le méme nombre de classes.
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§ 67. — THEOREME FONDAMENTAL RELATIF AUX GENRES DU CORPS QUADRATIQLE.

Une question se pose : Un systéme quelconque de r unités + 1 peut-il étre le sys-
téme de caractéres d'un genre du corps /c(\/ﬁ)? La solution de cette question est
d’une importance capitale pour la théorie du corps quadratique; elle est contenue
dans un théoréme dont la démonstration nous occupera jusqu’au paragraphe 78 et
qui s’énonce :

TuforEME 100. — La condition nécessaire et suffisante pour qu'un systéme quel-
conque de r unités 4= 1 soit le systéme des caracléres d'un genre du corps I{(\/;) est
que le produit des r unités soit égal & + 1. C’est pourquoi le nombre des genres du

corps /c(\/z) est égal & 2" ', [Gauss'.]

§ 68. — UN LEMME S'APPLIQUANT AUX CORPS QUADRATIQUES DONT LE DISCRIMINANT NE

CONTIENT QU’UN DIVISEUR PREMIER.

Pour nous rapprocher du but indiqué au théoréme 100, nous démonirerons
d’abord le

LemumEe 13. — Lorsque le discriminant d'un corps k:l;(\/m) ne conlient qu'un
diviseur premier rationnel /, le nombre des classes d’idéaux de / est impair. Le sys-
téme des caractéres se compose d'un caractére unique relatif & [; ce caractére est
toujours égal & + 1, c’est-a-dire que dans le corps il n’y a qu'un genre : le genre
principal.

Démonstration. — Désignons par s la substitution qui transforme un nombre du
corps k en son conjugué. Désignons encore, lorsque m>>o, par ¢ une unité fonda-

I I 14 A4 A ’
mentale du corps k, — ¢, —, — — représentent des unités du méme genre; nous dé-
€ 3

montrerons tout d’abord que I’'hypothése du lemme nous donne n(e) =¢.s: =—1.
‘n effet, admettons que n(z) = + 1, on pourrait trouver, d’aprés le théoréme go, un

entier « du corps tel que e = ; il en résulle « =¢.sa, c’est-a-dire que tout fac-

9
s(x)’
teur idéal premier contenu dans « le serait dans sz. Mais d’aprés ’hypothése faite

dans T'énoncé, lorsque m>>o \/m est le seul facteur premier de k, qui est égal a
son conjugué et qui n’est pas rationnel, on a ou bien
a=ma ou w=\/ma,

7 étant une unité et @ un entier ‘rationnel positif ou négatif; il en résulterait
e=-n'"""=-+% et e ne serait pas une unité fondamentale, ce qui est contraire a
Ihypothése.
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Démontrons maintenant la premiére partie du lemme. Si le nombre £ des classes
du corps k était pair, il y aurait, suivant le théoréme 57, un idéal j n’appartenant
pas & la classe principale, tel que j*~ 1; mais come jsj ~ 1, on en conclurait j ~ sj.
Posons j=u1s.§, c’est-d-dire i’ = z; xest un nombre de k dont la norme n(2)—-1.
Dans le cas ot le signe serait 4, posons f=—=ua«; le seccnd n’est évidemment possible
que pour un corps réel; faisons p=—zx, = désignant comme tout & '’heure I'unité fon-

damentale de k. Avec ces hypothéses, on aurait & chaque fois n(8)=+ 1, et, par

. > v r 1 I — \ . 21— r
suite, d’apreés le théoréme go, (—:y’ *, ot v est un entier de k. De u«=j""" résulte-
4

rait (vj)' " =1, c’esl-a-dire (*()‘j =s(vi), et on conclurait comme précédemment que
I'idéal (y)j est ou bien =—(a) ou (a)f, ou a est un nombre entier rationnel et [ le
seul nombre premier de k égal & son conjugué et non rationnel. Or, lorsque m==—1,
ce facteur premier [—= \/E, et, popur m—=—1, =1+ \/——_1, c’est-a-dire qu'on a
toujours [ ~ 1, et, par suite, j ~ 1, ce qui est contraire & 'hypothése.

Lorsque k est un corps réel, n(s) = — 1 nous indique de suite que

——1,m>___l_1
(=F5)=+>

et alors, d’apres le paragraphe 63, le systéme du caractére d’'un idéal j est consti'ué

+ n(j), m
l

corps k, sans quoi 'ensemble des classes d’idéaux de % se répartirait en deux genres

par l'unité ; ce caraclére unique est égal & + 1 pour chaque idéal j du

et le nombre des classes & serait pair.

Ce lemme 13 nous montre que le théoréme fondamental 100 est vrai dans le cas
le plus simple, c’est-a-dire le cas du corps quadratique dont le discriminant d ne
contient qu'un diviseur premier ralionnel.

§ 69. — LE THEOREME DE RECIPROCITE POUR LES RESTES QUADRATIQUES.

n, m
UN LEMME RELATIF AU SYMBOLE (,_)
w

TufOREME 101. — Soit p et ¢ deux nombres premiers rationnels impairs positifs
différents I'un de l'autre ; on a la régle

Q==

dite loi de réciprocité des restes quadratiques. On a, de plus,

B ()=

dits théorémes complémentaires & la loi de réciprocité quadratique. [Gauss*.]
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Démonstration. — Soit lf(\/—rm un corps dont le discriminant ne contient qu'un
diviseur premier /, et désignons par n la norme d’un idéal de ce corps k; d'aprés le

n,m

lemme 13 on a toujours (T) = + 1. Mais d’apres les théorémes g6 et g7, on voit.

qu’en particulier, tout nombre premier positif impair qui ne divise pas m et dont m
est reste quadratique est la norme d’un idéal de l{(\/;) Nous utiliserons ce fait
pour dresser le tableau suivant : nous désignerons par p et p’ deux nombres premiers
rationnels distincts congrus & 1 suivant 4, par ¢ et ¢' deux nombres premiers dis-
tincts congrus & 3 suivant 4, tandis que r représentera un nombre premier rationnel

impair dont nous ne préjugeons pas le reste par 4.

Si On a
m , n.m
m l n T>:+' <l>:+l
- —1\ r—1\ ’:’_
.| —1 2 <T>_+1 (2>_(—1) =41
v r2—1
2 2 2 r <i\}=+1 <”2>:(—1)T——+1
r/ 2
, p p.p P
|y )=+ | (55)= (&) =+
I P p b 7 »
)4 q,p q
oo @)= | ()= () =+
P q p p
—q p,—q p
foa] o | 0| D= | D= (2) =+
P> q q
, —q q.—q q
o oo = Y- ) -
7 1 1 ‘1) ' q q . t

- — 1\
Dans un corps l;(\/p), n(z)= —1 nous apprend que (T]):-l—l; ajoutons

e . . , o —1 =
cette remarque a laligne 1, il en résulte que, d’'une fagon générale, (——) =(—1)2 .
r

Appliquons la proposition citée au début de cette démonstration au nombre pre-

mier n = 2, et remarquant que 2 est toujours la norme d’'un idéal dans k(\/l_)) ou
— P2t et . .
/c(\/—q), dés que (— 1) ¥ =+ 10u(—1) 5 = + 1, il en résulte que, si ces con-

ditions sont satisfaites, <2,_p> = <3> =+1, ou (2’ — q) = <E> = + 1, Cest-a-
p P q q
r2—1

. . = 2 . , \ .
dire que si (—1) 38 =471, 0n 2 <I—> =+ 1. Ajoutons ce résultat & la ligne 2. on a,

, 2 72t .
d’une fagon générale, <—>:(——1) 8 . Le contenu de la ligne 3 montre que

B-0



2 70 D. HILBERT.

LeS lignes [] e[. o nous apprennent qlle

r
el la ligne 6 que <%) =— (%) , ou il faut tenir compte du caractére du restede — 1,
qui a été trouvé d’abord.

v s . , . q
Il reste & démontrer que si1 <%> — + 1, on a necessairement <L> = —1. Le
q

théoréme de réciprocité pour deux nombres premiers rationnels ¢ et ¢/, qui tous

deux = 3 suivant (4), s'obtient le plus simplement en considérant le corps lf(\/@') R
—14qq
q
certainement = + 1, et il y a un entier « (voir théoréme go), tel que ¢ =o' ~* = = ,
S.a
ol sx est le nombre conjugué de . Nous en conclurons facilement que 1'idéal pre-

car comme < >:——1, la norme de l'unité fondamentale ¢ de ce corps est

mier q contenu dans ¢ est un idéal principal. Par suite, en choisissant convena-
blement le signe,

(iq,qq>:+l ot <iq»'qq>:+1;
q q

<q~ qq’) _ (q, qq’)_
q q

et en tenant compte de la formule (¢') du théoréme g8 :

(-

LemME 14. — Soient n et m deux entiers rationnels quelconques qui ne sont pas

donc

tous deux négatifs; on a

N

() =+

()

ot le produit I s’étend & tous les nombres premiers rationnels.

Démonstration. — Soient p et ¢ deux entiers rationnels distincts impairs et tous
deux premiers; les régles (a"), ('), (b") du paragraphe 64 et le théoréme 101 nous
permettent d’écrire : :

()= A=+
()= (B (5 =+
(A =+ BHEDED =+
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et grice 4 la régle (a') du paragraphe 64. le lemme 14 subsiste pour le cas ou les
nombres n et m égalent 4=1 ou ne conliennent qu'un nombre premier. Les for-
mules (¢") et (¢"") montrent que le lemme 14 est général.

—1, —1 o . C A
De <—> = —1, il résulle que si n et m sont tous deux négatifs, le pro-
2

duit H est égal & — 1.
()
On peut exprimer plus simplement la proposition contenue dans le lemme 14 et

s n, m
celle que nous venons d’énoncer en employant le nouveau symbole (| — | =1,

en lui donnant la valeur 4 1, si I'un des nombres n ou m est négatif, et la valeur — 1

lorsqu’ils le sont tous les deux.

§ 70. — DEMONSTRATION DES RAPPORTS ENTRE L'ENSEMBLE DES CARACTERES D'UN

GENRE ENONCES DANS LE THEOREME FONDAMENTAL I00.

Appliquons le lemme 14. Soit A une classe d’idéaux du corps /1(\/5) et soit a un
idéal de cette classe premier avec 2 et avec d, et soit 7= n(a) la norme de 'idéal a
pourvue du signe prévu au paragraphe 65; le produit de tous les caractéres de la

(ﬁ,m) h‘,m>
2 (B2,

Comme n(a) est la norme d’un idéal, tout nombre premier rationnel p contenu

classe A est donné par

dans nn se décompose dans le corps /{(\/I;); et, par suite, d’aprés le théoréme g6,
m est reste quadratique de tout pareil nombre.

Du lemme 14, et en tenant comple des formules (¢"), ('), (a") du théoréme g8,
on a

1% =+

()

lorsque w prend les valeurs des nombres premiers impairs contenus dans d, ainsi
que la valeur 2.

Si donc le discriminant d du corps Iu(\/E) contient le nombre premier 2, il est
démontré déja que pour toute classe de /c(\/;n—) le produit de tous les carac-
téres — 4 1.

Par contre, si 2 n’est pas contenu dans d, comme m=1 suivant 4, on a

n,m ;o < 32 ’
< > =+ 1, et le théoréme est aussi démontré dans ce cas.
2
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Ayant démontré que le produit des caractéres est égal & 4 1, nous reconnaissons
de suite que le nombre des genres dans le corps quadratique /:(\/m) est au plus égal
a la moitié de tous les systémes de caractéres imaginables, c’est-d-dire au plus

égala o™
CHAPITRE XVIII.
L'existence des genres dans le corps quadratique.
§ 71. — LE THEOREME SUR LES NORMES DES NOMBRES D'UN CORPS QUADRATIQUE.

11 reste a faire voir que la seconde partie du théoréme 100 est vraie, ¢’est-d-dire &
démontrer que la condition que nous avons reconnue nécessaire pour qu'un systéme
de r unités —+ 1 forme le systéme de caractéres d'un genre dans h(\/;) est aussi suf-
fisante. On peut y arriver par deux voies bien distinctes : la premiére est de nature
purement arithmélique, la seconde a des moyens transcendants. La premiére dé-

monstration résulte des raisonnements suivants :

THEOREME 102. — Si n, m sont deux entiers rationnels, m n’étant pas un carré
parfait, qui remplissent pour tout nombre premier w la condition

<n’wm> =T

le nombre n est toujours la norme d'un nombre entier ou fractionnaire = du
corps k(\/m)

—
Démonstration. — La condition 1 I K—
w

marque faite a la fin du paragraphe 6g, que I'un des nombres n ou m au moins soit

n, m

) exige, comme il résulte de la re-
w

positif. Nous pouvons admettre que n et m ne renferment pas de facteur rationnel au

carré. Soit alors p un facteur premier de n qui divise aussi le discriminant d du

corps lc(\/z); p est la norme d’un idéal de /c(v/m). De plus. si p est un nombre
. n, m m .
premier impair qui divise n et m ou m, comme T> = <—> =41, p est aussi la

\ p
norme d’un idéal de /f(\/m). Enfin, si 2 divise n et ne divise pas le discriminant du

— n, m 2, m mi—t
corps lf(\/m), comme <T> :< '2 >—_—(—1) 8 — 41, 2 est encore la norme

d'un idéal de If(\/E), et, par suite, If(\/m) contient certainement un idéal j, tel
que |n|=n(j). Choisissons dés lors dans la classe d’idéaux déterminée par j un
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idéal j', dont la norme n(j') < :\/c—ll ou d est le discriminant du corps /1(\/;) Ceci,
d’apreés le théoréme 5o, est toujours possible. Nous poserons i'=xj et n'=n.n(x),
ou % est un nombre entier ou fractionnaire de If(\/;z); on aura n'=-n(j) avec le
signe + ou le signe — suivant que n(x) est positif ou négatif. Le nombre entier ra-
tionnel n' est donc en particulier stirement positif lorsque m est négatif. Comme d a
pour valeur m ou 4m, on a |n'| < 2i\/gl et il en résulte |n'|<|m| dés que

2|\/n—1| < |m|, C'est-a-dire [m| > 4. D’autre part, comme n'=n.n(x), on a

n, m n', m
<—> = < . ) =41, et, par suite, & cause de la formule (¢") du théoréme 98,

w w
m, n
E R
w
pour tout nombre premier w.
Admettons que le théoréme 102, que nous voulons démontrer, soit vrai pour tout

corps /t(\/m) pour lequel le nombre m’, qu’il soit positif ou négatif, satisfait &
|[m'| < |m|. Le nombre n' que nous venons de trouver satisfait & [n'| <C|m| et n’est

!
’

w
faut, grice a notre hypothése, que le nombre m soit la norme d’un nombre =’ dans

pas un carré¢, et comme on a de plus ( ) =+ 1 pour tout nombre premier w, il

le corps lf(\/;), c’est-a-dire qu'il existe deux nombres entiers ou fractionnaires ra-
tionnels tels que '

m=a'— n'b*;
d’autre part, si n' est un carré, la possibibilité de cette égalité est évidente. Comme
- . . a\? 1\’ N
il faut que & soit =}=0, on voit que n' = (Z) —m <-5> =n()), c’'est-a-dire que n' est
la norme d’un nombre A dans le corps lf(\/m). En rapprochant ce fait de n'= n.n(z),

. \ I8 —
on voit que n=n(x), o « = — est encore un nombre de lc(\/m).
%

La démonstration compléte du théoréme 102 sera accomplie dés que nous aurons
montré que le théoréme est vrai pour |m| <4 avec |n| < I\/dl En restreignant ainsi
les nombres n et m, les conditions du théoréme 102 ne sont remplies que dans
huit cas.

Les égalités

1= n(y/— 1), —a=n(\/2),

2 =n(1 + /= 1), 2 = n(\/— 2),

2 =n(2 + \/2), —a=n(1 +\/3),
— 1 =n(1 +/3), —3=n(\/3)

montrent que dans ces huit cas le théoréme 102 est vrai.
lac. de 7., 3¢ S., 1I. 35
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On reconnait que le théoréme 102 est encore vrai si on en modifie 'énoncé en

.

. . g . .
exigeant que la condition <—> =+ 1 ne soit remplie que pour tous les nombres
w

premiers impairs w; mais il faut alors ajouter cette condition que 1'un des nombres
n et m au moins est négatif. [Lagrange', Legendre!, Gauss®.] Et, en effet, d’aprés le

1,

lemme 14, I'égalité (’

> —1 est alors satisfaite d’elle-méme.

§ 72. — LES CLASSES DU GENRE PRINGIPAL.

A la fin du paragraphe 66 nous avons montré que le carré d'une classe d’idéaux
appartient toujours au genre principal. Le théoréme 102 du paragraphe 71 nous
permet de montrer la réciproque.

TutorEME 103. — Dans un corps quadratique, toute classe du genre principal est
le carré¢ d’une classe. [Gaﬁss L]

Démonstration. — Soit H une classe du genre principal du corps I.(\/E) et h un
idéal de cette classe premiére avec le d du corps /f(\/;), soil 7 la norme de l'idéal §

précédée du signe prévu au paragraphe 65. Ce nombre n remplit alors, quel que soit

. ... [, m . _ \
le nombre premier w, la condition \ - > — + 1, et par suite on a n=n(2), ou =
w

est un nombre entier ou fractionnaire du corps /1(\/1%) Posons donc %:%, fi et
8’ étant des idéaux premiers entre eux; il en résulte que %g,: 1 et, par suite,
f'=sf. Comme fisfi~ 1. il en résulte que h ~ §".

Cette propriété caractéristique des idéaux du genre principal a un rapport étroit
avec une autre propriété également caractéristique de ces idéaux et qui est exprimée
par le théoréme suivant :

TutorkME 104. — Soient ,, w, deux nombres de base du corps quadratique k et
4,» n, deux nombres de base d'un idéal § appartenant au genre principal de k, et
enfin soit N un nombre entier rationnel quelconque donné; on peut toujours trouver

quatre nombres rationnels r,,, r,, r, . r, dont les dénominateurs sont premiers

avec N, dont le déterminant r,,r r,r,=d=1, et tels que

11° 22 12

127

T, T,

Ty r,w, +r,o,
Démonstration. — Délerminons un idéal §’ équivalent & §; §'= 8 premicr
avec Nd.
Ainsi que nous l'avons déja utilisé dans la démonstration du théoréme 103,
n=o-n(h") est égal & la norme d’un nombre =« entier ou fractionnaire du corps F,
si 'on choisit le signe +4- ou le signe — d’apreés les conventions du paragraphe 65.
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L’idéal o’ — =8 admet les nombres de base
1?'714 - al‘(!)l + au(‘)a’
ap’n%: a%lwi + aigwi’
oua,, a,, a,, a, sont des entiers rationnels. Comme n(ah’)="n" le déterminant

P T 1
a,a, — a,a, ==+ n¢% et par suite les quatre nombres

T . S
rn——ﬁ’ n_n’ .——n’ ee_n

ont les propriétés indiquées dans I'énoncé.

§ 73. — LES IDEAUX AMBIGES.

Nous dirons qu'un idéal a du corps k est un idéal ambige si I'opération

s:(\/; : —\/m) le laisse inaltéré et s’il ne contient pas d’autre facteur entier

rationnel que + 1 (voir § 57). On a le

L, ..., I, distincts contenus dans le

TuEoREME 105. — Les t idéaux premiers [, [,

discriminant d du corps & sont des idéaux ambiges premiers du corps k, et il n'y
en a pas d'autres. Les 2’ idéaux 1, I, I,, ..., [, [, ..., [ [ ... [, forment 'ensemble

de tous les idéaux ambiges du corps k.

Démonstration. — Que les idéaux premiers I,, .... [, sont ambiges et qu’il n’y en
a pas d’autres, cela résulte du théoréme go. Soit maintenant a=y.q...r un idéal
ambige quelconque décomposé en idéaux premiers; comme a=—sa, il faut que les
idéaux conjugués a 9, q, .... r, sp, sq, ..., st, abstraction faite de leur ordre,
soient égaux a p, 4, ..., r. Si on avait, par exemple, sp =g, a contiendrait le fac-
teur psp, qui est un entier rationnel; comme ceci est contraire & la définition d’un
idéal ambige, il faut que p =sp, g=sq, ..., c’est-a-dire que tous les idéaux soient
ambiges. GComme les carrés des idéaux [, ..., [, sont des entiers rationnels, nous en
concluerons que p, q. ..., r sont nécessairement distincts, et la derniére partie du
théoréme 105 est démontrée.

§ 74. — LES CLASSES AMBIGES D'IDEAUX.

Soit a un idéal de la classe A ; nous désignerons par sA la classe A laquelle appar-
tient sa, Et, en particulier, si A = sA, la classe d’idéaux A est dite une classe ambige
d’idéaux. Comme le produit asa ~ 1, A.sA =1 et par suite, le carré de toute classe
ambige est égal & la classe principale 1. Réciproquement, lorsque le carré d’une

’ I . .
classe A égale 1, A :K:SA » et par suite la classe A esl ambige.
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§ '75 — LES CLASSES AMBIGES D'IDEAUX DETERMINEES PAR LES IDEAUX AMBIGES.

11 s’agit maintenant d’établir les classes ambiges de k. Comme tout idéal ambige
a délermine une classe ambige en vertu de sa propriété a =sa, il nous faut d’abord
rechercher combien de classes ambiges dislinctes résultent des 2’ idéaux ambiges.
Nous dirons que plusieurs classes d’idéaux sont classes d'idéauax indépendantes
lorsqu’aucune d’elles n’est égale & la classe 1 et lorsqu’elle n’est pas non plus égale &
un produit de puissances des autres classes. Nous ¢noncerons alors le

TutorEME 106. — Les ¢ idéaux premiers ambiges déterminent toujours { — 1 classes
ambiges indépendantes dans le cas d'un corps imaginaire; dans le cas d’'un corps
réel, elles déterminent { — 2 ou { — 1 classes indépendantes, suivant que la norme
de l'unité fondamentale = du corps n( )=+ 1 ou — 1. L’ensemble des o idéaux
ambiges détermine, dans le cas d’un corps imaginaire 2 et dans le cas d'un corps

t—2

réel 272 ou 2°* classes indépendantes, la distinction entre 277 ou 2" se faisant par

le signe de n(z).

Démonsiration. — Le produit de tous les idéaux premiers facteurs de m est égal
a ﬁ; il est donc un idéal principal de k. Soit d’abord m négatif. mais différent de
— 1 et de — 3, et soit (=) un idéal principal ambige de k: on a nécessairement

27 = (—1)%, car »™* est une unité. ¢ ne pouvant étre égal qu’d o ou & 1. Il en résulte
que

%l(\/ﬁ)% =1 ou a(\/m)":s%a(\/m)"i ,
c’est-a-dire que a(\/E)” est un entier rationnel. Ce qui démontre que dans un corps
imaginaire, ]{(\/— 1) et k(\/—S) exceptés, il ne peut y avoir d’autre idéal principal
ambige que 1 et \/E Les deux exceplions, traitées en particulier, donnent immé-
diatement le résultat énoncé au théoréme 106.

Soit un corps réel, pour lequel n(z)= 4 1; d’apres le théoréme go, e=a"'"", ot1 a
est un nombre de &k que nous avons le droit de supposer dégagé de tout facteur
rationnel différent de 4 1. Comme «=—z:.s%, («) est un idéal principal ambige. Cet
idéal principal () est dislinct de 1 et de \/m, car si l'on avait a=-2:" ou

=+ s’\/;l;, ou f est un entier rationnel, on aurait
d = (—1)%("N=(—1) (e=o0 ou 1),

mais ce nombre est toujours différent de ¢. Si. d’autre part, ' est un idéal principal

ambige quelconque du corps %, on a nécessairement o™~ = (— 1)/, ot e et f sont

r
xL

des entiers rationnels. Posons «"=-————; on voil que «" =1, c’est-a dire que

(Vm)a! B
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" est un nombre rationnel, et par suite, outre 1, \/E et «, il ne peut y avoir qu'un
idéal principal ambige obtenu en débarrassant le produit \/r-n—oc de tout facteur
rationnel différent de =4~ 1.

D’autre part, si n(c¢)=— 1, il n’y a pas dans / d’idéal principal ambige différent
de 1 et de \/; , car, soit « un idéal ambige quelconque de I, on aurait nécessairement

2T = (—1)%"

avec e et f entiers rationnels, et comme n(x'™")=4 1, (n(s))f:+ 1, C'est-a-dire
que f est pair. Posons

-y

nous trouvons '™ = 4 1, c’est-a-dire que 2’ est un nombre rationnel.

Nous exprimerons donc un des / idéaux premiers ambiges de k appropri¢ au
moyen de \/E et des ¢ — 1 autres idéaux premiers ambiges, et lorsque le corps est
réel et que n(z) = + 1, nous choisirons parmi ces { — 1 idéaux premiers ambiges un
idéal approprié que nous exprimerons au moyen de x et des { — 2 autres. Ceci nous
montre que la deuxiéme partie du théoréme 106 est exacte.

§ 76. — LES CLASSES AMBIGES D'IDEAUX QUI NE CONTIENNENT PAS D IDEAL AMBIGE.

TutorkME 107. — La condition nécessaire et suffisante pour qu'un corps quadra-
tique k& contienne une classe ambige qui ne contienne pas elle-méme d’idéal ambige
est que le systéme de caractéres de — 1 soit composé d’unités toutes positives et que
la norme de 'unité fondamentale n(s) = + 1. Lorsque ces conditions sont remplies,
les classes avant cette propriété s'obtiennent en multipliant I'une quelconque d’entre

elles successivement par chacune des classes provenant des idéaux ambiges.

Démonslration. — Lorsque le corps k est réel et que le systéme des caractéres de
— 1 n'est composé que d'unilés positives, il y a toujours dans &, d’apres le théo-
réme 102, un uombre entier ou fractionnaire « dont la norme égale — 1. Si, de plus,
la norme de l'unité fondamentale n(z)= + 1, ce nombre 2 est nécessairement frac-

. . 3 . . s 32 . ) . ,
tionnaire, Posons « =7;, ol j et j’ sont des idéaux premiers entre eux; il en résulte
1

isi oy o C . .
que 1'71' =1, et par suite j'=sj; par suite, j ~ sj et j détermine une classe ambige.
Cette classe ambige ne contient pas d’idéal ambige, car si un idéal de cette classe
a=3jB, ot § est un nombre de & entier ou fractionnaire, était ambige, on en con-
cluerait que a*~*=0uf'"", et par suite z4"* serait une unité, par exemple = (— 1)/,
et par suite n(x)=+ 1, ce qui est contraire & la facon dont = a été obtenu. Ceci

nous prouve que la classe j ne contient pas d’idéal ambige.
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Soit maintenant A une classe ambige quelconque donnée et j un de ses idéaux ;
2

i~ est égal & un nombre entier ou fractionnaire « du corps k et, de plus, n(z)=+ 1

ou — 1. Le premier cas est le seul possible, lorsque le corps est imaginaire ou lorsque

r » . \ — I, m I )
le corps & est réel et que I'un au moins des caractéres | ——— ) est égal & — 1.
w

. r r I —_— 14
Comme n(z)==+ 1, il résulte du théoréme go que - = §**, £ étant un nombre
o<

entier de /&, et alors (jp)' =1, C’est-d-dire que jp est le produit d’'un idéal ambige
par un nombre rationnel et la classe A contient un idéal ambige. D’autre part, si
n(x)==—1 avec n(¢)=— 1, n(za) =+ 1, et nous démontrerons comme précédem-
ment que la classe A contient un idéal ambige. Ceci nous montre que toute classe
ambige contient un idéal ambige dans le cas ol le corps est imaginaire ou bien dans
le cas ou le corps est réel et que I'un des caractéres de — 1 égale — 1, ou encore que
n(s)=—1.

Admettons maintenant que, dans le cas ou aucune de ces circonstances ne se
produit, il y ait dans k plusieurs classes anibiges d’idéaux qui ne contiennent pas
d’idéal ambige, et prenons dans 'une d’elles un idéal i, dans une autre un idéal j';
les déveleppements qui précédent montrent que les normes des deux nombres

7

1—8 r 1 3 a ’
, ' =j"7" sont égales toutes deux & — 1, et par suite n<—> =— 4 1. Le théo-
%L

[ R il_x

3\ o - ..
réme go nous permet de mettre =", § un nombre convenablement choisi de k.
A

i'B

Posons —~=ba, ou b est rationnel et a un idéal sans facteur rationnel z|=—1,
1

1,16 o A s 1 . sy . . %) .
— =1 entraine a =sa, c’est-a-dire que a est un idéal ambige, et on a j'=aj.
i A
Ce qui démontre la derniére partie du théoréme 107.

§ 77 — LE NOMBRE DE TOUTES LES CLASSES AMBIGES.

Les théorémes 106 et 107 permettent d’énumérer toutes les classes ambiges.

TufortME 108. — Dans tous les cas, le corps k contient exactement r — 1 classes
ambiges indépendantes, r étant le nombre des caractéres qui détermine le genre
d’une classe. Le nombre total des classes ambiges distinctes est par suite 2"

Démonstration. — Soit encore ¢ le nombre des entiers premiers rationnels con-
tenus dans le discriminant d du corps k. Considérons d’abord le cas ot k est un
corps imaginaire. Il résulte des théorémes 106 et 107 qu’il y a exactement 2'~* classes
ambiges dans k; elles résultent toutes d’idéaux ambiges. Supposons le corps k réel :
si le systéme des caractéres de — 1 dans /& ne contient que des unilés positives, il y a

cxactement 2’ classes ambiges dans k; ces 2 proviennent toutes 1'idéaux ambiges
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ou la moiti¢ d’entre elles proviennent d’idéaux ambiges suivant que n(c)=— 1 ou
n(z)= + 1. Toutefois, si — 1 a au moins un caractére négatif, n(c)=+ 1, et les
théorémes 106 et ro7 nous affirment qu’il n’y a alors que 27* classes ambiges dans k,
provenant toutes d’idéaux ambiges. Mais le nombre des caractéres = ¢ — 1 lorsque le
corps est réel et que le nombre — 1 a au moins un caractére négatif; on a r=1 dans
tous les autres cas. Le théoréme 108 est démontré.

S

§ 78. — LA DEMONSTRATION ARITHMETIQUE DE L EXISTENGCE DES GENRES.

Les résultats acquis nous permettent d’évaluer le nombre des genres et de ré-
pondre & la question posée au théoréme 100; car il nous est facile de démontrer que
ce nombre est égal & 2™ et, par suite, que tous les systémes de caractéres qui satis-
font aux conditions du théoréme 100 sont représentés parmi les genres. Nous dési-
gnerons par ¢ le nombre des genres et par fle nombre des classes du genre principal.
D’aprés le paragraphe 66, tous les genres renferment le méme nombre de classes,
par suite le nombre des classes h = gf. Désignons par H,, ..., H, les f classes du
genre principal; le théoréme 103 nous apprend que nous pouvons écrire H,=K?, ...,
H,=H;, ou K, ..., K, représentent f certaines classes du corps.

Soit alors C une classe quelconque du corps: comme C* appartient au genre prin-
cipal, C*=KGg, o1 K, représente une classe bien déterminée parmi les f classes K, ,

.-+ K, que nous venons de définir. Alors la classe K ° est-d-dire la classe A parfai-
a

tement déterminée pour laquelle C=AK,, est une classe ambige et par suite 'expres-
sion AK, ot A représente successivement toutes les classes ambiges et ot K prend
toutes les valeurs K,. ..., K , fournit toutes les classes du corps et ne donne chacune
@’elles qu'une fois. Mais d’aprés le théoréme 108, le nombre des classes ambiges
'; par suite h=2"""f, et comme A=gf, on voit que g==2""". Le théoréme
fondamental 100 est complétement démontré. [Gauss®.]

est 2™

§ 79. — LA REPRESENTATION TRANSCENDANTE DU NOMBRE DES CLASSES; ELLE PERMET

D’ETABLIR QUE LA LIMITE D'UN CERTAIN PRODUIT INFINI EST POSITIVE.

La deuxiéme démonstration de I'existence des 2"~* genres s’appuie sur des consi-
dérations transcendantes, .

TuEorEME 109. — Le nombre & des classes d’idéaux du corps k de discriminant «
est déterminé par la formule

vh = L II

=t <g>—p_x:
p
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le produit du second membre s’étend & tous les nombres premiers p rationnels et le
d
symbole <I_’> a le sens fixé au paragraphe 61. Le facteur =, suivant que & est ima-

ginaire ou réel, c’est-d-dire suivant que d est négatif ou positif, a la valeur

a7 ou aloge
Y= — ==
wlv/dl Val
w a la valeur 6 pour d=— 3, pour d =— 4 la valeur 4; il est égal 4 2 pour toute

autre valeur négative de d; d’autre part, pour tout corps réel ¢ sera celle de ses
quatre unités fondamentales, qui est > 1, et log e sera la partie réelle du logarithme
de cette unité fondamentale . [Dirichlet®?.]

Démonstration. — D’aprés le paragraphe 27, on a, tant que s est réel et > 1 :

1 L
(=g =
onG) @ r—n)"
le produit s’étendant a tous les idéaux premiers du corps k. Ordonnons ce produit
d’aprés les nombres premiers rationnels p d’ott proviennent ces idéaux premiers p;
on voit, d’aprés le théoréme g7, qu'a tout nombre premier rationnel p correspond
dans ce produit le facteur

I 1 1
— ou —_— ou —_—
—8\ 2 —2¢ —8?
(r—p7) 1—p 1—p
. d . . .
suivant que < —> = 4 1, = — 1, = 0. Nous écrirons ces trois expressions sous une
p
forme qui leur est commune
: I I
I _p_? d —s '
I—{—)p
p
ct nous obtenons
; ; 1 1
Us)=11 11 )

W=D o <d> -
p

ou les deux produits du second membre s'étendent & tous les nombres premiers
rationnels p. En vertu de

I

L (.S‘—I)I1——-—§:s£‘s(s-—l)(,:_‘)'—z;%zl,

s=1

—$

@ I—Pp

ol n prend toutes les valeurs entieres rationnelles,

Lits—ni@=L I ———.
s=1 =t <£l>p——x
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Notre théoréme 109 va résulter du théoréme 56, si nous évaluons » d’aprés le

paragraphe 25. Pour trouver w, il faut remarquer que le corps k(\/ :g) contient

et que le corps k(\/—— 1) contient les

L - 1+V=3
six racines de l'unité 4+ 1, + ————
quatre racines de I'unité = 1, -+ i; par contre, tout autre corps imaginaire & ne con-

2

tient que les deux racines de I'unité + 1. (Comparez § 62.)
La conséquence la plus importante que nous en tirerons est le

TuforkME 110. — Soit @ un nombre entier rationnel quelconque positif ou négatif,
non carré parfait; la limite de

LIl !

=t <£l>p—-s
p

est toujours une grandeur finie différente de o. [Dirichlet®®.]

Démonstration. — Soit a=—"bm, b* étant le plus grand carré contenu dans a;

soit, de plus, d le discriminant du corps déterminé par \/; Pour tout nombre pre-

d
mier impair p qui ne divise pas b, on a <§> = <}-)> les deux produits infinis

I . 1
et

- N—
®) 1-—<C—l>p““’ L () 1—<(~l>p“"’
_ p p

ne peuvent différer que d'un nombre fini de facteurs. Le premier produit restant fini
pour s =1, d’aprés le théoréme 109, il s’ensuit que le second tend vers une limite
finie.

§80. — IL Y A UNE INFINITE DE NOMBRES PREMIERS RATIONNELS PAR RAPPORT AUXQUELS

LES CARACTERES DE RESTES QUADRATIQUES DES NOMBRES DONNES SONT DONNES.

Le théoréme 110 va nous permettre de démontrer les propositions suivantes :
[Dirichlet®, Kronecker.]

TuforkME 111. — Soient a,, a,, ..., a,, t nombres entiers rationnels quelconques

-, .. . , p
positifs ou négatifs, mais tels qu’aucun des 2’ — 1 nombres a,, a,, ..., a; a,a,,
5@, 4,5 ..., a.a,, ..., a, ne soit un carré, et désignons parc,, C,s -.v, C,, Lunités

quelconques + 1 ou —1, il y a une infinité de nombres premiers rationnels p, tels

que
(3)=2 (%) )
= )=c,, (=2)=c¢c, ..., <—' =c,.
p p p

Fac. de T., 3¢ S., II. ) 36
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Démonstration. — Tant que s >1,

I’expression S, on 'a montré au paragraphe 5o, reste finie pour s=r1; il en
résulte que la somme étendue & tous les nombres premiers raiionnels p

(26) Pl
(» P

croft au deld de toute limite lorsque s tend vers I'unité. Soit, de plus, @ un nombre
entier rationnel quelconque: on a pour s >1

log M—1 :E<‘—l>%+sa,
o <g>pﬂs m \P/P

p . 3
s,,_—_gz<9> —I,;.+§2<9> R R
w\p/ p w\p/ p°

Lorsque a n'est pas carré parfait, nous savons (théoréme 110) que log 11
(P

est fini pour s=1, et, comme on peut en dire autant de S,, il en résulte que la
somme *

, a\ 1
27 N e
(27) ) <p> p'

tend vers une limite finie pour s = 1. Remplagons dans (27)

%,
1

ut

a=a a;", e alt,

et donnons & chacun des [ exposants a,, a,, ..., a, la valeur o ou 1, en exceptant tou-
tefois le systéme de valeurs
u,=o, u,—o, ..., Uu==0.
Multiplions ensuite chacune des sommes déduites ainsi de (27) par le facteur cor-

respondant ¢! ¢t*c;, et additionnant les 2 — 1 expressions & (26), il nous vient

(28) 3(1 + c(%)> <1 + c<%>> (r + c,(%»%.

Cette somme, tout comme la somme 26, croitra indéfiniment quand s tend
vers 1. Faisant abstraction des nombres premiers p contenus dans q,, q,, ..., @,, et

. . I

qui sont en nombre fini, la somme (28) égale 2*II —;, ol p' ne prend que les valeurs
. (P

des nombres premiers p qui remplissent toutes les conditions de I'énoncé du théo-

réme 111. Et comme cette somme croit elle aussi au deld de toute limite, il faut que
les nombres premiers p’ existent en nombre infini. Le théoréme r1r est démontreé.
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§ 81. — L’EXISTENCE D'UNE INFINITE D'IDEAUX PREMIERS DE CARACTERES DONNES DANS UN
CORPS QUADRATIQUE.

THEOREME 112. — Soient
=+ n(j), m , =+ n@j). m
=\ ) s )=
{, l
les r caractéres qui déterminent le genre d'un idéal j de %, et soient Cps eey €,

r unités quelconques —+1 satisfaisant a la condition ¢,...c,= + 1; il y a une infinité
d’idéaux premiers p du corps k pour lesquels

'/..(9):0;’ tec 7.2(”):61-'
Dbémonstration. — Supposons que le discriminant du corps contienne les { nom-
bres premiers rationnels /,, ..., /,;; {=r ou =r+ 1, dans ce dernier cas, soit

—1,m . £ n(i), m c oy as . .
(—l——~> ——1, et la condition (—+)> = + 1 servira a déterminer le signe
2 t

devant n(j). Nous écrirons dans ce cas ¢,—c,,, = + 1. Nous démontrerons d’abord

qu’il y a une infinité de nombres premiers rationnels p pour lesquels

p,m\ p.m\
( 7 >_c,, R < [ >_ct,

ct nous distinguerons pour cela trois cas, suivant que

m=1 m=3 ou m == 2 suivant 4.

Dans le premier cas, nous partirons de I’hypothése

F)= e e o =

Le théoréme 111 nous apprend qu’il y a une infinité de nombres premiers p qui
satisfont a ces conditions. Comme la premiére condition revient a P =1 suivant 4. on
a pour ces nombres premiers p

(&)~ =)=

Dans le second cas, désignons par [, celui des nombres premiers I, ..., I,, qui est

pouri=—iu, ..., L.

égal & 2. Soit alors ¢, = + 1; nous prendrons comme point de départ 'hypothése

<__I> = 41, <1¢_> = ¢ U=l e 3=l sHL el
p p '
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et il résulte du théoréme 111 qu'il existe une infinité de nombres premiers p satis-

: X ee o SONRTIY , m
faisant & ces conditions. La premiére égalité nous apprend que (p_> =+ 1=c,,
) 2

(5)= ()= ()

et, de plus,

pouri=ux, ..., z2—1, z 41, ..., L.
Par contre, si ¢, —=— 1, nous admettrons que
— , bt
<—I> =1, <_’ = (—1)2 ¢ (=h ittt
p P/ ‘

et les nombres premiers (en nombre infini) qui remplissent ces conditions satisfont

aussi a
p, m (p, m> 1_)> “_2—1<li>
< 2 > r=ooet L <l, (=1 p Cir

12 i
pouri=u1, ..., 2—1, 2+ 1, ..., L.

Dans le troisiéme cas, nous considérerons en particulier {, = 2. Nous admettrons

que
—1 2 l,
< >:+ I, (—):0;, <_‘>:ci (i=1, ooy 3—1, 341, ooy 0).
P p p

le théoréme 111 nous montre qu’il y a une infinité de nombres premiers satisfaisant
a ces conditions et pour lesquels

m

(B8 =0T =0 = () 2

) =(0)=(G)==

pouri=—1, .., z2—1,z4+ 1, ..,t

et, de plus,

Soit alors p I'un quelconque des nombres premiers rationnels p, tels que

p.m\ p,m\
(BE)=c0 oo (BT ) =en

D’apres le lemme 14, on a
(P, m> .
lt

() ~(52) ()
(B om()=r

c’est-a-dire que p, dans le corps I, se décompose en deux idéaux premiers p et p'.
Chacun de ces idéaux p et 9’ répond aux conditions du théoréme 112; c’est ce que
nous voulions démontrer.

et, par suite,
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§ 82. — LA DEMONSTRATION TRANSCENDANTE DE L’EXISTENCE DES GENRES ET DES RESULTATS

ENONGES DU § 71 AU § 77.

Le théoréme 112 démontre 'existence des 2" " genres, mais il nous fait découvrir

aussi un fait plus profond.

TufortME 113. — Parmi les idéaux d’un genre quelconque du corps quadratique,
il y a une infinité d’idéaux premiers.

Lorsqu’on a démontré I'existence des 2"~' genres par ces moyens transcendants et
indépendamment des théorémes 102, 103 et 108, il est facile d’en déduire aussi ces
théorémes. Il suffit de savoir que le nombre a des classes ambiges de k& est tou-
jours < 2" 7", Ce fait se déduit du théoréme 106 relatif au nombre des classes am-
biges qui proviennent d’idéaux ambiges, en tenant compte des conclusions de la
deuxiéme et de la troisiéme partie du théoréme 107; ces déductions sont tout a fait
indépendantes du théoréme 102.

Soit alors, comme avant, f le nombre des classes du genre principal, ¢ le nombre
desgenres et f'le nombre de f classes du genre principal qui sont des carrés de classes.
I1 en résulte, comme au paragraphe 78, que gf=af’, et comme, d’autre part,
, il faut que f'<f, et, par suite, f'=f, a=2""".

La premiére égalité démontre le théoréme 103; la seconde, le théoréme 108, et,

1

g=2"", de plus a 2™

par suite, le théoréme 102 pour n=—1.

Le théoréme 102 résulte complétement de 103 et des derniers résultats. Car le
nombre n en question, en vertu des conditions qui lui sont imposées, est alors la
norme d’un idéal B du genre principal, précédé du signe prévu au paragraphe 65.

hn()

2

, soit un nombre

Désignons par § un idéal tel que h ~ §°; il faut que ==

entier ou fractionnaire du corps k, ¢t 'on a n(x) =—n, d’ou le théoréme 102, si
I'on considére qu’il est vrai pour n—— 1.

Nous voyons, en somme, que la méthode transcendante nous permet de démon-
trer les résultats des paragraphes 71-78 dans I'ordre inverse ol les avons trouvés par
la voie arithmétique.

§ 83. — LE SENS PLUS ETROIT DE L'EQUIVALENCE ET DU GONCEPT DE CLASSES.

Si nous prenons pour base de I'équivalence de deux idéaux le sens plus étroit
exposé au paragraphe 24, les théorémes établis aux chapitres XVII, XVIII subissent
de 1égéres modifications faciles & trouver.

Il est tout d’abord évident que le sens plus étroit de 1'équivalence coincide avec le
sens ordinaire dans tous les cas pour un corps imaginaire k, et pour un corps réel
lorsque la norme de I'unité fondamentale =, n(c) =— 1. Mais lorsque dans un corps
réel n(s) = + 1, une classe idéale au sens de la répartition primitive se répartit ici en
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deux classes; en particulier, la classe des idéaux principaux se décomposera ici en
deux classes représentées par l'idéal principal (1) et par I'idéal principal (\/ ;z)
Soit A le nombre des classes d’idéaux avec le sens plus étroit de 'équivalence; on a,
dans les circonstances actuelles, h' = 2h. [Dedekind !.]

§ 8[] — LE THEOREME FONDAMENTAL POUR LE NOUVEAU CONCEPT DE CLASSE ET DE GENRE.

Au sens nouveau de classe correspond un sens nouveau de genre. Le genre d’un

idéal j du corps k(\/m) sera dorénavant défini dans tous les cas par les ¢ unités :
(-{— n(j), m> <+ n(j), m>
— ) _——lz .

Ici, la norme de j sera constamment prise avec le signe +. Pour un corps imagi-
naire, ce sens nouveau de I'équivalence coincide totalement avec 'ancien. On peut en
dire autant d’un corps réel &, dans le cas ol le systéme de caractéres de —1 n’est
composé que d’unités positives. Cette derniére circonstance se présente toujours
lorsque dans le corps la norme de 'unité fondamentale est égale & — 1. Supposons
donc k réel et la norme de 'unité fondamentale égale & + 1; il faut distinguer deux
cas, suivant que le systéme de caractéres de — 1 se compose uniquement d’unités
positives ou non.

Dans le premier cas, les idéaux (1) et a:(\/;t) appartiennent tous deux au
méme genre, car

(n(al)i, m)z <+ n; m)___<+ r;z m> <— [l m>:<— r;z m>:+ .

1

pour i=1, ..., t.

Les nouveaux genres comprennent les mémes classes que les anciens, et le
nombre des genres est 27",

Dans le second cas, les deux classes d'idéaux représentés par l'idéal (1) et
I'idéal a:(\/;;) appartiennent & deux genres différents des genres nouveaux. Le
nombre des genres nouveaux est double de celui des anciens; mais en ce qui con-
cerne ce cas, le nombre des caractéres au sens primitif du genre était { —1, et le
nombre de ces genres 2'7*, tandis que le nombre des nouveaux genres est comme
dans les autres cas 2*~'. Et comme dans tous les cas le produit

—Lm> <——1,m>___+1
<'—T .. lt — .

le théoréme fondamental 100 est vrai aussi en tenant compte du sens nouveau de
classes et de genre a la condition d’y écrire ¢ au lieu de r.

Les autres propositions et démonstrations des chapitres XVII et XVIII se modi-
fient de méme sans difficulté, et méme quelques théorémes s’énoncent plus sim-
plement.
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CHAPITRE XIX.

La détermination du nombre des classes d'idéaux du corps quadratique.

a ,
§ 85. — LE SYMBOLE <—> POUR UN NOMBRE COMPOSE .
n

On obtient une expression remarquable du nombre % des classes d’idéaux du
corps quadratique k par la formule du théoréme 109, en transformant par le calcul
le nombre

L II

= <g>p—-—x

. I} 14 . a . Al
Pour cela, il nous faut d’abord définir le symbole <ﬁ> , aussi pour le cas ou n est

en un nombre fini.

un nombre entier positif rationnel composé. Soit n—=pgq ... w, oup, ¢q, ..., w sont
des nombres premiers rationnels égaux ou distincts ; nous définirons

G)=G)G) - &)

de plus, soit <?> =+ 1;0na, pours>i,
/

m—='_ —x ( ? > L
® <§>p_s m\n/n
p
ot la somme s’étend & tous les entiers positifs rationnels. Le calcul de la limite de
cette somme pour s =1 nous donne un nombre fini pour le nombre des classes A.
Le résultat est donné par le théoréme suivant.

§ 86. — L’EXPRESSION FINIE DONNANT LE NOMBRE DE CLASSES D IDEAUX.
TufoREME 114. — Le nombre A des classes d’idéaux du corps k(\/ m) est
A —Ww <d> <
= X({-)n, pour m<Zo
2ld| wm \n ’
bim _bim
IT (e d—e¢ d )
h = ! log 2
= 2Tog: og ax —aw pour m>r1,
11 (e a_—e d >

(a)
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ot la somme ¥ s’étend aux |d| entiers rationnels n=r1, 2, ... |d| el ol les produits
n)

IT, II s’étendent a tous les nombres a et b parmi ces |d| nombres satisfaisant &

@ ©

<g> — et <%l> — 1. [Dirichlet™?; Weber*.]

Démonstration. — Soient n et n' deux nombres positifs. Lorsque n et d ont un

.. d .
diviseur commun, D=4 1 <— —o. Par contre, lorsque n est premier avec d, on
n

. . d d,n . R \
voit facilement que <71> =11 <7>’ ou le produit s’étend a tous les nombres pre-
)

: o o d, n A e
miers w qui divisent n. D’aprés le lemme 14, 11 <’T représente la méme unité
)

lorsque ! parcourt toutes les valeurs des nombres premiers contenus dans d. Soit

n' =n suivant d
_/d, n L /d.n'
1 <——> =11 <—>
0 l 0 l
d’ou

(29) (%)-——(%), sin=n', (d).

De plus, on a
() (4 (=

d
car nous pouvons déterminer un nombre b tel que <5> =—1etona,en tenant compte
de (29) :

B+ @)+ @O+ @)

La formule
1 1 Xt s—
— R A
v 1‘(s)/o ¢

donne, en tenant compte de la régle ag,

d °°F —t ts—l
L s <—>—I§:L/ Py,
s=1t () \TL/ N s=1+0 I—e

F(x) = <¥>m + <£—;>x’ + .. (g) x.

L’égalité 30 nous montre que F(x) admet le facteur 1 — «, et la fonction ration-

ou l'on a posé

A a—t

nelle _>dt est finie pour t =o.
1—e
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o Fe™H™! _/°° Fe ™) .
L e e et

faisons le changement de variable x=¢"", on a

1 F(x)
[ (1 — x) dx,

et la décomposition en fractions simples donne

Fl)y 1 F<e2T>

0T 2niw *
x(r — x%) d ) r—ed

Aussi

2niw
ou la somme s'étend & n—=1, 2, ... |d|, et, d’aprés un théoréme de Gauss, F(e d )

2nn'iv d —
E(i)e a :<—>\/d;
w \N n
n' prend encore les valeurs 1, 2, ..., |d|, et \/c—l est positif pour d positif, imagi-
naire positif pour d négatif [voir § 124]. Comme, de plus.

c’est-a-dire

niv nim

1 de el — e  Tdl iz .
\/0‘ o = log i —m(n_id)’

r—e 4

ou il faut prendre la valeur réelle du logarithme, on en tire sans difficulté le résultat
du théoréme 114. _

La forme de ce résultat est essentiellement différente, suivant que le corps est imagi-
naire ou réel. Dans le premier cas, h peut étre déduit de la formule indiquée sans plus.
Dans le second cas, il faut d’abord connaitre 'unité fondamentale ¢; le quotient des

deux produits Il et II est, on le montrera au paragraphe 121, une certaine unité
(@) @)

du corps quadratique provenant de la théorie de la division du cercle.
Prenons comme exemple le cas d’un corps imaginaire, soit m=——p, et p un
nombre rationnel premier positif =3 suivant 4 et >>3; on a
_ Zb—Xa

h=—v—;
p

ici, Za, Tb désigne I'un la somme des restes quadratiques suivant p, 'autre la somme
des non-restes compris entre o et p. Une transformation simple permet de faire dispa-
raitre le dénominateur p de cette expression. On voit alors que le nombre des classes

h est égal & I'excés du nombre des restes quadratiques de p situés entre o et L
2

nombre des non-restes compris entre les mémes limites, ou au tiers de cette diffé-
rence, suivant que p =7 ou =3 suivant 8. Le premier nombre excéde donc le second,
ce qui n’a pas encore ét¢ démontré par une voie purement arithmétique.

Fac. de T., 3¢ S., II. : 37



290 D. HILBERT.

§ 87. — LE CORPS DE NOMBRES BIQUADRATIQUES DE DIRICHLET.

Le probléme suivant est une généralisation de la théorie du corps quadratique
qui vient d’étre développée. Au lieu de prendre comme base le domaine de ratio-
nalité formé par tous les nombres naturels rationnels, nous prendrons comme base
le domaine de rationalité formé par un corps quadratique k; et nous examinerons
les corps K quadratiques relatifs par rapport & k, c’est-a-dire les corps biquadra-
tiques K qui admettent le corps donné k comme sous-corps.

Lorsque le corps k est déterminé par l'unité imaginaire \/:, le corps K sera
dit le corps biquadratique de Dirichlel. On posséde des recherches étendues pour ce
corps. [Dirichlet' 12, Eisenstein *% Bachmann %, Minnigerode!, Hilbert%.] Le
théoréme roo s’applique encore a la répartition correspondante des idéaux du corps K
en genres; ce théoréme s’applique avec une transformation appropriée et les deux
méthodes de démonstration du chapitre XVIII peuvent étre employées dans le
corps K. de sorte que ce théoréme fondamental pour le corps quadratique de Diri-
chlet peut étre établi aussi bien sur une base purement arithmétique [Hilbert ¢] qu'au
moyen de la méthode transcendante de Dirichlet [Dirichlet ' !:'2, Minnigerode1].

Si le corps K contient, -outre le corps quadratique \/:, deux autres corps qua-
dratiques /m(\/—-{j_n—;) et lc(\/—_n—z) présente un intérét particulier. Pour un pareil
corps spécial de Dirichlet K, on a le fait suivant, auquel on parvient encore par la
voie transcendante ou par la voie purement arithmétique.

TuforkME 116. — Le nombre des classes d’idéaux d’un corps spécial biquadra-
tique de Dirichlet I\(\/m, \/3) est le produit du nombre des classes dans les
corps quadratiques A(M) et /c(\/:_rg ou la moitié de ce produit, suivant que
la norme relative par rapport a /C(\/——I) de T'unité fondamentale du corps K est
égale & += i ou & == 1. Dirichlet désigne ce théoréme comme l'un des plus beaux de
la théorie des imaginaires et il le trouve surprenant, parce qu'il révéle un rapport
entre les deux corps quadratiques déterminés par la racine de deux nombres opposés.

La démonstration arithmétique de ce théoréme permet, et cela d’'une fagon trés
simple, de distinguer au moyen de certaines conditions remplies par les caractéres

du genre les classes d’idéaux des corps biquadratiques K(\/+ m, \/—— m) qui peu-
vent étre considérées comme le produit d’une classe d’idéaux de k(\/—{— m) et d’'une

d’une classe d’idéaux de /f(\/— m). [Hilbert+.]
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CHAPITRE XX.

Les anneaux de nombres et les modules du corps quadratique.

§ 88. — LES ANNEAUX DE NOMBRES DU CORPS QUADRATIQUE.

La théorie des anneaux et des modules d’un corps quadratique s’obtient rapide-
ment en particularisant les théorémes généraux du chapitre IX. On s’apercoit faci-
lement que tout anneau du corps est obtenu au moyen d’un seul nombre de la
forme fw, ol o est le nombre défini au paragraphe 59, celui qui forme avec 1 une
base du corps k, ol f est un certain nombre entier rationnel, le conducteur de I'an-
neau. Si, de plus, d est négatif et <<— 4, le théoréme 66 nous apprend que le nombre
h, des classes réguliéres de 'anneau r est donné par la formule

=t (- ();)

ou le produit s'étend & toutes les valeurs des entiers rationnels premiers p contenus
dans f. [Dedekind % 3.]

§ 89. — UN THEOREME RELATIF AUX CLASSES DE MODULES DU CORPS QUADRATIQUE.
LES FORMES QUADRATIQUES BINAIRES.

TutoriME 116. — Dans une classe de modules du corps quadratique k, il y a
toujours des idéaux d’anneaux réguliers. [Dedekind!.]

Démonstration. — Soit [p,, p,] un module quelconque du corps k, ot v, et p, sont
des nombres entiers, et soit 2= f*d et le discriminant de la classe de modules déter-
minée par [p,, p,]; de plus, désignons par m=(p,, p,) l'idéal déterminé par les
nombres p, et p,, et soit sm=m'T'idéal conjugué de m. Déterminons un entier du

corps k, «, divisible par m’ et tel que — soit premier avec 2. Posons alors
ml

S U'P’l T 7’:"‘2 .
Con(m)" T p(m)”

Yy

alors [«,, ,] sera un module équivalent & [p,, p,]. alors que l'idéal a=/(a,, a,) est
premier avec 2.
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Supposons d pair, nous considérerons d’abord les trois entiers «,, 2,, z, 4 o, ; parmi
ces nombres, 'un au moins est premier avec 2, sans quoi, parmi ces lrois nombres,
deux au moins auraient un diviseur idéal commun avec 2, ce qui est contraire &
I'hypothése que l'idéal a est premier avec d. Soit o, premier avec 2. Désignons par
Ps ¢, T ..., w les facteurs premiers rationnels impairs de 2. Comme a est premier
avec p, il faut que I'un au moins des trois nombres «,, «, + «,, «, 4 20, soit premier
avec p. Supposons «, 4 2, premier avec p, o, + yx, premier avec g, ol x, y, ... sont
des entiers rationnels. Il en résultera facilement I'existence d’'un entier rationnel a,
tel que o, 4+ a«, soit premier avecd.

Posons alors

b— M&)_' [ M
O n(a)

ou «,', 2, sont les nombres conjugués de «,, #,; alors b est un entier rationnel positif

et § un entier algébrique, et le module [«,, o,]=[u, + ax,, =,] est équivalent au mo-

1" +ax,
a

dule [b, §], et, en méme temps, comme (b, §)= —=, la norme N(b, B)=5b.

~ Le module [b, #] est évidemment un idéal d’anneau régulier de 'anneau r déterminé

par le nombre 8, r==(8); le théoréme 116 est complétement démontré.
A cause de

1 2

In(b, B)I*

1, B

I, f
.

le discriminant de I'anneau r est égal au discriminant de la classe de module consi-

’

b, 8 |°
b, ¢

dérée. L’anneau r est le seul qui offre parmi ses idéaux d’anneau réguliers des modules
équivalents & [p,, v,]. Le théoréme 116 nous montre que, pour le corps quadratique,
cela revient au méme de considérer les classes de modules ou les classes d’anneaux
réguliers.

D’aprés les raisonnements des paragraphes 3o et 35, on voit qu’a chaque classe
de modules d’un corps quadratique k(\/g> correspond une classe de formes binaires
quadratiques  coefficients entiers et rationnels, et, réciproquement, a chaque pareille
classe de formes dont le discriminant n’est pas un carré, correspond une classe de
modules d’un corps quadratique, ou les classes de modules et les formes ont méme
discriminant. Nous avons complétement terminé les recherches sur les corps quadra-
tiques de discriminant donné 2.

§ 90. — LA THEORIE INFERIEURE ET LA THEORIE SUPERIEURE DU CORPS QUADRATIQUE.

Les recherches faites dans la troisitme partie de ce livre forment la théorie inf¢-
rieure du corps quadratique; je désigne par théorie supérieure les propriétés du corps
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quadratique qui nécessitent, pour les établir, I'emploi de corps auxiliaires de degré
plus élevé. On trouvera un chapitre relatif & cette théorie dans la quatriéme partie.

Pour construire la théorie d'un corps de classe relatif & un corps imaginaire
quadratique et du corps relatif abélien correspondant, il faut le secours de la multi-
plication complexe des fonctions elliptiques, et ceci est un obstacle qui m’a empéché
d’introduire cette étude dans mon rapport.






THEORIE

DES

CORPS DE NOMBRES ALGEBRIQUES

MEMOIRE de M. Davip HILBERT,

Professeur a I'Université de Geettingen.

PUBLIE PAR LA SOCIETE

DEUTSCHE MATHEMATIKER VEREINIGUNG, en 1897.

Trapuvir pAR M. Th. Gor,

Ancien Ingénieur de la Marine,
Agrégé des Sciences mathématiques.

QUATRIEME PARTIE.

LES CORPS CIRCULAIRES.

CHAPITRE XX

Les racines de l'unité d'indice premier I et le corps circulaire
qu'elles définissent.

§ 91. — DEGRE DU CORPS CIRCULAIRE DES /™ RACINES DE L'UNITE ET DECOMPOSITION
DU NOMBRE PRE‘ IER [ DANS CE CORPS.

2ir

Soit / un nombre premier impair et {=¢? . L’équation de degré !

x—1=o0

a les ! racines
v e wl—1 ol
91 by cees & s b = I.

Ces nombres sont les racines [*™* de l'unité. Le corps qu’elles définissent, ¢({), s’ap-

pellera le corps circulaire des racines {‘™ de I'unité. On a d’abord la proposition
suivante :
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TaforEME 117. — Le degré du corps ¢({) est I — 1. Le nombre premier ! admet
dans ¢(?) la décomposition {=1"", [ étant I'idéal premier du premier degré (1 —{).

Démonstration. — Le nombre { vérifie I'équation

xl

F(w)z.ac___iza;’—‘+m’—”+ 4 1=0,

le degré du corps est donc au plus I — 1; ¢, &% ..., {"* étant les | — 1 racines de cette
équation, on a identiquement en & :

e+ 1= —)@—0)...(x— ).
D’ou, pour x =1,
(1) I=(0=0a—0)...0—{™.
Soit maintenant g un entier quelconque >>1 non divisible par /, et soit ¢’ un

entier positif tel que gg'= 1 mod I. Alors les quotients

v
L I

11—

et

== i — ()
I—Cg— I“t.g— I___Cg

=1+ O

sont deux entiers algébriques, et par suite

est une unité du corps ¢({). Si nous posons de plus x=1—{ et I=(3), la for-
mule (31) prend la forme

(32) =Wy g, =1

On conclut immédiatement du théoréme 33 qu'un nombre premier rationnel ne
peut, dans un corps donné, étre le produit d'un nombre d’idéaux premiers supérieur
au degré du corps. Le degré du corps c({} doit donc, vu la formule (32), étre au
moins égal & I — 1; d’aprés ce qui précéde, il est donc exactement égal A I —1.
D’autre part, pour la méme raison, I'idéal I doit étre indécomposable dans ¢(¢) et,
par suite, c’est un idéal premier. [Dedekind?.]

Ce résultat montre en méme temps que le polynome F(x) est irréductible dans le
domaine des nombres rationnels.
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§ 92. — BASE ET DISCRIMINANT DU CORPS CIRGULAIRE.

TutorEME 118. — Dans le corps ¢({) les nombres

ve wl—2
| O

forment une base. Le discriminant du corps est
ﬂ
d=(—1)7 .

Démonstration. — La différente du nombre { dans le corps ¢({) est

dF(x)
p - y_::g v_vcs v__ ey — A
== E—0 . a—= 2|
De
(x—DFx)=x'"—1
on, tire
dF@) | o s 1
(x—1) I + Fla)=Ix ,donc4——l_c,

d’aprés la remarque faite au paragraphe 3, le discriminant du nombre { est alors
(—1) (=2 1—1
d)=(—1) T nE)=(—1)7 I
Comme le discriminant d(X) du nombre X a certainement la méme valeur d(%), la
remarque faite pour la formule (1) dans la démonstration du théoréme 5, paragra-
phe 3, montre que tout entier « du corps ¢({) peut étre mis sous la forme

a,+ak+ ... +a_ 1"
o= ll!z ’

(33)

a,, a,, ,.., a,_, étant des entiers rationnels.

Les nombres a,, a,, ..., a,_, doivent alors nécessairement étre tous divisibles par
le dénominateur £~*. Pour montrer d’abord qu’ils sont divisibles une fois par /, sup-
posons qu’il y en ait de non divisibles par / et soit a, le premier; de I'*x=o0, mod [
résulterait alors, vu =1'"", ¢, )’ =0, mod 1", c’est-d-dire a’=o0, mod I, et par suite
aussi mod ! contrairement & I'hypothése. On peut donc supprimer un facteur / au
numérateur et au dénominateur de (33). En poursuivant cette simplification, on voit

finalement que tout entier « du corps ¢(%), dans ses représentations
«=a, +akl+ ... +a_N=b +bl+ ...+ b_I*

avec des coefficients rationnels a,, a,, .... a,_,ou b, b, ..., b,_,, admet pour tous
ces derniers des valeurs enticres.

Puisque les puissances 1, {, ..., ™ du nombre { forment donc une base du
corps ¢({), le discriminant d({) du nombre ¢ est en méme temps le discriminant du
corps.

Fac. de 7., 3% S., 1I. 38
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§ 93. — DECOMPOSITION DES NOMBRES PREMIERS DIFFERENTS DE /.

La décomposition du nombre premier / dans ¢(Y) a été donnée dans le théo-
réme 117. Pour celle des autres nombres premiers, on a la régle suivante :

THuiOREME 119. — p étant un nombre premier différent de [ et f le plus petit expo-
sant positif pour lequel p’=1, mod /, si I'on pose | — 1=c¢f. on a dans ¢() la
décomposition

p=9, ...9,
ou p,. ..., p° sont des idéaux premiers distincts de degré f de ¢({). [Kummer?® °.]
Démonstration. — Soit a=a + a,{ 4 ... + a,_ 7" un entier arbitraire de ¢(2);
on a les congruences
—_ 3 ol _ 13 ep(l—
o =(a4al +..4+a Y =ata? 4. 4a 00 (mod p),
wW=(a+a? +..+a P =at+a?+ .. +a_ @ (mod p),

f vpl— oy f— — o o _
' =(a4a P+ ... Fa,_ PV =a+a? + .. +a_ P t-=2 (modp).
Si maintenant p est un idéal premier divisant p, la congruence o' = a (mod p) est
vérifiée a fortiori mod 9, c’est-a-dire la congruence '

(34)

pf

I

A

5
-~
)

o, (p),

est vérifice par n’importe quel entier de c(¢). Le nombre des racines de cette con-
gruence incongrues mod p est par suite ¢gal au nombre des entiers de ¢ incongrus
mod 9, c’est-a-dire & n(p):p", Jf désignant le degré de I'ideal premier 9; mais le
degré de la congruence (34) est p’. On a donc (théoréme 26) p” < p/, Cest-d-dire
SIS

D’autre part, vu le théoréme de Fermat généralis¢ (théoréme 24), on a stirement

(35) or=r, (p).

Comme, vu la formule (31), pour un exposant g non divisible par ! le nombre
1 — 7 est toujours premier & p, il résulte de la congruence (35) p” — 1=o0, mod /,
et par suite f' > f. Donc f'=f, c’est-a-dire que tout idéal premier diviseur de p est
de degré f.

Comme p ne divise pas le discriminant du corps ¢(%), il résulte du théoréme 31
que p se décompose en idéaux premiers tous distincts. En posant p=g9, ... p,, on a
n(p)=p"~=p°/, c’est-da-dire | —1="¢/f, ¢’=e. La démonstration du théoréme 119
est ainsi compleéte.
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Pour obtenir effectivement les idéaux premiers p,, ..., 9,, appliquons le théo-
réme 33, en ayant égard 4 la remarque faite & ce sujet paragraphe 13. On a, d’aprés
cela, la décomposition identique mod p

Fla)=F,(@)F(x) ... F(x),  (p),
ou F (x), ..., F (x) sont des polynomes entiers de degré f a coefficients entiers, irré-
ductibles et incongrus mod p. Ces fonctions une fois déterminées, on obtient la
représentation cherchée par les formules

p, = (p. F,(9), s 2= (P, FLO) ().

CHAPITRE XXII.

Racines m' de I'unité, m étant composé, et corps circulaire
‘ correspondant.

§ 94. — LB CORPS DES RACINES mé™® DE L'UNITE.

2w

Soit m un nombre entier positif quelconque et posons Z =en . L’équation de
degré m

a les racines

Z, ZZ, cee Z"l~l’ Zﬂl:I.

Ces nombres sont les racines m**™* de l'unité; elles définissent un corps ¢(Z), appelé
le corps circulaire des racines mi*™s de I'unité.
Si m est composé, on a
m:l’}'lﬁz e
l

fractions simples :

17 T2

I3 . I > I3 1
l,, ... ¢tant les facteurs premiers distincts de m, et 'on peut décomposer — en
m

I a, a,
— + +-"9

mo L Tl

ou a,, a,, ... sont des entiers positifs ou négatifs et ou q, est premier & /,, a, 4 I,, elc.

(1) N. T. — Dans le cas particulier de f=1, c’est-a-dire de p=ml + 1, on a, en désignant
par g une racine primitive mod p :
Fa)=@—¢")(@—g") .. (—g"™"")  (mod p),

et, par suite,

2= L—g") 0, = L=, s = (p, L—g"™).
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De 14 résulte
L=7IV1% .-,
en posant
2iw

K
m A
Z,=ell, z=—el ...

Le corps ¢(Z) résulte donc de la combinaison des corps ¢(Z,) des racines I itmes g
P'unité, ¢(Z,), etc. Nous commencerons donc par traiter le cas le plus simple, ou
m=1" ne contient qu'un nombre premier.

§ 9. — DEGRE DU CORPS GIRCULAIRE DES ["#M°S RACINES DE L UNITE ET DECOMPOSITION

DU NOMBRE PREMIER / DANS CE CORPS.

TukorEME 120. — Que / soit égal & 2 ou & un nombre premier impair, le degré du

2in
o . L ph— . ,
corps ¢(Z). Z =-e!", est égal & I"~'(l— 1). Le nombre premier / se décompose dans

’_‘1 r . 14 . 14
¢(Z)en [=2" 1 @ &tant un idéal du premier degré du corps.
p 8 P

Démonstration. — Z vérifie I'équation de degré I"*(I— 1)

axt— 1
Fo) = —pm—

lh—i(l_

h—
A U TR )4 ...+ 1=0.

Si 'on désigne par ¢ un entier non divisible par [ et ¢' un entier tel que gg' =1
mod !, on voit, comme au paragraphe g1, que
I — 77
E ‘"2
9 I — Z
ainsi que l'inverse
1—7 =7
1— 7' 1—7%

sont des entiers du corps; par suite E, est une unité. On en déduit, comme au para-
graphe g1, les égalités

F()=I=nO0—2")= AT nE, = Q"=
(9) (9) °

ot A=1—7Z, €=(A) et ol les produits doivent étre étendus A tous les entiers
positifs premiers & [ et < I".

On en conclut, comme paragraphe g1, que le degré du corps est au moins égal
a ["'(l— 1) et a, par suite, exactement cette valeur.
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§ 96. — BASE ET DISCRIMINANT DU CORPS CIRCULAIRE DES [tiémes RACINES DE I.

2ir
TrEorbME 121. — Dans le corps circulaire ¢(Z), Z=e™, une base est formée
par les nombres

h—1 4y
1, Z. 7% ..., 72Vt

Le diSCriminant dll COI‘pS C‘St
h—4(py_p—
d — ll (ll ' l) ’

avec le signe — pour I" =4 ou /=23 mod 4. avec le signe + dans les autres cas.

“THEOREME 122. — p étant un nombre premier différent de / et f étant le plus petit
exposant positif pour lequel p'=1, mod I, si I'on pose I""'(l—1)=-ef, on a la
décomposition

p="%, ... ».,.
o P,, ..., P, sont des idéaux premiers distincts de degre f.

Démonstration analogue & celle des théorémes 118 et 119.

§ 97. — LE CORPS GIRCULATRE GENERAL. DEGRE, DISCRIMINANT, IDEAUX PREMIERS.

Soit maintenant m un produit de puissances de nombres premiers distincts
m=10 [" .... Le corps ¢(Z) des m*™* racines de l'unité¢ est, comme on I'a vu, le
résultat de la composition des corps ¢(Z,), ¢(Z,), .- des racines I+, =, ... émes de
I'unité. Comme les discriminants de ces derniers sont premiers entre eux, on déduit
immédiatement du théoréme 87 (§ 52) la proposition :

TaforiMe 123. — Le degré du corps ¢(Z) des racines m =10 Ii= ... #*m de I'unité

est

d(m)= l'i"_'(ll —1) IZ’_l(l,l— ... .

En appliquant la deuxiéme partie du théoréme 88 et ayant égard au théoréme 121,
on obtient la proposition :

TrEorEME 124. — Le corps circulaire ¢(Z) des m®™® racines de l'unité a pour base
a(m)—1
0, Z, 7% ..., 7'™.

Le discriminant du corps ¢(Z) s’obtient par I'application de la premiére partie du
théoréme 88.

Enfin, on peut réaliser la décomposition d’'un nombre premier p dans le corps
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¢(Z)en s’appuyant sur le théoréme 88 et les propriétés des corps de décomposition
et d’inertie.

On obtient ainsi le théoréme :

TuforEME 125. — p étant un nombre premier non diviseur de m=11 0’ ...,
/e plus petit exposant positif pour lequel p’= 1, mod m, si 'on pose ®(m)=ef,
p se décompose dans ¢(Z) en

p=", ... W,
B, ..., P, étant des idéaux premiers distincts de degré fde ¢(Z).

Si 'on pose m*=p"m, on a dans le corps ¢(Z*) des m*s racines de l'unité la
décomposition

P B A,

P ..., P étant des idéaux premiers distincts de degré f de ¢(Z*). [Kummer 17,
Dedekind 5, Weber *.]

Démonstration. — Supposons, pour abréger, m=1{" ", et désignons alors par
¢, ¢® les corps circulaires des racines I, {21 de I'unité.

Soit p un nombre premier distinct de I, {, et soient p*, p® deux facteurs pre-
miers idéaux de p dans ¢ et ¢® respectivement; nous désignerons les corps de
décomposition de p® dans ¢ et de 9® dans ¢® par ¢!, ¢'. Soient f,, f, les plus
petits exposants pour lesquels pf =1 mod I, p»=1 mod I, et posons

hy—1 . » hy—1 . .

l1 (lg—l)'—'eaji 12 (le_—l)—eefe’
,» e, sont les degrés des corps ¢y, ¢’ et f,, f, les degrés relatifs de ¢ par
rapport & ci) et de ¢ par rapport & . D’aprés le théoréme 88, le nombre premier

1,2)

, s s (
p se décompose en e, e, idéaux dans le corps ¢,

alors e

composé de cill) et cf); ces idéaux
sont donc tous premiers du premier degré dans ¢y’ ®. Nous considérons en particulier
Iidéal premier p = (p”, p*) et nous désignons par 9 un facteur premier de o dans
le corps ¢ composé de ¢ et ¢'; soit ¢, le corps de décomposition de I'idéal premier
9 dans c. Il résulte d’abord de la définition d'un corps de décomposition que ar?
doit, ou bien coincider avec ¢,, ou en faire partie comme sous-corps. Le groupe
.2

relatif du corps composé de c*, ci’ par rapport A ¢y est cyclique de degré f,; le

groupe relatif du corps composé de e ™ par rapport & i est cyclique de degré Se
Nous en concluons que, f étant le plus petit commun multiple de f, et f,, le groupe

. ) . . ,
relatif de ¢ par rapport & ¢,”” ne peut contenir aucun sous-groupe cyclique de degré

supérieur & f. Comme ¢, corps d’inertie de I'idéal premier 9, doit avoir un groupe
relatif cyclique par rapport & ¢, et que ¢, contient ¢’®, il en résulte que ce groupe
relatif cyclique de ¢ par rapport a ¢, est au plus de degré f.

D’autre part, faisons les remarques suivantes. Les deux corps ¢" et ¢, ont comme

1 . ’ yo.
sous-corps commun le corps %, mais aucun autre de degré supérieur, car autrement
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p“’ devrait encore étre décomposable dans ¢*. De méme les deux corps c® et ¢, ont
1,2
 pour plus grand sous-corps commun. Prenons alors ¢y’ pour domaine de ratio-

nahte, ¢, est alors un corps relatif par rapport & ¢ ?, qui n’a ni avec ¢, ni avec ¢,
1,2
aucun sous-corps commun relatif par rapport a c( )

Nous en concluons facilement que ¢, ne peut avoir un degré relatif par rapport

5 cb? A e.f.et,
S S

& ¢q’” supérieur & , Cest-a-dire

. Le corps ¢, est donc au plus de degré

que le groupe relatif de ¢ par rapport a c, est au moins de degré f. Ceci, joint au
théoréme démontré plus haut, montre que le degré du groupe relatif de ¢ par rap-
port & ¢, doit étre égal & f, ce qui montre I'exactitude du théoréme 125 dans notre
cas particulier.

“iﬁ

D’aprés le théoréme 123, Z=—e™ satisfait & une équation irréductible F(x)=o0
de degré B(m) A coefficients entiers, et d’aprés la démonstration du théoréme 87, cette
équation F(x) = o reste méme irréductible si 'on prend pour domaine de rationalité
n’importe quel corps dont le discriminant soit premier & m. [Kronecker?® *'.]

Voici comment on forme le polynome F(x). Posons, pour abréger, ™ — 1 =[m]
et

[
”—[ ][u] [11] ete.

ILILIL,....
[TRTRI

on a
Fla) =

[Dedekind !, Bachmann?.]

Si a est un entier rationnel et p un facteur premier de F(x) premier & m, on voit
que d’aprés le théoréme 125 on a toujours p=r1 mod m. Il y a par suite évidem-
ment une infinit¢ de nombres premiers vérifiant cette congruence.

2i
§ 98. — UNITES DU CORPS c(e'"). DEFINITION DES « UNITES CIRCULAIRES ).

TutoriME 126. — m étant une puissance du nombre premier / et g un nombre
non divisible par /, I'expression

1— 77
1—Z7

2im
représente toujours une unité du corps c(_Z:e"’).
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Si le nombre m contient plusieurs facteurs premiers et si ¢ est premier & m,
I'expression
1—.7¢
représente toujours une unité dans le corps défini par Z=emn.

y o

Démonstration. — La premiére partie de ce théoréme 126 a déja été établie dans
les démonstrations des théorémes 117 et 120. Pour démontrer la seconde, posons
m=10hls . et

g a b
— ._hl- 2 3 ’

m Lol ..

ou a est un entier premier & /, et b un entier premier a /,, /., .... On a
2ing Z_E‘—ﬂ 2inh
(36) 1—729=1—em=—1—el el .
Or, on a
/ sine 2w 2i1:bl:’«
h. hy h hy h
I—I\I—el11 el ) = I——elzuss“',

()
le produit étant étendu & x =o, 1, 2, ..., I'" — 1, ou

2imbis
2w’ 2iTh \ thaths
B et I—ez s
11<I —e iy el2”35”'/ —_—
[E]

(37) 2imb

1 —e Py
le produit étant étendu seulement a &' =1, 2, ..., I —1.

Distinguons maintenant deux cas, suivant qu’il y a dans m deux facteurs premiers
l,, I,, ..., ou davantage : Dans le premier cas, le second membre de (37) est une

unité d’'aprés la premiére partie du théoréme 126. Dans le second cas, nous pouvons
2iw

admettre que le théoréme 126 ait été démontré pour les corps ¢ 67'7>, dont le

nombre m* a moins de facteurs premiers que m. Le théoréme s’applique donc au
14 : n‘l \ ’ et . 14 1 .

corps formé des racines 7, tmes de T'unité. Par suite, le numérateur et le dénomina-

1

teur de la fraction du second nombre de (37) sont des unités. L'expression (36) est
un facteur du produit du premier membre de (37), et, par conséquent, dans tous les
cas, c’est une unité. C. q. f. d.

2im

Une unité quelconque du corps circulaire 0(67'7) est le produit d’'une racine de
I'unité et d’une unité réelle. La racine de l'unité n’appartient pas toujours au

2iT

corps c(eﬁ), mais peut, si m contient plusicurs facteurs premiers différents, étre,
dans le cas de m pair, une racine am*®™® de l'unité, et, dans le cas de m impair, une
racine 4mime, [Kronecker’.] On a en particulier le théoréme suivant déja trouvé par

Kummer.
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THEOREME 127. — [ étant un nombre premier impair, si I'on considére, dans le
2w

corps ¢({) défini par {=e ¢, le sous-corps c({+ (") de degré

LY
défini par

2
{4 {7, un systéme quelconque d’unités fondamentales de ce corps réel ¢({+ ()

est en méme temps systéme d'unités fondamentales de ¢(Y).

“

Démonstration. — (%) étant une unité quelconque de ¢(%), 6(:7:1—) en est une autre,
ayant ainsi que ses conjuguées pour valeur absolue 1, et c’est par suite, d’aprés le théo-
réme 48, une racine de l'unité; posons :E—E;_Zq =+ (), ou g est un entier.

. &(s
L'unité () = () {7 posséde alors la propriété
(38) O
(&)

Dans cette formule (38), le signe + est seul possible. Autrement +({) serait une
unité purement imaginaire; alors, posons v*==23, ot 5 est une unité¢ du sous-corps
réel ¢({ 4 {'). La différente relative du nombre + = \/2—: par rapport au sous-corps
réel c({ 4 {7') est 27, et, par suite, premiére & {. Par suite, la différente relative du
corps ¢(%) par rapport & ¢({ 4 {7') devrait étre premiére & [. Or, si [* désigne un fac-
teur idéal premier quelconque de [ dans le corps réel c({ 4 (™), cet idéal ne serait
donc pas, d’aprés le théoréme 93, égal au carré d’un idéal premier du corps ¢(?).

—1

Mais comme [* entre au plus a la puissance dans [, cette dernitre conséquence

serait contraire au théoréme 117 sur la décomposition du nombre / dans ¢(2); donc,
le second membre de (38) a bien le signe +. De 7({) =+({™) suit que (%) est réel.
C.q.f. d.

Les unités données au théoréme 126 sont imaginaires.

Pour en obtenir de réelles, formons, suivant que m est une puissance d’un nombre
premier, ou contient plusieurs facteurs premiers différents, les expressions

E— \/(I_Z% —27%
T NGC=D0—Z7)
E,=V(—2)0—27),

ou g est premier & m et o les \/ sont pris avec le signe + . Ces unités s’appelleront

simplement unités circulaires. Comme 1 — 779 — —Z%(1—Z7%), on reconnait que,
dans le premier cas, ces unités appartiennent au corps ¢(Z) lui-méme, tandis que,
dans le second, ce sont des produits d’unités du corps ¢(2) par des racines 2 m*™e oy
4mi™es de U'unité, suivant que m est pair ou impair.

(1) N. T. — On peut prendre un exposant pair, car on peut ajouter & I’exposant un multiple
quelconque de /, qui est impair.

Fac. de T., 3¢ S., 1L 39
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CHAPITRE XXIII.

Propriétés du corps circulaire comme corps abélien.

§ 99. — LE GROUPE DU CORPS CIRCULAIRE DES RACINES M™% DE L’ UNITE.

Le corps circulaire des racines m® de I'unité est toujours abélien et I'on a les
théorémes plus spéciaux ci-apres.

2im

TutortME 128. — [ étant premier impair, le corps circulaire défini par Z=—=e¢
est un corps cyclique. '
in
Le corps circulaire défini par Z =e%(h 2> 2) est composé du corps quadratique
in i
imaginaire c(i) et du corps réel c(e'-’" +e"3). Ce corps réel est cyclique de
degré o'~

Démonsiration. — La premiére partie du théoréme 128 résulte de I'introduction
de la substitution s=(Z : Z"), ou r esl une racine primitive, mod I". 11 est alors
évident que toutes les substitutions du groupe de ¢(Z) sont des puissances de s.

Pour démontrer la deuxiéme partie(!), considérons les substitutions :

s=(Z2:72 §=(Z:77)=>0:—0.

I1 en résulte aisément que les puissances de s et leurs produits par s’ représentent
toutes les substitutions du corps ¢(Z).

Le théoréme 128 conduit immédiatement au groupe d'un corps circulaire des ra-
cines m*m*s de I'unité, m étant composé.

La détermination des corps de décomposition, d’inertie et de ramification pour

2iw
un idéal premier donné de c(e_ﬁ) peut se faire facilement avec I'aide des théorémes -
démontrés paragraphes ¢5. 96 et g7, sur la décomposition d'un nombre premier dans
un corps circulaire. On obtient ainsi en particulier ce résultat :

TukorEME 129. — [ étant premier impair, dans le corps circulaire ¢(Z) des [*/*mes
racines de I'unité, I'idéal premier € = (1 — Z) contenu dans / a pour corps de rami-
fication le corps ¢(Z) lui-méme, et Uensemble des nombres rationnels est a la fois
corps de décomposition et corps d’inertie. 9 étant un idéal premier de degré f de ¢(Z),
différent de €, ¢(Z) est le corps d’inertie, et le corps de décomposition de 9 est le
(1 —r)
—

sous-corps de degré e= correspondant aux substitutions

s, 8%, ..., s,

s désignant une substitution Z : Z" dont les puissances engendrent complétement le
groupe de ¢(Z).

(1) N. T. — Il n’existe pas en effet de racines primitives, mod 2"+, pour A > 2.
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§ 100. — GENERALISATION. — THEOREME FONDAMENTAL SUR LES CORPS ABELIENS.

Généralisons maintenant la notion de corps circulaire; désignons sous le nom de
2iw

corps circulaire tout court non seulement tout corps c(e7"_) défini par des racines de

2im
I'unité d’indice m quelconque, mais aussi n’importe quel sous-corps du corps c(e m )
2ir

Comme le corps 6(37,) est toujours abélien, et que m et m’ étant des exposants quel-
conques, le corps des racines mimes et celui des racines m'#mes de I'unité sont tous les
deux des sous-corps du corps des racines m.m'®" on a pour les corps circulaires

plus généraux qu’on vient de définir les propositions suivantes :

TutorkME 130. — Tout corps circulaire est abélien. Tout sous-corps d’un corps
circulaire est un corps circulaire. Tout corps composé¢ de corps circulaires est aussi
circulaire : '

Voici maintenant une proposition fondamentale qui fournit la réciproque de la
premiére partie du théordme précédent.

TutorkME 131. — Tout corps abélien dans le domaine de rationalité des nombres
rationnels est un corps ctrculaire. [Kronecker®'*, Weber', Hilbert?®.]

Pour nous préparer & démontrer ce théoréme fondamental, rappelons-nous que,
d’aprés le théoréme 48, tout corps abélien se compose de corps cycliques dont les
degrés sont des nombres premiers ou des puissances de nombres premiers. Nous
construisons alors les corps cycliques particuliers suivants. Soit # un nombre premier

impair et u" une de ses puissances d’exposant positif: alors le corps délerminé

2iT

par et est un corps cyclique de degré u"(u—1). Désignons par U, le sous-corps

in —im

. r wh+1 ah+1 ’ . .
cyclique de degré u" de ce corps. Le nombre " + ¢**™" détermine un corps cycli-
que réel de degré 2". Soit 11, ce dernier corps. Enfin, soit * une puissance d'un

nombre premier quelconque ! (égal & 2 ou non) et soit, en outre, p(*) un nombre
2iw
premier =1, mod {*: alors le corps circulaire c(e ”) de degré p — 1 a évidemment

un sous-corps cyclique de degré I*. Soit P, ce corps cyclique de degré I"*. Les corps
U,, I1,, P, sont des corps circulaires de degrés u", 2", I"; les discriminants de ces
corps sont, vu les théorémes 3g el 121, des puissances de u, de 2 et de p respecli-
vement. .

Nous montrerons dans les paragraphes suivants que tout corps abélien est un
sous-corps d'un corps composé de c(i) et de corps appropriés U,, I1,, P,. 11 faut pour
cela une série de considérations auxiliaires.

(! Voir la derniére remarque, § 97.
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§ 101. — LEMME GENERAL SUR LES CORPS CYCLIQUES.

. = T 3 BRT] rJh , .
Eeyve 15. — Siun corps cyclique C, de degré I* (1 étant premier quelconque =2
ou =|=2) ne contient pas comme sous-corps le corps correspondant U, ou II,, on

2w

obtient, en composant C, avec le corps ¢(Z) déterminé par Z==¢?, un corps
¢(Z, C,) de degré P*~'(I—1). et il y a toujours dans ¢(Z) un nombre % ayant les pro-
priétés suivantes : le corps ¢(Z, C,) est aussi déterminé par les nombres Z et IC/;; si
r est un entier quelconque non divisible par I, et s=(Z : Z"), la substitution corres-
pondante du corps ¢(Z), »"~" est la I""* puissance d"un nombre de ¢(Z).

Démonstration. — L’assertion relative au degré du corps ¢(Z, C,) est une consé-
quence immédiate de ce que ¢(Z) et C, n’ont aucun sous-corps commun en dehors
du corps des nombres rationnels. Soit alors & un nombre générateur du corps C,, tel
qu'aucune de ses puissances ne soit contenue dans un sous-corps de C,; soit, de plus.
{ une substitution qui. avec ses puissances, engendre le groupe C,. Posons, a et b

élant des exposants quelconques,
K(’la. Zb) — lu + Zb X (/ 1):1 + Zfzb' (tﬂza)e + . + Z(Ih_.”[, . (l’h_‘a)“.

Les expressions K(a, Z), K(«*, Z). ..., K(=""™", Z) ne peuvent s’annuler ensemble,
car autrement, comme K(2°, Z)=o0, le déterminant suivant

1, I, AU
h_
o, tv, AU )
1h—q h_ h_ h_
N (7 e R (LU

devrait également s’annuler, et, vu la remarque du paragraphe 3, le nombre x ne serait
pas un nombre générateur du corps C,. Soit «* = a“ une puissance de =, pour la-
quelle K=K(«*, Z), soit =}= 0. Comme K({x*, Z°)= Z""K(+*, Z°), il en résulte que

. K *’ b
le nombre K™ et aussi tous les nombres %2 sont des nombres du corps ¢(Z).

Comme on a
I

= K(«", 2) + K 2" + ... + K@%, )}

ct que o* est un nombre générateur du corps C,, nous vovcns que le corps défini par
h J

K et Z, de degré au plus égal & I"~

'(I—1), contient le corps ¢(Z, C,) de degré
I"='(1—1); le premier corps et le dernier sont donc identiques et le nombre 7= K
posséde la propriété indiquée dans le lemme 15.

Faisons encore la remarque suivante. Le corps déterminé par Z et l:/; est. on le

voil aisément, cyclique relatif de degré relatif [* vis-a-vis de ¢(Z), et posséde, par
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suite, un seul sous-corps, qui contient ¢(Z) et qui est cyclique relatif de degré [ vis-
a-vis de ¢(Z). Si alors C, désigne le sous-corps de degré [ de C,, le corps formé de

¢(Z) et C, doit étre identique avec le corps formé de Z et \/7

§ 102. — SCR CERTAINS FACTEURS PREMIERS DU DISCRIMINANT D UN CORPS CYCLIQUE

DE DEGRE "

Levve 16. — Si C, est un corps cyclique de degré [*, [ étant premier quelconque
(=2 ou ===2), et si C, est le sous-corps de degré [ de C,, les facteurs premiers p dif-
férents de [ du discriminant de C, sont toujours = 1, mod [".

Démonstration. — Considérons d’abord le cas ot / est premier impair et ot h =1,
ct supposons que. contrairement au théoréme, le discriminant de C, contienne un

24w

facteur premier p==1 mod [. Soit {=¢*, r un nombre primitif mod I, et pre-
nons dans le groupe du corps ¢(?) la substitution s = (Z: {"). Si p est un facteur idéal
premier de p dans le corps ¢(%), il est, vu le théoréme 119, comme p==1 mod I,
d’un degré f>1; donc, vu le théoréme 129, le degré e du corps de décomposition de
I'idéal premier $ est </ — r1; les autres facteurs premiers de p sont alors

' =sp, .., p =59,
tandis que s°p =9, c’est-a-dire
(39) Pt =1
On a de méme, pour les idéaux premiers conjugués de p : p', p”, etc., les égalités
correspondantes

(10) Pt gei=

D’apres le lemme 15, il y adans ¢() un entier «, tel que les deux nombres { et
\’/7. engendrent le corps ¢({, C,) composé de c(¢) et de C,, et que »* " est égal & la
[“me puissance d'un nombre de ¢({). Comme s —r et s*—1 sont deux polyndmes
entiers a coefficients entiers en s. qui n’ont mod / aucun facteur commun, il existe
trois polynémes entiers & coefficients entiers (s), 1 (s), 7(s), tels que

1=(8"—1)o(s) + (s — )} (s) + ly(s).
et de 12 résulte
7. = 28— 1)e(8) + (s —7)b(s) +ly(s) = . (°—1)¢(s) ol

ot z est un nombre de ¢(%). Vu les égalités (39) et (40), a**~* est un nombre entier ou
fractionnaire, tel que le numérateur et le dénominateur ne contiennent aucun facteur
premier p, p', ..., et sont, par suite, premiers & p; il en est donc de méme de

~
<
D

7b=¢%  Nous posons z4~"#" — T " de fagon que ¢ soitun entier de ¢(Z) premier A p

Q
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et a un entier rationnel. Le corps ¢({, C,) est alors aussi engendré par les deux nom-
bres { et (/; Le discriminantrelatif du nombre \l/;, par rapport & ¢({), est =4 I
et comme p est premier & p, le discriminant relatif de ¢(¢, C,), par rapport & ¢(Y), est
aussi premier & p. Comme, d’autre part, le discriminant de ¢({) n’est pas non plus
divisible par p, le discriminant de ¢({, C,) est, vu le théoréme 39, premier & p, et
par suite aussi (théoréme 85) le discriminant du corps C,, contrairement 4 notre

hypothése.
2i%

I étant encore impair, soit h>>1. Soit Z=e?, r un nombre primitif mod /*, et
soil, dans le corps ¢(Z), la substitution s =(Z : Z"). Soit p un facteur premier ==
du discriminant de C, et 9 un facteur idéal premier de p dans ¢(Z).

Si nous supposons p=1 mod /, mais ==1 mod /", I'idéal premier p appartient
toujours au sous-corps ¢(Z") du corps ¢(Z), c’est-a-dire que

Ji—2 )
y 1—1)_—
s (I—1)—y __ 1,

et de méme pour les conjugués

h—2 h—2
1l {I—1)— 1l 1—1)_.
s ) R— I, ” s ( )—1

p

=1,

o els fi—e .
Comme r est nombre primitif mod *, ¥ " =z1 mod I, et on peut, par suite,
déterminer trois polyndmes a coeflicients entiers o(s), 1(s), 7(s), tels que

P (s — )9 (8) + (s — 1)L (s) + I'(8)
on en déduit, » étant déterminé comme au lemme 15,

lh—izy(slh—g(l—l)_“?(s) Ih’

kA a

ol a est un nombre de ¢(Z). Vu les propriétés déja démontrées des idéaux premiers

lh—e(

h—2 . . _ els!
p, 0, 0", .., wt U1 et, par suite, " "U=1:@ sont des nombres dont le nu-

mérateur et le dénominateur sont premiers & p. Nous pouvons donc mettre le der-
nier nombre sous la forme prt de facon que g soit un entier de ¢(Z) premier a p et a

un entier rationnel. Alors \1/7 = 2 \ ;, d’oti on tire g =g, ¢ étant aussi dans ¢(Z).

Comme le corps C(Z , \l/:) est, ainsi qu’on I'a remarqué & la fin du paragraphe 101,
identique au corps composé de ¢(Z) et de C, et que le discriminant relatif du
nombre \l/; vis-A-vis de ¢(Z) a la valeur — l's"* premiére & p, le discriminant relatif
du corps ¢(Z, C,) vis-a-vis de ¢(Z) est premier & p. D’autre part, le discriminant de
¢(Z) n’est pas davantage divisible par p, et il en est donc de méme du discriminant
de ¢(Z, C,) et par suite aussi de celui du corps C,. Mais ceci est contraire a notre
hypothése.

Pour le cas de {= 2, supposons d’abord h=2 et appliquons alors le lemme 15

au corps cyclique C, du quatritme degré. Posons Z = e? = et considérons la subs-
titution de ¢(Z) s'= (i, — ). Soit C, le sous-corps quadratlique de C, et supposons
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qu’il y ait dans le discriminant de C, un facteur premier p impair = 1, mod 4. Vu la
derniére propriété, p est indécomposable dans ¢(i). Si le nombre % du lemme 15 est
divisible par p, posons p =4*~!. Comme d’autre part, d’aprés le lemme 15, on doit

. a2 r - . r — I3 1 . - 4 -
avoir »*™ =4 « étant dans c(i), il en résulte «* =g 'a*, c'est-a-dire \/7._— a.\/p 1
2

-

Donc ¢ est le carré d’'un nombre de ¢(i); nous pouvons poser s — — de fagon que <

a
soit un entier de c(i) premier & p et « un entier rationnel. Comme le corps ¢(i, C,)

coincide avec c(i, \/:) et que, d’autre part, le discriminant relatif du nombre \/:

vis-d-vis de c(i) est premier & p, le discriminant relatif du corps ¢(i, C,) vis-a-vis de

C(i) est aussi premier & p; d’ou il suit que le discriminant de C, n’est pas divisible
par p, contrairement & I'hypothése. _
i

Si, [ étant égal & 2, h est > 2, posons Z =", Supposons que le discriminant

de C, contienne un facteur premier p==1 mod 4 et == 1 mod 2", et soit » un facteur

premier idéal de p dans ¢(Z): 9 resterait invariant dans une substitution s:h—s, ous,
=3 h—3
est soit (Z 1 Z°), soit (Z: Z™*); on auraitdonc p*s =1. Comme (=5)* Zz1mod 2,

on aurait, comme plus haut, une égalité de la forme

AT = (T = )9 (5) + (5, TF BV, + 2",
d’ou T'on tirerait une conclusion contraire & I'hypothése que p divise le discriminant
de C,.

Le lemme 16 est ainsi complétement démontré et I'on en déduit sans difficulté la
nouvelle proposition

Lemve 17. — Soit C, un corps cyclique de degré I* (I premier =2 ou = 2); soit
G, le sous-corps du [ degré de C,; soit p un facteur premier différent de ! du dis-

criminant du corps C, : on peut toujours trouver un corps abélien C', de degré

1
" < " ayant les deux propriétés suivantes :

1° Le corps composé de C',, et d'un certain corps circulaire contient C, comme
SOUS-COTPS;

2° Le discriminant du corps C', ne contient que des facteurs premiers du discri-
minant du corps C,, sauf le facteur p.

Démonstration. — D’aprés le lemme 16, le nombre premier p est =1, mod I";
construisons d’aprés le paragraphe 100 le corps circulaire cyclique P, de degré [,
dont le discriminant est une puissance de p, et formons le corps composé de C, et
P, dont le degré est I'*". Dans P,, on a p=yp™. ou p est un idéal premier de P,.
Soit 9 un idéal premier facteur de p dans ¢(C,, P,). Comme I'idéal premier 9 ne
divise pas le. degré I"*" du corps ¢(C,, P,), ce corps est le corps de ramification de
I'idéal premier 9% et par suite, vu le théoréme 81, il est relatif cyclique et de degré
relatif au moins égal & I par rapport au corps d’inertie C',, de I'idéal premier §.
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Comme d’ailleurs il ne peut y avoir dans ¢(C,, P,) de corps cycliques relatifs de
degré supérieur & I, ¢(G,, P,) est donc exactement de degré " par rapport a C',.
Donc, le corps €', est de degré I". La différente du corps d’inertie C', n’est pas divi-
sible par 9 (théoréme 76) et par suite, eu égard au théoréme 68, le discriminant du
corps C',r n’est pas divisible par p. D’un autre coté, ce discriminant n’a d’autres fac-
teurs premiers (théoréme 39) que ceux qui divisent le discriminant de C,. Enfin, il
résulte du théoréme 87 que le corps composé de C', et P, coincide avec ¢(C,, P,).
Le corps €', posséde donc les propriétés énoncées dans le lemme 17.

§ 103. — LE CORPS CYCLIQUE DE DEGRE U, DONT LE DISCRIMINANT NE CONTIENT QUE U,
ET LES CORPS CYCLIQUES DE DEGRE u" ET 2" QUI CONTIENNENT U, er II, comME sous-

CORPS.

Lemme 18. — Si le discriminant d’un corps cyclique C, de degré premier impair u
ne contient que u, C, coincide avec U,. ‘

24w
Démonstration. — Nous posons {=e« et s =({. ("), r étant racine primitive

mod u; k=1 — ¢, et [=(2) idéal premier de ¢(?), u=1*""; enfin

sh=1—C=rn, ().

Puis considérons le nombre » du lemme 15. Comme I'idéal premier [ de ¢(%) est du

(s—1) (u—1)

premier degré, il en résulte, si l'on pose p == vu l'égalité s{=1 et le théo-
réme 24, la congruence ¢ =1, mod [. (Si 'on a dans un corps ¢ un idéal j et deux
nombres fractionnaires =, 8, la congruence == §, mod j, doit s’entendre en ce sens
qu’il y a dans ¢ un nombre p. premier & j pour lequel pa, p8 sont des entiers de ¢
tels que pa=p8, mod (j)). Comme r— 1 est premier a u, le corps composé de C, et ¢({)
sera aussi engendré par { et {L/‘o. En posant ¢ =1 + a), mod I*, ot @ est un entier
rationnel, on a s =¢{* =1, mod I".

Démontrons maintenant que I'on a s=r1, mod [“. Pour cela, supposons que
e=1 + aX’, mod [°*, I'exposant e étant << u et a un entier rationnel non divisible
par u.

Nous remarquons que, d’aprés le théoréme 15, 7", et par suite aussi "', est la

r

u'*me puissance d'un nombre de ¢({) : soit ¢"" = 8*. Cette égalité donne la congruence
1 4 a(r))® — ari®= 6", mod (™. De la résulte d’abord f=1, mod I, et ensuite
g*=1, mod [“. On aurait enfin ar=ar, mod I, ce qui est impossible, puisque r
doit étre racine primitive, mod u, et que e 1. Par conséquent, on a bien c=1,
mod 1",

. T
Posons maintenant ¢ —

= étant un entier de c¢({) et @ un entier rationnel ;
a

alors on a t=1, mod [". Si nous supposons alors le corps C, distinct du corps U,, on
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w/. w/)” , .
obtient en composant les corps ¢(¢), U, et C, le corps c(\/t_. \/r) de degré u"(u— 1).
° ~ 2
, . I——\/‘c ., . 5)\—1)”—{—1
D’autre part, Z—=-——— est, comme le montre 'équation —————==0, un
- A I
w/

entier du corps c({l/';, \/-.), et le discriminant relatif de ce nombre vis a-vis de

C(VC) est égal & =", ¢ étant une unité. Comme = est premier & u, le discriminant

u

relatif du corps C(VE, \"/:) vis-a-vis du corps c(\/:’) est aussi premier a u. Désignons
donc par € un facteur premier idéal de [ dans le corps c({‘/t_, \7-) ; vu le théoréme 93,
€ aura dans ce corps un corps d’inertie I qui sera de degré u. Le discriminant de
ce corps d'inertie I est premier & u et, vu le théoréme 85, devrait alors avoir la
valeur + 1 ou — 1. Mais il n’y a pas de corps cyclique de degré premier u et de dis-
criminant = 1; cela résulte soit immédiatement du théoréme 44, soit du théo-
réme g4, en prenant pour le corps ¢ de ce théoréme le corps des nombres rationnels,
corps dans lequel tous les idéaux sont des idéaux principaux. Le lemme 18 est donc

démontré.

Lemve 19. — Si un corps cyclique C, de degré I, ou [ est un nombre premier
impair ou est égal & 2, contient le corps U, ou le corps 1I, comme sous-corps, C, est
un sous-corps d’'un corps composé de U, ou de II, avec un corps cyclique C', de
degré 1" < I".

Démonstration. — Soit C,==TU, ou II,. Soit L,- le plus grand sous-corps contenu
dans C, en méme temps que dans U, ou dans I1,; soit I*" le degré de L,-, A* élant un
nombre positif < h. Soit ¢ une substitution qui, jointe a ses puissances, engendre le
groupe du corps C,, et z une subslitution engendrant de méme le corps U, ou le

. he he
corps II,. Si nous posons t*=1" et z*=12'

lh—h'

, t* et z¥ engendrent les sous-groupes
de degré auxquels L,. appartient comme sous-corps, d'une part de C,, d’autre

part de U, ou de II,. Le corps C composé de C, et de U, ou 11, a, vis-a-vis de L+, un

h—2ahe lzh—h'

degré relatif et a donc un degré principal

Pour obtenir le groupe G du corps C, désignons par $ un nombre générateur de
C, et par y un nombre générateur du corps U, ou II,, ét soient x, y des paramétres
indéterminés. L'expression © = x3 + yy vérifie une équation de degré ", dont les
coefficients sont des polyndmes a coeflicients entiers en «, v, et qui est irréductible
dans le domaine de rationalité de ces paramétres. Les diverses racines de cette équa-
tion sont de la forme

G

Pt n,

mn — X5 + 2y

Comme, d’aprés un théoréme connu, 3 ainsi que v s’expriment rationnellement en ©
avec des coefficients polyndmes a coeflicients entiers en x, v, il en est de méme des

racines @, ; nous posons donc

mn ; R
®mll - xtnl'a + yz’l({ - q)"”l<@) ’
Fac. de 7., 3¢ S., 1. 4o
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& étant une telle fonction rationnelle. Soit maintenant A un nombre quelconque de
C ou une fonction rationnelle de o, y & coefficients dans C; alors A est égal & une
fonction rationnelle F(®) a coefficients polyndmes entiers en &, y. Les conjugués de
A s’expriment ainsi :

SmnA - F((I)mn(@)) ’

I"=" substitutions correspondantes S

et le systéme des formera le groupe G du

mn
r

corps C. Vu

\ A — S 5 L AS N il ",
Smu() - gjbnurj e }bllllll =uxt ~ + yl i’
on a
I A gl I . AN
Smlﬂ =13, Oy =727
d’oti résulte .
3 3 3
(/J I> bmu bm/n' - Sm-l m', nin'

en convenant que 'on aura 8, =S .., si m=m"* et n=n* mod I". De (41) résulte
que le groupe G est permutable, c’est-d-dire que le corps C est un corps abélien.

Soil 7 une racine primitive, mod *; comme z'y est un des conjugués de v, il doit

y avoir une substitution de G pour laquelle n soit =r, mod [". Soit S, = s une telle
substitution. Ledegré du groupe cyclique engendré' par s est I'. On reconnait aisément
que toutes les substitutions du groupe G dont le second indice est =0 mod " for-
ment un sous-groupe de degré ™. Soit s*=S . une substitution génératrice de ce

3y
mo

groupe cyclique. Le groupe G résulte alors évidemment de la composition des [*

—he

puissances de s et des "™ puissances de s*. Au sous-groupe des puissances de s*
correspond évidemment dans le corps C le sous-corps cyclique U, ou II,. Au groupe
engendré par s correspond dans C un certain sous-corps cyclique C', de degré """
Les deux corps U, ou 1], et (i’,,r n‘ont pas de sous-corps commun en dehors du corps
des nombres rationnels et le corps G résulte par suite de la composition de ces deux

corps cycliques. Ce qui démontre le lemme 19.

§ 104. — DEMONSTRATION DU THEOREME FONDAMENTAL SUR LES CORPS ABELIENS.

On a déja montré (§ 48) que tout corps abélien est composé de corps cycliques
dont les degrés sont des nombres premiers ou puissances de nombres premiers; il
n’y a donc plus qu'd montrer que tout corps cyclique C, de degré ", l étant premicer,
est un corps circulaire.

Pour le démontrer, supposons la proposition déja établie pour les corps abéliens
de degré I" < I".

Envisageons alors le sous-corps C, de degré I contenu dans C,. Si nous supposons
que le discriminant de C, contient un facteur premier p différent de /, le discrimi-
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nant de C, est aussi divisible par p (théoréme 3g). Il existe de plus (lemme 17) un
corps abélien C', de degré " < I*, tel que G, est composé de C', et du corps circu-
laire P,. Si donc C',r est un corps cyclique de degré inférieur & I* ou s'il est composé
de plusieurs corps cycliques, C',s est donc un corps circulaire, vu netre hypothése, et

il en est donc de méme de C,. Reste seulement & examiner le cas de '=h, C', =C',
étant alors un corps cyclique de degré I". Comme l'indique le méme lemme 17, le
discriminant de C,’ ne contient que des facteurs premiers du discriminant de C,,
mais non le facteur p; le discriminant de C,’ a donc an moins un facteur premier de
moins que celui de C,.

Désignons par C," le sous-corps de degré [ de C,". Alors, si le discriminant de C,
contient encore un facteur premier p’ différent de !, nous pouvons faire pour le corps
C,' la méme réduction que pour le corps G, et nous arriverons, soit & conclure que
C,' estun corps circulaire, soit & un corps cyclique C," de degré I, dont le discrimi-
nant contient un facteur premier de moins (p') que celui de C,’. Aprés avoir appliqué
m fois de suite le méme procédé, ou bien nous arriverons a un corps CLTJ,) qui sera
circulaire, en vertu de notre hypothése, ou & un corps cyclique Cy" de degré I". tel

que le sous-corps C\" de degré ! contenu contenu dans Cj"

aura un discriminant
sans facteurs premiers ou n’ayant que le facteur /. Comme (voir lemme 18) un corps
cyclique de degré [ ne peut avoir un discriminant = 1, c’est nécessairement le second
cas qui se présente.

Distinguons alors le cas de [ impair et celui de /= 2.

Dans le premier cas, C™ coincide avec U, (lemme 18). Dans le second cas [ = 2,

. (m) { . cy e _ - ST
si h=1 le corps Gy :Clm) est égal soit a c(i), soit a c(\/g): I1,, cest-d-dire est

. . Jm) - . L ,
circulaire. Pour A>>1, on a encore G, ~ égal a c(\/z) =1I,. En effet, si C" est véel,
C'™ Test évidemment aussi, d’ot la conclusion. Si Cy" est imaginaire, tous ses nom-

h— m ’ .
"=t et comme C" " est nécessairement

bres réels forment un sous-corps réel de degré 2
contenu dans ce corps réel, CY") est encore réel et coincide avec 11, .

Dans les deux cas ainsi séparés (en dehors de (=2, h=1), le corps C(:"):U'
ou II,. D’aprés le lemme 19, Cy" est donc sous-corps d'un corps compost de U, ou
I1, et d"un corps cyclique C,. de degré * < I". Or, vu notre supposition, C,. est alors
circulaire. Le théoréme 131 est donc complétement démontré et I'on voit, de plus,

le moyen de construire tous les corps abéliens de groupe ct de discriminant donné.
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CHAPITRE XXIV.

Les résolvantes d'un corps circulaire des racines I°mes de l'unité.

§ 10D. — DEFINITION ET EXISTENCE DE LA BASE NORMALE.

Une base d’'un corps abélien C sera dite normale lorsqu’elle se composera d’un
entier N de C et de ses conjugués N, N, ..., N1 (M étant le degré de C).

LEwME 20. — Si un corps abélien C posséde une base normale, il en est de méme
de tout sous-corps ¢ de C.

Démonstration. — M étant le degré de C, soient ¢,, ..., fy les substitutions de ce
corps abélien; soit N un entier de C formant avec ses conjugués une base normale
de C. Si¢,. ..., {, forment alors le sous-groupe de ce groupe de M substitutions,

. \ ) M - ,
auquel appartient le sous-corps ¢ de C, on peut trouver m = substitutions ¢, ...,

v, de la série t,, ..., t, telles que ces M substitutions peuvent, a lordre pres, se
représenter par les produits

e, ... 't

171 1 r

e, ot o, b

2 "1 » m1’ mor’

« élant un entier de ¢ et par suite aussi de G, on a une égalité
O(:Cl“t"th + A + aartl'trN + te + amitr:tth + b + a’mrty;ztrN’

les a étant des entiers rationnels. Remarquons que les subtitutions?,, ..., { laissenta
invariant, et que, d’autre part, il n’y a entre les M =mr nombres £'t,N, ..., {t.N,
..., t/ ¢ N aucune relation linéaire & coefficients entiers non tous nuls; il en résulte
évidemment

donc, en posant
v=t,N+ [N+ ... + 1N,

les m nombres ¢,'v, ..., {,v forment une base normale du corps ¢.
TuforiME 132. — Tout corps abélien C de degré M, dont le discriminant D est
premier & M, posséde une base normale.

Démonstration. — Soient p, p', ..., les facteurs premiers différents de D. Aucun
d’eux ne divise M, et, par suite, vu la démonstration du théoréme 131, le corps abé-
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lien C est contenu comme sous-corps dans le corps engendré par les nombres {=—¢ »,
iT 2iw .
C’:e%, etc., c’est-a-dire par Z:eiﬁ. D’aprés le théoréme 118, les nombres 1,
(. @ oul, 8, ..., P forment une base de ¢(Y); cette derniére est une base
normale de ce corps. De méme pour ¢(J), ... .

Formons alors le systéme des (p —1)(p'—1) ..., nombres "7, ot h, I'. ...,
prennent chacun toutes les valeurs 1, 2, ..., p—1: 1, 2, ..., p'—1; ... Ce systéme
de ®(pp' ...) nombres forme (théoréme 88) une base de ¢(Z), qui est évidemment
normale. D’aprés le lemme 20, le corps abélien C a donc aussi une base normale.

C.q.f. d.

§ 106. — LES CORPS ABELIENS DE DEGRE PREMIER ! ET DE DISCRIMINANT p'™*.

Les corps abéliens les plus simples et les plus importants avec les corps quadra-
tiques sont ceux dont le degré est un nombre premier impair I et dont le discrimi-
nant d ne contient qu'un facteur premier p, ce dernier étant =|=1. Soit ¢ un tel corps.
D'aprés le lemme 16, on a nécessairement p=1 mod /. Le nombre premier p est
dans ¢ la [*" puissance d'un idéal premier du premier degré. D’aprés les remarques
du théoréme 79 et vu que c est toujours un corps réel, et que. par suite, d est posilif,
onad=p™.

Soient 1, ¢, ¢, ..., {'™* les substitutions du groupe du corps ¢, et soit v, fv, ...,
~'v une base normale de ¢. (Voir théoréme 132.) Le nombre v est alors toujours un

2im

nombre générateur du corps. Soit J=-e7 ; I'expression

Q=v 4.y + .0y .. L0y
s’appellera unc résolvante (') du corps ¢ = c(v).

Une telle résolvante Q est évidemment un entier du corps ¢(v, £) composé de ¢(v)
et ¢(9).

L’étude des bases normales et des résolvantes du corps abélien ¢(v) conduit i des
conséquences importantes relativement aux idéaux premiers facteurs de p dans ¢(%).
Les développements de ce chapitre n’éprouvent que de légers changements, lorsqu’on
prend le nombre 2 au lieu du nombre premier impair /.

(*) N. T. — Nous croyons devoir traduire ainsi I'expression « Wurzel » ou « Wurzelzahl »
employée par M. Hilbert; le mot résolvante est en effet le terme consacré depuis Lagrange.
(Réflexrions sur la résolution algébrique des équations, Mémoires de ’Académie de Berlin,

1770-1771.)
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§ 107. — PROPRIETES GARACTERISTIQUES DES RESOLVANTES.

Tutorime 133. — Etant donné un corps abélien ¢ de degré [ et de discriminant
d=p"", Let p étant deux nombres premiers distincts, soit v, fv, ..., 'y une base

2iw

normale de ce corps. Si I'on pose {=e7, [=(1— 0. et s=({: ("), r étant une
racine primitive mod /, la résolvante Q du corps ¢(v), déduite de cette base normale,
a les trois propriétés ci-apres :

1° La [ puissance de la résolvante o = Q' est un nombre du corps circulaire
¢(%), et, de plus, ™" est égal & la [ puissance d’un nombre de ¢({).

2° On a les congruences

Q==+1, ), o=-+1, (O

1(1—1)

3° n(w), norme de w dans c(), est égale A p~ 2

Démonstration. — Les nombres Q' et Q*" sont des nombres de ¢(Z, v) invariants
par la substitution (v : &). Ils appartiennent donc & ¢({), d’ou la premiére propriété.
Comme v, tv, ..., {'v forment une base du corps ¢(v), on a en particulier

T=ay + a,tv + ... + (ll_’tl*‘v

avec des coefficients a entiers. En effectuant sur cette égalité la substitution ¢, on voit
que ¢,=a,=...=a,_, =1, car ces coefficients ne peuvent avoir d’autre commun
diviseur que =+ 1.
Donc, v+ v+ ... t7v==+1. Dot
+

Q=v+ltv+ ...+ v=v+ v+ .+t v==+1, (1.

Puis, comme v F1=(Q F 1) ({Q 1) ... ("'Q F1), on trouve ladeuxi¢me pro-
priélé du nombre .

Enfin, en appliquant convenablement la régle de multiplication des détermi-
nants, on a

v, tv. ... TN
¢y, T —
=G+ tyv+ ...+t v)n(Q) ==+ n(Q),
tv, v, ..., v

ou

n(Q) = (v+ Lty + oo 7Y oo (v CT vy 4 o L)

est 1a norme relative de ) par rapport au corps ¢(v). Le carré du déterminant du
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premier membre est égal au discriminant du corps c(v), c’est-d-dire p'™*, et, par

suite, —
n(w) = (n(Q))’ ZPI(T). C.q.f. d.

Les trois propriétés précédentes de Q suffisent inversement & caractériser comple-
tement une telle résolvante. On a en effet la proposition suivante.

2im

TagorEME 134. — Soit / un nombre premier impairet =e¢?, et p un nombre
premier =1 mod /; si » est un nombre du corps circulaire ¢({), non égal a la
f'me puissance d'un nombre de ce corps, et possédant les trois propriétés du
théoréme 133, Q = \l/; est une résolvante du corps abélien de degré [ et de discri-

minant p~*.

Démonstration. — Le nombre Q:\l/g détermine un corps galoisien relatif de
degré relatif [ par rapport au corps ¢({). Soit { la substitution du groupe relatif, pour
laquelle ¢tQ =7""Q. Vu la premiére propriété du nombre v, qui s’exprime par la
formule sw —=w &', ol o est un nombre de ¢(?), le corps de degré {({—1), composé
de Z et de Q, est un corps galoisien. Le nombre « vérifie I'égalité

it
- f—
T =

nous en déduisons la nouvelle relation

Nous entendrons maintenant par ¢ et s les substitutions déterminées du groupe
de ce corps galoisien ¢(Z, Q), qui, en plus des conditions déja fixées, remplissent en-
core les suivantes t;=7et sQ =0Q". Ces deux subslitutions s et { sont permutables,

car on a
SIQ =" = 1sQ),

c’est-a-dire que le corps ¢(I. Q) est un corps abélien. Le sous-groupe de ¢(7, Q),
composé des puissances de s, est de degré I — 1. Le sous-corps de ¢({, Q) correspon-
dant & ce sous-groupe est par suite de degré [; c’est encore un corps abélien, que nous
désignerons par c.

Démontrons d’abord que le discriminant de ce corps ¢ est premier & /. Comme

Q=+41, mod [=(1—Y{), le quotient est un nombre entier. Comme

°
1Q={""Q, la différente relative de cet entier par rapport au corps ¢({) a la valeur

¢Q'™*, ¢ étant une unité, et, par suite, la différente relative du corps ¢(%. Q) par rap-
port au corps c¢(3) est premiére & [. Si € est un idéal premier facteur de [ dans ¢({, Q),
il n’y entre, vu le théoréme 93, qu'a la premiére puissance, cest-d-dire que
[=L7'M, ot M n'est plus divisible par . De 14 résulte, vu les paragraphes 3¢
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et 4o, que le corps d'inertie de I'idéal premicr € doit étre de degré I, et que, par
suite, ¢ est lui-méme ce corps d’inertie. D’aprés le théoréme 76, la différente du
corps ¢ n'est pas divisible par ¢, et, par suite (théoréme 68), le discriminant de ¢ ne
I'est pas non plus.

Nous posons

H 14+ Q+sQ +85Q + ..+ 870

() v= l

ou le signe de 1 est le méme que dans les congruences Q=+1, .§.Q=-+1, ...,
mod [; le numeérateur de cette expression (41) & forme fractionnaire est donc =o,
mod [. Ce numérateur représente un nombre de c. Si [ est idéal premier dans ¢, ce
numérateur doit donc étre divisible par /et v est un entier de ¢. Sinon, comme le dis-
criminant de ¢ ne contient pas le facteur I, on a dans ce corps une décomposition
(=1, ... I,de len [idéaux premiers distincts, et on a alors dans ¢({, Q), comme le

montre le théoréme 88, la décomposition
(=0 —)={1)HIL)..(L1).

Comme le numérateur de 'expression du second membre de (41) est divisible par
idéal (1, 1,), il est donc aussi, comme nombre entier de ¢, divisible par {,. Il en
résulte la divisibilité de ce numérateur par {,, ..., {,, et, par suite, finalement par /,
de sorte que v est encore un nombre entier du corps.

En se servant de la relation {Q ={7"'Q), on tire de (41) les deux égalités

v+ v+ v+ ...+ tl_—lv:il,
([12) v+Z.tv—l—f.:’.tev—!—...+§l—‘.tl"v:Q.

En appliquant la régle de multiplication des déterminants (comme déja dans la
démonstration du théoréme 133), on obtient ensuite

vo tv, ..., £

_ s
'y, T A
tv, v, ..., v

d’ot résulte, vu la troisieme propriété de » (théoréme 133), la relation

Hl—1)

N'==p 7,
et, par conséquent,
v, v, ..., 7%
T, oy, ., Uy

tv, v, ..., v |
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Nous démontrons ensuite que le discriminant du corps ¢ est nécessairement égal
A p'~'. En effet, c’est, d’apres la derniére relation, un diviseur positif de p'~'. Comme
ce ne peut étre 1 (théoréme 44 ou théoréme g4), il contient donc le facteur p, et cela
A la puissance [ — 1, d’aprés les remarques relatives au théoréme 79. De la propo-
sition ainsi démontrée, suit que v, tv, ..., {~'v forment une base, évidemment nor-
male, du corps ¢. Et le nombre Q est, vu (42), la résolvante du corps ¢ déduite de
cette base normale.

§ 108. — DECOMPOSITION DE LA [%"® PUISSANGE D UNE RESOLVANTE DANS LE CORPS

DES RACINES [¥™e pg L UNITE.

Tutorime 135. — [, p, {, r, s ayant leur signification préccdente, ¢(v) étant un

1

corps abélien de degré [ de discriminant d=p'™" et Q une résolvante du corps ¢(v).
le nombre w =0 a dans ¢({) la décomposition

l—2

. LI s
(l)___pluwl'_| CSET_g L S5l ye L 8T

ot p est un idéal premier déterminé, facteur de p dans ¢(%), et ot r_; désigne le plus
petit entier positif congru mod [ & la puissance — i (r~*) de la racine primitive r.

[Kummer® ']

Démonstration. — Le nombre premier p se décompose dans ¢(%) en { — 1 facteurs

l—2

premiers idéaux distincts p, sp, ..., s p: le nombre v doit étre divisible par chacun
d’eux. Car, d’aprés la démonstration du théoreme 134, la différente relative du
corps ¢({, Q) par rapport au corps ¢() est un diviseur de Q'=w; or, si v était pre-
mier a p, la différente relative le serait aussi, ainsi que le discriminant de ¢(Z, Q)

(théoréme 68), ce qui est impossible, puisqu’il est divisible par le discriminant
1(i—1)

)

de c(v). A cause de n(w)=p % , p, sp, ..., s °p sont en méme temps les seuls fac-
teurs premiers idéaux de ©. Soit 9 un de ces idéaux premiers dont I'exposant dans v
soit le plus pelit possible; nous avons alors

l—2

@Mty , Sty 5, 8
) p 07 1—2 ,

a,, ..., a,_, étant des entiers positifs, dont aucun n’est inférieur a ¢,. En formant n(w)

0 *° I—s

-on obtient

(l—1)
a, + d, + ... + ai_gz———z—-—.

Comme a, ..., a,_, sont tous positifs, ces nombres ne peuvent donc tous étre
divisibles par /. A cause de la premiére propriété démontrée théoréme 133, on a

g ”(ﬂ—") (@gay . s+ +ay_g . 878 ot

we. de T., 3¢ S., II. 4

.
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ol « est un nombre de ¢({). Comme les idéaux premiers conjugués de p en sont tous
distincts et sont distincts entre eux, le polyndme en s

(s—r)(a, +as+ ... +a_s,

une fois développé, et s'™* ayant été remplacé par 1, doit avoir tous ses coefficients
divisibles par [, c’est-a-dire que ce polyndéme est =a, ,(s"* — 1), mod . Donc, a

2K ]
est==o0, mod I, et sil'on pose a,_,=r""""*, mod [, ou m désigne I'un des nom-

breso, 1, ..., {—2, on apour i=o, 1, ..., [ — 2 la congruence

a=r"" (.

Nous posons d’une facon générale
ai == rm——i + lbt 4
de facon que o< r,,_,<C!et b, étant un entier rationnel > o. Comme
I(l—1)

2

T + T n—t + e+ FPon—te =— 1 +ao2+... + l—1=

onab,+b + ... +b_,=o, et, par suite,

b,=o0, b,=o, ..., .b_,=o,
c’est-a-dire
a,=r,_,, pour i=o,1, ..., l—o2.
Parmi les nombres r,, r,, ..., r,_,, ;=1 est évidemment le plus petit, et

comme a, doit étre le plus petitde a,. a,. ..., a,_,. on a a,=r,=1, c’est-a-dire m=o,
etalorsa,=r_,. C.q.f. d.

§ 109. — Une ﬁQUIV’ALENCE RELATIVE AUX IDEAUX PREMIERS DU PREMIER DEGRE

DU CORPS DES RACINES /"¢ DE 1 UNITE.

Les développements précédents nous conduisent & une importante propriété des
idéaux premiers facteurs d'un nombre premier = 1, mod I, dans le corps des /" ra-
cines de l'unité.

2w
TuforkMe 136. — Soit / un nombre premier impair, {=¢? , r un nombre po-

v e Pl

sitif racine primitive, mod I, s=({:¢"), p étant alors un idéal premier du premier
degré quelconque du corps circulaire ¢({), on a I'équivalence

l—2

plo it - $ 2. gy T O
’

ou les quantités g_, sont les entiers non négatifs définis par les égalités

rr_,—r

—i —i-1

l

A . . ar L
rys '_,s --.. '_,_, ont le méme sens qu'au théoréme 135 ct, de plus, r,=r_,,.

[Kummer® ']
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Démonstration. — Donnons a p et & © le méme sens que dans le théoréme 133 ;
o' est alors la [“®® puissance d’'un nombre « dans ¢(). En remplacant o par son
expression en fonction de p donnée au théoréme 135, on a

l—x) 1

e T_gy9 .8

p(x— 7) (r0+r__l . 8- S

et cette égalité montre I'exactitude du théoréme 136, si nous en tirons la décomposi-
tion de «.

C étant une classe quelconque d’idéaux du corps ¢(%) et j un idéal de C, si l'on
’

désigne par sC, s°C, ..., s"°C les classes déterminées par sj, s%j, ..., 7%, on tire du

théoréme 136 et du théoréme 8g la relation

C70(sC)1—1(s*C)a—2 ... (s"*C)a—1+2 = 1.

§ 110, — DETERMINATION DE TOUTES LES BASES NORMALES ET DE TOUTES LES RESOLVANTES.

Les théor¢mes 133, 134, 135 permettent maintenant de déterminer toutes les
résolvantes du corps abélien c(v).

TutorkME 137. — Q et Q* désignant deux résolvantes distinctes du corps abélien
¢ de degré premier { et de discriminant p'~', mais déduites de la méme substitution
génératrice ¢ du groupe de ce corps, on a toujours Q*=:(Q), ¢ étant une unité du
corps ¢(¥) vérifiant la congruence :=— 1, mod I = (1t — ). Réciproquement, si ¢
est une telle unité dans ¢() et Q une résolvante quelconque de ¢, QQ*=:<() est encore
une résolvante de ce corps abélien c.

@)
*

|

Démonstration. — Vu les hypothéses de la premiére partie, le quotient : =

-~

=

est un nombre du corps composé de ¢ et de ¢(%), qui reste invariant dons le change-
ment de {, v en ¢, {v et qui appartient par suite au corps ¢({). Prenons pour w = Q'
I'expression donnée au théoréme 135. Si alors s™“9, ¢ étant un des nombres o, 1, 2,
..., | — 2, est celui des [ — 1 idéaux premiers conjugués facteurs de p dans c¢() qui
n’entre qu'a la premiére puissance dans o* =Q*, on a évidemment, d’aprés le théo-
réme 135,

l—2
L —a(r -+, o S e 2 .8
o =19° (ro-+r_yg o 8 42 D,

et il en résulte que I'idéal premier p entre dans w* exactement a la puissance r_,. Le
*
. [0} s . ,
quotient — peut donc se mettre sous la forme d'une fraction dont le numérateur
[0}
contient I'idéal premier p & la puissance (r_, —r,), tandis que le dénominateur est

*
N © , . . .
premier & . Comme, vu — =¢', I'exposant r_, — r, doit étre divisible par /, il en
o)
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résulle r_,—=r,, c’est-d-dire a==o. Par suite, o* et v contiennent les mémes puis-
sances d’idéaux premiers et z est donc une unité.

Le reste du théoréme 137 ressort immédiatement des théoremes 133 et 134.

Des résolvantes relatives & ¢, on déduit aisément, par la formule (41), toutes les
bases normales v, £, ..., Iy du corps abélien c.

§ 111. — LA BASE NORMALE ET LA RESOLVANTE DE LAGRANGE.

2irm
Soit encore !/ un nombre premier impair, {==e?, et p un nombre premier de la

diw
forme Im + 1; soit Z=e? ct soit R une racine primitive mod p. Enfin, soit ¢ le
corps abélien de degré [ et de discriminant p*=.
Les p — 1 nombres Z, Z°, ..., Z°7' forment une base normale du corps ¢(Z); il
résulte alors de la démonstration du lemme 20 que les nombres

no=Z M +ZV T

N

X, :ZR + ZRi»rl + Zm 2l 4o ZR‘ f—(m——l)l’

N

/‘1—1 :ZRl—x + ZRﬂl—l + Zn:i!—x + + Zle-1
forment une base normale du corps ¢. On en déduit la résolvante suivante du méme
corps

— (23 2y wl—1
A=)+, +O + ..+,

=7 +[ZR + 2R L PR

Cette base normale particuliére 2, 7., ..., k_, s'appellera base normale de Lagrange
et la résolvante particuliére A la résolvante de Lagrange.

§ 112. — PROPRIETES CARACTERISTIQUES DE LA RESOLVANTE DE LAGRANGE.

La résolvante de Lagrange A du corps ¢ se distingue des autres résolvantes de ¢
par les propriétés suivantes :

Tutorime 138. — Si Uon représente la ' puissance A' de la résolvante de La-
grange, d’apres le théoréme 135, par la formule

l—2
’

AI — ”"n R A NI,

p est I'idéal premier défini par la formule

) — 1
p=(p. L—R™), <m———’—l—\;,

/
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les lettres ayant, du reste, le méme sens qu’au théoréme 135. La résolvante de La-
grange A est = — 1 mod I et de plus sa valeur absolue est égale & \/_; Réciproque-
ment, si une résolvante Q a les propriéiés précédentes et que de plus Q' contienne
Iidéal premier » exactement a la premiére puissance, on a Q={{*A, ot {* est une
racine /M de l'unité.

Démonstration. — En posant ¥ = (1 — Z, ), on voit, a l'aide de (1t — Z2)>™ =(p)
et (p, p7) =9, que
P =(p, 1 —27p, ... 977) =93

il est alors visible que 9 est idéal premier dans le corps défini par { et Z et que le
nombre 1 — Z ne contient cet idéal premier qu’a la premiére puissance.

Posons Z =1 + 11 et tenons compte de la congruence {=R™, mod 9, et de
I'égalité (1 +- I[)’=1;o0ona

A= SRGEIDY, ),

. X :

=1 g)C'" p <——> I1Y }. F
) m\Y

ol les somn:es respectives doivent étre étendues aux valeurs x =o, 1, 2. ..., p —2;

X=1,2,....,p—1;Y=o0, 1, 2, ..., X. Dela derniére formule on déduit, en chan-

geant 'ordre des sommations :

. I’I m

m!’

(43) A= (.

La résolvante de Lagrange A contient donc exactement la m*™® puissance de 9 en
facteur, ct par suite A’ n’est divisible que par la premiére puissance de .

Désignons par A le nombre imaginaire conjugué de A; on a
A=Z' + 2R (27K L g R

et en groupant ensemble dans le produit AA les p—1 termes multipliés par une
méme puissance de

AA

(1 + 1 4+ .. 41)
+Z (ZR—| -+ ZR’_R + ...+ ZRp-—l _Rp—e)

+ T 4 2R R L ZRPTRT
=p—1—QCG+T+ ... +I)=p

La premicre partie du théoréme est ainsi démontrée.
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La seconde partie en est préciséfnent la réciproque. Son exactitude découle aisé-
ment des théorémes 135 et 137, avec 'aide du théoréme 48; on doit pour cela remar-
quer que, si un nombre d'un corps abélien a la valeur absolue 1, il en est de méme
de ses conjugués.

Nous pouvons obtenir, d’'une fagon analogue & (43), les congruences suivantes
[Jacobi?] :

. ; - A
y ey r_jm+1
(44) STA= 1 (P )
pour i=o, 1, 2, ..., { — 2. En nous rappelant que A=— 1 mod I et que |A| :\/1_),

nous tirons de ces congruences (44) une autre démonstration des théorémes 135 et
136. [Kummer® ".]

Tous les théorémes de ce chapitre XXIV s'appliquent aussi au cas de {= a, sauf
p—1
que le discriminant du corps abélien ¢ prend la valeur d =(—1) ? p.

La racine de Lagrange A du corps ¢ est un entier du corps composé de ¢({) et c,
caractérisé au facteur {* pres par les propriétés énumérées par les théorémes 133 et
138. Pour fixer enfin méme ce facteur {*, on devrait poser A = \/;_;em?, de facon que
o< ¢ <1, et ensuite voir dans lequel des ! intervalles

2 l—1
09y <?<7v s Ty <a

—
=

N

le nombre ¢ est placé. Cette question souléve dans le cas particulier de {=2 le
célébre probléme de la détermination du signe des sommes de Gauss (voir § 124).
Pour /=13, nous sommes conduits & un probléme trait¢ par Kummer. [Kummer? *.]

Les nombres de la base normale de Lagrange sont ordinairement appelés périodes.
La bibliographic indique une série de travaux relatifs & ces périodes, ainsi qu’a
des nombres entiers analogues de corps circulaires. [Kummer ®'7, Fuchs!2,
Schwering '-*#, Kronecker'”, Smith'.] On y trouve aussi des recherches sur des corps
circulaires particuliers. [Berkenbusch!, Eisenstein!’, Schwering?, Weber! %%, Wolf-
skehl!.] Mentionnons aussi que, si le nombre premier ! est <Z 100 et == 29 ou de 41,
le corps circulaire ¢({) contient toujours une classe d’idéaux dont les puissances
fournissent toutes les classes du corps. [Kummer?!! ']
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CHAPITRE XXV.

Loi de réciprocité pour les résidus de I¢mes puissances entre un nombre
rationnel et un nombre du corps des racines Ii¢mes de I'unité.

(2

. § 113. — CARACTERE DE PUISSANCE D UN NOMBRE ET SYMBOLE —g .

2iw -

Soit / un nombre premier impair, {=¢ *, et ¢() le corps circulaire engendré
par {; p étant ensuite un nombre premier, autre que [, et p un des idéaux preniiers
facteurs de p dans c(¢), f étant son degré, on a, d’apres le théoréme 24, pour toul
entier = du corps non divisible par p, la congruence

W~ —1=o0, (p).

Comme p’ — 1 est divisible par ! d’aprés le théoréme 119, le premier membre de
celle congruence s’écrit
pl—1
a"f—‘—I=H(a i —-C"),
(%) .

ou le produit est étendu aux valeurs k=o, 1,2, ..., l—1. Il en résulte que la

congruence

est vérifice pour une valeur de k et une seule.

La racine de P'unité qui y figure, ¢*, s’appelle le caractére de puissance du
nombre « par rapport & Uidéal premier p dans le corps c(?), et on représenle cette
racine de I'unité ¢* par le symbole
i

z
p

de sorte qu’on a la congruence

(45) afsg

[Kummnier .]
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x el ¢ étant deux entiers de ¢(%) non divisibles par p, on a, on le voit facilement,
I'égalité
5=
P p
Si le nombre enlier « est en particuli'er congru mod p a la I puissance d’un

nombre enticr de ¢({), on dit que « est résidu de puissance l*™ de Uidéal premier 9.
On a la proposition :

(8
Uy

TréorEME 139. — $ ¢tant un idéal premier différent de I= (1 — ) et « un entier
de c(%) premier & p, la condition nécessaire et suffisante pour que = soit résidu de

puissance [fm¢ de p est 3%i =1.

i

g, mod p, & étant un nombre de c¢(2), on a

‘L r r . r .
G-l =1, c'est-A-dire —4% . Pour démontrer la réciproque, désignons par

(

» un nombre primitif mod p et posons 2=0", mod p. Si nous supposons que

pi—1 npl—1) — 1
[ o ¢ =1, il en résulte ~Q-)—T—)

divisible par I, et, par suite, « est un résidu de puissance #m°, mod p, ce qu’il fallait

Démonstration. — Si 2=
pf-—l
% 1

o, mod p/ — 1, cest-d-dire que A est

démontrer.

/

Le caracteére de punssance d'un nombre primitif, mod p, est certainement dif-

ﬂv

férent de 1. Car dans la séric des puissances ¢,
pf—1

soit =1, mod p, et, par suite, o ¢ ==1, mod p.

¢’ ete., ¢?~1 est la premiére qui

Soit 31’ ={’; déterminons un entier rationnel ¢* premier & p’— 1, et tel que

-
¢g* =1, mod [; alors g*=p¢* est un nombre primitif, mod p, pour lequel ;fp— =Z.

Si alors o est un entier de ¢({) non divisible par 9, et si 'on a 2=¢"", mod p, on a
V5
TR

On conclut aisément de 14 que le systéme complet des p’— 1 nombres incongrus
mod p : 1, g% ..., ;*”’"2, se décompose en [ systémes partiels, dont chacun ren-
p—1

f
erme —

nombres ayant le méme caractére de puissance. En particulier, il y a

f

pl—rt . . e :
exactement résidus de puissance [ incongrus mod ¢ .

Si b est un idéal quelconque de ¢(¥) premicr & [ et « un entier de ce corps premier
a b, silon pose b=y9pq...w, p, q, etc., étant des idéaux premiers, on définira le

symbole ;%g par I'égalité

/ /

A

p

o

v

|
?

oh

-

oA
q
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§ 114. — LEMME SUR LE CARACTERE DE PUISSANCE DE LA [*™® PUISSANCE DE LA RESOLVANTE

DE LAGRANGE.

Eisenstein est parvenu a découvrir et & démontrer cette loi de réciprocité qui

existe entre un nombre entier rationnel et un nombre quelconque du corps ¢({)
2im
({=e, lpremier impair). Cette loi de réciprocité est en méme temps un auxiliaire,
jusqu’ici indispensable, pour la démonstration de la loi de réciprocité plus générale
de Kummer. [Voir chap. xxx1.] Pour démontrer la loi de réciprocité d’Eisenstein, il
faut d’abord le lemme suivant :
24w
LemME 21. — Soit {==e ! ; soit p un nombre premier de la forme m!+ 1, R un

nombre primitif mod p, et p I'idéal premier du premier degré de ¢({) :

p=(p, {—R™");

posons Z=-¢ 7 , la résolvante de Lagrange A :
A=Z + IR+ 2R + ... 4 2R

et ==A’. Soit enfin ¢ un nombre premier quelconque différent de { et p, q un idéal
premier facteur de ¢ dans c(¢) et de degré ¢; alors le caraclére de puissance du

nombre == A’ par rapport & q s’exprime par la formule

MR
la »

Démonstralion. — En élevant ¢ fois a la ¢éme puissénce, on a la congruence
(46) A= 297 4 0 ZR 0 IR (o R (),

En remarquant que ¢’ =1, mod !/, d’aprés le théoréme 119, et en posant ¢’ = R”",
mod p, le second membre de (46) devient

h h-i- h p—: h--p— -
IR+ (ZR 4 PR L T 2R P =N
Dot résulte, A étant premier & ¢, vu le théoréme 138, la congruence

Aqg_‘ = C—h ’ ((]) ’

et on a donc certainement

Aqﬁ—i—,,-q_g?:‘ =" (
— 0 = 4 s q)’

c’est-a-dire que
(47) 3 T_" ; — —h 3
p ¢

Fac. de 7., 3¢ S., 1. 42
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D’aulre part, on tire des congruences ¢’ =R", mod p, et R" ={("", mod ¢, les
relations

gm ___

qT —:q =RhmEC—h’ (”),

c’est-a-dire

(48) 3 i § = <%>g: g C. q. f. d.

§ 115. »— DEMONSTRATION DE LA LOI DE RECIPROCITE EXTRE UN NOMBRE RATIONNEL

ET UN NOMBRE QUELCONQUE DE ¢({).

Soit = (1 —¢) I'idéal premier de ! dans le corps ¢({). Appelons semi-primaire un
entier « de c(¢), premier & I et congru mod I* & un entier rationnel. Un entier
rationnel, non divisible par /, est, par suite, toujours semi-primaire. Tout entier «
de ¢(%), non divisible par I. peut toujours étre changé en un nombre semi-primaire
lorsqu’on le multiplie par une puissance convenable de . Si, en effet, on a

p=a+b—1, (1),
a et b étant des entiers rationnels, on a
roa=a, (1)

si I'on détermine b* par la congruence (') ab*=0b, mod [. Le nombre g est par
suite semi-primaire.

Cette remarque préliminaire faite, voici l'expression de la loi de réciprocité
d’Eisenstein.

THEOREME 140. — a étant un nombre entier rationnel, non divisible par le nombre
premier impair [, et o un entier semi-primaire quelconque premier & a du corps c({)
des racines [*me de 'unité, on a dans ce corps

a ) _ z
a ) |al
[Eisenstein?®.]
(1) N. T. — ab* =5 mod [ et, par suite, mod [2. On a en effet alors

200 = alP® 4 b (1 — ) =a[g? 4+ b* (1 -], (1)
=a[t + " — 1 + V(1 —)=a + a(t — (VT = =2 —)
=a+a(1—) Q= =+ )
=a, mod I’
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Démonstration. — Soit r une racine primitive mod [ et s=({: {"). Supposons
d’abord que a soit un nombre premier ¢ et que « ne contienne que des idéaux premiers
du premier degré. Soit q un facteur idéal premier quelconque, de degré g, de ¢ dans
¢(%), soit p un facteur premier de la norme n(«), et donnons a p et a =le méme sens
que dans le lemme 21, s* étant alors une puissance quelconque de s, 'application

du lemme 21 aux idéaux premiers s “q et p donne

A=)

Soumettons cette ¢galité a la sukstitution s*, on a

sz ;

q

4

e
s“p

(49)

Soient p=ml+1, p*=m*l + 1, etc., les différents facteurs premiers de n(x);
R, R*, ..., etc., des racines primitives mod p, p*, ...; enfin, posons

p=(@ {—Rm), p*=(pt—R"") ...

et soit
a == pFE p*Fs) |

la décomposition du nombre «. les exposants F(s), F*(s) ... étant des polynoémes
de degré [ — 2 a coefficients entiers > o.

A, A*, ... désignant les résolvantes de Lagrange relatives aux facteurs premiers
p, p*, ... et & leurs racines primitives R, R%, ..., en posant x=A', z*=A", ... ona,
d’aprés le théoréme 138, les décompositions

P — p"o""—l L8+r_g, 82 e 9. si—2,

~

* p*”o"""—l LT _g ., 824 e 9. 31—2,

h

ou r_, représente le plus petit entier positif congru a ¥~" mod ! (r racine primitive

mod 1).
Le quotient
oo g o S e 1y g, sl—2

a

g =

wFe) zFele)

est par suite. évidemment, une unité du corps c(?).
Nous allons démontrer que e ==1. Pour cela, formons |¢|* :

1—1 %’1
2 a(H—s )(ro—o—r_, S8 AT sl—2)
R

1-+8

o=



332 D. HILBERT.

[—3

2

A cause de I'égalité, valable pour h=o, 1, 2, ..
r_, + ’.—h—-];f:l’

le numérateur de la fraction du second membre est égal a

s+ al—2) (n(,y))l

Tenons compte de ce que (théoréme 138) on a |z|*=p’, |=*

*=p*, ..., alors
|¢| =+ 1. D’aprés le théoréme 48, ¢ est donc a un facteur 41 prés une puissance
de . Comme d’autre part on a, d’apres le théoréme 138,

w~

I

-1, TFT=—1, ... (.

et que, par suite, =, =¥, ... sont tous des nombres semi-primaires, il en est de méme

de z; donc e=—1 et il en résulte

_ 1—2 N .
ol oSt e _gug 807 1 =T (s) mI(s
A 1 o +2 = “M‘) ;.F ) cee .

Cette égalité donne, vu la formule (49), la relation de réciprocité

roer PR 5 . sl—2
g o e T T . ( 9
(50) e =L
q prtptr (=]
En tenant compte de ce que I'on a
sa) (a7 Sa) | w %T’
o) UsTa) e (sTa) T

- puisque ces symboles représentent des puissances de ¢, il résulte de (50) I'égalité

L

q)

a
2 )

ce qui démontre le théoréme 40 dans le cas particulier ot « ne contient que des

2 _(q

M T s

’

idéaux du premier degré et ot a est un nombre premier.

Pour supprimer la premiére restriction, supposons maintenant que o« soit un
nombre semi-primaire quelconque, premier a ¢, de ¢(%), pouvant contenir des idéaux
premiers de degré supérieur au premier. Formons alors le nombre

11—

.B — g (¢)

’

le produit II ¢tant étendu & tous les diviseurs de | — 1 différents de [ — 1, et posons

j et t étant des idéaux premiers entre eux; ces derniers ne peuvent contenir, on le
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voit aisément, que des idéaux premiers du premier degré et, de plus, ne sont pas
divisibles par I. Si & est le nombre des classes d’idéaux du corps ¢(?), on a, d’aprés le
théoréme 51, t"= (), » élant un entier de ¢(¥): si nous posons y = £x’, v est aussi
un entier de ¢(¢) n’ayant que des idéaux premiers du premier degré, et. de plus,
v est, de méme que a, semi-primaire et premier 4 ¢. De ce qui précéde résulte
donc

o 412

Dans un but de simplification, nous écrirons d’'une maniére générale, ¢ et o étant
deux entiers de ¢(%) premiers & ¢,

\c

, l'q

ce qui est compatible avec les conventions déja faites; alors, vu 8=
de (51) :

T
S

, on tire

(8 q
5. AU QU B 5 O
© l'q E 3 B ;
En tenant compte des égalités
S_a_c —= 2 ’ et -g— = g—q- g’ .
q q Sa 2 o
on déduit de (52) que
H“_.re) ) H“_re)
;i ;(9)‘ - q (e)
. q . I m

Si nous remarquons que I'exposant commun aux deux membres n’est pas divisible
par /, nous en tirons

Admettons enfin que a premier & I et & x soit quelconque, et que a=qq" ...,

¢. g%, ... étant des nombres premiers, la multiplication des égalités
g ; VI x
S N S IV B

achéve la démonstration du théoréme 14o0.
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CHAPITRE XXVI.

Détermination du nombre des classes d'idéaux.

§ 116. — LE SYMBOLE [{—:I

2im
Pour appliquer au cas du corps circulaire ¢ eW), m étant quelconque, la mé-
thode transcendante du paragraphe 26 pourla détermination du nombre des classes,

définissons d’abord les symboles suivants :
Soit {* une puissance d’exposant positif du nombre premier impair , et r une
racine primitive mod I, « étant alors un entier rationnel non divisible par [, et @’ un

exposant tel que
r"=a, (I,

nous poserons

2ima’

[4]=m5.
a
3]~

quand a sera divisible par I: a et b étant deux entiers rationnels quelconques, on a

[#]=1#]1#]

Nous poserons encore, « élant impair,

et pour A >> 2, a' étant un enlier tel que

Nous poserons en outre

Jdés lors :

5 =-+a, (2"),

Enfin, a étant pair, nous posons

[2]=o. [4]=0r t>a.
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a et b étant deux nombres rationnels quelconques, on a donc

S o

a
Ces conventions fixent complétement le sens du symbole [_f]’ lorsque a est un

entier quelconque et L soit une puissance de 2 supérieure a la seconde, soil une
puissance de nombre premier impair, une racine primitive r pour le module L étant
alors choisie une fois pour toutes.

I, I', ... étant des puissances déterminées de divers nombres premiers impairs
et 2™ une puissance de 2 supérieure 4 2*, nous poserons pour abréger :

uy [ a e ’

“um] [M B

] e [ a‘lu, a

uiu,, u,u,, | [k Ih2
I: e [ ailu*lia Uy

u, u*;u,, u | 2%% E

a étant un nombre entier quelconque et les exposants u, u*: u,, u,, ... des entiers

. ‘ . a L . .[a
non négatifs. Enfin, nous conviendrons que | — | serac¢gald 1, méme si| — |=—o.
L g L

§ 7. — EXPRESSION DU NOMBRE DES CLASSES DANS LE CORPS CIRCULAIRE DES

RACINES mi®™S pE L’UNITE.

On a le théoréme suivant, qui sera démontré au paragraphe 118.

TrEOREME 141. — Soit m un entier positif de la forme

m=lhlts .., ou =2"Mlla..., ou =2t il ..
(h*>2, h,>o0, h,>>o0...),
oul, 1. ... sont des nombres premiers impairs distincts. Soient de plus r,, r,, ...,
des racines primitives mod M, ">, ..., avec les symboles quelles définissent. Le
nombre de classes H du corps ¢ des racines m*™ de I'unité peut alors s’exprimer
de deux facons :

La premiére expression de H est

1

H=—— 11 Lim II

(g, ) 5=t (p) 1 —[ ]P
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ou par la méme formule ot l'on substitue d u,, u,, ..., u; u,, u,, ..., ou u, u*; u,,

u,, ...; (selon U'expression de m). Le produit extérieur doit étre étendu aux nombres

|4, =01, oy Pt (l — 1) —1,

u,=o, 1, ..., 1l —1)—1,

I

(53) et, 8’il y a lieu, a
u=—o,r1,
et a

wW=—o,1,..., 22—,

a lexception de la combinaison u,—u,—...=o0; ou u=u,=u,=...=0; 0l
u=u*=u,=—...—=o. Il comprend donc un nombre limité de facteurs. Chaque

produit intérieur Il doit étre étendu & tous les nombres premiers p, c’est donc un
)

produit infini; % est le nombre du corps ¢ défini au théoréme 56.

La deuxiéme expression de H est un produit de deux facteurs de forme frac-
tionnaire :

n n
I P [NI\ n II Py [,.\__,\ log A,
H :(u1, Uy, .. ) (0 LW, Uyy een (1ge uge o) () LU, Uyy o
(am)* "~ ' R

(pour les autres expressions de m, on remplace u,, u,, ... par u; u,, u,, ...; ou par
u, u';u,u,, .. suivant le cas). Le produit I1 au numérateur de la premiére fraction
doit étre étendu a toutes les valeurs données dans (53), pour lesquelles u, 4 u, 4 ...,
dans le premier cas. et dans les deux autres cas u+ u, + u,+ ..., est un nombre
impair; le produit IT au numérateur de la deuxiéme fraction est étendu & toutes les
valeurs (53) pour lesquelles u, +u, 4 ..., dans le premier cas, u+4u, 4+ u, + ...,
dans les deux autres, est un nombre pair, a l'exception de la seule combinaison
u,—u,—..=—o0; OU u=u,=1U,...==0; ou u=u"'=u,=u,=..=o0. Chaque

somme X de la premiére fraction est étendue a tous les entiers posilifs n=r, ..., m—1;
(n) .

chaque somme I de la seconde fraction seulement & ceux de ces nombres qui
(n)
m , . .
sont<;. Enfin, log A, représente la partie réelle du logarithme du nombre du

corps circulaire

/ 2imn —2izn
A, =V@a—em)(x—e m)

99

et R est le régulateur du corps circulaire. [Kummer * #.]

Kummer a appelé les deux fractions qui composent la seconde expression de H le
premier et le second facteur du nombre des classes. Le double du premier facteuret le
second sont toujours des nombres entiers. [Kronecker?.]
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Weber a démontré, en partant de la seconde expression de H, que le nombre de
classes du corps circulaire des 2"i¢mes racines de I'unité est toujours un nombre
impair. [Weber"*.]

Cette deuxiéme expression de H peut encore étre transformée. Dans le cas ou

m==1[est un nombre premier impair, un petit calcul(*) conduit au théoréme suivant :

THEOREME 142. — Si [ est premier impair, le nombre de classes & du corps circu-

laire des racines [ de I'unité est donné par
2itn'u

II ¥ ne =

() (m

h= = R

(al)

Le produit T est étendu aux nombres impairs 1, 3, ... [ — 2, et chaque somme X
() m)

aux nombres n=r1, 2, ... [ —1; de plus, étant donnée une racine prinmilive r, mod /,

n' désigne un nombre tel que r =n, mod /; A désigne le déterminant

log ¢,, loge,, ..., log 4y
(=8) =3 log ¢,, log =, ..., log s,%,
(—' I) 8 )
loge,_,, loge,_,, ..., logs_,
2 2

ou log ¢, représente la partie réelle du logarithme de I'unité

[ — ng 1 — :—r!}
[
=g | — :ry—l ] — c—rg“‘i ’

2im

{ étant égal & e ¥ . [Kummer™ !, Dedekind . ]
Les deux fractions de cetle expression de h proviennent des deux fractions de la
forme générale et sont par suite le premier et le second facteur du nombre de classes,

dans le sens primitif; dans le cas acluel, ces deux facteurs sont tous les deux entiers.

; . =
Le second facteur représente le nombre de classes du sous-corps réel de degré

contenu dans c(¢). Kummer a encore établi d’autres théorémes concernant la divisi-
bilité par 2 de ces facteurs. [Kummer %.] La tentative de Kronecker pour démontrer
ces théorémes par une voie purement arithmétique contient une erreur, et la généra-
lisation donnée par Kronecker n’est pas exacte. [Kronecker !*.] En outre, Kummer a
fait des recherches d’un autre ordre sur la signification et les propriétés de ces deux
facteurs [Kummer *.] (Voir chap. xxxvi.) Enfin, Kummer a énoncé le théoréme que
le nombre de classes de tout sous-corps de ¢({) divise le nombre de classes & de ¢({).
La démonstration qu’il a essayée d’en donner n’est cependant pas inattaquable.

|

[Kummer?.]

(*) Voir la note I & la fin du Mémoire.
Fac. de T'., 38 S., 1I. 43
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2ir
§ 118, — DEMONSTRATION DES FORMULES DU NOMBRE DES CLASSES DE c(e ™).

Pour démontrer le théoréme 141, prenons le cas le plus compliqué. ot m est divi-
sible par 8, et établissons le lemme suivant :

LeEMME 22. — p étant un nombre premier quelconque et m un entier divisible
par 8, on a, avec les notations du théoréme 141, pour les valeurs réelles de s > 1. la

formule
)1 —n(P)~*l= 1 3 —[ ] g
P) (' n(%> % (2 155 Wygs Uny e ' u, ll 2 p

ot le produit du premier membre est étendu a tous les idéaux premiers facteurs de p

2im
dans le corps ¢({=em), et ou le produit du second membre est étendu a toutes les
valeurs (33) [y compris la combinaison u =u*=u,—=u,—=... =o].
Démonstraiion. — Soit d’abord p un nombre premier ne divisant pas m; soit / un

des nombres premiers impairs ,, [, ..., et I la puissance de ! qui figure dans m;
soit r une racine primitive mod " et p=r", mod !". Si e désigne le plus grand
commun diviseur des nombres p’ et I"(I—1) et si lon pose I"'(I—1)=ef. le
symbole [%] est évidemment exactement une f"° racine de l'unité et non une
inférieure.

Si nous prenons d’abord {=1,, et, par suite, h="h, e=e,, 'Y, —1)=¢,f,,
on a la formule

l: f1 , gei
I— )_“': I — —S74 s
) k u,, ay oo P )

ou le produit est étendu & toutes les valeurs de u, indiquées dans (33)(1). Si nous

(up

(1) N. T. — Clest-d-dire : u
On a, en effet

b
— | =h, 3 0fr — 1,
Lu usu,, u,, J [u,u u,, ]Ll":] [_lf::l 1 AVEC B !

donc, en posant pour abréger :
(1 - L L J—_\\l ’

L =0, 1, e, (L —1) — 1.

on a:
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prenons ensuite [=1[, et h—=nh,, e=e,, I'""'(l,—1)=e¢,f,, on a, f,, désignantle plus

petit commun multiple de f, et f,,
escofy fa

S o p 1 i —S - \J\ fia —Sf42) T2
1" QI u,u;u,u P (I u, utsu,u, ... P ! ’

(g5 ug)

et ainsi de suite, — f,, désignant le plus petit commun multiple des nombres

SisSur o
ey ey fy o,

Liaen. :
I — Ij - [)_‘g ‘ I — f\?/;:l p—Slaze Tizeer
(ui,uQ u, u; u,, u ( u, u \

ou le produit est étendu & toutes les valeurs (53) de u,, u, ....
Soit de plus p=-—+15", mod 2”*; soit ¢* le plus grand commun diviseur des

nombres p' et 27%=2 et soit 24*-2=¢*f*; alors r%:l est évidemment exaclement
[ 2t

égal a une racine f*¢" de I'unité et non & une inférieure. Par suite, si f7, ... désigne

le plus petit commun multiple de f*, f,, f..
eEey o 54 ]y

( i ) A
11 &I ——[/\*_,!\/*\]p ( I _[>[ :l ! )_\f . ) I#19.
(%5 Ugy Ugy ) 2 u,u;u.,u, ... \

et de 2, et posons

Enfin, soit e le plus grand commun diviseur de i

2=cf; il résulte alors de la dernitre formule. si F désigne le plus pelit commun
multiple des nombres f, f*, f,, f,. ... et si 'on pose pour abréger

ec*ee, ... f* [, ...

E= R
F
\ - p ol
54 mo ] \/] -
( ) (0, W g, ug, ...) ( u.u\*;TLl, u,, ... P S {l P

ou le produit est étendu & toutes les combinaisons (53) de u, u*; u,, u,, .... On voit
de suite que F est le plus petit exposant positif tel que pF=1, mod m. Comme de
plus FE = ®(m), on déduit de (54), en ayant égard au théoréme 125, la formule du
lemme 22 (). En s’appuyant sur la deuxiéme partie du théoréme 125, on reconnait
I'exactitude de cette formule méme dans le cas ou p divise m.

(') N. T. — On a, en effet :
PP = p¥f = n(p) = n(MW,) ... n(Ps). [Théoréme 125.]

e R R A R el
=Ll -5
=[]

et
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L’on voit alors immédiatement I'exactitude de la premiére expression de H donnée
au théoréme 141, en s'appuyant sur le théoréme 56, la deuxiéme expression de {(s)
donnée au paragraphe 27 et le lemme 22 qu'on vient de démontrer.

Pour obtenir la deuxiéme expression de H, nous transformons d’abord de la
facon suivante le produit précédé du signe Lim de la premiére expression :

. n I
T [ I
(m n=1,23 . yLu.a5u,u,...|\n

\_/ e p-—-s

uuuu...

La transformation de la somme du second membre s’opére ensuite de la fagon la

plus simple, si 'on pose
r 1 o e
= T
n’ I'(s) ,[ ¢

el que 'on procéde comme au paragraphe 86 (1).

§ 9. — EXISTENCE D'UNE INFINITE DE NOMBRES PREMIERS QUI ONT POUR UN NOMBRE

DONNE UN RESTE DONNE PREMIER A CE DERNIER.

Chacune des deux expressions (théoreme 141) du nombre de classes H du corps
circulaire des racines conduit & une conséquence importante. La premiére sert en effet
a démontrer le théorénie suivant :

TuEOREME 143. — m et n élant deux entiers premiers entre eux, il existe toujours
une infinité de nombres premiers p verifiant la congruence p = n. mod m. [Dirichlet*°,
Dedekind !.]

Démonstration. — Considérons encore seulement le cas le plus compliqué, ot m
est divisible par 8, et posons, comme au paragraphe 117, m=2a%{%{% ... Chacun
des produils considérés

I1
(p)
1 — — \_ \_.,"\ p
w, ut;u,,u,, .
A I'exception de celui qui correspond & la combinaison t =u*=u,—=u,=...=o0,

a pour s=1 une limite déterminée; de la premiére expression du nombre de

classes I, donnée au paragraphe 117, résulte que ces limites sont toutes différentes

(1) N. T. — Nous donnons dans la note V, a la fin du Mémoire, le détail de ces calculs pour
le cas simple ot m est un nombre premier impair.
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de o; nous pouvons donc prendre les logarithmes de ces produits, et on est alors
conduit par des considérations simples, analogues a celles du paragraphe 8o, & ce
résultat, que pour tout systéeme de valeurs u, u*: u,, u,. ... (o partout exclus), la
somme

1
(55) ¥ [/ﬂ*\,p\/\ —,
(mLu,u s u,u,..... 1 p

ou p parcourt toute la série des nombres premiers a une limite finie pour s =1.
Comme n est supposé premier & m, tous les symboles

e Ll L) L)

sont différents de o. Nous multiplions I'expression (55) par

I
nlw I:n w# n 1w l: n Uy

nous donnons a u, u*; u,, u,, ... toutes les valeurs (53), la .combinaison o partout

étant exclue, et nous ajoutons toutes les expressions ainsi formées a la série (26)
(voir § 80). On obtient ainsi 'expression

LS4+ P) (4 P PR Pty
(»)

(56) S ([ + P‘ + Pi + ...+ Pi{l‘(li_i)—“) )
’ (I + Pz + P: + e + szl’e—"lz—l)—i) “es .]%‘ ]

ou l'on a posé pour abréger

RN 1 A I I
T

Si nous faisons abstraction dans cette série des termes, en nombre limité, corres-

. r 1 ) I \
pondant aux facteurs premiers de m: 2, {,, [, .... le reste est égal & &, ¥ —, oup

représente les nombres premiers. tels que tous les symboles P, P*, P,, P,, ... soient
égaux & 1, c’est-a-dire les nombres premiers vérifiant la congruence du théoréme 143.

Comme la série (26) est infinie pour s =1, tandis que les séries (53) restent toutes
finies pour s =1, il en résulte que la série (56) est aussi infinie pour s =1, c’est-a-

dire qu’il y a une infinité de nombres premiers vérifiant la congruence.
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§ 120. — REPRESENTATION DE TOUTES LES UNITES DU CORPS CIRCULAIRE AU MOYEN
D'UNITES GIRCULAIRES.

La deuxiéme expression du paragraphe 117 peut servir & démontrer le théoréme
suivant :

TutorEME 144. — Toule unité d’un corps abélien est une puissance fractionnaire
d’un produit d'unités circulaires.

Démonstralion. — Prenons d’abord le cas ott m =1 est premier impair. D’aprés
la formule du théoréme 142, le second facteur du nombre de classes contient au
numérateur un certain déterminant A. Ce dernier est donc nécessairement =|=o,

d’ot il suit, vu les considérations des paragraphes 20 et a1, que les unités

2

& 55 oo 2,_, du théoréme 142 forment un systéme d’unités indépendantes du corps

o

2w
circulaire c(¢ 7). Ceci montre I'exactitude du théoréme 144 pour le cas particulier
2im
du corps circulaire c(e?) et, par suite, pour tous les sous-corps qu’il contient.
[Kummer®.]

On peut transformer le second facteur du nombre de classes, comme au théo-
réme 142, méme dans le cas ol m est composé ; 'expression obtenue conduit alors,
avec le théoréme 131, & la démonstration générale du théoréme 144.

Les tables de nombres premiers complexes calculées par Reuschle constituent
une mine abondante de valeurs numériques, de la plus grande utilité pour des re-
cherches plus approfondies sur les corps circulaires. [Reuschle!, Kummer?, Kro-
necker!.]

CHAPITRE XXVII.

Applications aux corps quadratiques.

§ 121. — EXPRESSION DES UNITES D'UN CORPS QUADRATIQUE REEL AU MOYEN D UNITES
CIRCULATRES.

En utilisant quelques-uncs des propriétés du corps circulaire des racines mime de
I'unité relatives & un de ses sous-corps quadratiques, nous arrivons a de nouveaux
résultats relatifs aux corps quadra’iques. La fécondité de cette méthode s’accroit en-
core, si on la combine avec les proprié¢tés du corps quadratique déja démontrées

directement, dans la troisi¢me partie.
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D’aprés le théoréme général 144, toute unité d’un corps quadratique réel c(\/m)
est puissance fractionnaire d’un produit d’unités circulaires; on obtient simplement

une unité particuliére du corps c(\/m) au moyen de I'expression

[Ie? —e @)
(8)

iz ai=
[ied —e )

(@)

ot d est le discriminant du corps c(\//n) et ot les produits II, 11 sont étendus & tous
@ ()
les nombres a ou b de la suite 1, 2, ..., d, qui vérifient les conditions

(d\ d . a
V=1, (—) = 1. Dirichlet”.] Voir § 80.
\\a) ‘ b, [ ] ’

§ 122. — LOI DE RECIPROCITE DES RESIDUS QUADRATIQUES.

Soit /'un nombre premier impair. r une racine primitive, mod I; {=e
l—1

s=(%:<"). Au sous-groupe des substitutions 1, §*, s*, ..., s, de ¢(¥), corres-

pond un certain sous-corps quadratique ¢* de ¢({). Le discriminant du corps ¢({)
1—1
¢lant (théoréme 118) (— 1)2 1“2, le discriminant du corps ¢* ne contient pas (théo-

réme 3q) d’autre facteur premier que ! et a par suite, d’aprés le théoréme ¢5. la
—1
valeur d = (—1)"? [.

Soit p le nombre premier 2 ou un nombre premier impair quelconque autre que /.
En décomposant p d’'une part dans le corps ¢({) des racines [*#¢ de I'unité, d’autre
part direclement d’aprés le théoréme g7 dans le sous-corps quadratique c*, et en
comparant les résultats, on arrive & une nouvelle démonstration de la loi de récipro-
cité des résidus quadratiques. [Kronecker'.] Nous procéderons comme suit :

f étant le plus petit exposant positif, pour lequel p=1, mod /, en posant
l—1

c—_—T, p se décompose dans c({) (théoréme 119) en ¢ idéaux premiers 9,
SB, ..., 77!, et le corps de décomposition commun ¢, de ces idéaux premiers

est de degré e (théoréme 129). Le nombre premier p esl ensuite évidemment décom-
posable ou non dans le corps quadratique c¢*, selon que ¢* est contenu ou non
dans c,. En remarquant que le corps ¢({) ne contient pas d’aulre sous-corps qua-
-dratique que ¢* et que de plus, pour qu'un corps abélien posséde précisément un
sous-corps quadratique, il faut et il suffit que son degré soit pair, on voit que pour
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que ¢” soit contenu dans c, il faut et il suffit que e soit pair. D’autre part, d’apres le
théoréme 97, p est ou non décomposable dans c*, selon que I'on a

1—1
T
<(——I)—> =41, ou = .
p
Or, si e est pair, on a
=t r.e
p?=p =1, modl,
cos o (PN
c’esl-a-dire 7)= + 1; sinon
=t Le
pt=p* =(—1)=—1, modl,
c’est-a-dire <]_l)> = —1. On a donc toujours

—1

& (5)=(=2),

Nous supposons d’abord p impair; de (57) résulte

—1

(@)=

et, en échangeant p et [,

I

r

o7 _ (T
(=)=

Cette derniére égalité donne en prenant {=3 :

—1

(59) ()= Ny

La réunion des égalités (58 et (59) donne

l et
(HE=- 77,
1 Si nous posons dans (57) p=2, on a
: 12—4

.
(3)=(EY =™

Les formules (60), (59) et (61) expriment la loi de réciprocité des résidus quadra-
tiques, ainsi que les lois complémentaires.
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§ 123. — LES CORPS QUADRATIQUES IMAGINAIRES DE DISCRIMINANT PREMIER.

TuEorREME 145. — [ étant un nombre premier =3 mod 4 et p un nombre premier
de la forme ml+ 1, on a pour tout idéal premier p facteur de p dans le corps quadra-
lique imaginaire c(\/— l) I'équivalence

h—z3a

p ¢ ~ 1,

ou Xa désigne la somme des plus petits résidus quadratiques positifs mod I, et b la
somme des plus petits non-résidus.
En posant de plus p = pp’ et

ou () est un entier du corps imaginaire c(\/~ 1), on a la congruence

I

+ TT

— l(am)!
()

Il

(",

ou le produit du dénominateur est étendu a tous les plus petits résidus quadratiques
positifs a, mod /. [Jacobi'*%*, Cauchy!, Eisenstein *.]

Démonstration. — D’aprés le théoréme 136, on peut, 9 élant un idéal premier du
premier degré de c({), poser, avec les notations y indiquées,

(63) oot o (),

A étant un entier de ¢(¢). Si alors p=ml+ 1 est le nombre premier divisible par 9%
et p=ypp', la décomposition de ce nombre premier dans le sous corps quadra-
tique c(\/——_l) de c(§), ces deux idéaux premiers p, p' de c(\/v———l) sont
p = %1+s’+s‘+...+sl—’y
p'= S == Jestl+s>+ sl
‘n élevant I'égalité (62) & la puissance symbolique (1 + s*+ ... + s, on

obtient
pqo—‘rq_g—f- »+q_l+3”rq_l+q_3ﬂ— A R . (1> ,

ol « est un nombre de c(\/———l) A cause de

b — Ta
q_, + q_, + ..+ 9 pio—qy— qg_y— - T, = (I‘ + I)—T— ’
on a, vu I'équivalence pp’ ~ 1,
3 ) ‘H_”:b—:a
(63) ] L~

Fac. de T., 3¢ S,, 11. 44
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D’autre part, on peut poser (théoreme 135)

%1'0-»4'_1 LS T gy sl—2 — (B) ,

B étant un nombre de ¢(%). En élevant cetie égalité i la (1 + s* 4 ... s'°)*¥™e puissance

symbolique, on en déduit
h—ztn

(64) p‘_‘b——‘;‘a — pl I -~

Comme r + 1 n’est pas divisible par /, si nous mettons de c6té le cas de /=3,
suffisamment clair par lui-méme, il résulte des deux équivalences (63) et (64) celle
du théoréme 145.

La deuxiéme partie du théoréme est une conséquence des propriétés (43) et (44)
de la résolvante de Lagrange A démontrées au paragraphe 119.

On a une démonstration tout a fait différente de la premiére partie du théoréme 145
en s’appuyant sur une remarque faite vers la fin du paragraphe 86, au sujet de
I'expression du nombre de classes du corps c(\/Z) dans le cas de /=3, mod 4.

On arrive méme, par une modification remarquable de la méthode de Jacobi, &
étendre I'énoncé du théoréme 145 au cas ou le nombre premier p n’est pas de la
forme ml + 1. [Eisenstein ', Stickelberger'.]

§ 124,. — DETERMINATION DU SIGNE DE LA SOMME DE GAUSS.

Soit p un nombre premier impair, on peut obtenir, selon les définitions du para-
graphe 111, étendues dans le paragraphe 112, la base normale de Lagrange et la résol-

/ Py
vante de Lagrange, dans le cas de /=2, pour le corps quadratique ct\\/(—— 1)7p>.
2iT

Soit Z =7 . La base de Lagrange se compose pour ce corps des deux nombres
3 b
l,ozz Za, )1—_‘22,
(@) (0)
et la résolvante de Lagrange est
< b
A:’o—7~,:220—22,
@ )
a et b étant les résidus et non-résidus quadraliques de p compris dans1,2,...,p — 1.
Le probléme indiqué & la fin du paragraphe 112, de la détermination compléte
de A, une fois A' trouvé, revient ici, dans le cas du corps quadratique, & la délermi-

nation d’un signe ==, et la solution est la suivante :

TutorkMe 146. — Larésolvante de Lagrange A du corps quadratique de discriminant
p—t :
premier (— 1) 2 p est un nombre positif réel ou purement imaginaire positif.

[Gauss?, Kronecker®.]
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Démonstration. — Le carré de la racine de Lagrange en question A est toujours
p—t '
égal & (— 1) 2 p, parce que A est un nombre du corps quadratique et que, d’aprés

le théoréme 138,
IAl=Vp-

On a donc
“ r—t
(65) A=EV(E=n?p.

Les idéaux 9, 9 du paragraphe 112 sont remplacés dans le cas actuel de /=2

par (p) et (1 — Z); la congruence (43) donne alors

P+l

(—1)z p—t iadl
A=—-"—0a—2)2, mod(1—2)?,

—!
c’est-a-dire
p—1 — Pl
(66) AET! (1r—2Z)2, mod(1—Z)? .
Considérons d’autre part 'expression
‘ R 4t
A=QZ"'—=Z72")Z27—7")-(Z *—=27"7%).

Comme cette derniére change seulement de signe lorsqu’on remplace Z par Z %,
p—1i
R étant une racine primitive, mod p, ¢t quel'idéal (A) coincideavec I'idéal (1— Z) % ,

on a nécessairement
\/ p—1

Pour déterminer le signe, remarquons que 'on a

2

h= _
‘ Z_h—Z*’”——2isin2—1)-—, <h:1,z, ...,p l>

p—I
et qu’on obtient par suite pour A une valeur de la forme (— i) 2 P, ou P est positif.

p__]
Donc, en entendant par \/(—— 1) 2 p celle des racines carrées qui est réelle positive

ou positivement imaginaire, on a

(67) A= VT
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Enfin, la relation

g . . -
A=Z7 T =2 (=29 =27,
montre que I'on a
Pt ptp g p—t ptt
A=2.4.6...(p—1)1—7Z)% =22 . (1—2Z)2, mod(1—2Z)?2
et par suite, vu (66),
p—t 4p

A=2% A, mod(1—2)7.
Comme l'on a
p—1 p2—1
. 2t = G;) =(=n7°.

on obtient, a cause de (67),

= e
A=VE=nN7p. mod (1 —2)7,

ct par suite, a cause de (65),
T
A=V=n7p.
ce qui démontre le théoreme 146.

On n’a pas encore publié beaucoup de (ravaux sur des corps abéliens de degré
supérieur au second ; mentionnons le travail d’Eisenstein sur les formes cubiques,
provenant de la division du cercle, qui est une introduction & la théorie des corps
abéliens cubiques [Eisenstein®], le travail de Bachmann' sur les nombres complexes
composés de deux racines carrées. et enfin les recherches de Weber sur les corps
abéliens cubiques et biquadratiques. [Weber?® *.]




CINQUIEME PARTIE.

LES CORPS KUMMERIENS.

CHAPITRE XXVIII.

Décomposition des nombres a'un corps circulaire dans un corps kummerien.

§ 12D. — DEFINITION D'UN CORPS KUMMERIEN.

2im

Soit { un nombre premier impair et ¢({) le corps circulaire défini par {=e ! .
p étant alors un entier de ¢(Y), qui ne soit pas en méme temps la [ puissance d"un
nombre de ¢(%), I'équation du /ém degré

xt—u=—o0

v

est irréductible dans le domaine de rationalité ¢({). M= \l/; étant une racine déter-
nminée choisie arbitrairement de cette équation, les autres sont (M, M, ..., £'M.
Jappellerai corps kummerien le corps déterminé par M et {. Un tel corps kummerien
¢(M, O est de degré I(I— 1); il contient ¢({) comme sous-corps. et c’est, par rapport
A ce dernier, un corps abélien relatif de degré [.

Le changement de M en {M dans un nombre ou un idéal du corps kummerien
donne le nombre ou I'idéal conjugués relatifs. Nous représenterons ce changement
par la substitution S.

On démontre facilement les propositions :

SR . . ' =,
THEOREME 147. — Pour que le corps kummerien engendré par M:\/p et { soit
un corps de Galois dans le domaine des nombres rationnels, il faut et il suffit que

$—1 s—2
’

I'une des puissances symboliques P L, ST soit la e puissance d’un
nombre de ¢(2). (s=({: ¢"), r racine primitive, mod [.)

La condition nécessaire et suffisante pour qu’il soit abélien est que : u*~" soit la
l*me puissance d'un nombre de ¢(%).

Lorsque le corps kummerien (M, ) est un corps de Galois, ou un corps abélien,
il résulte, comme le montrent les considérations du paragraphe 38, de la composi-

tion du corps ¢(%) et d'un certain corps de degré [.
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§ 126. — DISCRIMINANT RELATIF D'UN CORPS KUMMERIEN.

Notre premier probléme est celui de la détermination du discriminant relatif de
¢(M. {) par rapport a ¢({). Nous démontrerons d’abord la proposition suivante :

Lemve 23. — Si un idéal premier p du corps circulaire ¢(%) est Ja Jime puissance
d’un idéal premier 9 du corps kummerien ¢(M, {) et que A soit un entier de ¢(M, {)
divisible par 9, mais non par ¥ le discriminant relatif du nombre A et celui du

corps kummerien ¢(M, {) par rapport au corps ¢({) contiennent le facteur idéal p a la
méme puissance.

Démonstration. — Tout entier du corps ¢(M. {) peut étre mis sous la forme
o+ A+ A+ .o AP
(68) 0— A+ LA+ 4w A ’
g
ol a, v, ..., v,_,, § sont des entiers de c({). Si § est divisible par 9, il en résulte que

le numérateur de la fraction doit aussi étre =o, mod 9.

A cause de A=o0, mod 9, on en conclut « =o0, mod P et, comme « est dans
¢(), également a=o0, mod p. Cette derniére congruence donne

oA+ 2 A"+ ... + g All=o0, (mody),

et comme A=Z0, A*=o0, A’=o0, ..., A"'=o0, mod p, on a «, =0, mod P, et par
suite aussi, mod p; on a donc aussi

S S ua At =o0, (9).

Comme A*z|z0, A°’=0, ..., A =0, mod 9, ona a,=o0. mod P, et par suite
aussi, mod .

En continuant ainsi, nous voyons que tous les coefficients «, x,, ..., «,_, doivent

£
étre divisibles par g. Si maintenant &' est un entier de ¢({), divisible par E, mais non

par 8, les nombres §', %8, ..., »,_, &' sont tous divisibles par §. En posant
! ! !
L b o mb
_—, y — T ey g — "
7 ‘ b

nous obtenons

0_7-’+°“/A+1;A%+"'+11,>lA1_1
——- [5' ’

(69)

ou le nombre 8’ du dénominateur contient maintenant un facteur idéal p de moins
que . En appliquant & (69) la méme méthode qu’a (68) et ainsi de suite, nous arri-
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vons finalement au résultat que tout entier Q du corps ¢(M. ) peut étre mis sous la
forme

(70) 0 ttEA+ ... %, AT
/ — — ’

]

ol %, a,, ..., o_,. b sont des entiers de ¢(7), 5 étant en outre premier & . Supposons
exprim¢s sous la forme (70) les {(I— 1) nombres d’une base du corps kummericen
¢(M. §), et formons avec ces nombres et leurs conjugués relatifs la matrice & ! lignes ;
il est alors visible que le discriminant relatif du corps kummerien ¢(M. {) multipli¢
par certains entiers 5 premiers & p de c¢(2) doit &tre divisible par le discriminant

relatif du nombre A. ce qui démontre le lemme 23.

TatorkME 148. — Soit k=1 — et [=(2). Si un idéal premier p aulre que [ de
(%) entre exactement & la puissance e dans le nombre y., le discriminant relatif du
corps kummerien déterminé par M — \1/; et { par rapport & ¢(%) contient en facteur
exactement la puissance "' de 9, si e et / sont premiers entre eux. Si, au contraire,
e est un multiple de [, le discriminant relatif est premier a p.

Quant a I'idéal premier [, nous pouvons d’abord exclure le cas ol . est divisible
par [ et conlient cet idéal & une puissance dont I'exposant est un mulliple de /; car
alors le nombre p. pourrait étre remplacé par un nombre p* premier a I, le
corps c((/g_*‘, k) restant le méme que le corps c(\l/;, ‘;). En dehors de ce cas, p. peut
contenir une puissance de | dont I'exposant est premier a /, ou bien p. peut ne pas
étre divisible par [. Dans le premier cas, le discriminant relatif de ’c(\l/;, C), par
rapport a ¢({), est exactement divisible par [“~!. Dans le second cas, soit m le plus
grand exposant < ! pour lequel il existe dans ¢(¥) un nombre «, tel que v.= o' mod ™.
Le discriminant relatif est alors premier & [, dans le cas de m=1, et si m<C1! il est
divisible par la puissance (¢~ ="+ de [,

Démonslration. Premiére partie. — Soit = un nombre entier de ¢(%) divisible

. . . o e = .

par $, mais non par $°, et soit v un nombre entier de ¢(%) divisible par =, mais pre-
P

mier a .

Si I'exposant de la puissance de p contenue dans u. n’est pas un multiple de I. on
a bl

—r est un

i~

peut déterminer deux entiers a et b, tels que 1=ae — bl; alors p*=

entier de ¢({) divisible par , mais non par p*; et si I'on pose M*:\l/p?, on a
c(M*, ) =c(M, {); et si on désigne par 9 le plus grand commun diviseur idéal de »
el M* dans ¢(M, &), on a(!)

P=SP, p=p'.

(1) N.T. — Car Sp—19p, SM*. =M~ et le plus grand commun diviseur de p ctde | M*
est le ménme que celui de p et de M*, car J est une unité.
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L'idéal 9 est donc un idéal premier invariant du corps kumimerien ¢(M, ) par
rapport au sous-corps ¢(%); d’aprés le théoréme 93, il entre donc comme facteur
dans le discriminant relatif de c(M, {) par rapport a ¢({). Comme de plus M* est divi-

sible par 9, mais non par 9*, et que le discriminant relatif de M*. par rapport a ¢(%),
—1

est égal & (—1) * I'v*~", Tidéal p est donc, d’aprés le lemme 23, contenu dans Ie
discriminant relatif du corps ¢(M, %) exactement & la [ — ieme puissance.

e
. . , . 1y . .
Si, au conlraire, I'exposant e est un multiple de l, p*="— est un entier de ¢(Z
et e :

—
9

non divisible par p; comme le discriminant relatif du nombre M*:\I/p_* par rapport
1—1

ac(l) est égal & (— 1)‘T 'u*~", ilest premierd p. Il en est de méme du discriminant
relatif du corps ¢(M. &) par rapport & ¢(%).

Deuxiéme partie. — Dans le cas ol u contient [ avec un exposant e, non multiple

de {, procédons comme dans la premiére partie et prenons & la place de u. un

nombre u*. divisible par [ et non par I*. Comme le discriminant relatif du
1—1

nombre M*= \I/E a la valeur (— 1)T {'u**, 1e discriminant relatif du corps ¢(M, {)
par rapport & ¢({) est exactement divisible par (*~!, d’aprés la nature du nombre p*
ct la lemme 23.

Nous avons en second lieu & examiner le cas ot . n’esl pas divisible par [. Soit

1.
ly

. . — %
d’abord m=1; il y a donc dans ¢({) un entier =z, tel que y.=«, mod . 2% est
A
donc un entier de ¢({), et, par suite, I'équation de degré [ en 2
O — 2)' + "
U

; est une racine
\

. . 1/~ A
a tous ses coefficients entiers. Comme en posant M :\/p,. xr=

r . AL —
de cette équation, Q = 3

ce nombre O est égal & sp/~", < étant une unité, et, par suite, le discriminant relatif

est un entier du corps ¢(¢). Le discriminant relatif de

du corps ¢(M, {) par rapport & ¢(%) est aussi premier A I.

Soit ensuite m <!, de sorte que p. ne soit pas congru i une puissance "¢, mod [';
posons p==4'+ai", mod ("', & étant un enlier de ¢(§), m l'exposant défini dans
I'énoncé et a un entier rationnel non divisible par /. Considérons alors I'idéal

A=( a—M).

o — . . .
Le nombre — M n’est certainement pas entier, car sa norme relative par rapport

IN

l
Lo — . .
a ¢(Y), c’est-d-dire ——, "est fractionnaire, & cause de m</; donc, le nombre & — M
/

'\
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n’est pas divisible par [; par suite, I'idéal 9 est différent de [. D’autre part, 9 n’est
égal & 1, car la norme relative du nombre « — M est, & cause de

(7]) Nc(’l-—M>:CLI—ME—a)\m, (Inl—H)

divisible par (™. Comme on a SA =%, A est un idéal invariant, et comme ce doit
étre un facteur de [, ce dernier appartient & la premiére des trois catégories d’idéaux
premiers du sous-corps dislinguées (§ 57) dans la démonstration du théoréme 3.
Cest-a-dire [—=®', € étant un idéal premier, évidemment du premier degré de
¢(M, §). La congruence (71) donne alors A = L".

Déterminons maintenant deux entiers positifs a et b, lels que am — bl=1, et
posons

q=l=W"
)}
De SM={M, on déduit
SO — (0 — M b+ aM)”
n

et nous concluons de cette expression que Q — SQ contlient en facteur 4"+,
Comme il en est de méme de toute différence entre ) et un de ses conjugués, le dis-
criminant relatif de Q par rapport & c¢({) contient en facteur exactement la
(I —1)(I— m + 1)*m puissance de I'idéal [. Il en résulte. Q n’étant divisible que par
la premiére puissance de £, que le discriminant relatif du corps ¢(M. ) par rapport
a ¢({) est aussi divisible par la méme puissance (lemme 23).

Le discriminant relalif du corps kummerien ¢(M, {) par rapport au corps ¢(%) est
ainsi complétement défini, el 'on peut immédiatement en déduire le discriminant
du corps ¢(M, {) (théoréme 3g). '

§ 127. — LE SYMBOLE 5i§
[ v

f v

I1 est nécessaire pour la suite de généraliser le symbole )gs introduit au para-

graphe 113, pour le cas ot u. est divisible par w et pour celui ol w =1.

Soit w un idéal premier quelconque de ¢() et p. un entier quelconque de ¢(%), qui
ne soit pas égal a la " puissance d’un entier de ¢(?). Quand le discriminant relatif
du corps kummerien engendré par M :\l/; et { sera divisible par w, le sym-

bole 3—:; aura la valeur o.

Si, au contraire, le discriminant relatif de ce corps ¢(M, £) n’est pas divisible
par v, on peut, d’aprés le théoréme 148, toujours trouver dans ¢({) un nombre a, tel
que p*=24'p, soit un entier de ¢(%) non divisible par w. Si p est lui-méme premier

Fac. de T'., 38 S., 1I. 45
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a w, » =1 remplit déji cette condition. Nous définissons alors, si w =|=1, le symbole

en question par la formule

_ el

T lw)
Mais si =1, on peut, le discriminant relatif de ¢(M, {) devant étre premier a [,

choisir en outre le nombre « (théoréme 148), de facon que l'on ait v*=1, mod I'.

On a dés lors une congruence de la forme

F=1 4wk, (1,

\ e W
ol a est un des nombres o, 1. 2, ... {—1. Je définis alors le symbole ‘T% par

Légalité

Si v est la i puissance d’'un nombre de ¢({) et w un idéal premier de ¢(%). on

)

prendra /

(w)

(0 .. , . 1
La valeur du symbole ;“?i est ainsi fixée pour tout entier p. et tout idéal pre-

=—=1I.

mier w de ¢(2); elle est d’ailleurs égale & o ou & une racine [ de 1'unité.
Enfin a étant un idéal quelconque du corps ¢({), sil'on a a=gpq ... v, p, g, etc.

étant des idéaux premiers de ¢({), on définira le symbole s%g par I'égalité

(

L - S; el e
a)  pila) T (w)
a, b étant des idéaux quelconques de ¢(), on a donc
Vol e
| ab) ad|b)
§ 128. — IDEAUX PREMIERS D UN CORPS KUMMERIEN.

P : 3 L)~ % H

Soit . un entier de ¢({). M :\/y. un nombre en dehors de ¢(%). La question de la
décomposition des idéaux premiers du corps circulaire ¢(%) en idéaux premiers du
corps kummerien ¢(M, {) est résolue par le théoréme suivant :

Tukorive 149. — Un idéal premier quelconque p de ¢() est, dans le corps
kummerien ¢(M, &), soit égal & la I“™® puissance d’un idéal premier, soit décompo-
sable en un produit de ! idéaux premiers distincts, soit premier lui-méme, selon

(w) . " i Tiepr
que 3?( —o0, =1 ou = une racine [*" de 'unité différente de 1.
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Démonstration. — La premiére partie de ce théoréme se rapporte aux idéaux pre-
miers qui divisent le discriminant relatif du corps kummerien : ils sont donc inva-
riants, d’apres le théoréme ¢3. Ce fait ou le théoréme 148 montrent donc pour ces
idéaux I'exactitude du théoréme.

Si p est un idéal premier qui ne divise pas le discriminant relatif du corps ¢(M, %),
*

soit p* un entier non divisible par 9, tel que le quotient '—;— soit égal a la /" puis-
sance d’'un nombre de c¢(¢). Le corps ¢M, ¢) est alors‘ engendré également par
M =V et & L

Examinons d’abord le cas de  =|= . Si alors HJ—( =1, le nombre p* est, d’aprés

[}

le théoréme 139, résidu de [ puissance, mod p. Déterminons, ce qui est toujours
possible, un entier « de ¢(¢), tel que I'on ait p*=+', (mod ), et p* ==+, (mod p*).

En formant alors les idéaux conjugués relatifs

P =M —2).
Sv - (”’ :M*_ 7~)’

S—l% — (9, Cl—’ M - l)v
nous obtenons facilement

p— .S ... 19,

Comme
W™, SW™H=>Fp. M —z. (M—a2)=1,

SP est différent de 99, et, par suile, les [ facteurs premiers 9, S, ... S— P de
I'idéal p sont distincts. L’id¢éal premier p de c(¢) appartient donc 4 la deuxiéme caté-
gorie des idéaux premiers du sous-corps (théoréme ¢3), il se décompose donc dans
¢(M, ©) en [ idéaux premiers distincts. Inversement, si un idéal premier p du
corps ¢(%), différent ou non de Ilidéal [, se décompose en ! idéaux premiers dis-
tincts 98, S, ... S8 du corps ¢(M, ¢), on a, p étant le nombre premier divisible
par 9, N(9)=p" et N(p) = N(¥) ... N(S=19)=p", et, par suite, la norme de P,
prise dans le corps ¢(2), n(p) est aussi égale & p". L'¢galité des normes N(9) et n(p)
montre, comme au paragraphe 57. que toul entier du corps ¢(M, {) est congru,
mod 9, & un entier du corps ¢({); en posant en particulier M*= «, mod ¥, = étant
dans ¢({). on a M*=p*==', mod W, et comme u* — o est un nombre de ¢(£), on

*
doit avoir aussi p* =14, mod p, c'est-a-dire que g%: = ;i =1. La derniére partie

p

du théoréme 149 est donc complétement démontrée pour le cas d’un idéal pre-

mier p=]=1.
Enfin, relativement a I'idéal premier I, si le discriminant relatif du corps ¢(M, %)
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par rapport & ¢(%) n'est pas divisible par I, on a, pour le nombre v*, d’aprés le
théoréme 148, une congruence de la forme

ut=al b ad, (1),

\

, . . o . s W , SET . ..
a étant un entier rationnel. Si maintenantl'on a g‘Ti = 1. C'est-a-dire si a est divi-
sible par [, il en résulte une congruence de la forme
= ol 4 a*WH, (D),
ol a* est encore un entier rationnel. Si «* n’est pas divisible par [, nous posons
p* = u*; si, au contraire, a* est divisible par /. nous posons
P = (0 D) = — 1y
il en résulte
p = ol 4 Wl (12,
D’aprés cela, le nombre p** vérifie toujours une congruence
u=al 4 W, (142),

ol @ est un entier rationnel non divisible par [, et, par suite, en posant
lJ
M**:\/{J«** el

on a la décomposition
= Q.8¢ ... 81,

< u_Ma«* U-—:M**>
)\y ~ ’ ~ :I;

A A

Comme

SQ est différent de €, et, par suite, les [ idéaux premiers €, S€, ... Si—1€ sont
distincts.
Inversement, si [ se décompose ainsi dans le corps kummerien, les normes de €

dans ¢(M, ¥) et de I dans ¢({) sont égales, d’aprés une remarque antérieure, appli-

cable, on I'a indiqué, méme au cas de p=1, et, par suile, tout entier de c(M, &) est
congru mod € A un entier de ¢(2). Comme cnsuite, d’aprés le théoréme 93, I ne

divise certainement pas le discriminant relatif du corps ¢(M, {) par rapport & ¢(%).
*

o o a—M

nous pouvons, d’aprés le théoréme 148, poser p* =2/, mod I', et ——— est donc un

IS

entier. Comme € est un idéal premier du premier degré dans ¢(M, {), nous pouvons
trouver un entier rationnel a congru & cet entier mod €; alors on a. N, désignant la

norme relative par rapport a c(%),
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c’est-a-dire
’ (x—ar)l—u*=o, (1H+1);

.

on a donc g'—;—i = g%% =1, ce qui achéve la démonstration du théoréme 149.

Le théoréme 149 nous fournit un moyen simple de distinguer, dans le cas parti-
culier des corps ¢(M, ) et ¢(%), les trois sortes d’idéaux premiers indiquées au
théoréme ¢3 pour un corps supérieur cyclique relatif de degré relatif premier.

CHAPITRE XXIX.

Résidus et non résidus de normes d'un corps kummerien.

§ 129. — DEFINITION DES RESIDUS DE NORMES ET DES NON RESIDUS.

Soit, comme au paragraphe 125, u. un nombre de c¢(%), tel que M:\l/; ne soit
pas dans ¢(Z) et soit ¢(M, ) le corps kummerien déterminé par M et {; soit Ne(A) la
norme relative d’'un nombre A de ¢(M, ) par rapport a ¢({). Soit  un idéal premier
quelconque du corps circulaire ¢({) et v un entier quelconque de ce corps. Si alors v
est congru mod & la norme relative d’'un entier de ¢(M, {) et si, en outre, on peut
trouver, pour une puissance de w aussi élevée qu'on le veut, un entier A du corps
c(M, {), tel que 'on ait v= N¢(A) suivant cette puissance de w, jappellerai v un résidu
de normes du corps kummerien mod tv. Dans tout autre cas, v sera non résidu de
normes du corps kummerien mod w .

§ 130. — THEOREME SUR LE NOMBRE DES RESIDUS DE NORMES. — IDEAUX DE RAMIFICATION.

On a I'important théoréme suivant :

TukorEME 150. — Si o est un idéal premier du corps circulaire c(t), ne divisant
pas le discriminant relalif du corps kummerien c(M, %), tout entier de c({) premier a
est résidu de normes du corps kummerien mod 1.

Si, au contraire, w est un idéal premier du corps circulaire c¢(t), diviseur du discri-
minant relatif du corps kummerien c¢(M, t), et qu'on désigne par e, dans le cas de w=|=1,
un exposant posilif quelconque, et, dans le cas de w = 1. un exposant quelconque 1,
il y a exactement un ™ de {ous les nombres de c({) premiers & w et incongrus mod w’,
qui sonl résidus de normes mod w .
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Démonstration. — Soit d’abord  un idéal premier de ¢() différent de [ et ne
divisant pas le discriminant relatif du corps ¢(M.¥); il y a deux cas & distinguer,
suivant que w est décomposable ou non dans ¢(M, ¢). Dans le premier cas, soit 3 un
idéal premier facteur de v dans c¢(M, ). En nous reportant a la démonstration du
théoréme 148, nous pouvons, sans diminuer la généralité pour cela, admettre que p,
et par suile aussi le discriminant relatif du nombre M:\l/; par rapport a ¢(%), ne
sont pas divisibles par 28 il y a dés lors certainement dans ¢(M, £) un systéme de [

entiers A,, ..., A, vérifiant les congruences

A, + AM + ...+ AMA

= v,
A+ AM  +oF A =,
A +ACM + o FACME =1, ) (W)

A+ AEM A A =
Or, tout entier du corps ¢(M, ) est évidemment congru mod B a un entier de ¢({);

en posant
A=, A=y, ..., A=2q, (W),

a

<

,» --+» o, ¢tant entiers dans c(?) et

A=, +o M+ ... + QIMI_",

10

on en déduit
=A, 1=8SA, ..., 1=5"1A, (W);

et en multipliant, on a v= N¢(A), mod &, et par suite aussi, mod . Ceci démontre
dans le cas présent la premiere partie du théoréme pour le cas de e==1. Pour passer
aux cas de e >>1, supposons que 1'on ait v =j= N(A), mod w°, et posons alors
v ,
m:l 4+ w. (W),
o ¢tant un entier de ¢({) divisible par w, mais non par w*. L'entier B=A(1 + *v),
ou [* est un entier rationnel vérifiant la congruence {I*==1, mod w remplit alors la
condition v==N¢(B), mod w*. En continuant d’employer ce procédé, nous arrivons
finalement, pour toule puissance w°, & un entier de c¢(M, ¢), dont la norme relative
par rapport a ¢(¥) est congrue & v mod w°.
Soit, d’autre part, v indécomposable dans ¢(M, {): nous pouvons encore supposer
p. non divisible par i, et alors, d’apres le théoréme 149, w n’est pas résidu de
leme puissance mod w. D’apres les conséquences du théoréme 139, il y a dans ¢({

n(w) — 1

exactement r— résidus de [ puissances mod w premiers & ; en les

représentant par g,, ..., ¢,, les n(w) — 1 nombres

p i=1,2....,r,
pi .
g=o0,1,2,....,.0—1
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sont tous incongrus, mod v, car u n’est pas résidu de I*m® puissance, mod v, et, par
suite, tout nombre de ¢(¢) premier & v est congru, mod v, & I'un de ces nombres. En
posant g, =a!, ..., p,=2o!, mod W, «,, ..., % étant des nombres de ¢(¢), on en
déduit

e’ =Ne(, M%), (),

et, par suite, tout entier de ¢({) premier & v est congru mod w & la norme relative
d’un cerlain nombre de ¢(M, {); on en conclut, comme dans le cas précédent, que
pour tout nombre v entier de ¢({) premier a w, on peut trouver un entier de c¢(M, ¢)
dont la norme relative soit congrue & v, mod iv°.

Si nous voulons maintenant démontrer la premiére partie du théoréme 150 pour
le cas de =1, nous pouvons supposer u. premier a [; désignons par %" la plus
haute puissance de ) contenue dans u/~'— 11, m étant dans tous les cas >1, el
posons

:Llﬁl =1+ ai”, (Im_H)y

a élant un entier rationnel premier & /; a* étant alors un entier rationnel, tel que
aa*= — 1, mod [, en posant u* = p*~!, on a

(72) =1 —on, (),

D’autre part, on a les congruences suivantes, ou g est un entier positif quelconque
et & un entier positif quelconque premier a /:

((r— W =1 4 N

_3 A
(/ ) ? (I - )\g-H)hl =1+ 1y\aad )

(Il»!‘gvi—i) .
Comme le discriminant relatif du corps ¢(M, ¢) par rapport & ¢(?) ne peut, dans le
cas actluel, contenir le facteur I, on a nécessairement, d’aprés le théoréme 148,

m> ().

(*) N. T. — En effet, d’aprés le théoréme 148, on doit avoir

p=c, (1)
d’ou
pi =t (1
mais
=1, (0
donc

=1, (1) pt=a, (1)
ainsi, dans
y.l_" =1+ai", (I
on a

m> 1.
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Soit d’abord m=1{. On déduit alors facilement (*) des congruences (72) et (73)

que pour tout entier positif g on peut trouver dans c(¢) un entier «, vérifiant la
congruence

e

[ — N ~ g Ly-g-—1
yI=1—xr+1", ).
1~ 11— M

9 [ ¥ — 9
En posant alors M* = \/u* et Q =t

> (), est toujours un entier de ¢(M, {)
etona

N(Q)=1—2, ().

De la résulte immédiatement (2) que tout entier v de c() vérifiant la congruence
v=1, mod [, est résidu de normes du corps ¢(M, {), mod {. On léve facilement cette

() NNT. — On a

* 51
V.

=1 —u, (1.
avoir

Mais en multipliant p* par une série de puissances /imes convenables (1 — A*+1)l¥  on peut

(T — W =1 — ),
Soit, en effet,

(Ilrky'i—-i) .
pre= 1 —

en multipliant membre & membre cette égalité et la congruence

(I . ){”")l"’E i + y)\I+J" (II+.t+1>
on obtient la congruence

pHa =0y =1 — 3 Ty, )
d’ot en posant z=F et y=—=, (I)
S kAN LK+
i — 1Y = —av, (17T
Posant alors o . e
{J‘** — {L*(I P )\ -t l)[y: I — A + X*l\ R+ l’
on aura de méme

pH = = N, (1R
et ainsi de suite, jusqu’a avoir
T — 2y =1 =2, (179,

Mais alors en multipliant membre & membre cette congruence et
- RNy A 14-g+
(=M= 1 -+, (1"
on aura

p(— Y I — Ay =1 — 0 4, (Y
%, =(1 — WO .

(2) N. T. — On a successivement

v=1

=0=N(0, (O

1 —a) = (1 — % = N(Qa1), (I7)

vET — ) — a)t = Ne(Q) (1 — b1 = No(Qa) (1 — 1)br = N, (Qu Qby),
en posant

vy =

()
Ne(Qay=1 — an — a)* + b3,
et ainsi de suite.

)
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restriction de v=1, mod I. En effet. v étant un entier quelconque premier a I, congru
mod [ & l'entier rationnel a, posons v*=a"y, ¢* étant un entier tel que aa*=r,
mod I; alors on a évidemment v = 1, mod [, et, d’autre part, v et v* sont en méme

temps résidus ou non résidus de normes du corps ¢(M, {), mod [.

N
Soit ensuite dans la formule (72) m>1. et, par suite, gi;— =1; nous pouvons

alors, g étant un entier posilif quelconque, trouver deux entiers o, et «_,, de ¢(?), tels
que l'on ait
vl =1+ e (! e,

74 . , ‘
(/ ) . U,*ll =1 + )\lrl _{_;\l - 2’ ([l*f—g‘3>‘

Nous posons, conformément au théoréme 149, (=€ ... € @ @' . étant
des idéaux premiers distincts du corps ¢(M, {). Les deux nombres

* N *

11— agM T—2,, M

A(/:—‘—, Agu:

A

L. . s 7 N e e .
ou M*= \/p.’"‘ sonl des entiers, et comme 'on a N (A))= — %, mod I, A, est divisible
par un des idéaux premiers facleurs de [, € par exemple, ct contient ce facteur au

premier degré et aucun des autres. Des formules (74) résulte

ll

ll 7‘l ([I e—2> ,

g g+1°

ct nous pouvons alors supposer que ., soit choisi dans la série des nombres o

anh
v vl—1 P ’ i J— 1 (2 v ) —
Lagpp ooer & oy, de fagon que lon ait o, =, ,,, mod [%, et, par suite. A=A,

mod [. D’aprés la derniére de ces congruences, A, est aussi divisible par €, mais

g-+1

non par €, ..., € ¢t comme on a aussi Ne(A,)=—1 mod I, A, nest divi-

sible que par la premiére puissance de €. Nous pouvons, d’aprés ce qui a été

déja démontré, mettre le nombre fractionnaire —Z- sous forme d’une fraction dont

g-+1
les deux termes seront premiers a [. En posant —Ai'z Q,, mod 1°", de fagon que Q’
soit un entier de ¢(M, £), on a o
Ne(Ay) :
Ne(Q)=—"2_ =1 417, (M.
@)=F 0 Gy

Une telle formule étant possible pour tout exposant positif g, on montre comme
plus haut que tout entier premier & [ est résidu de normes du corps ¢(M, {).
Nous passons maintenant & la deuxiéme partie du théoréme 150. Soit d’abord
un idéal premier de ¢({) différent de I, divisant. le discriminant relatif de c¢(M, 2);
nous avons alors, d’aprés le théoréme 149, w = W, ou W est un idéal premier de
¢(M. §). Tout entier de ¢(M, ¢) doit alors étre congru & un entier de ¢({), mod ¥B. Si
alors un nombre donné v de ¢(z) premier & w doit étre congru & la norme relative N,(A)
d’un entier A de ¢(M, ¢), et si nous posons A=x«, mod 2, il en résulte nécessai-
Fuc. de 7., 3¢ S., II. 46
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rement v =14, mod Y, et par suite, mod w, c’est-a-dire que v est résidu de fitme puis-
sance, mod w. Inversement, si un nombre v de ¢(¢) est résidu de [itme puissance,
mod v, v est aussi évidemment congru & une norme relative Ne(A), mod w. Nous en
concluons que les résidus de ™ puissances, mod v, donnent aussi tous les résidus
de normes, mod w du corps ¢(M. %).

Il reste enfin & traiter le cas, o w=1 et ou [ divise le discriminant relatif de
¢(M. 9). On a dans ce cas [ = €', € étant idéal premier dans ¢(M. ), et nous pouvons
(vu le théoréme 148) supposer que le nombre p, vérifie, soit la congruence

p=>xr (1,
soit I'une des suivantes
p=a1 4, (Y,

m étant égal & 1, 2, ..., I—1(1). Nous chercherons ensuite dans ces deux cas quels
sont les nombres de ¢(%) qui sont congrus & la norme relative d’'un nombre de (M, 0,
mod """ ou mod I respectivement, et nous tirerons de 1a facilement le nombre des
résidus de normes incongrus pour n’importe quelle puissance plus élevée de [ .

Dans le cas de p.=). mod I*, M est divisible par €, et non par €, et I'on a les

congruences
Ne(1 +M) =142, (),
coed. Ne(U M) =14+242, 17,
Ne(T4+ M) =1 +7% (),
(’75) c.-a-d. NC(I —+ Mz) =142+ )\3927 (Il'rl) ,
Ne(r +M™) =1+ 217, (1,

c-d-d. Ne(r+M™)=r1+ 0" +d . (I,

ou o,. ¢, --., p,_, sont des entiers de ¢(%).

() N. T. — On a, en effet :
soit . =2ku!, L premier & /, p/ premier a X;
soit u premier a X et =af, ([m), m<l.

Dans le premier cas, on déterminera deux entiers a, b, tels que

ak + bl=1,
et on prendra . b4
W= AP = A,

puis on déterminera " de fagon que p''u'=1, (1), eton prendra
p =M=, ().
-y . . o .
Dans le deuxiéme cas, on déterminera §§ de fagon que fa=1, (), d’ou
[ — sm Mm—-1
Fu=1+ar”, (A",
et enfin on prendra p’ = (§'u)¢", «" vérifiant la congruence

afa=1, (1.
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Enfin, 'on a
(76) NG M) =1, (@

pour {=r1,2,3, ...; g=1,2,.... [ —1. Or, tout entier A du corps ¢(M, {) premier
A @ vérifie évidemment une congruence de la forme

A=a(t+ M4 (+ M) (4 MY,
(M) (1AM o (1 WM,

(M) (1M "

. (I + )‘lMl_l> -, (II—H)’

ou a est I'un des nombres 1, 2, ..., [—1 et les (I 4 1)(l—1) exposants a,,

l . , . 7 .
a,y ..y ail, sont des entiers déterminés de la suite o, 1, 2, ..., [— 1. Des con-

gruences (75) et (76) résulte
Ne(A) = al(l + A4 Ko )(1 + N4 W) (1 4 W ‘Alp,__‘)al—’ , (I["‘").

L’expression du second membre représente, lorsque a prend les valeurs

1,2, ....,l—1eta,a,..,aq_, séparément, toutes les valeurs o, 1, 2, ..., [—1,

. -
(I— 1)I"™ nombres, visiblement incongrus mod ['"*. Alors tout nombre de ¢(¢)
premier a [, congru mod [*™* & la norme relative N, (A) d'un nombre A de ¢(M, {) est
nécessairement congru mod ['"* & une expression de cette forme et inversement, on
conclut de (75) que toute expression de cette forme est congrue mod I'™* & la norme
relative d’un nombre de ¢(M, {). A I'aide des congruences (73) on reconnait que deux
nombres de ¢({) premiers [, congrus mod '™, sont en méme temps résidus ou non
résidus de normes mod I. Le nombre des résidus de normes mod [, premiers a [ et
incongrus mod """ est donc exactement égal & ({— 1)l'™, cest-a-dire au I*™ des

-1

nombres de ¢(¢) premiers & [ et incongrus mod [, et ce résultat peut s’étendre
immédiatement aux puissances [°d’exposant e >[4 1.

Pour abréger, nous ne traiterons ici que le cas le plus simple de ceux qui sont
encore possibles relativement a w; c’est celui de . =1+ A, mod [*. En posant alors
Q=M —1, Q est un entier de ¢(M, {) divisible par €, mais non par £*, et en

remarquant que N, (Q)=2X, mod [*. on trouve, par un calcul facile (*), les
q q p

(1) N. T. — N¢(1 + Qi) est égal & — fi(—1), si I'on représente par fi(xr)=o I"équation,
de premier coefficient égal a 1, dont les racines sont + Qi, 4 (sQ)#, etc. Or, cette équation est
la transtormée de 1’équation f,(y) = o par la substitution x=+4 yi. On a f,(y) = (y + 1)} — u,
et on en déduit que

Ji@) =o'+ Iz (@) — (n.— 1)},
d’out

—fi(—D=1+2x, (I,
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congruences
Ne(1 4+ Q) =1+2, (™,
c--d. Ne(r +Q) =144 PSP 1y,
Ne(t + Q% =147, 1y,
(77) c-i-d. Ne(1 + Q%) =142+ YA (1,
Ne(r + Q% = 1 4=, (-,

Ved-d. Ne(rn + Q) =1+ 32 400 l_,, (1Y,

oW, o, ..o, 5., sont des entiers de ¢(2). On a de plus

Nc(l + Ql—‘l): I —I— Ei + 22 —{-— + E[_i + Nc(Ql_i)
en posant pour abréger

8, = QR L (SQ) 4L (S=1Qy-t,
¥, =Q1(SQ)Y-! + QEI(STQ)t 4 L+ (S=2Q)-1(S-1 Q)
8, = QN (SQY (ST Q- L (83 QY—1 (S Q)i (S—1Qy-1,

On a de suite ¥, =1. Chacun des termes 4 additionner dans I, X, ..., ¥, est
divisible par €', on peut de plus les grouper en [ séries, se déduisant I'une de I'autre
par les substitutions 1, S, 8%, ..., S"'; en mellant alors un terme quelconque sous
la forme 2P, ® est un entier de c¢(M. ), et peut, par suite (démonstration du
lemme 23), se metlre sous la forme d’un polyndme entier en Q et par suite aussi
en M. dont les coefficients sont des entiers ou des fractions de ¢(%) & dénominateurs

toujours premiers & [. En posant donc & = F(M), I'ensemble des ! sommes peut
s'écrire
MEM) + FEM) + ... + F=M) )

la parenthése est, on le voit aisément, toujours congrue & o, mod /; les nombres
X,, X,, ..., ¥_, sont donc tous congrus & o, mod I}, et I'on a
(78) Ne(1 + Q) =1 414+ =1, (I).

On obtient enfin facilement les congruences
(79) Ne(r +7XQ =1, (1),
pourl=ru, 2, ..., l—15;9=1,9,..,{—1.

Maintenant tout entier de ¢(M, ) premicr & € vérifie évidemment une congruence
de la forme

A=a(r 4+ Q)% (1 4+ Q%% e (1 QYU
’ N r ’
(1 4 2Q)"s (1 + 202" v (T2,

1—1)

(I + )\l—lf-l)u{l ([ + )‘/—Kla)a‘zl—f) (I + P L}I—l)uy_“‘i”, (I[),
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\ (1—1)
ol a est un des nombres 1, 2, ..., [ — 1 etou lesl(l — 1) exposants a,, a,, ..., a4 sont
des nombres déterminés de la suite o, 1, 2, ..., [—1. On en déduit, vu les con-

gruences (77), (78), (79),
Ne(A)=da'(1 + ) + 7\'91)"4(1 4+ 24 7\392)"2 I e L Pl—e)al_2 - (1.

Le second membre représente alors pour les [ —1 valeurs 1, 2, ..., l—1de a et
les [ valeurs o, 1, 2, ..., | — 1 des exposants a,, a,, ..., a,_,, (I—1)I"* nombres, qui
sont premiers & I et incongrus mod I'. A I'aide de la congruence N.(1 + NM)=1+N,
mod [** et des congruences (73), nous en concluons que le [*m de tous les nombres
premiers i [ et incongrus mod [' donne tous les résidus de normes de c¢(M, {), et
nous étendons ensuite ce résultat au cas des puissances [° & exposant e=1+1
ou >I1+r1.

On obtient le méme résultat par des calculs analogues lorsque p. est =1, mod I*,
et le théoréme 150 est ainsi complétement démontré. Remarquons pourtant que nous
nous arrangerons dans ce qui suit pour n’employer ce théoréme que dans le cas
p.=1-+ 1, mod I*, dont nous avons fait la démonstration en détail.

Le théoréme 150 conduit & une propriété nouvelle et essentielle des idéaux pre-
miers facteurs du discriminant relatif de ¢(M. ) par rapport a ¢({). Cette propriété
correspond dans une certaine mesure au théoréme sur les points de ramification
d’une surface de Riemann, d’aprés lequel une fonction algébrique a dans le voisinage
d’un point de ramification du /"¢ ordre une représentation conforme de I'angle total
sur le /*me de ce dernier. Pour cette raison, j'appelle les facteurs idéaux premiers
du discriminant relatif de c(M. {) par rapport a ¢({) des idéaux de ramification pour
le corps de ¢(M, ); « facteur premier du discriminant relatif », « idéal invariant »,
« idéal de ramification » sont donc ici synonymes.

v, o)
w )

§ 131. — LE SYMBOLE g

Le théoréme 150 nous fait voir la possibilité de répartir les nombres du corps
¢(%2) incongrus mod ¢ (e > [ dans le cas de w=1) en [ sections, contenant toutes le
méme nombre de nombres et dont I'une comprend les résidus des normes mod w.

.y . - - . v,
Pour mettre en lumiere cette répartition, JlIlll“OdlllS un nouveau symbole ;———;,
i w

faisant correspondre comme suit une racine /™ déterminée de 'unité & deux entiers
distincts v et v de ¢(%) et & un idéal premier 1 quelconque de ce corps.
Soit d’abord w=|=1. Alors si v est divisible exactement par w’ et u. par w’ on

a

. v , Lop
formera le nombre » = — et on mettra » sous forme d’une fraction -~ dont les dcux
1.

~
i 9
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lermes seront premiers & w. Le symbole g%g sera alors défini par la formule
fre) ;_ —jelie)”
Cw ) (wi ™ (w) ]
On obtient immédiatement les régles simples
[ VYo ] (v, v (v o
w i |w | w
| ot g
w T (w )\ w
(v 0] fv] _
—_ —_ =1,
) w |

ol v, v,.v,, i, u,, p, sont des entiers quelconques =j=o de ¢ (). ‘
Pour définir le nouveau symbole dans le cas de w =1, faisons les remarques
suivantes :
Etant donné un entier o de ¢({) vérifiant la congruence w =1, mod [, et si 'on
pose
o=c+c{+ ..+ 02,

de fagon que c, €, ..., C,_, soient des entiers rationnels, ces derniers vérifient la
congruence
c+c,+ ...+ =1, (modl).
En posant alors

c+c¢, + ... +cCys—1
l

o(x) représente un polyndéme a coefficients entiers de degré I — 1 et l'on a

o(X)=c+c,x + ... + ¢,y — (T +x+ ...+ at,

o(n)=1, wl)=wv.

Ce polynéme s’appellera le polynéme adjoint a Uentier v. Nous écrirons encore

9 v
(81) [d_lodgv‘g”*@) — 19(s),

r=0

expressions introduites avantageusement par Kummer pour abréger certains calculs.
[(Kummer 2.
Si le nombre » =1, mod I, est mis d’une facon quelconque sous la forme
wv=a+al+..+a7,

ou a, a,, ..., a, sont des entiers ratlionnels,

O@)=a+ax - ..+ ax

est un polynéme de degré ¢, ne vérifiant pas en général I'égalité w(1)== 1, mais véri-
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fiant toujours la congruence w(1)=1, mod I, et qui est par suite premier & / pour
x—=1. On a les congruences suivantes :

19 oG v
[£15557) =i
(81) g=1,2 ..,1-2).

“d—" log (€' )1 = (o) + fﬁ(l), (mod ).

dv—t

Leur exactitude ressort de ce que I'on a

() = B(x) + T’( ZOW o a4 O@) (@ — 1),
81)" .
I —rv(l)v,_1

w(e)=w(e") + 7

(mod 0).

Dans la premiére égalité, O(x) désigne un certain polyndéme entier en x, et la se-
conde signifie que, dans les développements des deux membres de cette congrucence
suivant les puissances de v, les coefficients de 1, v, v* .,., v'~! sont congrus entre eux
mod [(').

v, p. étant deux entiers quelconques de ¢(?), tels que v=1, p.=1, mod I, nous

(v, )

définissons le symbole ? T comme suit :

\v ] = Z W )1 6) =2 () - =21 )l ),

A

(82)

(*) N. T. — Soit, plus généralement, w({) un entier de c¢({) non divisible par [, de sorte que
w(1) ne soit pas divisible par /, et soit w'({) le méme nombre exprimé d’une autre fagon; on

aura encore
d’ log o (") &’ log w*‘ (e")
[ dv? _] [ —] . (med ),

pour g=1,2,..,1-2
En eflet, soit

A)=a,+a{+..+d
la forme réduite de w({) et de w’(%), de sorte que I'on ait

1—.
o@)=(@+z+.. +27)Qx)+ Q),
1—
o' (@)= +x+ ... +27)Qx) + Q).
1+ a + ... + x!~! et ses [ — 2 premicres dérivées sont divisibles par / pour & =1 (A cause
de la congruence 1 + & + ... + 2= =[1 — ]!, mod /).
w(e’), w'(et), Q(e") sont donc congrus entre eux, mod /, ainsi que leurs / — 2 premiéres
dérivées, et il en est par suile de méme des dérivées logarithmiqnes.
Si deux nombres «(%), ((¢) sont congrus, mod /, on a évidemment aussi pour loute valeur

de g
“d’ log «(e") _ [d°log B(e"
L_—_dv” = I:———————dvg ] L (mod 1).
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De cette définition découlent immédiatement les régles

i §V1Va:P‘2:§v,,p) Voo W
\ 1T C Ty
83 /I v, p‘ip‘a€:§vi V,;%V, {ng
) | § [ { r
/\uiﬂvﬂw:,
AR ’

otv, v, v,, w, u,, v, désignent des entiers quelconques de ¢({)= 1, mod [. Si r est
une racine primitive. mod [, et s=({: ") la substitution correspondante du corps
circulaire ¢(%), on trouve aisément la formule

' %ng

Si v et 1. sont des entiers quelconques premiers a I du corps ¢({), je définirai le

V. o
symbole il

(

{8y, sp
[ 1

(84)

par la formule

Dans le cas ou I'un des nombres v, p. ou tous les deux sont divisibles par I, voir
les remarques a la fin du paragraphe 133.

\
132. — LEMMES SUR LE SYMBOLE g—’&{ ET LES RESIDUS DE NORMES MOD [.
7T

LEMME 24. — o étant un entier de ¢(Y) congru a 1, mod I, la norme n(w) de w
dans ¢({) vérifie la congruence ‘

~zu—”((.,)zl—_+(“’), (mod J).
[Kummer®.]
Démonstration. — Soit «(x) le polynéme adjoint & w, et soit
F(z) = Ho(t + x(— 1)),
(9)

le produit étant étendu aux valeurs ¢ =o, 1. ..., [— 1. F(x) est un polyndéme en x
A coefficients entiers et les coeflicients de tous les termes divisibles par x! sont évi-
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demment divisibles par X%, et par suite aussi, & cause de la rationalité des coefficients,
par . En développant suivant les puissances de x, on obtient ensuite

. i d log w(x)
(logw(l +axG—n)= A x[ dx ]:
Gt [ Lo o]
(85) AT I R
(Ez— 1) d—' log w(x)
+(l_,)tx I: do' ! ‘I i

2 wl—1

En posant successivement dans ce développement =1, {, % ..., ("' et ajou-

tant, on obtient, vu

C—1) +@C—1) + .+ =0 = (=)L,

G=1,2, wn, l—1)
I'égalité
( x[dlogw (bc)"l x*[7d log w ()
\ (logF@) =1 —4 [ 7 PRy drt .
(86) ( 't [d'1log w(x) 2
Y 2 !
~ +(1—1)![ da = I=|5+xG’

ou x'G représente I'ensemble des termes du développement divisibles par «'.
En posant, en second lieu, dans le développement (85), Z=¢" et prenant la
(I — 1)¥¥me dérivée par rapport a v, celle-ci est égale, pour v=o0, a

/I:d"' log w(1 4+ x(e" — 1)) dlogm ()
! dv—! 1! et
| + 2=t —a . ! e fd‘ log w(x)
2! = d$2 x=1
=39t 3. ! d® log w(x)

+ 31 [ P - + ..
8
(87) (=0 = — (=1 = log u (@)

(l—n)! dx'~! o=t

_% |:d log (.)(ac)] - I:cf log w(x) 4o

dw r=1

g axt |’d"‘ log o (x)
| (—'L  dx o=t

En comparant les formules (86) et (87), on obtient

ll—ll v
log Flo)= —1 [( 08 m<clhj__lw(e D) . (mod P),

(mod ).

c’est-a-dire que les coefficients de x, «°, ..., #'~! dans le premier membre sont con-
grus mod I* aux coefficients correspondants du second membre, et si nous passons
Fac. de 7., 3¢ S., 1I. by

1
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aux puissances de e nous obtenons, d’abord dans le méme sens, puis, vu la remarque
faite au début de cette démonstration, sans restriction. la congruence des deux poly-
nomes & coefficients entiers

. d—log w(1 + x(e" — 1))
Flx)=1—1 I: = ) (mod #),
et par suite, pour x =1,
n(w)=1—0L1""w), (mod P,
ce qui démontre le lemme 24.
LeyuEe 25. — Si les entiers v, p. de ¢({) vérifient les congruences v=1, mod I, et

p.=1 + 2, mod [, et side plus v est congru mod ' & la norme relative d’un entier A

. o~ oyt T N
du corps kummerien c¢(M, %) défini par M :\/p,, il existe un polynéme f(x) de
degré [ — 1 a coeflicients entiers, tel que I'on a

S(H>o,

n(f(§))=r1, (mod F),

v=/[(y), (mod 1. [Kummer?®.]
Démonstration. — Vu la démonstration du lemme 23, tout entier A de ¢(M. &)

peut étre mis sous la forme

M=)+ ey (M=)
B s’

A=

et par suite aussi sous la forme

A__!a'l_,B,M +"' _}-131-4N|1_'l

X ’
o

Yo Yar ooos Tieyr 8+ £ B, ..., B, ¢lant des entiers de ¢(), 3 premier a [. Ce dernier
fait entraine

A=ac+a M+ ... +2 M A,

@, o, ..., 2,_, ¢tant des entiers de ().
Soient alors

a=a’, o, =a, ..., u,_,=aiy, (modI),

a*, a*,, ..., étant des entiers positifs; posons

Si@)=a*+a‘x + ... +a_x.
Comme on a, dans ¢(M, &), I=2 et M=1, mod £, il en résulte

A=a+o,+...+ o, =a +a+...+a’y, (mod@).
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Si maintenant on a, selon Ihypothése de I'énoncé, N(A)=v, mod I, on a de plus
v=NA)=a"+a+ ... +a =1, (mod®),
et par suite
(88) @+ a+ . Faa=1, (mod 1).
Par suite, f*({) est un nombre de ¢(¢) congru & 1, mod L. On trouve alors aisé-

ment un entier positif b, tel que la norme du nombre SO =S*%) + 1b dans ¢({)

vérifie la congruence
(89) n(f())=r1, (mod?l),
le polynéme entier
fx)y=r )+ lb=a+ax + ...+ &

I—1

remplit alors les conditions du lemme 25. Car on a évidemment A=f(M) + *B,
B étant un entier de ¢(M, £). On en tire facilement (comme paragraphe 130)

(90) V= N((A) = N6<f< M)) ’ ([I) .

D’autre part, a cause des congruences

d=a, d=a, .., a a,,, (modl),

L—1

ll

on a identiquement en x une égalité
(91) S@f(w) . f( ) = f&) + F ().

ot F(x') est un polyndme en «' & coefficients entiers.
On en tire pour =1, & cause de (89), la congruence

SO =f(1) + 1K), (mod l), c.-a-d. F(1)=o0, (mod /).
En faisant & = dans (91), on obtient
Ne(S (M) =/(0) + IF(),
et, par suite, comme on a F(y) = F(1)=o, mod [,
Ne(f(M)=/(p), (mod ),

c’est-a-dire, & cause de (go),
v=/f(p), (mod I}).

Ceci joint & (8g) démontre completement le lemme 25.
LemME 26. — p. et v étant deux entiers de ¢(¥) tels que I'on ait v=1, mod I, et

w=1+ % mod [}, et v étant de plus résidu de norme, mod [, du corps (M, 0

Lo 1/~ .
défini par M :\/g, on a toujours

l

~
&

—

[Kummer?®.]
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Démonstration. — La formule connue de Lagrange pour l'inversion d’une série
de puissances donne immédiatement I'identité suivante :

AR,
) O TR
9 [ AV el do— —’

dans laquelle F(v) est une série quelconque de puissances de v, <(v) une série de
puissances de v dont le terme constant est =j= o, et V une variable liée & v par
I'équation Vg(v) —v=o0.

Soient alors v(x) et u(x) les polyndémes adjoints aux nombres v et .. Comme v
doit étre résidu de normes, mod I, du corps ¢(M, %), il existe (lemme 25) un poly-
nome f(x) de degré | — 1 & coefficients entiers, tel que I'on ait

(93) n(fO)=r1, (mod F)
(94) v=f(s), (modl),
et f(1)>o.

Posons alors
F(v) = log f(u.(e"),
YV =log p.(e") s
»
log u.(e")’

o (v) =

Ces fonctions ne seront envisagées que pour v=o, et les logarithmes seront déter-
minés de maniére & étre réels pour v =o.

Sinous remplacons o, ©(x) et v dans la deuxi¢me formule (81)’, paragraphe 131,
par f(%), f(x), ¥ respectivement, on en tire

[ d- Cl;;c;j( )

=)+ '———l& (mod 1).

Le lemme 24 donne, vu (93), la congruence

l(/-n)(f(:)) =o, (mOd 0,

et I'on a, par suite,

(95) d;;[l‘-(lv):l - |:d - ;;r[r {(e >j|‘=0 ALY —lf(l) , (mod I),

D’autre part, on a, vu (94), la congruence (*)

Sy =v(e") + f<—1>l:—l- v, (mod 1),

(1) N. T. — On I'obtient en partant de la deuxi¢me formule (81)", paragraphe 131, en remar-
quant que, a cause de p=1+ X, ([?), on a : p(1)=1.
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qu’il faut entendre en ce que dans le développement par rapport aux puissances de v

les coefficients de 1, v. ..., v'™* sont congrus, mod [, de part et d’autre, et on en

déduit le développement

dr@) __ ., @y D gl ”_2
——Jlj—zl(})+l(i) +l())2!+...

1!

4+ (Z”—i)(v) 4 I —lf(l)> 7 v__;) P (mod 1),

congruence qu’il faut entendre comme exprimant la congruence des coefficients de

(96) (

l—2

I, v, 0% ..., 0
Considérons enfin la fonction g(v). Comme on a p.=1 + %, mod I*, 4(v) est une
série de puissances dont le terme constant est = — 1, mod /. Puis on trouve facile-

ment
(z)'=s®Y=¢(0)=—1, (mod]),
en ce sens que les coefficients de 1, v, ..., ™ sont congrus, mod [, de part et d’autre;

puis toujours dans le méme sens

— ()~ =" (mod ),

et enfin, toujours dans ce méme sens, le développement

( () = IV (w) - 1¥(y) % T 19w 3”—' + ..
\

w7 e 1) U (mod 1)
A=l ’
La réunion de la congruence (95) et des deux développements (96), (97) avec (92)
donne, comme {Y(u)= —1 et que (I —g)!(g —1)! = (— 1), mod I, pour

¢g=—1, 2, ..., | — 1, la congruence suivante :
l“_”(v)l“)(y.) — l“‘”(v)l")(g) T l‘”(v) l“‘”(y.):o, (mod 1),
{¥: 1)

c’est-a-dire d’aprés la définition (82) du symbole I § 131,

)

ce qui démontre le lemme 26.

, , (v,
§ [33. — DISTINCTION DES RESIDUS ET NON RESIDUS DE NORMES AVEC LE SYMBOLE 5‘—‘ .
n

THEOREME 151. — v, u étant deux enticrs quelconques de ¢(%), mais \I/; n’étant
pas dans ¢(%), et v étant un idéal premier quelconque du corps circulaire ¢(), v est
résidu ou non résidu de normes, mod , du corps kummerien ¢(M, {) défini par
M :\l/; suivant que l'on a

Vs

[ w

E‘_—:I ou ==1.
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Démonslration. — Soit d’abord w =]=1 et ne divisant pas le discriminant relatif
*
du corps c¢(M, ¢). Si p* est un entier de ¢(Y), tel que 2 soit la gime puissance d'un
, g
s P _ (v, p
) [ w
admettre ici que p. n’est pas divisible par . Distinguons deux cas, suivant que w
est égal dans ¢(M, {) & un produit de ! idéaux premiers ,, ..., W, ou que W est
lui-méme idéal premier dans ¢(M, {). D’aprés le théoréme 149 on a, dans le premier
cas il 1, dans le second (i
(w) [
Dans le premier cas déterminons un entier A de ¢(M, ) divisible par ¥G, mais
non par B} ni par aucun des idéaux W, ..., W, ; alors la norme relative z = N¢(A)

contient v exactement au premier degré. Si alors w’ est la puissance de w contenue

nombre de ¢(%), on a toujours 3

g. On peut donc, vu le théoréme 148,

:I: 1 et :’:: [o)

v s .
dans v, x=—; peut se mettre sous forme d'une fraction dont les deux termes
o

sont premiers a v et sont, par suite (théoréme 150), résidus de normes du corps
c¢(M, &), mod w. Il en est donc de méme de v. Comme, d’apreés la définition du para-
graphe 131,

.\V___
(wi "

le théoréme 151 est exact dans ce premier cas.

{ v b
[ w

Dans le second cas, la norme relative d’un entier A de ¢(M, £) est toujours divi-
sible exactement par une puissance de v dont I'exposant est un multiple de . Soit
encore w’ la puissance de v contenue dans v; si b n’est pas multiple de [, v ne peut

donc étre résidu de normes, mod tw ; dans ce cas, on a d’ailleurs
by—1

\vs 2
[ w

=H=1.

o\
_(m

Si au contraire b est un multiple de [, et que = désigne un entier de ¢({) divisible
v r .

par v, non par iv’, nous posons z=—; et nous voyons que v est résidu de normes,
%

mod tv, comme dans le premier cas; d’autre part, on a maintenant

by

N R
_(wg =1.

(v, v

[ w

Le théoréme 151 est ainsi démontré dans ce second cas.
Supposons maintenant que le discriminant relatif du corps ¢(M, {) soit divisible
par l'idéal premier w; w doit étre ==1. Supposons que v soit divisible par w’ ct

a
. . v
. par w“; alors @ n’est en tout cas jamais multiple de /. Le nombre = —; peut se

Rl

mettre sous forme d’une fraction E, dont les deux termes sont premiers & . Le
c
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11—

nombre ¢5'' est un entier non divisible par w ; d’aprés la démonstration du théo-

réme 150, pour qu'un tel nombre soit résidu de normes, mod w. il faut et il suffit

25"

qu’il soit résidu de [*m* puissance, mod w, c’est-a-dire ici, que _‘”_S: 1 et par

. A .
suite que )——‘—g =—1; le théoréme 151 est encore exact dans ce cas.
w

{

Soit enfin w =1. Nous envisagerons seulement le cas oi l'on a p.=1 + %, mod I*
(le seul dont nous aurons besoin dans la suite; les autres se traiteraient d'une ma-
niére analogue). Pour la démonstration, nous ferons encore la restriction (non essen-
tielle) v=1, mod . Comme on 2 v.=1 + %, mod I?, on peut, d’aprés le théo-
réme 150, former exactement /™" résidus de normes v* du corps ¢(MZ%), mod [, résidus
congrus a 1, mod I, et incongrus entre eux mod I*+!. D’autre part, tout résidu de

normes v* de ¢(M, 2), mod I, pour lequel on a v*=1, mod I, remplit (lemme 26)

v vl
oy

A cause de

la condition

My=—r, \
[V (p— @) ] (I—2) /o N\ —
M"i—D=o0, "1 —l=o, .... ' —D=o, ((modl),
IU—H([ _ [)Eil—l) =_1,
l
on obtient, vu (82) :
, 1— 1, w
(98) 3 (=

ou z est un nombre de la suite o, 1, 2, ..., [ — 1; alors on a évidemment

jo (1t — 0" ug_l.
I R ’

au contraire, on a toujours

g'/.(l — 7, p,s e
i =1

s \ /

lorsque x est un nombre de la suite o, 1, 2, ..., {— 1, =}=a. Si nous choisissons
ensuite un entier «’ de c({), encore congru & 1, mod I, mais non congru, mod I, &
aucun des ! nombres «, a(1 — ), a(1x —1)?, ..., 2(x — )™, les I nombres o/, «'(1 — 1),
o/(t —1)°, ..., 2/(1 — I))~* sont aussi tous incongrus entre eux, mod '+, et de plus
non congrus & aucun des / premiers nombres; parmi ces [ derniers nombres, il y en
a évidemment, & cause de (98), un et un seul — soit, par exemple, «'(1 — )* — tel
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. ar
(1 —1 ) . .
Z—(——I—);g =1. En continuant ainsi, nous voyons que le nombre des nom-

[\

bres v incongrus, mod I'*!, congrus & 1, mod [, et vérifiant la condition 3 Il =1,

est précisément I'~!, et comme ce nombre coincide avec le nombre trouvé antérieure- -
ment pour les résidus des normes v*, on voit qu’inversement tout nombre v possé-
dant ces deux propriétés est résidu de normes du corps ¢(M, £), mod I.

Le théoréme 151 est ainsi démontré complétement; & part que pour le cas de
1w =—=1[ on s’est borné aux nombres v, u, v=1, mod [, et p.=1 + X, mod {*. La res-

triction relative & v est évidemment facile & lever.

Du théoréme 151 résulte, a I'aide des premiéres formules (80) et (83), la formule

ywhop| _ p)
[ w ( w )

ou v est un idéal premier quelconque de ¢({) et v* un résidu de normes du corps
¢(M. &), mod .

, P . { v, u Lo
Pour définir maintenant le symbole 3 g dans le cas ot I'un des deux nombres

v, . ou tous les deux sont divisibles par [, il suffit de convenir qu’on a toujours les
formules
(v, w

|71

ou v* est un résidu de normes quelconque du corps c(\l/;, t) mod [. On en déduit,
en particulier (1),
{1 + a), n (o +a7\1)_
S

ra
)

Nous pourrions uniquement baser la définition du symbole ;v—’[——u sur les for-
mules
n(a)—I ,
‘ﬁ_:';?zyl()z gv’v?,uzz\vl,yegvg,;).)’
O R
(vSom) /v.p‘}\&j%_
q1§—" fyv 0y "
() N.T
-{—(l)\l,)\g_\)‘l—}—a)’)"‘
[ 1 o
v est ici divisible par [! et u par [°; donc
v’ 1
A:T—x—l—ax" c=1, 1+ axr,
(W1 4+ ad) (1 (1 4 art™! \[+a/,/\)_5’1+a/1,__va
A S Y I B N A S A T R A T R
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ou z est un entier de ¢(¥) premier & [, v* un résidu de normes de c(\l/;, 2;), mod [,
el v, v,, v, des entiers quelconques de c¢({) (voir § 166). J'ai pourtant choisi pour le
moment la définition (82), qui se rattache immédiatement aux développements de
Kummer.

Remarquons enfin que nous avons maintenant atteint le but fixé au début du
paragraphe 131; si, en effet, w° est une puissance quelconque de I'idéal premier
(avec e >>1 dans le cas ot w=1), on peut évidlemment diviser un systéme complet
de nombres de ¢({) premiers & w et incongrus, mod w*, en ayant égard aux valeurs

du symbole gi;;E en [ sections contenant toutes autant de nombres, 'une d’elles

contenant tous les résidus de normes mod w du corps ¢(M, ) se trouvant dans le

systéme.

CHAPITRE XXX.

Existence d'une infinité d'idéaux premiers ayant des caractéres
de puissances donnés dans un corps kummerien.

§ 134. — VALEUR LIMITE D'UN PRODUIT INFINI.

Aprés avoir, au paragraphe 128, obtenu tous les idéaux premiers d’un corps kum-
merien, nous sommes en mesure de faire pour ce corps les mémes recherches qu’aux
paragraphes 79 et 8o pour le corps quadratique. Nous commencerons par I'impor-

tante proposition suivante :

LemvE 27. — [ désignant un nombre premier impair et = un entier quelconque

2w

du corps circulaire défini par {=¢?, non égal a la [*™ puissance d’'un nombre de

¢(), le produit

1111
® (m)

I
; n(e)~

_ =
)

a toujours une limite finie et différente de o pour s =1; le produit II étant étendu i
(®)

tous les idéaux premiers de ¢(¢) et le produit I1 & tous les exposants m=1, 2, ...,
(m)

{— 1. [Kummer®.]
Fuc. de T., 3¢ S., II. 48 -
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Démonstration. — En envisageant le corps kummerien C = c(\l/ «, ;’) et désignant
ici la fonction {(s) du théoréme 56 par {¢(s), on a, d’aprés le paragraphe 27,
O | g—
GC — el
T m =N
le produit étant étendu & tous les idéaux premiers 9 de C et N(9) étant la norme

de 9 prise dans C. Si I'on ordonne ce produit par rapport aux idéaux premiers g du.

corps ¢({), dont proviennent les idéaux premiers 99, & chaque idéal p correspond
dans le produit (théoréme 149) le terme

I I I
o M e M e

suivant que l'on a

o
;g:I ou =o, ou =j=1 et 5= o.

Ecrivons ces trois expressions sous une forme commune :

1 II I
— o ) (pour m =1, 2, ..., I —1);

I n‘(”) (m) I— % i n(p)—s

nous obtenons ainsi
’ 1 1

(99) Z(I(S) = H —s II H m ’

®I—n®)" wm g ka g n(p)~

)

11 représentant le produit étendu A m =, 2, ..., I — 1 et les deux produits II s’éten-
{m) ®)

dant & tous les idéaux premiers p de ¢(%). Or, chacune des expressions

Lim (s — 1) I1

I .
O R

est finie et =)= 0, comme on le voit en appliquant le théoréme 56 au corps circulaire
¢(%), puis au corps kummerien C:c(\l/u, C). En multipliant par s — 1 'équation (g9)

et passant a la limite pour s = 1, on voit que I'expression donnée dans le lemme 27
a une limite finie et =j=o.

§ 130. — IDEAUX PREMIERS DE ¢({) AYANT DES CARACTERES DE PUISSANCES DONNES.

THEOREME 102. — Soient «,, ..., «,, ¢ entliers quelconques du corps circulaire ¢(%),
tels que le produit .

m
ot el ..ot

ne soit jamais la puissance [“™* d’'un nombre de ¢({) lorsque m,, m_, .... m, pren-

nent les valeurs o, 1, ..., { — 1, la combinaison m, =m,=... = m,=—o exclue; soient
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de plus v,. ,,.-., 7, des racines £*= de I'unité données arbitrairement. 11y a toujours
dans le corps circulaire ¢({) une infinité d’idéaux premiers p, tels que I'on ait pour

un certain exposant m premier & [

(’U-_‘ 7)&_\{ gis— "L—-Y ‘ gﬁ m Y.
(o) — 7 ) T 0 v ‘
[Kummer.]
Démonstration. — On a, tant que s est > 1,
log ¥ — =3 log ! =X + S
( Bonir @ ci—nm  mnmy
(100) (
I I
S :% 2 28 + é P 38 + 4
® n(p) » n(p)

ou X et T sont étendus respectivement a tous les idéaux et & lous les idéaux premiers
@ ®
de ¢({). Comme l'expression S reste finie pour s=1 (voir § 50), il résulte de (100)

. . . I A 14
que, le premier membre devenant infini pour s =1, la somme z(—p)“' croit égale-
®)

ment au deld de toute limite lorsque s tend vers 1. Ensuite, « étant un nombre entier
quelconque de ¢({), on a de méme pour s > 1

. 1 gl 1
logl] ————— =3 —{ —— 4 S(a),
g Og (9)1_,i?n(p)—v (’)(” n(p)s+ (1)
(101) lp |
S —zixl®l 1 1231 LI
( (@ ”mgv, R Calel ner

et S(a) reste ici encore finie pour s=1. Soit maintenant m un des nombres
1, 2, ..., [—1. Posons dans (101) a==a"=oM a7 . o™ et multiplions encore
I'égalité obtenue par le facteur y7“y;*:...y7%; donnons ensuite a chacun des
t exposants u,, u,, ..., u, les I valeurs o, 1, 2, ..., I—1 (& I'exclusion de la combi-
naison u,—u,—...—u,—o). En additionnant les ! — 1 égalités ainsi obtenues
a (100), on obtient la relation

—_— I
= “+S+ z ‘1_u"""_ut log I1 g m
g ® n(”> ("U---,“L)( H & [¢)] I — a’:' oee ltl n( )*s
(102) ——§ P
I
= ¥[1 o [l] —— S ¥ —U T my .
( S0l []n(p)ﬁ L (S (am)
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ol I'on a posé pour un instant

1 OR  (
!
)

m> < _1"&: m> + <A _15&)1n>l—1
Ts ” » Ts (P‘ ’

-

Faisons abstraction, dans la premiére somme du second membre de 102, des
termes en nombre limité (dont G,, désignera 1'ensemble), correspondant aux facteurs

idéaux premiers de %, -y %, Ao Le reste infini de cette somme est alors évi-
demment lt?,n_(q_)“' ol g parcourt sculement tous les idéaux premiers de ¢(%), rem-
plissant les ¢ conditions

fo "
(%)

=~

(103)

Ecrivons alors les égalités (102) les unes aprés les autres pour m=ru, 2, ..., [—1
et ajoutons; nous obtenons

1
(=3 ——+(U—1D8
@ n(p) (
1
+ » Yl_"' oy T oo IT I . g \m
(o) (T E L, T (] n(p)~

/ (9 ) «
=1 vG l—1 Ty, ES (am)
\" n(t) + m +( ) (u” ceey Uy) i . (l“d)

v parcourt tous les idéaux premiers p de ¢({) satisfaisant & I'un quelconque des { —
systémes de conditions (103) obtenus en faisant m=r, 2, ..., [—1: poury,=1, ...,
f,=1, ces | —1 systémes sont identiques et les idéaux premiers correspondants
doivent étre pris {—1 fois. En passant alors & la limite pour s=r1, la premiére
somme £ du premier membre de 104 augmente indéfiniment, tandis que la deuxiéme

somme ¥ du premier membre reste finie d’apreés le lemme (27). S et S(2m) restant

ca o, N
aussi finies, ’expression X -
n(r)

suite, il y a une infinité d’idéaux r; or, ils satisfont au théoréme 152.

croit donc indéfiniment lorsque s tend vers 1, et, par
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CHAPITRE XXXI.

Corps circulaires réguliers.

§ 136. — DEFINITION DES CORPS CIRCULAIRES REGULIERS, DES NOMBRES PREMIERS

REGULIERS ET DES CORPS KUMMERIENS REGULIERS.

2im

Soit I premier impair, {=e¢ * ; le corps circulaire ¢(§) et le nombre premier [
seront réguliers, lorsque le nombre & des classes d’idéaux du corps ¢(%) ne sera pas
divisible par /. Les chapitres suivants ne traiteront que des corps circulaires réguliers
et des corps kummeriens qui en résultent, corps que jappellerai corps kummeriens
réguliers; on peut démontrer de suite pour ces derniers la proposition simple
ci aprés.

TutoriME 153. — Soit ¢({) un corps circulaire régulier et C un corps kummerien
déduit de ¢(3) : tout idéal j de ¢({) qui est idéal principal de C est aussi principal
dans c.

Démonstration. — Posons j=(A). A étant un entier de C, on a en formant la
norme relative j'=(N¢(A)), c’est-d-dire qu'on a dans ¢() I'équivalence j' ~ 1. D’'un
autre cOté, on a aussi i* ~ 1, h étant le nombre de classes de ¢(¢). En déterminant
deux entiers positifs a et b, tels que al —bh=r1, on a donc j* " ~ 1, cest-d-dire
que j est idéal principal dans c(%).

La question se pose de trouver un critérium pour reconnaitre simplement si un
nombre premier / est régulier. Les deux lemmes ci-aprés vont nous conduire & ce
critérium.

§ 137. — LEMME SUR LA DIVISIBILITE PAR [ DU PREMIER FACTEUR DU NOMBRE

2im
DE CLASSES DE c(e ! )

Lemume 28. — ! étant premier impair, la condition nécessaire et suffisante pour
2im

que le premier facteur du nombre de classes du corps c(’g: el—) soit divisible par /

est que ! divise le numérateur de 'un des I* = premiers nombres de Bernoulli.

[Kummer?, Kronecker?®.]
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Démonstration. — On a mis, au théoréme 142, le nombre de classes 2 du

corps ¢({) sous forme d’un produit de deux facteurs; considérons 'expression donnée
2im
au premier. Posons pour abréger Z—-¢='. Supposons de plus r racine primitive
I—1
mod I, choisie de fagon que 2 + 1 ne soit divisible que par la premiére puissance

de I(*). Soit enfin, comme aux paragraphes 108 et 109, r; le plus petit reste positif
; rr,—r,
de ' mod [ et q,.:—'l—“.

Le premier facteur du nombre de classes & est mis dans le théoréme 142 sous la
forme d’une fraction dont le dénominateur est (2/)"*, et dont le numérateur est

(105) ST - (2.
Sf(x) désignant pour abréger le polyndme a coefficients entiers
S@y=r,+rx+ra*+..+r_xz
En posant ensuite
g(@) =¢q,+qx+qx + ... +q,_,x7",
on trouve aisément

(rz —0f(2)=1Z-9(2),

ct comme, vu le choix de r, le produit

1—1 —1

(rz —0)rz’—1) ... — ;):(_.,); (r¥ +1)

est exactement divisible par la premiére puissance de [, il en résulte que le numé-
1—1
rateur (105) du premier facteur de & n’est divisible par ' = {"*' que si le nombre

g9 .. 9(Z7)

est divisible par /. Maintenant € = (I, Z —r) est un idéal premicr diviseur de [ dans
le corps ¢(Z), et comme on a évidemment Z=r, mod €. on a

9T - (927) = g(r) - g('™), - (mod 8);

par suite, le premier facteur du nombre de classes & n’est divisible par { que si I'une

au moins des congruences

g(r:t—-a): qo + q‘rﬂt—l + qgr,e(u—n + . + (1[—2],(1-.2) (2!—1)50’ (mod l),

. est vérifide.

() N. T. — Si l'on avait r e 1=o0, ({2), il suffirait de prendre une racine r'=r, ()
et ==r, (2).
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. l—1 , \ .
Soit alors ¢ un des nombres 1, 2, 3, ..., . En élevant & la puissance 2t

2
I'identité

rr;=r, +@ry—ri),
dans laquelle rr, —r,,, est divisible par [, on obtient la congruence

20 p 2 — 2 N 3 n20—1
P2 =i, 4 al(rr;— ri)rig!,  (mod P,
ou

e ) gt = gt p 2 2t
A(rr, — rip ) =TT =y

(mod P):
et comme on a évidemment

(rr, — rip) P25 = (rr; — r) V@Y (mod ),
on en tire

1 » i+1) (26—1) — p2¢ p 2t 2L
Al (rr, — Pip) PEFN R = pp2t it

(mod I*).

En ajoutant ces congruences pour i=o, 1, 2, .... [ — 2, on obtient

AP S, i = P Er — X}

) _ 2ri,,  (mod F).
(2) (O] (7)

Comme d’ailleurs on a

SIE TR VR 2 2
(‘\T;Iil—-—%ar:i_l—-lﬂ-|—2w+3l+ vee + (L — 1%,
i i)

il en résulte que la condition nécessaire et suffisante pour que le nombre g(r*=") soit
divisible par / est que le nombre

(106) =) (2 (=)

soit divisible par . Vu I’hypothése faite pour la racine primitive r, 'expression (106)

, . e l—1 1—3
n’est ccrtainement pas divisible par I pour t=——. Pour t =1, 2, ..., on a
2 2

toujours, d’aprés la formule sommatoire de Bernoulli ('), la congruence

4243+ (U—1)=(—1)""B,l, (mod ),

(1) N. T. — Rappelons qu’on appelle nombres de Bernoulli les coefficients B, , B, ..., du
développement

x x  xe +1 Bx* Ba' (— )" 'B,x™
(M e"—1+ 2_73‘——1—1_'_ al 41 Tt (2n)! T
Valeurs des premiers :
I I I T 5 6gr -
B:—-, B:——, B:——, _ B:——, B:—-—, :i
6 * 3o T fa B, 30 * 66 2730 6]

On appelle polynémes de Bernoulli les polynémes g, () s’annulant pour x=o0 et vérifiant



384 D. HILBERT.

ot B, représente le #ém¢ nombre de Bernoulli, et, par suile, la divisibilité par I’ de

I'un au moins des nombres (106) pour { =1, 2, ... revient a la divisibilité par

{ ’au moins un des numérateurs des

premiers nombres de Bernoulli. Le

lemme 28 est ainsi démontré.

2 -
§ 138. — LEMME SUR LES UNITES DU CORPS CIRCULAIRE c(el ) DANS LE CAS OU [ XE

DIVISE LE NUMERATEUR D AUCUN DES PREMIERS NOMBRES DE BERNOULLI.

Lemme 29. — [ étant un nombre premier impair ne divisanl le numérateur

1—
d’aucun des

= [I" premiers nombres de Bernoulli, on peut toujours former, au

’équation fonctionnelle
() 9,(%) — g, (® — 1) = .
On a ‘
3) gp()=1"+ 27 + 3"+ ...+ (n—1)" + n".

On démontre 'expression ci-aprés de ce polynome :
=1

P
p+1

P — J—
o @)= Z g Loy MR DR
' 2 2l 4!

—1)...(p—4b) ,_,
+B‘p(p ) P—48) o
i 6!
On trouve en effet, & I'aide du développement (1), en chassant le dénominateur e — 1, divi-
sant par & les deux membres et égalant les coeflicients de x*#, la formule de récurrence

1 (—=0)"'B,  (—=1)"B B, 1

n—i_

2.(2n)!  (2nD 1! | (an—a)l31 " 7 T Ten—0! T Gry )l

Or, on est conduit a la méme formule en égalant les coefficients de x?—2" dans les deux membres
de I'équation fonctionnelle (2) @ op(ar) — gp(x — 1) =17

Des propriétés ci-dessus résulte 'égalité
qep(n)z 1P 49 44 (n——— I)zp—'r- nfe—— 4+ -1’—]311—')1”’_'

. B.z 2p(2p ——[iz (2p _ 2) neP—s

d’ott la congruence indiquée.

!
+ oo+ (— 1B ﬂn:
ap!
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moyen de produits et quotients d'unités du corps circulaire ¢({). un systéme de *

unités ¢, ..., ¢, vérifiant les I* congruences

e =1 +a), (I),
s =1+ a), (F),
(]07) 63 =1 + aa)\e’ ([7)’

PR —3 I—2

=1 -+ alak)\ N (I ),
ol a,, a,, ..., a. sont des entiers rationnels non divisibles par I, et ol on a posé
r=1—¢, [=(). [Kummer!.]

Démonstration. — Partons de l'unité circulaire (v. § 98)

=0 0=1)
TV o=

)

(108)

1

ol r est une racine primitive mod . Posons ensuite <" =1 et

— .,i(rz——s,‘ (ri—38) (ré—s) ... (rH—2—s) (r2ti2—s) (r2t+i—s) ... (rl—3—s)

(109) &t
pour =1, 2,3, ..., I*, ot s est dans I'exposant symbolique la substitution s=({ : {").
L'unité n, (I — 1) puissance d'un entier de c({), est nécessairement =1, mod I,
et il en est alors de méme de chacune des unités e,.
Supposons formés conformément au paragraphe 131 les polynémes adjoints z(x)

pour chaque unité ¢,; on a pour les nombres rationnels
() ¢ (2) /. (1—2) ¢
M), ), .0 77,

c'est-A-dire, pour les valeurs des { — 2 premiéres dérivées du logarithme de ¢,(¢") pour

v =o0, les congruences

“()=o0 (mod 1),

,
(=1,2,3, ., 2—1, 2+1, ..., =3, 1—2).

(110)

., B
Be)= (=" > (mod D,

(=12, .., ).

Pour le démontrer, observons que d’aprés la premiére formule (81), para-
graphe 131, on peut, dans le calcul des I — 2 premiéres dérivées

ey, M), ..., (),

relatives au nombre v, prendre directement, au lieu du polynéme adjoint a 4, le

polyndéme suivant :

sy — (=) (=@
1@) = (e )™

Fac. de 7., 3¢ S., 1. 4o
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Puis on a le développement connu

e'— 1 _}_11,4_]3*'“2 B, ., B, .
v TS aw Tee T

l

ouB,, B,, B,, ... sont les nombres de Bernoulli.
De ce développement, résulte

(111) log #(e" Y= —r1){logr+ (r"—1) B, ‘ v
2.2

Bx 6 )

—(r*— v ' —

o 1)4 ARGl TR
Les fonctions #(e™). #(e"™), ... jouent le méme rdle par rapport aux nombres
s, s*. ... que %(e") par rapport & . En remplacant alors dans I'expression (1o09) de
¢, 1, §, $*7 ... par %(e"), 7(e™). #(e™), on obtient une fonction Z(e"), qui peut tenir
lieu de la fonction ¢(e") pour le calcul de {"(zs), I®(z), ..., I?(,). De (111) on

tire(1)

log 5,(¢") = (I — 1) 3 C o (— 0 (= — 1) .

i ( 2[—2 et) (’ 2202 “t) (’,zt A ’,zt) . ( J—3 "'t)( ) Bt 2l )

al(af)! v

L C_ T 0

ouC, C,_,,C,.,, .... désignent certaines constantes. Le produit écrit en détail dans
le coefficient de v* est

d(x—1)(x—7r?) .. ’_)]
d(l: (x=r2t)

1—
et le polyndéme d dériver ci-dessusest =x * — 1, mod /. Le développement ci-dessus

entraine immédialement les congruences (110).
Comme par hypothése les numérateurs des I* premiers nombres de Bernoulli
B,, ..., B, ne sont pas divisibles par [, les I* dérivées {*(c)) pour /=1, 2, ..., I* sont

(1) N. T. — En représentant, en effet, exposant de » dans ¢ par fis)=a,+a;s + ... +
+ap_yst=1, on a f(r*)=opouru=r, 2,..., 1 —1, t+1,..., . De sorte que, va

Is—1

log e(€") = a, log 7 (e") 4+ a, log #(e™) + ... + am_log#(e" "),

on a pour coefficient de v

(r*'—m f('“"

au. 211'

c’est-a-dire o pour les valeurs de « de 1 a /", a Pexception de n'==1(.
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toutes =zjzo, mod I, d’aprés (110). Nous en concluons qu’aucune des unilés
€, ..., & N'est =1, mod [. En posant alors
— e e -i-1
s€‘=l+al)\1, ([' ),
(112) e e e e
' ? =1+ aphs, ()

avec des exposants e,, ..., e, tels que a,, ..., a, soient des entiers non divisibles
par I, ces exposanls e,, ..., e, sont tous <! — 1. Puis on tire des congruences (112),
le développement d’une expression (1 — ')’ suivant les puissances de v commengant
par le terme (— 1)?, les congruences suivantes pour l'unité ¢, : '

(1) /.y — (2) /. \ — (et—1) /. \ —— §

ll(;t):C, l (;¢)=0, ey ' (;J:O, (nlOd l),

(e) (. — e .

) = (—r1)"a,.e,!, (mod 1),
et comme «a, ne doit pas étre divisible par /, on tire des congruences (110), vu la
remarque faite plus haut, e, = 2t, ce qui démontre le lemme 29.

§ 139. — CRITERIUM POUR LES NOMBRES PREMIERS REGULIERS.

Voici un critérium simple pour les nombres premiers réguliers {.

THEOREME 154. — Pour qu’un nombre premier [ soit régulier, il faut et il suffit

qu’il ne divise le numérateur d’aucun des * = premiers nombres de Bernoulli.

[Kummer?.]

Démonstration. — Le lemme 28 montre que, si { divise le numérateur d'un des
* premiers nombres de Bernoulli, [ divise aussi le nombre de classes & du corps ¢({).
Dans le cas contraire, [ est, toujours d’aprés ce lemme, premier au premier facteur
du nombre de classes. Il y a donc encore seulement & démontrer que le second fac-
teur du nombre de classes h n’est pas non plus divisible par / lorsque'l'un des I*
premiers nombres de Bernoulli ne I'est pas.

Soit v,. .... v, un systéme de [* unités réelles de c({), systéme qui existe loujours
d’aprés le théoréme 127; nous pouvons alors poser '
(113) ste = PR Rt Gt
pour {=o, 1, 2, ..., I* — 1. les exposants m,,, m,,, ..., m,., étant des entiers ration-
nels et ¢ I'unité circulaire définie formule (108). On tire de (113)

(114) log |s's| =m,, log

N
1

+ m,, log Iqu + o+ My, log I"ft‘*l
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pour t=o, 1, 2, ..., I"—1, log représentant la partie réelle du logarithme. D’autre

part, les égalités (109) définissant les unités ¢, ..., s, entrainent un systéme de la
forme

(115) g =M (52)" L (5151 ) e,

(t=1,2, .., %)
Nous en tirons les égalités

(116) loge,=n, log ¢ + n, log|se| + ... + s, log s el
t=1,2..,1%

et ensuite, & cause de (114),

(117) logs,=M,, log

+ M,, log

(t=1,2,.., 0%

v
‘2

& + ... + My, log

el

ou M,,, M,,. ..., My, sont les combinaisons bilinéaires connues des 2/* entiers n,,
Mapy ooy Paepes My, Moy, ooy My - Les systémes (113) et (115) en donnent encore
chacun I — 1, si I'on effectue sur les-unités qui y figurent les substitutions s, s, ... ,
s"~'. En prenant les logarithmes, nous passons de méme aux systémes correspondant
A (114), (116) et (117).

En posant alors

log |7, o logfygl
R log |sv,|, e log |sy,%|
log |1y |, cee log |s% =1~
log ||, log |sz]. cee log [s*—1¢|
log |szf, log [s%¢], RN log |s"¢|
A=
log |s" ¢, ., log |s**—2¢|
log ¢, log <,. R log &
— log sz,, log sz,, RN log s¢,s
A= ,
log stz , log s '¢,, ceey log sz
on trouve, par la régle de multiplication des déterminants,
g 1“11 ’ lea ’ ’ Ml#i
A A M,,. M, , M
(118) A =A . A = ? !
, R AR
\

M i M

%Ii‘i. e ey
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Le déterminant du second membre est un entier rationnel et il n’est pas divisible
par [. Car, dans le cas contraire, on pourrait trouver {* entiers N, ..., N;,, non tous
divisibles par [ et rendant divisibles par [ toutes les sommes
sN,M,,. =N,M,, .... INM;.
() ) U]
(t=1,2 .., I¥)
On obtiendrait alors, vu (117), une égalité de la forme

N,loge, + N,logs,+ ... + Njzloges=1.l0ogE.

ou E serait une certaine unité positive de c(¢). D’ot

(119) SISIUEALEY 3

Mais une telle égalité est impossible. Car on en tirerait d’abord E=FE'=1, mod [;
en considérant le polyn6me adjoint E(x) et les valeurs pour v —=o des [— 2 pre-
miéres dérivées de log E(e"), on déduirait de (119), en appliquant (rro) les con-

gruences
(— 1)t B N,=o0, (mod ).
At',&zt T
(t=1,2, ..., I)
Mais tous les nombres de Bernoulli B, ..., B,. doivent étre premiers & [, tandis que

les nombres N,, ..., N, ne sont pas tous divisibles par /; il y a donc contradiction.
Ainsi le déterminant du second membre de (118) n’est pas divisible par /. Comme,

A A 5 . A ;
d’autre part, les facteurs X et T sont toujours entiers et que T représente le se-

cond facteur du nombre de classes A, le second facteur du nombre de classes n’est
donc pas non plus divisible par {. Le théoréme 134 est ainsi complétement dé-
montré.

En s’appuyant sur ce théoréme, on voit, d’aprés les valeurs des 47 premiers nom-
bres de Bernoulli, qu'en dehors de 37, 59 et 67 tous les nombres premiers inféricurs
4 100 sont réguliers. Le calcul montre, d’ailleurs, que les nombres de classes h rela-

2im

tifs aux corps ¢ e7> pour {=137, 59 et 67 ne sont divisibles que par / et non par .
[Kummer!"%.]

§ 140. — SYSTEME PARTICULIER D UNITES INDEPENDANTES D UN CORPS CIRGl LAIRE

REGULIER.

Le paragraphe 139 nous fournit le moyen de déterminer dans un corps circulaire
régulier un systéme d’unités qui nous sera utile dans la suite.

TutorkMe 155. — [ étant un nombre premier régulier, il existe toujours dans le
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corps circulaire c\e? ) un systéme de I* = unités indépendantes, <

Syr e
2

z,= vérifiant les congruences

m]

-

O (1),
LR, (1),

Il

©

]
l

I + )\1—3 , (II—Q) ,

A

I

=1—0, [=0—=0).

Démonstration. — ¢({) étant régulier, les numérateurs des I* premiers nombres
de Bernoulli sont tous premiers & I, et il existe par suite (lemme 29) I* unités =z, ...,

¢ vérifiant les congruences (107). Comme a,, ..., @z sont premiers a /, nous pou-
vons déterminer {* entiers b,, ..., b tels que 'on ait

a,b=1, ..., apbz=1, (mod]l).

En posant alors
b
3

[

1

[l
o
ol
m

) ceey

b,
1

* —_

les unités g, , ..., g vérifient les congruences du théoréme 155.

De plus, elles forment un systéme d’unités indépendantes, parce que les unités
¢, .-+, & du paragraphe 138 en forment un. Pour montrer ce dernier point, suppo-
sons au contraire qu’il exisle une égalité

(120) e =1

les exposants étant des entiers non tous nuls: on peut supposer ensuite que ces
exposants ne sont pas tous divisibles par [, car, dans le cas contraire, on aurait

Ces exposants n’étant pas tous divisibles par [, I'équation 120 serait de la méme
forme que (119) qui a éLé déja reconnue impossible au paragraphe 13g.

§ 141. — PROPRIETE CARACTERISTIQUE DES UNITES D'UN CORPS CIRCULAIRE REGULIER.

TutorkME 136. — [ dant un nombre premier régulier, ¢’il existe dans le
2im
corps c(eT) une unité E congrue mod / & un entier rationnel, elle est nécessairement

¢gale a la I*™ puissance d’une unité de ce corps. [Kummer?.)

o

Démonsiration. — Supposons déterminé un systéme d’unités confor-

PRI

. . =r L
mément au théoreme 155; comme elles sont indépendantes, on a

e -

(121) Ef=%p ...




i
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e,e,, .... ex étant des entiers rationnels non tous nuls, et I'on voit de suite qu’ils peu-
vent aussi é&tre supposés non tous =o, mod /(!). Alors si e était divisible par /.
I’égalité (121) serait de la forme (119), qui est impossible. Si, au contraire, e n’était
pas divisible par /, on aurait E*=1, mod [, et, par suite, = 1, mod [/; prenons alors
la dérivée logarithmique des polyn6mes adjoints des deux membres de (121). Comme
E° étant =1, mod [/, les nombres ¥(E°) sont tous =o0, mod [ pour g<I—1, il en
résulte, en prenant g =2, 4, ..., 20 et tenant compte des valeurs des nombres
[P, ..., 19(z4), et de (110), que l'on a successivement e,=o, ..., esx=o0, mod ;
on a donc E°=H'. H étant une certaine unité du corps, e n'étant pas divisible par /.
En déterminant alors deux nombres a et b, tels que ae + bl—1, on a
E—= (Ha Eb)l, .

ce qui démontre le théoréme 156.

On est conduit par les considérations suivantes & une démonstration tout a fait
différente de ce théoréme.

Si E n'était pas égale a la [ puissance d'une unité de ¢(J). H=E'~" ne pourrait

I'étre non plus; car it —s et 1 4+s4+... +s°

sont deux polyndmes & coeflicients
entiers en s sans diviseur commun mod /. Mais si E est congru mod [ & un entier
rationnel. on a H= 1, mod I, ce qui, vu la deuxiéme partie du théoréme 148, exi-
gerait que le corps kummerien c(\l/ﬁ, 'g) ait le discriminant relatif 1 par rapport
& ¢(%). Mais comme ce corps kummerien est abélien relatif de degré relatif ! par
rapport & ¢({), le théoréme g4 exigerait que le nombre des classes d’idéaux du corps

circulaire ¢({) fit divisible par I, contrairement & 'hypothése qu’il est régulier.

§ 142. — NOMBRES PRIMAIRES D UN CORPS CIRCULAIRE REGULIER.

Un entier « du corps circulaire régulier ¢({) est dit primaire : 1° 8’il est semi-pri-

maire (voir § 115) et 2° si le carré de son module, c’est-d-dire son produit par le
—1
nombre imaginaire conjugué s % «, est congru & un entier rationnel mod (" ={.

Un nombre primaire est donc toujours premier a [ et vérifie les congruences
e=a, (I’.

v.sta=b, (I,

a et b étant des entiers rationnels. [Kummer 12.]

() N. T. — En effet, dans le cas contraire, en extrayant la racine [im*, on aurait
EY =17k, ... &1, et EY étant congrue, mod /, & un entier rationnel, et les unités g, élant
réelles, on aurait, la congruence devant subsister quand on change {en -1, .

-
=", (mod {),

c’est-a-dire &r=o0, (mod /), et en continuant ainsi, tant que les exposants sont tous divisibles
par /, on arrive bien finalement & une égalité (r21).
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TukorkME 157. — Dans un corps circulaire régulier ¢(¢), on obtient un nombre
primaire en multipliant un entier quelconque premier a [ par une unité convenable.
[Kummer '2.]

1—1

Démonstration. — Le nombre f=12.5"2 4 est évidlemment un nombre du sous-

corps de degré l

du corps ¢({) et vérifie par suite une congruence § =a, mod [*,
2

a étant un entier rationnel non divisible par l. Soientg,, €, ..., g les {* unités du
paragraphe 140. Si on a, par exemple, f=a +a,3*, mod I', ¢, étant un entier
rationnel, on déterminera un entier rationnel u,, tel que 'on ait 2au, + a,=o, mod [;
alors on a nécessairement

pe=a, (Y.

Si Ton a ensuite, par exemple, £z*i=a+ aj', mod (I°), @, étant un entier
rationnel, on déterminera un entier u,, tel que I'on ait 2au, + @,=o0, mod /; on a
dés lors

e =a, (1.

On arrive finalement &

({20, 20,
Dt T T

(mod 1%).

Si, d’autre part, {* est une puissance de { telle que {*x soit semi-primaire, *zx
sera évidemment primaire.

Un nombre primaire réel est toujours congru, mod /=", & un entier rationnel.
D’aprés le théoréme 156, toute unité primaire de ¢(%) est la [*m¢ puissance d’une unité
de ¢(2).

Voici encore un lemme sur les nombres primaires qui sera utile dans la suite.

LeEmME 30. — v, p. étant d2ux nombres primaires du corps circulaire régulier ¢(%),
, L v
on a toujours —— , =1.
(1)
Démonstration. — Nous pouvons supposer les deux nombres v, y. =1, mod I, car

autrement leurs ({-— 1) puissances rempliraient siirement cette condition, et a

\ =1 '1—4
cause de ;%g:zf———l—j—{ (voir § 131), on pourrait les substituer & v el p.
D’aprés (83), on a
=t =t
(o Rl ve S 2]y, p.s 2 y.é
SN N

1—1
et comme par hypothése ona u..s 2 p.=1, mod ['™*, et que v=1, mod I}, on tire
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. , U] , 0.8 2
immédiatement de la définition générale (82) du symbole %2 : gv & i L g
ct, par suite, '

1—
(v. ‘ug gv, sT{.LS -
[ 1 I -
On démontre de méme que
=t Lot e
, 8% Sz\o,.s‘ﬂy.___I
[ ¢ o
Puis de la formule (84) on tire
—1 1—1
Sv, W ;sTv. ST!J.Z .
(1 § )
Les trois derniéres égalités donnent
‘Y_[i =1, c-d. ;”‘[”‘ =1. C.q.f.d.

CHAPITRE XXXII.

Classes d'idéaux invariantes (') et genres d'un corps kummerien régulier.

§ 143. — FAMILLES D’'UNITES D'UN CORPS CIRCULAIRE REGULIER.

Soit { un nombre premier impair régulier, et considérons dans le corps circulaire
2iw

régulier c(; :eT) un ensemble E d'unités contenant les [¥mes puissances de toutes
les unités du corps et tel, de plus, que le produit et le quotient de deux unités quel-
conques de I'ensemble en fasse encore partie. On appellera un tel ensemble une
famille d’unités du corps circulaire c(%).

Dans toute famille, on peut déterminer m unités =, ..., ¢, telles que toute unité
de la famille est représentée une fois et une seule par I'expression

um %zl

wy LU, -
€% 5y 3

..
lorsqu’on donne & chacun des exposants u,, ..., u,, les valeurs o, 1, ..., [ — 1 et o0l
§ est une unité quelconque de c(). Jappellerai un tel systéme z, ..., ¢, base de la
JSamille. 11 est clair qu’on ne peut avoir

3
'~

10}

A”.-. ¢

[

(*) Ou ambiges.
Fac. de 7., 3¢ S, 1I. 50
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e,. ..., e, ¢tant des entiers rationnels non tous divisibles par [ et < une unité de ¢(%).
On voil aisément que toule autre base de la famille E comprend le méme nombre m
d’unités; ce nombre m s’appellera le deqré de la famille d’unités.

Si, en particulier, une famille d'unités ne contient que les "™ puissances d unités
de ¢(%), elle contient le plus petit nombre possible d’unités et son degré est o. La
totalité des unités de c(¢) est aussi une famille d’unités; loute unité de c(¢) est (théo-
réme 127) le produit d'une racine f“m¢ de I'unité et d'une unité réelle : on conclut
de 14 et des développements de la démonstration du théoréme 157 que les unités z,,

.., &=3 du paragraphe 140 forment avec ¢ une base de cette famille d unités, qui est
2

. . [—1 - .
la plus étendue. Son degré est donc ; c'est évidemment la seule famille de

Jl— . ,
degré et il n’y en a pas de degré plus élevé.

On voit facilement que les normes relatives de loutes les unités d'un corps kumn-
. L/ (1o . s -
merien c(\/p., 'C,) déduit de ¢(¢) forment une famille d’unités de ¢(¢); enfin, la totalité
des unités égales & des normes relalives, soit d'unités, soit de fractions du corps

kummerien c(\l/; c), forment une famille d’unités de ¢(%).

§ 144. — IDEAUX INVARIANTS (1), CLASSES D'IDEAUX INVARIANTES (1) D'UN CORPS

KUMMERIEN REGULIER.

Soit ¢(¢) un corps circulaire régulier, p. un entier de c({), qui ne soit pas puissance
fime d'un nombre de ¢({); soit C le corps kummerien régulier ¢(M, ¢) engendré par
M:\l/; et . Cherchons maintenant & développer la théorie de ce corps par des
méthodes correspondant & celles qu'on a employées pour le corps quadratique
dans les chapitres xvir et xvit.

Le groupe relatif de C par rapport & ¢({) est formé de puissances de la substitu-
tion S=(M. ¢tM); on appellera, d’aprés le paragraphe 57, un idéal % de C idéal
invariant (*), quand la substitution S le laissera invariant, S% =2, et que, de plus,
A ne contiendra en facteurs aucun idéal de ¢(z) différant de 1.

D’aprés le théoréme g3, les idéaux premiers qui divisent le discriminant relatif
de C sont tous invariants, et il n’'y a pas d’autres idéaux invariants. % étant donc un

(1) L’expression de M. Hilbert est ambig. Selon une remarque de M. E. Cahen, I'origine de
ce mot remonte & la traduction, par Poulet-Delisle, des Disquisitiones arithmeticae : il traduit
par ambigu le mot anceps, employé par Gauss dans sa théorie des formes quadratiques.
M. Lévy, vu l'acception habituelle différente du mot ambigu, a employé le mot ambige dans ses
traductions de louvrage de Sommer et des trois premiéres parties de l'ouvrage actuel.
M. de la Vallée-Poussin emploie le mot bilatére. Je propose invariant, qui a I'avantage de rap-
peler la définition des classes dont il s’agit.
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idéal invariant quelconque de C, nous déduisons facilement de SA=A (voir § 73)
que tout idéal premier de C qui divise A doit aussi étre invariant, et il en résulte que
le nombre de tous les idéaux invariants est I'.

& étant un idéal d’une classe K du corps de Kummer C, la classe d’idéaux déter-
minée par l'idéal conjugué relatif SR sera représentée par SK. Les classes SK, $°K,
..., S=1K s’appelleront les classes conjuguées relatives de K. F(S) étant un polynéme
queleonque de degré [— 1 er S a coefficients a, a,, ..., ,_, entiers rationnels :

F®)=a+aS+...+a_S8"
la classe déterminée par l'expression
. K*(SK)“ (S*K)"% ... (8" K)“—1,
s’appellera la puissance symbolique F(S) de la classe K el se représenlera par
Kota, S+a, 82+ .. +ey_y Si—1 __ KF®) |
Enfin, une classe d’idéaux A du corps kummerien sera dite classe ambige ou inva-
riante lorsqu’on aura A =23\, c’esi-d-dire A’ =1. La [*™* puissance d’une classe

ambige quelconque contient toujours parmi ses idéaux des idéaux de c(¢). Cela
résulte immédiatement de ce que 1'on a

U A1+S4524 .. 48I—1
Al AVFSEITE LSt

a cause de A == SA el que, d’autre part, la norme relative d’un idéal quelconque de C

est un idéal de c().

§ 145. — FAMILLE DE CLASSES DANS UN CORPS KUMMERIEN REGULIER.

Considérons dans le corps kummerien régulier C un ensemble de classes, tel que
la [*m¢ puissance de chacune d’elles contienne des idéaux de ¢(Y) et que, de plus, il
conlienne toutes les classes contenant des idéaux de ¢(¢); tel, de plus, que le produit
et le quotient de deux classes de I'ensemble en fassent encore partie. JI'appellerai un
tel ensemble une famille de classes du corps kummerien. Dans toute famille de

classes, on peut toujours déterminer n classes K, ..., K, telles que toute classe de

n?

la famille est représentée une fois, et une seule, par le produit
KuKe oo Kok

lorsque u,, u,, ..., u, prennent séparément les valeurs o, 1, ..., Il —1, et k désignant
une quelconque des classes renfermant parmi ses idéaux des idéaux de ¢(%). On appel-
lera K,, ..., K, une base de la famille de classes. On montre facilement que le nombre
de classes de toute autre base de la famille est encore égal & n. Ce nombre n sera le
degré de la famille de classes.
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Si toutes les classes d'une famille contiennent des idéaux de ¢(%), elle est de
degré o. Une autre famille de classes est encore formée par la totalité des classes
de C contenant soit des idéaux invariants de C, soit des produits de tels idéaux par

des idéaux de ¢({). Enfin, la totalité des classes invariantes du corps kummerien
forme une famille.

'§ 146. — DEUX LEMMES GENERAUX SUR LES UNITES FONDAMENTALES RELATIVES

D'UN CORPS CYCLIQUE RELATIF DE DEGRE PREMIER IMPAIR.

Avant de poursuivre les recherches du précédent paragraphe, établissons deux
lemmes se rattachant au théoréme g1 du paragraphe 55. -

Lewwe 31. — Soit / premier impair le degré relatif d'un corps C cyclique relatif
par rapport & un sous-corps ¢, soit S une substitution autre que la substitution
identique du groupe relatif de C par rapport a ¢, et soit H,, ..., H,., un systéme
d’unités fondamentales relatives du corps C par rapport & c; on a dés lors pour
toute unité E de C une relation de la forme

F,(8) Ky 4(8)
E'=H"" ... BT [:]
J étant un exposant entier rationnel non divisible par {, F(S), ..., F,_ (S) des poly-
nomes entiers en S de degré ({— 2) & coeflicients entiers et [¢] une unité de C dont
la [i*m* puissance appartient & c.

Démonstration. — De la démonstration du théoréme g1 résulte que les unités

H,, ---. H.,. SH,. ---- SH,..,» ---» SH,, ..., SH

et

jointes & r unités fondamentales du corps ¢ sont indépendantes, et comme il y en a
en tout I(r + 1) — 1, il existe pour toute unité E de C des relations de la forme

(122) EL‘-(S) — ‘13.(5) L Hf:_-lu(s)[s] .

ol G(S), G,(8), ..., G, (S) sont des polyndmes entiers en S de degré {— 2 & coef-
ficients entiers, dont le premier n’est pas identiquement nul, et ot [z] est une unité
de C telle que [¢]’ est dans ¢. Parmi les relations (122) en nombre infini, prenons-en
une ou G({) soit divisible par une puissance de 1— {*aussi petite que possible.
Admettons que ce soit précisément la relation (r22); supposons, de plus, d’abord
que G() soit au moins divisible par 1 — {. D’aprés la définition des unités fonda-
mentales, paragraphe 55, il faut que

G, @), ... G, (D

PENAN
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soienl aussi divisibles par 1— . En élevant (122) & la puissance symbolique
(1—8) (1—8) ... (1—S8"")eten posant

QO =0—06"Q). GQO=0—0G®. ...

on trouve facilement, la (1 +S + 8"+ ... + §i—ieme puissance symbolique de toute
unité de C étant dans ¢ :

- " 1G#p4.4(8)
(133) ElO) = HIA® | . H,AHH” (<],

ot [¢] est encore une unité de ¢ ou la racine l“me d’une unité de c.

A cause de l'égalité (123), une racine [“m de ce nombre [¢] est certainement un
nombre de C, et par suite aussi une unité de C dont la fitme puissance appartient a ¢,
et qu'on désignera encore par [z]; on lire alors de (123)

ECH ) — HUI® ... Hfi’;+l(S)[3]'
[z] étant encore une unité de C dont la fi'me puissance est dans ¢. Cette égalité est de
la méme forme que (122), sauf que G*({) serait divisible par une puissance de 1 — {
inférieure A celle qui divise G(%), ce qui est contradictoire A notre hypothése sur le
choix de (122). Donc G({) ne peut étre divisible par 1 —¢.

En posant f=G({)G(S) ... G({'™"), fest un entier rationnel non divisible par [,
el il cxiste évidemment deux polyndmes entiers H(S), M(S) & coeflicients entiers,
vérifiant identiquement en S I'égalité

F=H(S)G(S) + M(S)(1 +8 + 8" + ... + 8.

En élevant (122) & la H(S)“™ puissance symbolique on obtient la formule
annoncée dans le lemme 31.

LewvEe 32. — Conservons les mémes notations que dans le lemme 31, prenons les
normes relatives des r 4 1 unités fondamentales relatives du corps relatif cyclique C:

= NC(H,>~ ceey My — Nﬂ(Hr—H) ’
loute unité = de ¢ égale & lanorme relative d'une unité¢ E de C est alors de la forme

L Ll
€= 'M' ot ’;r+l [] N

u,, ..., u,., ¢tant des entiers rationnels et [.] une unité de C.

Démonstration. — D’aprés le lemme 31, nous avons pour E une égalité
f o F, (s Fr41(S)
E _H1'( ) M r+1 [E']'
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avec les notations de ce lemme. En prenant la norme relative par rapport i ¢, on
obtient (1)

f—_ ¥, IREESTIFRY:
(124) =t gl

En déterminanf ensuite deux entiers rationnels et b, tels que on ait 1=af + bl
el en ¢levant (124) & la puissance a, on obtient une formule conforme au lemme 3.

§ 147. — LES CLASSES D'IDEAUY DETERMINEES PAR LES 1DBAUY INVARIANTS.

Soit C = c(\l/p‘, Z) un corps kummerien régulier, prenons dans son groupe relatif
la substitution S—= (\l/; : ':\l/;) Comme tout idéa] invariant % de C détermine une
classe invariante, va S% — . nous devons d’abord, pour arriver 4 la connaissance
des classes invariantes, étudier la famille de classes engendrée par les idéaux inva-
riants. On a I'importante proposition :

TukorkvME 158. — Soit t le nombre des idéaux premiers distincts qui divisent le dis-
criminant relatif du corps kummerien régulier C:c(\l/ ;, ’;) de degré relatif 1; les
normes relatives de toules les unités de C Jorment pour ¢ une famille d’unités de
degré m; si nous considérons alors toules les classes contenant soil des idéaux inva-
riants de C, soit des produils de tels idéaux par des idéaux de ¢(), elles forment une
Jumille de classes de degré
I+

2

t+m—

Démonstration. — Supposons d’abord que le nombre p. ne soit pas de la forme
¢a!, ou z et z sont une unité et un nombre de ¢(3)- Alors toute unité [¢] du corps

T, s N , .
G —‘C(\/y,, ;‘) dont la [*m puissance est dans ¢(%) est nécessairement elle-méme dans

¢(Q); de plus, H,, ..., H,_, désigneront un systeme d’unités fondamentales relatives
=

du corps C par rapport & ¢(2) et

0, =Ne(H), ... 7,_ = Nc(H,___l)

i 2
leurs normes relatives.
: Lo , -1
Nous prenons, en premier lieu, le cas extvéme ou I'on a m=—-——. Nous con-
2
cluons du lemme 32 que les unilés fiys --o» ,_, formenl une base de la famille

2

(!) N. T. — Si I'on a en effet

Q = " = o (Sw) ... (S'—2w)u-—2,

on en déduit

Ne(Q)==[Ne(0) ] INe(Sw) T . [Ne(8'20) ]2 = [No(w)]* 02 = [Ne(o) IO
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d’unités formée des normes relatives de toutes les unités de G. Considérons, d’aulre
part. les { idéaux premiers invariants €, ..., £, du corps G; ils déterminent ¢ classes
invarianles, que nous désignerons par L,, ..., L,. Pour déterminer le degré de la
famille de classes qu’elles définissent, posons

(125) M=Ve=28u..ej,

ou a,, ..., a, sont des exposants entiers et j un idéal de ¢(7). Vu I'hypothése faite
sur u, I'un au moins des exposanls «,, ..., a, n'est pas divisible par /; soit, par
exemple, a,. Nous déduisons de (125) que

k=L ... L%

est une classe contenant des idéaux du corps ¢(¢); comme L/ est aussi une classe de
cette espéce, il en résulte que L, est le produit de puissances des classes L,, ..., L,_,
et d’une classe contenant des idéaux de ¢(%).

Démontrons maintenant que les classes L,, ..., I,_, ne peuvent a elles seules

—1

composer aucune classe

(126) K =L .. LY

1

contenant des idéaux de ¢(%), A moins que tous les exposants a',, ..., a',_, soient divi-
sibles par /. En effet, de la relation (126) on tirerait une égalité

:
(127) M=e . e

ot i’ serait un idéal de ¢(¥) et M’ un entier de C; on en concluerait alors que
E= M'""devrait élre une unité de C. Appliquons a E le lemme 31; on a aussi

une égalité de la forme
Fi—1(8)

(128) E'=H"Y... H, 2,

"

|¢|

ot f est un entier rationnel non divisible par 4, F,(S), ..., F_,(S) des polyndmes
=

entiers en S a coefficients entiers et ¢ une unité de ¢({). Comme on a évidemment
N E)=1, on a, en prenant la norme relative des deux membres de (128),

%,s ---» %,_, devant former la base d'une famille d'unjtés, les entiers I,(1), ...,

k(1) doivent étre tous divisibles par [, et par suite F,(0), ..., F,_,({) par t—¢. En

2 2

posant
FO=0—=0F@. . ...F_,Q=0-09F_@©.
2

P
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Fi8) 2
H:Hl'l(\)"'Hli B

)

on a
E'=H"<,

#

¢* étant encore une unité de ¢({). Puis, en prenant la norme relative, on a 1 =¥

’

c'est-a-dire que ¢* est une racine {¥m¢ de I'unité, par exemple = . Comme M'~3=¢~'

’

on a _
{ M,IMgH_l%l—S =1,

c'est-d-dire que U'expression M M?H™" est un nombre de ¢(¢). Comme M’ (Vu 127)
ne contient pas 'idéal €, ou le contient & une puissance d’exposant divisible par /,
que M contient, au contraire, £, & une puissance d’exposant @, non divisible par [, la
décomposition de ce nombre en idéaux premiers du corps ¢(¢) montre d’abord que ¢

doit étre divisible par I; puis elle montre, f étant premier a /. que les exposants

! r

a, ..., a/_, devraient étre tous divisibles par [, contrairement & I'hypothése. Par

1
conséquent il ne peut y avoir entre les classes L,, ..., L,_, une relation comme (126),

l—1

c’est-d-dire que les classes L,, ..., L,_, forment, si m= , une base de la famille

de classes engendrée par la totalité des idéaux invariants; le degré de cette famille
I+

est donc t —1=¢t+m—

. [—3 . . .
Supposons, en second liew, m=——_. Il doit alors exister entre les unités =,,
2

e
—1
une relation de la forme %, ..., % =+, les exposants e, ..., e,_, n'étant
1

s T

(=]

2 2

2 2
pas lous divisibles par [, 4 étant une unité de c(¢). Si e,_,, par exemple, n’est pas
=
divisible par 7, %,, .... 4,_, forment une base de la famille des normes relatives de

2 .
toutes les unités de C : cela résulte du lemme 32. Formons alors I'unité

(|4)9> E= f1...

Comme elle a pour norme relalive 1, il existe dans C un entier A tel que I'on ait
A S =E (théoréme go). Déterminons — ce qui est toujours possible — un entier
positif r tel que dans le produit M'=AM" I'idéal €, -enlre avec un exposant divisible
par {. Les autres facteurs €,, ..., €,_, ne pourront avoir tous dans M’ des exposanls
divisibles par I, car autrement on aurait, d’aprés le théoreme 153, M'= Ox. O étant
une unité de C et « un entier de ¢(%); et on aurait par suite @'~*=E¢™", contraire-
ment & la définition (§ 53) des unilés fondamentales relatives H, . ..., H,,. puisque,

2
dans I'expression (129) dc E. ¢,_, cst premier & [. Alors Tidéal invariant €, ,, par
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exemple, entre dans M’ avec un exposant non divisible par /. On en conclut que la
classe L,_, est le produit de puissances des classes L,, ..., L,_, et d’une classe con-

.

tenant des idéaux de c(¥). )
Démontrons maintenant que les classes L,, ..., L,_, ne peuvent former aucune

classe
s e . a' ()
(130) 5 = L., L5

’

contenant des idéaux de ¢(%), & moins que les exposants @/, ..., a; , soient tous divi-
sibles par /.
En effet, une relation (130) entFainerait une égalité

(131) er — 2;‘”‘ o 27:'.{2—.21'"’

M" étant un entier de G et j" un idéal de c¢(%); alors E'= M"'""® devrait étre une unité
de C. En lui appliquant le lemme 31, on obtient une égalité

F'1—(8)
o F (8 2
(132) E/ =H""...H,_] =

/' étant un entier rationnel non divisible par /, les polyndémes F'(S) étant & coefficients

entiers et ¢ une unité de c(¢). Déterminons alors un exposant entier rationnel u tel
que lentier F',_ (1) + ue,_, soit divisible par /; on obtient, par rapport & c(¥),

2 2
comme N(E')=1,
F't:_;(l)+ue1_3

2 2 1l

(133) [ — ,']ll-"d(.lH"e‘ . 721-:; ¢t

F)

¢’ étant encore une unité de c(¢). Les unités v,, ..., q,_, élant une base d’une famille

d’unités, il résulte de (133) que les exposants F,'(1) + ue,, ..., F',_ (1) 4 ue,_, sont

2

tous divisibles par [, c’est-i-dire que tous les nombres
F/Q) +ue, ... F_ () +ue_,

sont divisibles par 1 — ¢. En posant

2

]?‘1,({) + ue‘:(l - ::)F;, ; LA Fll__l(C) + uel |.:(1 - :) Fi;'l—l(:)

et
FLS)

H=HT""H_" .
il résulte de (132)
E’f' E* — H’l—Sem’

ol E est I'unité de G définie par (129) et < encore une unité de ¢({); en prenant la
“Fac. de 7., 3¢ S, 1. 51
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norme relative, on a 1==2", c’est-d-dire que "* est une racine de l'unité, égal: par
exemple & . On a alors, en tenant compte des égalités :

M'l—S — C—l, M’l—S f— E;—r" M”l«s — E/,
{ Mr/f’ Mlu Mg’—urH’——ig -8 — ,

c’est-a-dire que I'expression entre crochets est un nombre de c(?).

En remarquant que €/, /_, €'_,, ..., € sont idéaux premiers dans ¢(%), ncus
voyons d’abord que g’ — ur doit étre divisible par I; alors, M’ contenant par hypo-
thése I'idéal €, , & une puissance d’exposant non multiple de /, tandis qu’au con-
traire M" contient, d’aprés (131), €,_, & une puissance d’exposant multiple de /, on
voit que u devrait aussi étre divisible par /, et enfin, /' étant premier i I, que les
exposants a',, ..., a",_, devraient é&tre lous divisibles par /, contrairement & I'hypo-
theése faite & leur sujet. Ainsi il est démontré qu'une relation (130) ne peut exister
—3

2
une base de la famille de classes engendrée par tous les idéaux invariants; son degré
est donc ¢ — 2, conformément & la formule du théoréme 158.

entreles L, ..., L,_,, c’est-a-dire que ces classes forment dans le cas de m =

.. . l—5 o o
Supposons, en troisiéme liew, m = ——. Alors il existe entre les unités «,, .... 7, ,
9 =
2 ?
11

non seulement une relation de la forme 7% ... 1, % =, v étant une unité de ¢(?) et
2

I'un au moins des exposants, par exemple e, , n’étant pas divisible par /; mais il y

e’ 2
—3

2 =+, v étant encore une unité de ¢(Y) et

en a encore une de la forme +¢ ... n,

z :
I'un des exposants e/, par exemple ¢',_, Wétant pas divisible par /. Formons les

agr 2
unites

(134)

La norme relative de E et E’' étant égale & 1. on peut (théoréme go) poser
E=A"S et E'==A""5, A et A’ étant des entiers de C. Si 'on détermine alors, comme
dans le cas précédent, un entier positif », tel que M’'= AM" contienne £, & une puis-

sance d’exposant multiple de {, I'un au moins des facteurs £,, ..., €,_, entre dans M’

t—1
d une puissance d’exposant non multiple de {, soit par exemple €, . Déterminons
alors deux entiers positifs r' et " tels que M"=A'M""M"" contienne les deux fac-
teurs €, et €

L,, .... ®,_, ne peuvent tous avoir dans ce nombre }1" des exposants divisibles par /.

4 des puissances d’exposants multiples de [. Alors les facteurs

t—1
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Car autrement on pourrait poser, d’aprés le théoréme 133. M"= @'« @' étant une
unité de C et «' un entier de c(¢). En considérant alors les égalités M'—5 ="',

A =E, N'"3=F' on aurait,

ol 1—S — E/ E,.I ;_(MJ_‘_’.U’ ,

d’oll on déduirait, & cause de (134),

e —3+r'ee—3 r'ej—y

i —s ' 2 2 2
(135) Q' =H{""""" ... H,, H_, =

R 2

¢ étant une unité de c({); mais cette relation est incompatible avec la définition des
unités fondamentales relatives (§ 53); car chacun des nombres ¢,_,, ¢',_, étant pre-

2 2

mier a I, les exposants de H,_,, H,_, dans (135) ne sont certainement pas tous deux

2 2
divisibles par {. Si donc, par exemple, €, , figure dans M" avec un exposant non
divisible par 7, on en conclut que la classe L,_, est un produit de puissances des

classes L, ..., L,_, et d’une classe contenant des idéaux de ¢(%).

monlrent encore, dans le

- l—
Les mémes considérations que dans le cas de m =

-
J

{
cas actuel de m =

, que les classes d’idéaux L,, ..., L,_, ne peuvent former
aucune classe
B =LY L

contenant des idéaux de ¢(Y), si les exposants a" sont des entiers rationnels non tous
divisibles par {. L,, ..., L,_, forment donc une base de la famille de classes composée
de tous les idéaux invariants; son degré est par suite { — 3, ce qui est conforme au
théoréme 158.

En continuant par le méme procédé, on arrive a démontrer complétement le
théoréme 158.

Nous avions exclu le cas ou le corps kummerien C serait défini par un nombre

i , e . \ . \
\/e, ¢ étant une unité de ¢(¢); il nous reste donc a traiter ce cas a part.

. . . . ~ ! o ’ \ r
Le discriminant relatif du corps (,:c(\/;, u.) ne peut alors, d’aprés le théo-
réme 148, contenir d’autre facteur premier que [. On a dans C la décompo-
sition [=2' et € est le seul idéal premier invariant de C. Soient encore =, ..., 1,_,,
- =

l—

les normes relatives des unités fondamentales relatives H,, .... H,_,. Comme

2

1 . s e . I .
le degré d'une famille d’unités de ¢(z) est toujours < ;> ona certainement une

relation de la forme

(136) R S

1 m 22—
fle.em e =,
e .
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ou e, ..., e_,, e, sont des entiers rationnels non tous divisibles par [ et v une

)

3 2
unité de ¢({). En posant

e - ﬂﬁ_—‘
(137) H=H...H2 (Ve) 7.

2

on a N(H)=1, et par suite (théoréme go) H=A'"%, A étant un entier de C; on péut
alors poser(!) A= 2"}, j étant un idéal de c(). L’exposant a n’est pas divisible par /,
car autrement, comme ' =1=1— J, on aurait, vu le théoréme 153, A =01,
O ¢étant une unité de C et « un nombre de ¢(¢); mais on aurait alors H=Q'S, et
par suite, a cause de (137), une contradiction avec la définition des unités fondamen-
tales relatives (§ 55). De 1'égalité A = 2%, nous tirons j' ~ 1; doncji~1, 8 ~1, et
comme a est premier & [, € ~ 1, c’est-a-dire que le seul idéal invariant du cas actuel
est un idéal principal. Le degré de la famille de classes de tous les idéaux invariants
est par suite égal & o dans le cas actuel.

Supposons maintenant que parmi les exposantse,, ..., €_,» ¢_,, par exemple,

2

. 2
soit premier & { et démontrons qu’il ne peut exister aucune relation

€13 €1p1

e, " -
(l38) Tyteee Ny 2
onel, .., ¢,_, €., soientdes entiers rationnels non tous divisibles par [ et v’ une
EREE
unité de ¢(%). En effet, on en déduirait que

i3 g
(¢ 2. 1—1

est une unité de norme relative égale & 1. Posons, d’aprés le théoréme go, H' = A""—

’

A’ étant un entier de C, et déterminons un exposant entier positif r tel que € ait
dans A’A" un exposant divisible par {. On peut alors, vu le théoréme 153, poser
NN =0'd, @' étant une unité de C et =’ un entier de ¢(¢); alors on a @"—=H'H’,
c’est-a-dire que l'unité

e/ _atre_g reg__y . e'l+l+"“t+l
-5 " - 5

e +re 2 2 2 \/. 2 21— —r
Hyr™ .. Hl—-:; Hﬂ B L]

9 )

serait la (1 — S)*me puissance symbolique d'une unité de C, ce qui est incompatible
avec la définition des unités fondamentales relatives. Une relation telle que (138) est

donc impossible; vu (136), et comme e¢,_, est premier & I, %, ..., Nyyr & forment

2 2

donc une base de la famille d’unités formée des normes relatives de toutes les unités

(1) N. T. — Parce que € est le seul idéal invariant de C.
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—1 . ‘i ”
et, par suite, toute unité de c(3) est la

l
de C. Le degré de cette famille est donc

norme relative d’une unité de C. On a donc

[ 4
t—|—m—£::0.
2

et le théoréme 158 est encore établi dans ce cas.

§ 148. — [LA TOTALITE DES CLASSES D'IDEAUX INVARIANTES.

Le théoréme 158 a mis en lumiére une relation remarquable qui existe entre la
famille de classes formée de tous les idéaux invariants et la famille d’unités formdée
par les normes relatives de toutes les unités de C. Il y a une relation aussi impor-
tante entre la famille de classes formée de toutes les classes invariantes et une cer-
taine famille d’unités de ¢(%).

.

TutoreMe 159. — Soit t le nombre des idéaux premiers qui divisent le discriminant
relatif du corps kummerien régulier C de degré relatif l; toutes les unilés de c(%) égales
a la norme relative soit d’une unité de C, soit d’une fraction de C, forment une famille
d’unités : si n est sondegré, la famille de classes formée de toules les classes invariantes

[+
est de degré | + n — ——.
2
Démonstration. — Donnons & m le méme sens que dans le théoréme 158. Si, en

premier liew, n=m, la famille d’unités en question coincide avec celle du théo-
réme 108, c’'est-a-dire qu’'une unité de c(¢) égale & la norme relative d’une fraction
de C est en méme temps toujours égale & la norme relative d’une unité de C. Dé-
montrons alors que, dans ce cas, la famille de classes des idéaux invariants est la
famille de toutes les classes invariantes. En effet, A étant une classe invariante de G
et A un idéal de A, nous pouvons poser 'S —aq, a étant un-certain nombre entier
ou fractionnaire de C, et la norme relative N.(a) est alors évidemment égale & unc
unité 5 de ¢(?). Comme ensuite, dans le cas actuel, n=m, on peut aussi trouver
dans C une unité H telle que N(H) =23, on a N(a™"H) =1, et par suite (théoréme o)
a'H=0D0"% ou ab'¥=4H, b étant un nombre convenable de C. A cause de
a='""%, on a (AbB)'S=H, c'est-a-dire que b est le produit d’'un idéal invariant
et d'un idéal de c(%), et par suite on obtient la classe A en multipliant une classe
contenant un idéal invariant par une classe contenant des idéaux de c(z). Notre
assertion est donc justifiée et le degré de la famille de classes formée de toutes les

. . - 5QY fonl ) [+ .
classes invariantes est alors (vu le théoréme 158) égal a { + m — . ceoqui est

conforme au théoréme 159, si n=m.
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Soit, en second lieu, n=—=m + 1; il existe alors dans ¢(¢) une unité 3. qui n’est pas
¢gale & la norme relative d’une unité de C, mais est la norme relative d'une fraction
a de C, et toute autre unité 3' de méme nature sera égale A 3'=23%, a étant un
exposant entier et v la norme relative d’une unité de C. Posons

@ =i g
D, ..., W, étant des idéaux premiers distincts de C, dont aucun n’est conjugué
relatif d’un autre et ot G(S), ..., G(S) sont des polynémes a coefficients entiers de

degré [ — 1 en S. Comme N (a)=23, on a

(gpfusy . ;”(:,4s>)1+s+m it

w

’

d’ot 'on déduit aisément que tous les polyndmes G sont divisibles par 1 —S. Posons

G,(S)= (1 —8)Gi(S), .... G.(8)=(1 —8S)GX(S)
et

GE(S) GH(S)
SOSRLIINE OGRS o

A élant un idéal de C et = un entier ou une fraction de ¢(¢): on a, dés lors, a =A'.
Il en résulte d’abord que % détermine une classe invariante. Cette classe invariante A
ne contienl pas d’idéal égal au produit d’un idéal invariant par un idéal de ¢({): en
effet, on pourrait dans ce cas poser Y= c¢Lj, ¢ étant un entier ou une iraction
de C, € un idéal invariant de C ct j un idéal de ¢(g); on aurait alors '~ =¢'%,
c'est-d-dire a=Hc'~", H élant une unité de C. Il en résulterait N(a) =N(H)=35,
contrairement a I'hypothése sur 3.

Nous allons montrer maintenant que, dans le cas actuel n=m + 1, toute classe
invariante donnée A’ est de la forme A’= A“Lk, ot A” est une puissance de la

classe A qui vient d’étre déterminée, L une classe avec un idéal invariant et & une
classe contenant des idéaux de ¢(7). Pour cela. prenons dans A’ un idéal quelconque
2'; nous pouvons poser ensuite A —S=4a', a’ étant un nombre convenable de C.
Alors N.(a')==75 est une unité de ¢(¢); posons, conformément a notre hypothése,
N(a')=235". 3, a, v ayant le sens de tout a I'heure. Soit a le nombre déja considéré
pour lequel 5=N/(a); soit, de plus, = N(H), H étant une unité¢ de C. On tire de
cette équation N(a''a“H) =1, et alors (théoréme go) @' 'a“H=¢'"%, ¢ étant un
nombre convenable de C, on en tire (¥ A“c™)'—>=1. Cette égalité montre que
A A devient, aprés multiplication par un entier convenable de ¢(¢), le produit
d’un idéal invariant € par un idéal j de ¢(2); on a donc A ~ A Lj. Par conséquent,
A cause de n=m + 1, le degré de la famille de toutes les classes invariantes est

. {41
{ +m+ 1 — ——, valeur conforme au théoréme 15g.
2
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Soit, en troisiéme lieuw, n=m 4+ 2; il existe alors dans ¢({), outre 3, encore une
unité 3’ égale A la norme relative d’une fraction a’ de C, et cependant elle ne peut
se mettre sous la forme ' = 3%, v étant la norme relative d’'une unité de G. Posons

a! j— I:",l(s) . %I:’;r'(s)
(les 9’ et les G’ satisfaisant aux mémes conditions que les 9 et les G plus haut).
Comme N,(a)=23", on a
les G’ doivent alors étre divisibles par 1 — S. Posons
G (S)=(1—8)GF{S), ..., GL)=(—8)G (¥ . .
et

G(S) G'3t0(S)
Py — gy

A’ étant un idéal de C et »' un nombre de ¢(2). on a a’'=A"—%. Lidéal A’ définit

donc une classe invariante A'. Cette classe ne peut se représenter par A'= A“Lk,
A“ étant une puissance de la classe A, L une classe a idéal invariant et & une classe
contenant des idéaux de ¢(¥). En effet, il en résulterait, pour A', A' = eA*Lj, ¢ étant
un nombre de C, L un idéal invariant et j un idéal de c(z); mais alors on aurait
WS = ¢S YY) — ¢!—5q%, Cest-d-dire a’'=H¢'Sa’ H étant une unité de C. En
prenant la norme relative, on aurait N.(a') = 3= 3*N,(H), ce qui est impossible.
Dans le cas actuel n=m + 2, toute unité 3" de ¢(¢) égale a la norme relative d'un
nombre de C est de la forme 3" = 3" 3%, d, a étant des exposants entiers et 7 la
norme relative d’une unité de G. Alors, par les mémes considérations que plus haut,
on montre que toute classe invariante A" peut se représenter par A" A“Lk, A’, A étant
les classes précédemment définies, L une classe a idéal invariant, k une classe con-
tenant des idéaux de ¢(). Le degré de la famille de classes formée de toutes les classes

1
, ce qui est la formule du théoréme 159 pour

. . l
invariantes esi alors { +m 4 2 —

n=—m -+ 2.
En continuant ainsi, on démontre complétement le théoréme 159.

§ 149. — CARACTERES D'UN NOMBRE ET D UN IDEAL DANS UN CORPS KUMMERIEN REGULIER.

Il s’agit maintenant d’étudier la répartition des classes d’idéaux d’un corps kum-
. - L . . -
merien régulier C:c(\/p,, ;), au méme point de vue que la répartition en genres

des classes d’un corps quadratique. Nous désignons par I, ..., [, les ¢ idéaux pre-



fo8 D. HILBERT.

miers distincts de ¢({) qui divisent le discriminant relatif de C. A toul nombre entier
v(z|=0) de ¢(?) répondent des valeurs déterminées des ¢ symboles :

<

(139) el
(LY L1

ces symboles représentent (§ 131) des racines [ de l'unité. Ces (¢ racines de

Tunité (139) s’appellent les caractéres du nombre v dans le corps kummerien C.

Pour un idéal I du corps kummerien, prenons la norme relative No(J¥) =j. Soit &

le nombre de classes de ¢(%) et 2* un entier positif, tel que 'on ait Ah*=1, mod /.

> Alors j"* est un idéal principal de c(%). Soit j*** =(v), v étant un entier de ¢(%). Soit
*encore Z, une unité de ¢({). Alors si pour toute unité 2, les { symboles

223

2

<

T S 00
T T A P

.

‘ont la valeur 1, nous poserons r = { et nous appellerons les r racines de I'unilé

les caractéres de Uidéal J; ils sont parfaitement définis par cet idéal.
Sl existe, d’autre part, une unité s, dans ¢(), telle que 'un au moins des
t symboles

5’-:,,}).% Ve
LRy 77 )

soit différent de 1, nous pouvous, sans diminuer la généralité, supposer que, par
] (=. 0

exemple, :'—112::

\ t

Considérons alors toutes les unités 2, de c¢({) pour lesquelles

parmi elles, ¢, une unité pour laquelle I'un au moins des symboles.

{50 v _\’s,.p.é
( Ij \ ( It—i .
N
soit différent de r; nous pouvons admettre que, par exemple, ) (== Considé-
Vb )

rons toutes les unités 2, pour lesquelles les deux derniers caractéres relatifs a I, et
[
moins des { — 2 symboles

., sont égaux a 1, et voycns si elles en comprennent une ¢,. pour laquelle I'un au

o

:x'P‘
s eee

{ E
[ 1, T

soit =|=1. En continuant ainsi, nous obtenons finalement un certain nombre r*
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d’unités ¢ .., g de ¢(¢), telles que l'on a, en rangeant convenablement les

I,
Ssg,p.):] gs,, v,
(I[;O) ( Iz S ' L 1t—l ”

(3w (& w )
=1, , =1,
e It / (It—rAl
les r={ — r* caractéres
ECR A
(L) (1,

sont aussi tous égaux a 1.
Multiplions alors le nombre v de ¢() déduit plus haut de I'idéal J par des puis-
sances des unités ¢,, ..., ¢,», de facon que le produit obtenu v vérifie les conditions

SV,p,:I Sﬁ,p.gzr
( 1: ' 7 (It—r"l—m
j'appelle alors les r==1{— r* unités :
L@ =) s

s ) ,_5_)
RSN /‘"(J>—(I i

1

les caractéres de Uidéal I. Dans le paragraphe 151, nous verrons que l'on a toujours

r* <t et, par suite, r > 1.

§ 150. — CARACTERES D'UNE CLASSE ET NOTION DE GENRE.
Le théoréme 151 et les remarques additionnelles, paragraphe 133, conduisent a

la proposition :

TutorkME 160. — Les idéaux d’une seule et méme classe d’un corps kummerien
régulier ont tous les mémes caractéres

Il est ainsi possible de faire correspondre a toute classe d’idéaux un systéme
déterminé de caractéres. Nous rangerons, comme au paragraphe 66 pour le corps
quadratique, toutes les classes ayant les mémes caractéres, dans un genre, ¢t nous

Fac. de 7., 3¢ S., 1L 52
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appellerons en particulier genre principal celui dont tous les caractéres sont égaux
A 1. Comme Cest le cas de la classe principale, celle-ci appartient donc toujours au
genre principal. Les premiéres formules (80) et (83) conduisent facilement aux pro-
positions suivantes : G et G' étant deux genres quelconques, si 'on multiplie chaque
classe de G par chaque classe de G', les produits forment encore un genre : on I'ap-
pellera le produit des genres G et G'. Les caractéres en seront les produits des carac-
téres correspondants de G et G'.

De la définition résulte que les classes conjuguées relatives SK, ..., S™K d’une
classe K font partie du méme genre que K, et, par suite, la (1 — S)¥¥™ puissance sym-
bolique d’une classe K quelconque appartient au genre principal. Enfin, il est évident
que tous les genres d'un corps kummerijen contiennent le méme nombre de classes.

§ 1D1. — LIMITES SUPERIEURES DU DEGRE DE LA FAMILLE ISSUE DE TOUTES

LES CLASSES INVARIANTES.

Comme pour le corps quadratique, se pose la question importante de savoir si
un systéme arbitraire de r racines [*me de l'unité peut former les caractéres d’un
genre du corps kummerien. Cette question ne sera complétement éclaircie qu’au

chapitre xxxiv. Dans ce paragraphe et le suivant nous placerons seulement quelques
lemmes nécessaires pour la suite.

LemmE 33. — ¢ et n ayant le méme sens qu’au théoreme 159 et r étant le nombre
des caractéres distinctifs du genre d’une classe, on a toujours

t+n——%<r—l.

Démonstration. — Soient ¢, ..., ¢ =, les r* unités particuliéres de ¢({) introduites
paragraphe 149. Alors on a r={—r*. Soient 3,, .

.., 5 une base de la famille

n

d’'unités de c¢({). normes relatives de nombres de C. Supposons qu'il existe entre les

r* 4+ n unités ¢,, ..., g%, 3,, ..., 3, une relation
4 ar* b cbn 1
(141) et S g =4,
les exposants 4a,, ..., @z, b,, ..., b, étant des entiers rationnels non tous divisibles

par [ et ¢ étant une unité convenable de c(?); on devrait alors toujours avoir pour
u—ia, 2, ..., t

ss’;‘ aﬂ:’; 57:’1 32", p.) L
| [ y o
\ u

et si 'on remarque que les unités 3 sont normes relatives de nombres de C et que,
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Ty

u

par suite, on a toujours

%:1 pour u=r1, 2, ..., tetv=1, 2, ..., n, on aurait

aussi

Aps:

gt g

e —————— === 1.
|

u

Ceci n'est possible, vu les formules (140) pour les unités ¢, ..., ¢, que si les
exposants «,, ..., a, sont divisibles par [, et la relation (14r) prendrait alors la
forme

)

by obn =
Tyt e T =0

¢* étant encore une unité de ¢(%). Mais comme les 5 forment une base d'unc famille
d’unités de c¢(¢), une telle relation n’est possible que si tous les b sont divisibles par /.
I1 résulte de 1a que la relation supposée (141) ne peut exister, c’est-d-dire que les
unités ¢, ..., $u» 9,5 ..., 3, forment une base de famille d'unités; le degré de cette

’ o~y

famille est r* + n, et comme le degré d’'une famille d’unités est au plus , 0N a

! — l+1
r4n ! , ce qu'il fallait démontrer. Comme on a { + n— % > o, il en

résulte qu’on a toujours r*<{, donc r> 1.

§ 152. — COMPLEXES D'UN CORPS KUMMERIEN REGULIER.

Soit & le nombre des classes d’idéaux du corps circulaire régulier ¢({); il existe
alors dans le corps kummerien C:c(\l/}:, C) exactement h classes d’idéaux dis-
tinctes, contenant des idéaux de ¢(¢). En effet, toute classe de ¢({) donne évidemment
une classe de K de cette espéce, et si deux classes distinctes k,, k, de ¢(¢) contenaient

des idéaux équivalents dans C, un idéal j de ¢({) dans la classe % devrait toujours

Yy

devenir principal dans C. Mais alors, d’aprés le théoréme 153, j serait aussi principal
dans ¢{), contrairement & '’hypothése k, ==k, .

K étant alors une classe quelconque de C et k;,, ..., k, les h classes de C contenant
des idéaux de c({), j'appellerai 'ensemble des h classes kK, ..., k,K un complexe.
Le complexe k,, ..., &k, sera le complexe principal et se représentera par 1. Les
h classes d'un complexe quelconque P font évidemment partie du méme genre; ce
genre s’appellera le genre du complexe P.

Si une classe d'un complexe P est invariante, il en est de méme des autres; le
complexe sera dit tnvariant.

P et P’ étant deux complexes quelconques, les produits d’une classe quelconque
de I'un par une classe quelconque de l'autre forment encore un complexe : ce sera le
produit PP' des complexes P et P'.
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K étant une classe du complexe P, le c0111pléxe auquel appartient SK sera SP;
jappellerai le complexe Q, dont le produit par SP donne le complexe P, la
(1 — S)¥me puissance symbolique du complexe P, Q = P!=3.

Si P'=f =1 (complexe principal), P est un complexe invariant. En effet, K étant
une classe de P, P'~S=1 entraine évidemment K'=—=1F%, & étant une des classes
k,, ..., k,. En prenant la norme relative, on obtient 1 =#k'. et comme d’ailleurs
k"=1, il en résulte k= 1, c’est-a-dire K!—S =1 : K est une classe invariante et P un
complexe invariant.

§ 153. — LIMITES S{ PERIEURES DU NOMBRE DES GENRES D' UN GORPS KUMMERIEN REGULIER.

Lewve 34. — ¢ et n avant le sens du théoréme 159, g étant le nombre des genres
du corps kummerien régulier C, on a toujours

1+1

gL

Démonstration. — ¢ étant le nombre des genres du corps kummerien, les com-
plexes se répartissent aussi en ¢ genres. Si l'on désigne par f le nombre des com-
plexes du genre principal, on a donc pour le nombre total M des complexes, M = fy.

Cherchons maintenant le nombre @ des complexes invariants. Pour cela, obser-

vons que. d’aprés le théoréme 159, le degré de la famille issue de toutes les classes

Lo . I+ . .
invariantes est égal & { +n———_. Soit A, ..., A, 1+, une base de cette famille:
9 2
I'expression
ut+n—!f—
u -
Al A

l+n—T

représente alors, lorsque les exposants prennent séparément toutes les valeurs o,
1, ..., | —1, des classes toutes invariantes, faisant partie de complexes distincts, et

. i+ . . .
par suite ces classes forment /+"= = complexes. Toute classe invariante A est de la

forme

arpn—tt!
— A, A = a

A=Au . A it k,

+n——5-

les a étant des entiers rationnels et & une classe de ¢({). En nous rappelant alors que
les [eme puissances des classes invariantes A,. ..., Ay, 2t sont des classes conte-
nant des idéaux de ¢(%), il en résulte que A appartient nécessairement a I'un des

I+1 , ., , I+
I+"—= complexes précédemment déterminés; le nombre cherché g = I+~ =".

Les définitions des paragraphes 150 et 152 montrent de suite que la (1 — 8)*™ puis-
sance symbolique d'un complexc quelconque est un complexe du genre principal.,
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Envisageons les complexes du genre principal qui sont des (1 — S)™s puissances
. . . . 1—8 1—s

symboliques de complexes; soit f’ leur nombre et soient P, =G, , ..., P, =G,

ces complexes. P étant alors un complexe quelconque, P!~ est nécessairement I'un

1—S 1—S {—s s .
—=P,. Alors on a P =G, , cest-a-dire

des /' complexes P,, ..., Pp; soit P
(PG:')1_S= 1, et par suite PG; " est un complexe invariant A; on a P= AG,, et par
suite 'expression AG, embrasse tous les complexes, si I'on prend pour A tous les
complexes invariants et pour G, les f' complexes G,, ..., G,. Il est aussi évident que
cette représentation est unique; le nombre de tous les complexes est donc M =af".

On a donc af’' =g, et comme on a f' < f, il en résulte g < a, c'est-a-dire

14+1
gLl

ce qui démontre le lemme 34.

LevmME 35. — Les lemmes 33 et 34 conduisent de suite au suivant; r étant le
nombre des caractéres distinctifs du genre d’une classe, le nombre des genres g est
<L

CHAPITRE XXXIII.

Loi de réciprocité des résidus de Ii®mes puissances dans un corps circulaire
régulier.

§ 134. — LA LOI DE RECIPROCITE DES RESIDUS DE ("™ PUISSANGES ET LES LOTS

COMPLEMENTATIRES.

Les théories développées jusqu’ici nous permettent de démontrer certaines lois
fondamentales sur les résidus de puissances /*m dans un corps circulaire régulier;
clles correspondent aux lois de réciprocité des restes quadratiques dans le domaine
des nombres rationnels, et la loi de réciprocité d’Eisenstein (théoréme 140, § 115)
entre un nombre quelconque de ¢({) et un nombre rationnel en est un cas particu-
lier. Pour donner & ces lois leur expression la plus simple, généralisons le sym-

bole sl—J—) défini aux paragraphes 113 et r27.

w )

Soit A le nombre des classes d’idéaux de ¢(¢); déterminons un entier positif A* tel
que l'on ait Ah*=1, mod [. p désignant alors un idéal premier quelconque de ¢(%),
différent de I, p***est toujours un idéal principal de ¢(¢); posons p*"* — (%), = étant
un enlier de ¢(t), et supposons, ce qui est possible d’aprés le théoréme 157, que =
soit primaire. Un tel nombre = s’appellera un nombre primaire de p. Toute unité
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primaire de ¢({) étant la [“"® puissance d’une unité de ¢(¢) (remarque du § 142),
= posséde vis-a-vis de tout idéal premier autre que p un caractére de puissance com-
plétement déterminé. g étant alors un idéal premier quelconque de ¢(¢) autre que [

{9

et p, on définira le symbole (E§ par la formule

31

a|-|

Ce symbole est donc une racine /™ déterminée de 'unité, définie par les deux
idéaux premiers p et q. En utilisant ce symbole. nous énoncerons le théoréme

TuEoREME 161. — 9 el q étant deux idéaux premiers distincls, aulres que . du corps
circulaire régulier c(t), on a

\® ( \ 4|
lad eV
relation appelée loi de réciprocilé des restes de '™ puissances. De plus, si % esl une

unité quelconque de c(§) el = un nombre primaire de p, on a

Y -
3i I\ %g \
P "o
relations appelées lois complémentaires de la loi de réciprocité. [Kummer ' 12 18 19, 20, 21 ]
Nous d:montrerons progressivement ce théoréme fondamental dans les para-
graphes suivants (§§ 155-161), en appliquant a des corps kummeriens réguliers parti-

culiers les théorémes et lemmes du précédent chapitre.

§ 105. — IDEAUX PREMIERS DE PREMIERE ET DE SECONDE ESPECE DANS UN CORPS

CIRCULAIRE REGCULIER.

11 est nécessaire de distinguer pour la suite deux espéces d’idéaux premiers
dans ¢(X); un idéal premier p autre que [ de ¢(z) sera de premiére espéce lorsque toule
unité de ¢({) ne sera pas reste de [ puissance mod $; dans le cas contraire, il sera
de seconde espéce. [kummer®.]

LeyvEe 36. — Z et z étant des unités quelconques du corps circulaire ¢(3), h—=1—1,
[=(%), on a les égalités

p=—=1, e — I
(1) ( i )
Démonstration. — Si = est la ['™* puissance d'une unité de c(¢), les formules

. . C T . !
ci-dessus sont évidentes. Dansle cas conlraire, \/3 définitun corps kummerien c(\/s ’ C>,,
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\

et les considérations du paragraphe 147 s’appliquent a ce corps. Toutes les
unités de c({) et, de pllis, le nombre %, sont alors normes relatives de nombres
de c(\l/;, C) d’ou, vu le théoréme 151, les égalités & démontrer.

Sil'on veut n’appliquer ici le théoréme 151 pour w =1 que dans le cas traité en
détail paragraphes 133, ol p.=1 + A, mod I*, on achévera en prenant d’abord,

Y PU T

T 1, T 1(1). On déterminera ensuite, dans

le cas de ¢ unité quelconque de ¢(¢), une racine ™ de 'unité ¢, telle que L'on ait

I—1

pour ¢, £'; ensuite on aura

¢/7'=147%, mod I*. En prenant alors dans la démonstration précédente g*<''.
au lieu de =, on a, vu la deuxiéme formule (83), paragraphe 131,

S VY

[0}

)-——):l et )

() ()

LewMEe 37. — ¢ étant un idéal premier de premiére espéce et = un nombre pri-
maire de p, il existe dans ¢({) au moins une unité z, pour laquelle on a
Ve, ®

[

Si, au contraire, q est un idéal premier de seconde espéce et » un nombre pri-
maire de ¢, on a pour toute unité = de ¢(%)

Démonstration. — Pour démontrer la premiére partie, supposons qu'on ait, au
contraire, pour toute unité 2 de c(¢),

Posons m=a + b2°, mod I°"', a et b étant des entiers rationnels et e le plus

grand exposant < /—1, pour lequel une telle relation est possible; = étant un
-t
nombre primaire, on doit avoir nécessairement e>>1 et =.s 2 = doit étre congru
i— .
mod [/ & un entier rationnel (s 2 représente la substitution (¢ : ¢™') du corps circu-
1—1
2

laire c(:)). Comme on a s 2 A= — », mod I*, on a

1—1

RS T R= (0 bX)(a+ b= ), (1,

et il en résulte que, dans le cas de e <l — 1. e doit étre nécessairement impair.

() N. T. — Voir la fin du § 131, et remarquer que {~' = (1 —A\)~1=1—([—1)h =1 + ),

(mod ().
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D

. . . l—
Nous avons trouvé, en démontrant le lemme 29, que les I* =

.y
unites e, ..., g

du corps ¢(¢) vérifiaient les conditions

"(e)=o, (), (u==20), g (,2 1 2 b )
l‘”'(e,) ___:!5 o, (l) u=1,2, .., —2

Si 'on porte, dans I'égalité

(551
)

I ' =1, successivement les unités =, ..., ¢x ala
J

3
lace de 2, on déduit de la définition (82) du symbole ‘V'—z') et deson extension (§ 131)
b T

les congruences
"~ (z"=o, I"Y(="Y=0, "z "=0, ..., I"E"")=0. (modl);

elles montrent que dans la congruence ==a + 63, mod 17", ¢ ne peut prendre

aucune des valeurs [ — 2, I — 4, [—6, ..., 3. Ceci joint aux conditions déja trouvées
pour e montre que e =1 — 1. Comme d’ailleurs 2" '=—1{, mod [', on a z=a —bl,
mod [, et, par suite, la norme de = vérifie la congruence

n(z) = (a— bl ==, (I).

D’autre part, on tire de la définition du symbole (§ 131) et du lemme 24 (§ 132)

b3

\:. .% I—n(%)
()

et comme le symbole du premier membre doit étre égal a 1, il en résulte n(z)=1,

!

'=1,mod l', ou r==".

mod P, cest-a-dire ='~ mod I'. D'aprés le théoréme 148, le

. ’ . ' 14 L/~ 1 3 . .
corps kummerien déterminé par \/x posseéde, vu la derniére congruence, un discri-
minant relatif premier a [, et, par suite, p est le seul idéal premier figurant dans

. . . op 1/~
le discriminant relatif de c(\/x, ’;).

hhsw—A

Caa s . 1/~ w
Posons p = 9'; MW est le seul idéal invariant de ce corps. De \/ﬁ:%""" =Py
résulte que 9 est équivalent a4 un idéal de ¢(¥). La famille de tous les idéaux inva-
. ’ . I
riants est donc de degré o pour le corps kummerien c(\/n, t). Comme le nombre ¢
Ca . . o, . . l+1
des idéaux invariants dece corps est 1, il résulte du théoréme 158 : 1 + m — ——=o,

. l—1 . . . .
c'est-a-dire m =——. Par suile, loute unité de ¢(¢) est norme relalive d’'unc unité
2

de c(\l/; C). et on a donc toujours (théoréme 151) ;'”\ =—1. ct, par conséquent
(5~ (Zhh® e ' ‘

aussi, comme G ). ):.\l(, L 1, contrairement a I'hypothése que
Lo ) L) (ol (p)

I'idéal p est de premiére espéce.
Pour démontrer la seconde partie, considérons, comme dans le lemme 36, le

. 1 /5 . - .
corps kummerien c(\/E C), Z ¢tanl une unité quelconque de c(¢), différente cepen-
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dant de la [*m puissance d'une unité de ¢({). Comme on l'a démontré a la fin du

o L 1 /2

paragraphe 147, toute unité de ¢(¢) est norme relative d’une unité de c(\/;, C) et les

deux familles d'unités des théorémes 158 et 159 ont, par suite, toutes denx le degré
=1

m=—n-— .
2

Comme, de plus, t=1, le lemme 34 donne g < 1. Donc g =1, toutes les classes

d’idéaux du corps c(\l/’é C) appartiennent au genre principal. q étant idéal pre-
20

mier de deuxiéme espéce, on a ;-“— g: 1, et, d’apres le théoréme 149, q se décompose

en lidéaux premiers distincts du corps c(\’/g C). Soit Q I'un d’eux. Un nombre u(=]=0)

du corps ¢() a dans c(\'/g 'g) le caractére unique 31’;5; ce dernier est toujours égal

"
=

A 1 (lemme 36) si o est une unité de c¢({). Le caractére de I'idéal premier &

{ -
Yy S

— =1, et ce dernier doit étre égal a 1 d’aprés la propo-

dans ('(\l/é C) est, par suite,

sition antérieure. Le lemme 37 est donc complétement démontré.

Si 'on voulait encore ne considérer le théoréme 151 comme démontré dans le cas
de w=1 que si p=1+ A, mod I*, la répartition des genres, et en particulier le
lemme 34, ne seraient aussi valables que dans ce cas. Nous devrions alors, pour
démontrer la deuxiéme partie du lemme 37, prendre d’abord 2=2{¢""", puis Z=¢*:"",
¢ étant une unité quelconque de ¢({) et {* une racine (™ de l'unité, telle que l'on
ait g*¢'=1 4+ A, mod I*.

§ 156. — LEMMES SUR LES IDEAUX PREMIERS DE PREMIERE ESPECE.
LemmMe 38. — Soit p un idéal premier de premiére espéce du corps circulaire

régulier ¢(%) et = un nombre primaire de p. S'il existe alors dans ¢({) une unité < telle
que l'on ait

= fgzlz N
N R
on a pour toute unité g de c(t;) Iégalité
LY
(p) L1
Démonstration. — Le corps kummerien c(\l/;, Q) contient, p étant un idéal pre-

mier de premiére espéce, deux idéaux premiers invariants € et 9, a savoir ceux dont

les puissances I“mes sont [ et p (voir démonstration du lemme 37). L’idéal premier

invariant 9 étant évidemment idéal principal dans c(\l/;, Lf), la famille de classes des
Fac. de 7., 3¢ S., 1. 53
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idéaux invariants de ce corps est de degré o ou 1, suivant que € est ou non idéal

principal. D’aprés le théoréme 158, le nombre 2 4 m —

I r
est donc égal & o ou

a 1, cest-a-dire que l'on a m=

l—1
U M= Comme l'unité =, vu I’hypo-

thése

&,
[ _|_ 1, N'est certainement pas (théoréme 151) norme relative d’'une unité

l 14 .
de c(\/r, ;), on a nécessairement m=—

, et, par suite, toute unité = de ¢({) peut

se mettre sous la forme 2=2:"3, a étant un entier rationnel et 3 une unité égale i la
T

’
norme relative d’une unité d ( ) Pour ce motif, on a donc (théoréme 151)

ST

(51, {2l
T |

SANGY B N
p ) ey

(2

et par suite aussi (——[—js = gg—i il en résulte, d’aprés la deuxi¢éme formule (83), que

l’onaaussis"a ;—E—) ' "C.q.f. d
ERSras . q. f. d.

Si le théoréme 151 n’est admis pour w =1 que si p.= 1 + %, mod %, on détermi-
nera une racine /™ de I'unité Z*, telle que J*=z"* =1 + X, mod I*, et 'on considérera

le corps c(\/g* = ‘f) au lieu de c( ™, s)- Puis on appliquera le lemme 36.

Lemue 39. — p, 9* étant deux idéaux premiers de prerﬁiére espéce de c(¢) et 7, =~
deux nombres primaires de 9, $*, si 'on a, pour toute unité Z de ¢(¢),

Z) = %) £ =, £
3?5”% 0y ey oy
on a
Pl
) 3 P
Démonstration. — p* étant idéal premier de premiére espéce, nous pouvons déter-
miner une unité = de ¢(¢), telle que ?i — 1. Considérons alors le corps kumme-

rien c(\/ %, \,) Son discriminant relatif ne contenant que les deux facteurs premiers
{ et », un nombre «(=]=0) de ¢(¥) ne posséde que les deux caracteres

N I R LN
Vot e T ey

S,a,—

{

=1, p* est décomposable dans c(\'/:—; Lf), soit 9 L'un de ses fac-

™

{ew

Comme on a o
P

teurs premiers dans ce corps.

Pour former les caractéres de §%*, observons que p est un idéal premier de pre-

&* ﬁl:I

p )

miére espéce: on peut donc déterminer une unité ¢* de ¢(), pour laquelle
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[ H__%
. \ \ . e, ER ‘ .
et 9% posséde le caractere unique 3 2 Nous concluons alors, du lemme 35,

v

L B b1 . se
g~ 1 pour le corps c(\/e:, C), C'est-a-dire que dans ce corps toute classe d’idéaux
appartient au genre principal, et le caractére ci-dessus a donc la valeur 1. Or, nous

avons ing =1, c’est-a-dire, a cause de la formule (§ 113),
) (e ;"
142 N (T ) 5
(1h2) i
. 5*7:"‘2 D .
ensuite v 5= 1, Cest-a-dire
‘ ”* 3\ ‘ E* E-l

143 ) _g ==0 .
(143) o Up
et enfin S—T—[iig —1, ou, avec les forfnules (83),

(. e) (e =) (=" ss 3’:*,x§ .
[ 1 NIRRT
Comme (lemme 36) : §° i as =1, et (lemme 30) : T g: 1, la derniére formule
devient
=) (7 s%
(144) i E—( i

1

%
(A,:

[ 1

c

\—
(
on tire de (144)
Si% Y
FRRNTE
égalité qui, jointe aux formules (142), (143), conduit & celle du lemme.

Si I'on veut encore n’appliquer le théoréme 151 pour w=1 que si p. =1+ 4,
mod 1%, on prendra dans la démonstration ci-dessus une unité ¢ telle que l'on ait,

outre 3%% =1, (e%)*=1 4+ %, mod [*, pour un exposant a premier a [. C’est toujours

possible si g% — 1. Mais si ;;% =]=1 et que g%gzlt 1, cette condition peut étre vé-

rifiée encore si 'on prend pour ¢ une puissance convenable de {. 1l n’y a encore

doute que si (8 ):|: I et 51;

(?S e = 1. Dans ce cas, renversons les roles de p, = et p*, =*
dans la démenstration : alors il ne reste plus que le cas ou 'on aurait en méme
(¢ ’ (= (=) .
temps 57 =1, SE):|: 1, et 57 =, $_§:1. Mais dans ce cas les deux der-
[» l9) (p") " T lp

nié¢res conditions montrent sans plus 'exactitude du lemme.
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LewmE 4o0. — 9 étant un idéal premier de premiére espéce de ¢({) et = un nombre
primaire de ., si I'on a pour toute unité % de ¢(%)

) LY
si, en outre, p* est un idéal premier == p de premiére espéce tel que I'on ait
,-?—(‘ = g—gf) :l: I,
p*) p)

il existe toujours dans ¢({) une unité ¢ telle que

e = e
== == 1,
[ ") L
=* étant un nombre primaire de p*.
Démonslration. — Nous procédons exactementi comme dans le lemme précédent

et nous arrivons, en introduisant certaines unités ¢ et ¥, aux trois formules (142),
(143), (144). Mais, vu I'hypothése 3%%: T”[E f ceci et g%% = p_% == 1, ainsi que

les trois formules indiquées, conduisent & la démonstration du lemme 4o.

Si le théoréme 151 n’est admis que dans le cas de p =1+ %, mod I°, il suffit de

, . e v T
déterminer ¢ de maniére a vérifier, outre g;g —1, encore la congruence (¢x)"'=1+ X,

mod [*, avec a premier a [, détermination toujours possible ici.

§ 157. — CAS PARTICULIER DE LA LOI DE RECIPROCITE POUR DEUX IDEAUX PREMIERS.

TutorkME 162. — p et ¢ étant deux idéaux premiers quelconques d'un corps cir-
Bi:r. on a aussi WJ:
q)

[p)

Démonstration. — Soient =, z des nombres primaires de p et q. Considérons le

culaire régulier pour lesquels I.

. 1 . . .
corps kummerien c(\/n. t_) et distinguons deux cas, suivant que p est de premiére
ou de seconde espéce.

. S . 1/= . .
Dans le premier cas, le discriminant relatif de c(\/z, t_) contient les deux idéaux

\

=5l

1
. 1/~ , . , \ SUEYPT '
Un idéal de c(\/r., g) n’a, par suite, quun seul caractére, c’est-d-dire que r—=r et

premiers [ et p et il exisle, d’apreés le lemme 37, une unité = de ¢(¢) telle que

(lemme 35) g = 1. Comme S:): 1, q est décomposable dans c(\l/,: C); soit Q un

la)
de ses facteurs premiers. = et % étant primaires, on a (lemme 3o0) 3/—EE§: 1, et Q
appartenant au genre principal, on a aussi /_p_—z = ?%i =1. C.q.f. d.
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Si p est de seconde espéce, on a (lemme 37) pour toute unité Z de ¢(%) : gc Ti: I

et par suite (démonstration du lemme 37) le discriminant relatif de c(\/ C) ne

contient que I'idéal premier p. Par suite, on a encore r=1, g=1. 32 1, donc

q est décomposable dans c(\'/,: C). Soit £ un de ses facteurs premiers. & étant du
: (5 - (. =

genre principal et comme on a 31[—2 =1, on a aussi Q—z = %2 =1. C.q.f. d.

Dans le cas ol le théoréme 151, et par suite aussi le lemme 35, ne seraient admis
pour w =1 que dans le cas de p.=1 + ), mod I, il faut ajouter ce qui suit dans le
cas ou p est de premiére espéce.

p élant un idéal premier quelconque et = un de ses nombres primaires, on déduit

de la définition du symbole ilit (s 131) et du lemme 24 (§ 132) I'égalité

(145) | 3' zé T —

Or, si I'idéal premier g est tel que I'on ait si): 1, déterminons une racine ™ de

q)
T'unité Z* telle que L'on ait *="'=1 + ), mod I*, et envisageons au licu de c(l = Z_)

le corps c(\l/ *= ”) Nous employons alors la méthode indiquée plus haut. Comme
on a

% 2 1—

%, C*T:l—l) ) ;i—cg

TR S A O Y A O
et qu’on a, comme plus haut, 7—’[—‘—% ; que d’autre part, vu (1[;5) 37 ti = 3% t =1,
( + *,1—1 l yx_l—1 ' S
il en résulte ;’_ZT‘.__éz 1, et nous en tirons i 2: 1, Cest-a-dire g:: I
o ¢) '
Soit, d’autre part, ==

1; 9 étant de premidre espéce, il existe siirement une

al

unité =, telle que g 2-1" et de plus (lemme 37) une unité ¢, telle que

K

2 o=,

On peut, de plus, ChOlSlI‘ cesunités=1 + %, mod. I' Nous en déduisons I'existence d’une

unité ¢, pour laquelle

;%:l:.l et s'l—l et telle que :=1 + %, mod I*. En

effet, si ces conditions ne sont remplies ni par s, ni par ¢

- — - 1+1
Sy v <,
5_‘_._ 2 — ;"%* 1, et alors e —(z,¢,)* serait une unité vérifiant ces condltlons

on a simultanément

2?

I,

[ 1

Déterminons alors une puissance n=¢" de ¢ telle que I'on ait 3£{ L SiTon avait
~ ‘

3;{ == 1, a serait slirement premier & [ et on aurait ;~—I—) == 1.

\

De plus, « élant primaire, il est visible qu'une certaine puissance de % d’expo-
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sant premier a [ est congrue 4 1 + A, mod I°. De (145) et du lemme 36 résulte encore
(&onz

. 1 \ ,

T z[=1. Le corps kummerien c(\/v,z, ?;) ne possede donc qu'un genre. Comme
(% , . ' .
;‘? =1, 9 est décomposable dans ce corps; ¥ étant un de ses facteurs premiers,

son caractére est égal au symbole

n, ‘r,'/.g _ (U=
q 9’
I

(" étant une racine /*m de l'unité telle que 'on ait —-I——‘—gz 1. 'Vu la derniére
L .1 . , (2 %) (= .

égalité et comme on a %{:1, il en résulte ;ii ;——qiz 1,ct, a cause de
T, T % . / . - >

j—lr' =1, ;s i g est aussi ==1, c’est-a-dire, vu (145), ;%f ==1; on a donc {*z)=1.

Mais comme I'un des caractéres de I'idéal premier 9 doit &tre égal & 1, il résulte de
¥

;'—’ = 1 nécessairement -—g =1, contrairement & ce qui précede.
q q9)

§ 158. — EXISTENCE D'IDEAUX PREMIERS AUXILIAIRES POUR LESQUELS LA LOI

DE RECIPROCITE SE VERIFIE.

LEmME 41. — 9 étant un idéal premier quelconque du corps circulaire régulier
¢(%), il existe toujours dans c(%) un idéal premier v vérifiant les conditions
s—c—)zlzl ‘igz(izzltl
Ced ™ e ()

Démonstration. — Soit h le nombre de classes de ¢({) et, comme aux paragra-
phes 149 et 154, h* un entier positif tel que I'on ait hh*= 1, mod /. Soit p le nombre
premier divisible par et ==yp"* un nombre primaire de p; soient, de plus, 9’
9", ... les idéaux premiers distincls conjugués de p dans c(f)et 7'==yp'h* V=g ote

’

les conjugués de = dans ¢(¢) : ils sont primaires pour p', 9", ... . On a ensuite
hh

p=y9pp'p".... Comme, de plus, 7_—_1,)—77— doit étre une unité de ¢(¢) et que c’est un

nombre primaire, il résulte du théoréme 156 (voir aussi § 142) que ce quotient
représente la [“2¢ puissance d’une unité ¢:de ¢(%) :

hh% !
p = C dviv uv e e

Appliquons alors le théoréme 152, en prenant

I

P ! R —m
a, =g, Ay =T, a, =%, A, =% %, =

=1z, e ~

- ar
[} - ‘2



THEORIE DES CORPS DE NOMBRES ALGEBRIQUES. h2s

{ n’étant pas la ™ puissance d’une unité de ¢(¢) et =, =, 7', ... étant des puissances
d’idéaux premiers dont les exposants sont premiers a I, les conditions du théo-
réme 152 sont remplies, et il existe par suite dans ¢(%) un idéal premier r et un cer-
tain exposant m premier a [ tel que I'on ait

)m— S = )m_
s ( c,

I

~

\

c’est-a-dire
YR -
(146) 375—t” gr,

ou ¢* est une racine I“™ de 1'unité autre que 1.
phhsx 8 !
r

Il

i i
e ) =¢*, ¢ étant un nombre primaire de r. Comme maintcnant,

phh».s s

—1 .
g phhs& )

"
g —{*, et par suite on a aussi, vu

De (146), on tire ~

T

le théoréme 140,

vu (146) et le théoréme 162, on doit avoir g:_P—,i =1, ﬁ”i =1, ... et que
4 g _felieliel
e =) (=) (="
nous obtenons
¢ 2 (2]
; =) 1) » 1
LeEMME 42. — 9 étant un idéal premier quelconque du corps circulaire régulier

¢(¢) et = un de ses nombres primaires, ¢ étant une unité quelconque de ¢({) non égale
toutefois a-la ™ puissance d’une unité de ¢(%), il existe toujours dans ¢(¢) un idéal

premier r vérifiant les conditions

S 2=l

Démonstration. — Soient =, ', =", ... les mémes nombres que dans la démons-

tration précédente; prenons pour le théoréme 152

’ " "
o, — &%, L, =T %, =T, @ s o, =% , ceey

Y, — 1, —a Yo — I, ey

=1 =1t

les nombres «,, «,, ... vérifiant encore les conditions du théoréme 152. Une démons-
tration semblable & la précédente conduit & un idéal premier © remplissant les condi-

tions de I'énoncé.
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§ 159. — DEMONSTRATION DE LA PREMIERE LOI COMPLEMENTAIRE.

Pour démontrer la premiére loi complémentaire dans le cas d’un idéal premier p

de premiére espéce, appliquons le lemme 41; on peut déterminer un idéal premier v
tel que I'on ait

et que, par suite, il soit de la premiére espéce. D’aprés (145), on a pour l'idéal v
I'égalité :

2 e b
(r) £y
4
¢ étant un nombre primaire de r. Comme on a 3—;{:{: 1, on a pour toute autre unité
£ de ¢({) (lemme 38) '
sig:s’«% i,
(ed (1)

et par conséquent les conditions du lemme 40 sont remplies par les idéaux v et 9.
D’apres ce lemme, il existe donc dans ¢({) une unité < telle que I'on ait

<_E_ —_ g‘R, 5), =1
(o) (V7
= étant un nombre primaire de p. Par suite, on a (lemme 38) pour toute autre unité
| S f=, & . . . , .
Z de ¢(¥) égalite 3—;; { = % T; ce qui démontre la premiére loi complémentaire de

la loi de réciprocité si 9 est de premiére espéce.
Soit maintenant g idéal premier de deuxiéme espéce de c(¢). Alors on a, pour toute

V21

unité z de ¢(Y), ( (= 1, et » élant un nombre primaire de ¢, on a toujours aussi

(

233

kA . . I .
(lemme 37) 3 Yl - (=1 On a donc encore la premiére loi complémentaire
{ /
{ g (%, %)
I U LR
la) (1)
§ 160. — DEMONSTRATION DE LA LOI DE RECIPROCITE ENTRE DEUX IDEAUX PREMIERS

QUELCONQUES.

La premiére loi complémentaire ayant été démontrée, on en conclut, avec le
lemme 39, la loi de réciprocité pour deux idéaux premiers quelconques de premiere
espece.
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Soient, en second lieu, » un idéal premier de deuxiéme espéce, = et » des nom-

bres primaires de p et q. Dans le cas ou I'on a 3% =1, il résulte du théoréme 162

(®
(q

tenant SS
(p

=1, et par suite I'exactitude de la loi de réciprocité pour g et q. Supposons main-

gh

:I,

= §%§ == 1. p étant de premiére espece, il existe une unité < telle que ?
et on peut de plus toujours supposer qu'une certaine puissance de ¢x, d’exposant
premier 4 [, est =1 + %, mod I* (cela ressort d’une considération a la fin de la dé-
monstration du lemme 3g). Considérons le corps kummerien c(\l/ o, E) D’apreés le
théoréme 148, le discriminant relatif de ce corps par rapport a ¢(%) contient les deux
facteurs premiers [ et q; q étant de deuxiéme espéce, on a, vu les lemmes 36 et 37,

pour toute unité £ de ¢(?)

et, d’aprés cela, le nombre des caractéres distinctifs du genre d'un idéal de c(\l/e_/, 'g)
est égal & 2. D’aprés le lemme 35 le nombre des genres de ce corps est donc g 1.
Déterminons alors, d’aprés le lemme 42, un idéal premier ¢ de ¢({) tel que I'on ait

L.

r)

fer o (E
[® [ a

.1 ’ L4 14 Ly D .
A cause de la premiére égalité, v est encore décomposable dans c(\/ar., C) Soit ;M un
de ses facteurs premiers dans ce corps et o un de ses nombres primaires. L’idéal R a

l !
dés lors dans c(\/ e, Z;) les deux caracteres

. Sp. % (p. en :)i
(47 (Ig’?q$ M%'

Comme le second caraclére est == 1, les idéaux |, R*, ..., ' déterminent des genres
tous différents, et il n’y en a pas d’autres, vu la limite supérieure trouvée pour g.
En appliquant la premiére loi complémentaire (§ 159), on obtient
EE LT
Oy ad LT e
C’est-a-dire que le produit des deux caractéres (147) est égal & 1. Comme tout idéal

de c(\l/;7 ;) appartient & 1'un des I genres, il en résulte que tout idéal de c(\l/;, z;)
(%

N

a deux caractéres de produit égal & 1. A cause de =1, p est encore décompo-

L . .
sable dans c(\/ev., C); soit 9% un de ses facteurs premiers dans ce corps; les deux

caractéres de cet idéal sont les symboles

r 3257';:%%;’

Fac. de T., 3¢ S., II. 54
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et on en conclut, d’aprés la premiére loi complémentaire,

P
al

z, ev.“
)

]

ou

ce qui démontre la loi de réciprocité pour les idéaux petq.

Soient, en troisiéme lieu, q et q* deux idéaux premiers de deuxiéme espeéce, %, x*
des nombres primaires de q, g*. Considérons le corps kummerien c(\l/; ‘;). Les
nombres % et * sont, on I'a vu dans la démonstration du lemme 37, congrus mod I*
& des [ms puissances de nombres de ¢(9): il en est donc de méme de %%*, et par
suite, d'aprés le théoréme 148, le discriminant relatif du corps c(\l/m g) n’est pas
divisible par [. Ce discriminant relatif ne contient, par suite, que les deux facteurs
premiers q et ¢*. Or, on a pour toute unité S de¢(t)

5//*5 {2
=1, * fr— *:I»
3a (q§

»*
£, v

q

(==
) la
et par suite le nombre des caractéres distinctifs des genres de c(\l/m :) est r—=a.

D’aprés le lemme 35, on a alors g < !. Ensuite, d’aprés le théoréme 152, on peut
toujours déterminer un idéal premier t de c(§) tel que T'on ait

*
A3

T

=1,

ST
EIRa 3?5*“"

r est encore décomposable dans ¢(). Soit W un de ses facteurs premiers, p un de ses
nombres primaires. Les caractéres de I'idéal M dans le corps kummerien sont les
deux symboles

(g.cwf;:;i?:gi),

q la) laV

148) (

( (39’1%’*;:513:51?.
a (a®) " (a*)

Comme le premier caractére est, d’aprés le théoréme 162, nécessairement == 1,

puisque g%i == 1, les idéaux |, R*, ..., W' déterminent [ genres distincts et il n’y

en a pas d’autres. Comme on a i—i—

suite, d’apres ce qui précéde, la loi de réciprocité s’applique d’une part A , q;
d’autre part & v, q*, et le produit des deux caractéres (148) est donc

(149) 3%

== 1, v est un idéal de premiére espéce; par -
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Comme tout idéal de c(\'/;_A*, §) appartient & un des [ genres, il résulte de (149)
que tout idéal a deux caractéres dont le produit est égal & 1. Or, l'idéal g est égal a
la [¥me puissance d’un idéal premier & de c(\l/Zx_*, C). Les deux caractéres de & dans
ce corps sont alors

%, %t

q

A
- 5

{ a

et leur produit devant étre égal a 1, on obtient

*

(q

a4
L

q)

La loi de réciprocité est ainsi démontrée pour deux idéaux premiers quelconques.

§ 161. — DEMONSTRATION DE LA DEUXIEME LOI COMPLEMENTAIRE.

Soit d’abord p un idéal premier de premiére espéce et = un nombre primaire

g

de p. Déterminons une unité = de c({), telle que I'on ait =1, et considérons le

— 3)\‘ i
corps kummerien c(\l/sk,. :). Comme 3;; =1, 9 est encore décomposable dans ce
corps; soit 9% un de ses facteurs premiers. Nous voyons que l'idéal 9 a un seul

T, A N . - .
caractére, g——— : et comme il n’y a aussi qu'un genre (lemme 35), le genre prin-

[
€

cipal, ce caractére doit étre égal & 1. Par suite, comme (§ 159) 3%2 = g—

™
’I ,on ade

suite I'égalité

o>

Soit, en second lieu, q un idéal premier de seconde espéce, et = un nombre pri-

{2

maire de q; il y a deux cas & distinguer, suivant que 'on a E—q-% =1 ou =Z=1. Dans

. Cr . 1= .
le premier cas. la considération du corps kummerien c(\/ A, C_) montre que 'on a

(% . . , :
aussi gT% =1. Dans le second cas, on déterminera, d’aprés le théoréme 152, un

idéal premier p, pour lequel on ait L 25? =l=1. Alors p est nécessairement de
premiére espéce, et il résulte du théoréme 162, = étant un nombre primaire

a\

AT
——gzx.

™ , . . .
dep, ;FL g ==1; on peut donc déterminer un entier rationnel a de fagon que
‘ Z, an

v
[

;% == 1, un idéal n’a
encore dans ce corps qu'un seul caractére, toujours égal 4 1. Appliquant ceci & un

<y l
En considérant le corps c(\/)\n“, C), comme on a
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(S hw" ()%
facteur premier & de q dans ce corps, on a )ox 2:5;2 ?’_X? =1, et en
L0 ey (1)
o (2] () VRN
tenant t R B A
enant compte de 1'égalité o 39‘ on a 7 ; )

C’est Kummer qui a démontré le premier la loi de réciprocité des résidus de
puissances /“m¢, Notre démonstration nouvelle différe de celle de Kummer, surtout
en ce que Kummer obtient d’abord la premiére loi complémentaire, au moyen de
calculs considérables. par une généralisation trés habile des formules de la division
du cercle, et que c’est seulement alors en s’appuyant sur ces calculs, qu’il en déduit
la loi de réciprocité entre deux idéaux premiers; au contraire, dans les développe-
ments qui précédent, les démonstrations de la loi de réciprocité et des deux lois
complémentaires découlent d’'une source commune.

Parmi les lois de réciprocité particuliére que 'on traite & l'aide des formules de
la division du cercle, citons la loi de réciprocité des résidus biquadratiques [Gauss?,
Eisenstein ® ], celle des résidus cubiques [Eisenstein®?, Jacobi'], puis les recher-
ches de Gmeiner® % ? pour les résidus bicubiques et celles de Jacobi* pour les restes
de puissances 5°, 8° et 12°.

Mentionnons aussi que Eisenstein a donné sans démonstration une loi de récipro-
cité pour les restes de [*™* puissances et a méme envisagé le cas ol le nombre
des classes du corps circulaire des racines lmes de l'unité est divisible par /.
[Eisenstein '+ 12.]

CHAPITRE XXXIV.

Nombre des genres d'un corps kummerien régulier.

- fvs
§ 162. — THEOREME SUR LE SYMBOLE (TS .
TuforiME 163. — v et p. élant deux entiers quelconques ==o d'un corps circulaire
régulier ¢(¥), on a toujours
v, v}
| pally g
@ ( W)

le produit étant étendu & tous les idéaux premiers w de ¢(%).

Démonstration. — Soit h le nombre des classes d'idéaux de ¢(J) et 2" un entier
positif tel que hh*=1, mod [. Posons v=1"9p,p, ... et v=1"q,9,..., a et b étant
des exposants entiers et 9., 9.. ..., q,, @,. ... des idéaux premiers déterminés de
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¢(0). T, Tye -eey %y Y%y ... 6tant des nombres primaires des idéaux premiers 9. -
Py, ---- 4,5 q,, .- et tels que l'on ait

— gy hhx —_ —— gyl wy —— hhE wy —— hhE
":4——”1 g “2_"2;’ e Li_Q1l’ A=—4q;

on a, en posant A=1—¢,
(150) Y= R L M = Xy L,

¢ et = étant des unités de c(¢). w étant un idéal premier quelconque, on a toujours

{v, 1) VB )

w )

hhs: )

(151)

w

Soient alors p, q deux idéaux premiers distincts autres que [ de ¢() et =, » deux
nombres primaires correspondants; soient, de plus, ¢, v des unités quelconques de
¢(%). On tire facilement du lemme 36 et du théoréme 161 les formules

(152) (
|

v étant un idéal premier autre que I, non diviseur de p, le discriminant relatif du
. L/ Lo .y . . .
corps kummerien c(\/p., :) est (théoréme 148) premier & w; si w est aussi premier

) ‘e . 1/ .
A v, v est résidu de normes du corps kummérien c(\/p., ‘g) (théoréme 150) et on a,

np]

par suite (théoréme 151), malbait Par suite (vu 152) le théoréme est vrai si l'un

des deux nombres v, p. est soit une unité, soit une puissance quelconque de X, soit
un nombre primaire d'un idéal premier ==1; & cause de (150) et (151) et des
régles (80o) et (83), le théoréme 163 est donc général.

§ 163. — THEOREME FONDAMENTAL SUR LES GENRES D'UN CORPS KUMMERIEN REGULIER.

TuEoREME 164. — Soit 1 le nombre des caractéres distinctifs d’un genre du corps
kummerien régulier C :c(\l/ ;, Z); pour qu’un systéme donné de r racines I[*m* de
l'unité caraciérise un genre de C, il faut et il suffit que le produit de ces r caractéres
soit égal a 1. Le nombre des genres de C est par suite I'"™.

Démonsiration. — Soit h le nombre de classes du corps circulaire régulier ¢({),
h* un entier positif, tel que I'on ait hh*=1, mod I; soient [, ..., [ les r facleurs
premiers du discriminant relatif de C choisis conformément au paragraphe 14g.
Soit A une classe d’idéaux quelconque de C, I un de ses idéaux premier A [ = (1t — %)
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et au discriminant relatif de C; soit y==(N.[J])*** I'entier de ¢({), formé selon le
paragraphe 149 et pourva d'un certain facteur unité de telle sorte que

7.(3) =

7 L — b,
I—.% /,r(S)——(I ;

soient les r caractéres distinctifs du genre de J. Soit p un idéal de c({), dans le cas
ot il en existe un, figurant dans 5 avec un exposant divisible par I; p est alors siire-
ment différent de { et premier au discriminant relatif de C. N.(J) étant la norme
relative d’'un idéal, p doit étre décomposable dans C. On a donc (theoréme 149) pour

un tel idéal o : ;%g: 1, et par suite aussi 3% =1. Vu le théoréms 163, il en
résulte
(>
153 I —_— =1,
(133) »( w )

le produit étant étendu a tous les facteurs idéaux premiers v distincts de [ du discri-
minant relatif de C et, en outre, a 1'idéal premier [. Ensuite on a, [, ..., I, étant
les autres facteurs premiers du discriminant relatif, vu le paragraphe 149 :

e v _
=1, ?[ =1, ..., (I,S_

Si alors le discriminant relatif du corps C contient I'idéal premier I, (153) montre

(154) :i i

I.

1 v+2

déja que le produit des r caractéres est égal a 1. Dans le cas contraire, le nombre v
est (théoréme 150) résidu de normes du corps C, mod [, et par suite (théoréme 151)

(v, u
[ 1

des parties du théoréme 164.

=1; on voit encore dans ce cas, d’aprés (133) et (154), I'exactitude de 'une

Pour abréger, nous ne démontrerons la seconde partie que dans le cas ou le dis-
criminant relatif de C ne contient pas [. Sojent alors encore [, ..., I, ses facteurs

premiers dans c({) et A, ..., 2, des nombres primaires correspondants; soit e; I'expo-

sant de [, dans p. et ¢;* un entier tel que ee ,mod /. Enfin, soient vy,, ..., v,,

ir
r racines (™ de l'unité quelconques dont le prodult Y, ---v,=1; d’aprés le théo-
réme 152, il existe alors toujours dans ¢({) un idéal premier p non diviseur de p. et

remplissant les conditions

= \ )‘1 27” s \ 7‘2 " P \ )\r " %
5 — — i - =~ .., o — =~ ,
(199) Cpd 7 0 el T (p)
)\ vm )\ ) v )‘ m
(156) Vo f =1, Vel Q—i) =1
(p) p ) (#)
pour un exposant m de la série 1, 2, ..., {— 1. = élant un nombre primaire de p, on
a, vu (155), d’aprés le théoréme 161,
_ \ s PZ (T’ !J )ﬂl ‘ = )Nlé’i ~ )\‘ )"lei
o7 i = — =y =,
(o7 T R A B N A 'S i
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On obtient de méme, vu (156),

(=, v ',‘T)ei /;‘i e;
(158 =t =l =
(i=r+lv.r+2,m,t).

Comme vy, ... v,=1, on a, vu (157) et (158),

(159) I

le produit étant étendu & tous les idéaux premiers I, ..., I,. Si alors t est un idéal
premier de ¢(¥) autre que 9, [,, ..., [,, le nombre = (théoréme 150) est reste de normes

du corps kummerien, mod v, et par suite (théoréme 151) on a toujours

el
w )

\
T, ..
l (:: 1, c’est-a-dire

On tire de 1a et de (159) et du théoréme 163 que I'on a aussi g

%( = 1. D’aprés cette derniére égalité, » se décompose dans C en [ idéaux premiers

(théortme 149). 9 étant I'un d’eux, I'idéal P™ a évidemment, vu (157) et (158), pour
caractéres distinctifs les racines [*mes de l'unité données v,, ..., v,, et le théo-
réme 164 est ainsi complétement démontré dans le cas considéré. Si f figure dans le
discriminant relatif du corps C, il faut apporter & la démonstration une modification
facile & déduire par analogie de ce qui a été dit dans le cas du corps quadratique
(voir § 81). ‘

Kummer a basé ses recherches sur un certain anneau de nombres du corps
C= c(\l/; 2;) et non sur la totalité des entiers de ce corps. La notion du genre subit
alors un changement. Kummer a eu le grand mérite de découvrir et de démontrer
pour cet anneau le théoréme qui répond au théoréme 164. [Kummer®.] En dehors
de anneau étudié par Kummer, il y en a encore dans C une infinité dont la théorie
pourrait se développer avec autant de succes.

§ 16[1 — LES CLASSES DU GENRE PRINCIPAL DANS UN CORPS KUMMERIEN REGULIER.

Nous placons dans ce paragraphe et le suivant quelques conséquences impor-
tantes du théoréme fondamental 164 analogues aux théorémes développés pour le
corps quadratique dans les paragraphes 71, 72 et 8a.

TuEorEME 165. — Le nombre des genres ¢ d’'un corps kummerien régulier est égal
au nombre de ses complexes invariants.

Démonstralion. — t et n ayant le méme sens qu’au théoréme 159. si 'on considére

[+

que g="0"" (théoréme 164), il résulte du lemme 34 : r— 1<t +n— , et
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\ . ., I+ 1
comme, d’aprés le lemme 33, on doit avoir ¢ 4+ n — -

L r—1, il en résulte

r—1=t+n——ltl.

Le nombre a des complexes invariants (déterminé dans la démonstration du
lemme 34) est, par suite, I"™'; on a donc a—=g.

TutorkMe 166. — Tout complexe du genre principal dans un corps kummerien
régulier est la (1 — S)*me puissance symbolique d’'un complexe de C, c’est-a-dire que
toute classe du genre principal est le produit de la (1 — S)*™° puissance symbolique
d'une classe et d’une classe conlenant des idéaux de c(%).

Démonstration. — On a obtenu, dans la démonstration du lemme 34, I'égalité
af' =gqf; a est le nombre des complexes invariants, f' celui des complexes égaux a
des (1 — S)*mes puissances symboliques de complexes, g est le nombre des genres,
J celui des complexes du genre principal. Comme, d’aprés le théoréme 165, a =g,
on a f'=f, ce qui démontre que tout complexe du genre principal est la
(1 — S)i¥me puissance symbolique d'un complexe.

§ 165. — SUR LES NORMES RELATIVES DES NOMBRES D UN CORPS KUMMERIEN REGULIER.

TutorkME 167. — v, u éfant deux enliers du corps curculaire régulier c(%), p. non
égal & la "™ puissance d’un nombre de c({). et vérifiant, pour tout ideal premier w
de ¢(?), la condition

pl

ety

(1)

le nombre v est loujours égal & la norme relative d’un entier ou d'une fraclion A du

corps kummerien C = C(\l/p., ';).

Démonstration. — Démontrons d’abord ce théoréme dans le cas ot v esl une unité
de ¢(%). Donnons encore 4 { et & n le méme sens qu’au théoréme 159; dans la démons-

[+ 1

tration du théorérae 165, on a montré que r—1=I+n— , C’est a-dire que

l—1

n—

— t + r. Considérons, d’autre part, les r*=¢ —r unilés ¢, ..., =, définies

au paragraphe 149. Vu les égalités (140), un produit de puissances de ces r* unités
ne peut étre la I*™¢ puissance d’une unité de ¢({) que si tous les exposants sont divi-
sibles par {. On peut donc, la totalité des unités de ¢({) formant une famille de

— 1 J—

. déterminer

degré — r* autres unités : ¢ _, de c(¥), telles
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que toute unité Z de ¢({) puisse se représenter par

2
g=c¢t 6;“2 Sy %o
2
«,, ..., x, , étant des exposants entiers rationnels et  une unité appropriée de c(%).
2
En posant alors
S U __ vew
t—r-41
=12 =12
les r* égalités
1 b (=
S 3. v gow
(160) g' L =1, S =1, s 3[ d 2:1
2 L, ( L, t—r e
donnent les r* congruences linéaires en x,, &,, ..., €,_,
. =
— \
[e,x, +e,x, +...+e_, x_ =0,
\ FRL /
(]6[) e e e e e e e e e e e e (mod l).
( e,x% + e,x%, + ...+ e, 1 x, ,=o0,
i ERAA
A cause de (140), nous avons
e, =1, ,=0, €,=0, ..., €s =0,
CQQE‘ I, e”— o, s eqi'ﬁg = o,
e, =1, , esx, =o,,(modl)),
er-;-’rea =1,

et par suite les 7 congruences linéaires (161) sont indépendantes; il en résulte que

toutes les unités £ remplissant les conditions (160) forment une famille d’unités de

l—I—l‘*:l—_———I-———t—{—r.
2

degré

Nous avons établi, au début de cette démonstration, que le degré n de la famille
de toutes les unités de ¢({), normes relatives d’unités ou de fractions de C, a la méme
valeur. Comme, de plus, toute unité de ¢({), norme relative d’'une unité ou d’une
fraction de C, est évidemment résidu de normes de C, mod I et doit par suite (théo-
réme 151) vérifier aussi les égalités (160), toute unité de la premiére famille appar-
tient aussi 4 la seconde; ces deux familles ayant méme degré sont donc identiques.
Or, l'unité donnée v satisfait par hypothése aux conditions (160) et appartient, par
suite, & la seconde famille; v est donc aussi contenue dans la premiére, c’est-a-dire
que v est norme relative d'une unité ou d’une fraction de C.

Soit maintenant v un entier quelconque de c({), vérifiant les conditions du théo-
réme 167 ; considérons les facteurs idéaux premiers de v dans ¢({). Posons A—=1—¢
Fac. de T., 3¢ S., 1I. 55
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et [=_2). Si I'idéal premier I entre dans v, mais avec un exposant b non divisible

par [, et qu'il n’entre pas dans le discriminant relatif du corps C, on a, d’aprés la fin
du paragraphe 133,

v, (;.a:S)\b,p,):'ﬁ._%—b
R B R T B
i »

et, vu I'égalité qu'on en tire, s =1, lest (thébréme 149) décomposable dans C

en { facteurs premiers. Si € est 'un d’eux, on a : [ =N.(2).
Soit ensuite p un idéal premier de ¢(%) autre que [, et entrant dans v avec un

exposant b non divisible par /; au contraire, supposons son exposant a dans p. divi-
sible par /; on a alors par définition

el

(o)

b
ull

"R

’

et il en résulte, vu I'hypothése du théoréme 167, %%; =1, donc (théoréme 149) $ est

aussi dans C le produit de [ idéaux premiers. 9 étant 'un d’eux, on a p = N.(P).
Enfin, les idéaux premiers de ¢(%) facteurs du discriminant relatif de C sont tou-
jours des puissances [m® d’idéaux premiers de C et sont par suite aussi normes
relatives d’idéaux de C. De tout cela résulte que v doeit étre norme relative d’un idéal
$Hde C: v=N(9)-
De plus, va I’hypothése du théoréme 167, § appartient au genre principalbde G
et nous pouvons par suite poser, d’aprés le théoréeme 166,

o ~i3-s,

j étant un idéal de ¢(%) et I un idéal de C. Si h est le nombre des classes d’idéaux

-~

o

F

naire de C; sa norme relative N.(A) est évidemment égale & &", = étant une unité

h
de ¢(0), on a j*~1, et par suite A = doit étre un nombre entier ou fraction-
P

de ¢(%). De la derniére égalité résulte, d’aprés le théoréme 151, que I'on a, pour tout

h
S0 L ot ar sui s ) 0 .
(=1, et par suite aussi et 1. Or, on a montré,

/

idéal premier v de c({), g

dans la premiére partie de la démonstration, que dans ces conditions ¢ doit étre
norme relative d’'un nombre de C; posons :=N.(H), H étant un nombre de C.
b et e étant alors des entiers rationnels tels que I'on ait bh 4+ el=1, on a

v =N(A"H™"Y),
et la démonstration du théoréme 167 est ainsi compléte.

Dans cette démonstration nous pouvons, dans les deux cas, restreindre 'applica-
tion du théoréme 151 au cas de w=|=1, car d’aprés le théoréeme 163 les conclusions
subsistent, méme pour w=1.

On est ainsi parvenu & étendre aux corps kummeriens réguliers toutes les propriétés
déji établies et démontrées par Gauss pour les corps quadratiques.
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CHAPITRE XXXV.

Nouvelle méthode pour la théorie dun corps kummerien régulier.

§ 166. — PROPRIETES ESSENTIELLES DES UNITES D’'UN CORPS CIRCULAIRE REGULIER.

Nous avons vu quel réle important joue le symbole ngp dans la théorie des corps

kummeriens. Pour la définition de ce symbole (paragraphe 131) et la recherche de
ses propriétés, du paragraphe 131 au paragraphe 133 nous avons, comme Kummer,

introduit les dérivées de logarithmes des polynémes w(x), adjoints & un nombre

w=1, mod I. Les calculs des paragraphes 131 bis & 133 pour le symbole jv_p dans

les corps kummeriens correspondent d’ailleurs aux considéralions du paragraphe 64

’

pour le symbole (n_gnz) du corps quadratique. Quoique nous soyons déji parvenus

a réduire a de moindres proportions les calculs employés par Kummer, il me parait
cependant nécessaire, surtout en vue du développement futur de la théorie, de cher-
cher s’il n’est pas possible d’édifier 1a théorie des corps kummeriens sans ces calculs.
Jindique briévement dans ce chapitre la marche a suivre.

D’abord on peut établir aisément sans calcul et sans les nombres de Bernoulli
les propri¢tés essentielles ci-apreés des unités du corps circulaire régulier ¢({). Rappe-
lons-nous, pour le théoréme 156, la derniére démonstration indiquée au para-
graphe 141.

Nous pouvons alors déduire, du théoréme 156, le théoréme 155 de la maniére
suivante. Nous entendons par ¢, ..., g un systéme quelconque de * unités réelles
de ¢({); nous déterminons alors des exposants positifs e,, ..., ¢ et des entiers

rationnels a,, ..., a;, b,, ..., b, vérifiant les congruences

FEARE

=a,+b)% (157,

g =ap + bl%.‘» PR (lel*‘ﬂ) .
Nous supposons que e, ait la valeur minima parmi les exposants e. Nous pouvons
alors, on le voit aisément, multiplier les I* — 1 unités ¢,, ..., </, par des puissances
€

de ¢,, telles que ces I* — 1 produits ¢, ..., ¢, vérifient les congruences

L= e,s,’a =ad, + b))%, (e,

[

.

ro__ e — Iy e € P+
€ =™ & glv = a, + bw)‘ =, (I ! )
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les a' et les b’ étant des entiers rationnels premiers al, et les exposants e, ..., e,
étant tous plus grands que e,. Les unités ¢, <., <, ..., ¢, forment encore un sys-
téme d'unités fondamentales dans ¢({). Soit ¢, le moindre des ¢'; il est encore pos-
sible de multiplier les unités <, ..., ¢ par des puissances de <,, de maniére que
les I* — 2 produits obtenus ¢, ..., ¢, vérifient les congruences

[ & (A— "y er , i
g, g, 3, * :a3+b37\ 3, (Ies l),

3 T T3T2

no___ Lt I —— N "oy el 1
sl—;}é i S,x;:-sz = a[xs + b[s:s)\ ! ’ ([ ! )’
les @" et b" premiers a [ et les ¢" tous plus grands que ¢,
Les unités ¢, , €, <, &, -.., ¢, forment encore un systéme d’unités fondamen-
tales de ¢(%). En poursuwant ainsi, nous arrivons a4 un systéme d’'unités fondamen-

tales de ¢(%), z,, sps v 1 vérifiant les congruences

a=a, + b, (1e+h),
d=al + b2, (17=+1),
g = a; + b)), (17541,

)
() = qlee—t) (t51) o
= + b0

les a et les b étant premiers & [ et les exposantse,,
(162) e <l e,<le<...<e

Comme les unités considérées sont toutes réelles, tous les exposanls e, , e,, ... sont

pairs. Or, si on avait

e(m-

f > l_' I,
e’ serait, d’aprés le théoréme 156, la " puissance d'une unité v de ¢({). En

exprimant alors 4 au moyen des unités ¢, <, <, ..., 7 sous la forme

— Yu 11 ,.’u A(PE—A) s
n= e (e,

les u étant des exposants entiers rationnels, et en élevant cette égalité a la ibme puis-
sance, nous obtenons une relation entre les * unités ¢, <,

99 ety

— avec des expo-

sants non tous nuls; ceci est contraire au fait que ¢, s',, vees

™

) forment un sys-
téme d’unités fondamentales de ¢(). Par suite, on a

Ll —
:(l* ) < l I.
I1 en résulte, vu les inégalités (162), que I'on a nécessairement

e, =12, e;:[h 62:6, ey €§I§_1):l—3,

et on en conclut immédiatement I'existence d’'unités ¢,, ..., ¢ ayant les propriétés
indiquées au théoréme 155.

Le théoréme 157 résulte, comme au paragraphe 142, da théoréme 155.
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§ 167. — DEMONSTRATION D'UNE PROPRIETE DES NOMBRES PRIMAIRES

D' IDEAUX PREMIERS DE SECONDE ESPECE.

2;-”1—}‘% donnée paragraphe 131,

)

Nous nous basons sur la définition du symbole

mais nous nous passons provisoirement du symbole : nous n’utilisons par

suite les théorémes 150, 151 que pour w==1. Les théorémes 158 et 159 s’établissent
alors immédiatement comme on I’a montré, si I'on fait 'hypothése restrictive que le

discriminant relatif de c(\]/ ,; C) par rapport & ¢(%) est premier & [. Avec cette res-

v, )

triction, nous arrivons. sans employer le symbole T\ 4 la notion de caractére

. J4 s 1, b . Ll e 14 » .
d’un idéal de c(\/p.. E), A la division des classes d’idéaux d’un corps kummerien cn
genres, ainsi qu'aux lemmes 33, 34, 35, et nous démontrons ensuite le lemme
suivant :

Lewme 43. — Tout nombre primaire » d'un idéal premier q de seconde espéce est
congru mod [ & la {*™ puissance d'un entier de c({).

. . -3 .
Démonstration. — Soient =, ..., ¢z, les I*= unités fondamentales du
‘ 2

corps ¢({) définies au paragraphe 166 et désignées alors par ¢,, ..., &~ soient

ensuite p, 9,, ..., P des idéaux premiers de c({) autres que I, tels que I'on ait

S N N . 522:1, , ge_t —.
P l'» P »
gi)—__:[, %i)::, gie:l, s gsl*Z:I,
(163) R AT e v,
%:2__:1‘ <—5-L?:I, —eﬁ-gzl, N (i :K
P S ? P g P) 2 P N
£, ¢, ..., {= étant des racines I¥m de I'unité quelconque autres que 1. L'existence

de tels idéaux résulte du théoréme 152 en nous reportant & la dénionstration de ce
théoréme, nous voyons que non seulement le nombre, mais encore la sommme des
inverses des normes de tous les idéaux premiers v y étaient infinies, et ceci nous
permet, comme le montrent les considérations faites en démontrant le théoréme 83.
de supposer du premier degré dans le cas actuel tous les idéaux premiers 9, 9,, ..., p.
Nous pouvons aussi supposer tous différents les nombres premiers rationnels divi-
sibles par 9, p,, ..., p=. Soient =, %,, ..., %, des nombres primaires de ces idéaux.
Occupons-nous maintenant du cas ou il existerait [* 4 1 exposanls entiers
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u.u,, ..., Uz, non tous divisibles par /, tels que I'expression »=="z} ... =/ soit
congrue mod ' & la f*" puissance d'un entier de ¢({). D’aprés le théoréme 148, le
discriminant relatif du corps kummerien c(\l/;, C) renferme alors comme facteurs
un certain nombre ¢ des idéaux premiers 9, ..., p,, mais non I'idéal [. D’autre part,

il résulte de (163) et du théoréme 151 que le degré m de la famille des unités de ¢(Y),

. s eir 1/~ 1 .
normes relatives d’unités de c(\/u, :), est au plus =1; on aurait alors pour le

. 1/~
corps kummerien c(\/z, C)

— !
I=' ) ead, tamttT

m < o.
ce qui est impossible d’aprés le théoréme 158. Le cas envisagé est donc impossible.
Soit x un nombre primaire de I'idéal premier q. Nous déduisons de la démons-
(I—nl=
de ¢(¥) incongrus, mod I, et, par suite, (/— 1)I*+! incongrus, mod ['; d’autre
part, la [*m¢ puissance de tout entier de ¢(Y) premier & [ est congrue mod ' & I'un

tration du théoréme 157 qu’il existe exactement , nombres primaires

des | — 1 nombres 1, 2, ..., I — 1. De ce qui précéde résulte alors qu’il est toujours
possible de déterminer les exposants u, u,, ..., u de maniére a ce que l'expression

w_u

n=x =,

*y soit congrue, mod [, & la I puissance d’un entier de c({):

u

a, u,, ..., u;s étant ainsi déterminés, posons a==x"... /Z'l de sorte que p=—=uax, et

occupons-nous maintenant du cas ou un certain nombre positif a des exposants u,

—1 , - .
— a autres étant divisibles par [. On aurait
5 !

u,, ..., uz sont premiers a [, les

. . 1, .

alors, vu (163), pour le corps kummerien c(\/y,, %), avec les notations du para-
graphe 149, t=a+ 1, r*=a, r=t—r"=1, et, par suite, d’aprés le lemme 35,
toutes les classes d’idéaux de ce corps sont du genre principal. D’ou le résultat sui-

vant : v étant un idéal premier quelconque de ¢({), tel que T'on ait ;%i =1, ety

désignant un nombre primaire de v, le nombre Z¢ aura, avec un choix convenable
. r 7 1 L - v

de Tunité %, tous ses caracléres égaux a r dans le corps C(\/y., 5); on a donc en

particulier

VIpeu) _\Zel
] =)=,
[ a la
! Lo o U
et comme ¢ est idéal de deuxiéme espéce, on a aussi it I.

Désignons maintenant les idéaux premiers conjugués de g et autres que ¢ par
q’» g", ..., et les substitutions du groupe de ¢({) changeant g en ¢', ¢", ... par ¢,
I

s", ...: h et h* ayant alors la signification du paragraphe 149 et ¢ étant le nombre
premier divisible par ¢, on a, vu la remarque a la fin du théoréme 157,

7.(8%) . (8") ... = ' g",
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¢ 6tant une unité de ¢(¥). Vu notre hypothése sur les exposants u, u,, ..., uz, les
idéaux p, ..., p étant du premier degré et les nombres premiers qu'ils contiennent
étant distincts, nous pouvons conclure du théoréme 152 qu’il existe dans ¢(%) un
idéal premier v tel que I'on ait

(o %
;— =§*_” g_%zc*’
(v r)
{ s'x) ; s'%
— =1, —_— b=,
(164) r ) (r
s"x s".
=1, — -1,
T T

V.

{* étant une racine {“m de I'unité aulre que 1. Ces égalités (164) donnent de suite

(165) i;ZI sw)_ o4l
r ’ T [ v )
(166) g/.s'x s"% (q .
1 — T =G .
v [e) °
La premiére égalité (165) donne, d’aprés ce qui précede, 3%£: 1. et les suivantes
donnent de méme 3%{ =1, ;%g =1, ...; d’ou, en faisant le produit, g%i =1, ce

qui est incompatible avec (166), vu le théoréme 140.
Notre point de départ est donc faux et tous les exposants u, u , Uz doivent

étre divisibles par I; « est donc la I“™ puissance d’'un nombre de ¢(%); on en déduit

PERREE

que 7. est congru & la l*me puissance d'un entier de ¢(%), mod [’, ce qui démontre le
lemme 43.

§ 168. — DEMONSTRATION DE LA LOI DE RECIPROCITE POUR LES CAS OU L’'UN DES DEUX

IDEAUX PREMIERS EST DE SECONDE ESPECE.

LewvEe 44. — Soit ¢ un idéal premier de seconde espéce et v un idéal premier de
premicre ou de seconde espéce de c¢({); alors si g% =1, on a aussi 3-—— E =1.
q)

Démonstration. — Soient , p des nombres primaires de g, r. D’aprés le lemme 43,
le discriminant relatif du corps c(\l/v., C) ne posséde (théoréme 148) qu'un seul fac-

teur premier g et tous les idéaux de ce corps (lemme 35) appartiennent alors au

genre principal. Comme on a —:—2 =1, r est dans le corps c(\l/— ‘) le produit de
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[ idéaux premiers; nous avons pour le caractére d’un de ces ! idéaux premiers la
valeur

=51

ce qui démontre le lemme.

LemME 45. — q, q étant deux idéaux premiers quelconques de seconde espece de
al_(a

—_ { —

[q)

¢(J). on a toujours

9

Démonstration. — al est =1 (le cas contraire venant d’étre démontré). Soient

», % des nombres primaires de q, q; q', ¢", ... les idéaux premiers conjugués de q et
distincts de ce dernier; %', », ... les nombres primaires correspondants conjugués
de ». Mémes notations avec — pour q et z. Soit enfin ¢ le nombre premier divisible
par q; on a alors xx'%" ... = ¢'g"*, ¢ étant une unité de ¢(z). D’aprés le théoréme 152,
il existe un idéal I pour lequelson a

(167) 3-—:—§:C*, -vr; =1, % =1, y

[ SR O B R
(168) T =, 2?5——[, ZT§——|, s

TS R 1 S I (2] _
) R i S L - e

(* étant une racine I*m de I'unité autre que 1 de ¢(%) et ol =

. y . 3 lr—q ~ .
I* unités désignées par ¢, z,, ..., ¢» " au paragraphe 166. De (167) on tire

.., g désignent les

12

§7.7.'x”

. £ elieivel
(17l Sq _gqggq’/‘gq"ﬁ -
D’autre part, on a, vu (167) et le lemme 44,
ﬂps {1
=1, {=i=T.....
e (")
: : (pl_{*]_ .
g de (170) : { — = {— =
et par suile on tire de (170) s qu
On a donc
. (v
(171) S T B
v) (q) |
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On tire de méme de (168) la relation

:|: I.

-k

. . AR
Déterminons maintenant la puissance ¢ de ¢ de facon que l'on ait | —-

=1, et

considérons le corps kummerien c(\l/;e, Z). Comme g par hypothése et ¢ & cause de
(169) sont idéaux de seconde espéce, il résulte du lemme 43 que le discriminant
relatif de ce corps ne contient que les deux idéaux premiers q et r. Le corps c(\l/xpe, C)
contient alors au plus [ genres (lemme 35). L’idéal premier ¢ est la {*™ puissance

d’un idéal premier N de c(\l/;p_‘i ;). Les deux caractéres de ;| dans ce corps sont

SmBT

b (e
’ ( r

q

0, %p°

et on en déduit les caractéres de |, W°, ..., .
Les lidéaux M, M, ..., N’ déterminent, vu (171), ! genres différents et le produit
des deux caractéres de chacun d’eux est égal & 1 d’aprés la méme formule. Ce dernier

, . . . s %p¢
résultat est par suite vrai pour tout idéal de c(\/xpe, C). Comme on a Tpg_—_ I,
q)

q est décomposable dans c(l xe’, C); les caractéres d'un facteur premier de § sont :

(% %p°)

|
5 ’

et par suite on a

(3
Comme on doit avoir, d’autre part,

-l

on en déduit, d’aprés 172,

Lemme 46. — Soit 9 un idéal premier de premiére espéce et q un idéal premier de

ag__
—r=1.
P

Démonstration. — Soient =, { des nombres primaires de p, q. Supposons que I'on

seconde espéce de c({); si l'on a L - 1, on a aussi

ait

3% == 1. 11 existe (théoréme 152) un idéal premier r, différent de p et de g, pour

Fac. de T., 3¢ S., 1. 56
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lequel on a
3 =l Ll g
(173) e (2 e
/ C z_ 5‘)_ ela;e .
(l/[[) 5?)——-1, gts—l, ey gTE—-I.
g+ -4, g €tant les unités ¢, ¢/, ... du paragraphe 166.

A cause de (174), v est idéal premier de seconde espéce; p étant un nombre pri-
maire de v, on a g%g:]: 1, car on déduirait de 3%%: 1, & cause du lemme 44,
';, = 1. conlrairement & (173). Nous pouvons alors déterminer une puissance p° de o

Y Ae
2z

[ p

du lemme 43 et du théoréme 148 que le discriminant relatif du corps c(\l/v_p7 'g) ne

telle que l'on ait =1. 1, g étant idéaux premiers de seconde espéce, il résulte

contient que les deux idéaux premiers g, r. Or, on a d’aprés (173)

-f2i- 13}

et il en résulte, comme dans la démonstration du lemme 45. que le produit des deux

a
;é == 1, et d’aprés
le lemme 45

%

T

e

)

. 4 s P 14 1 T
caractéres de tout idéal de c(\/xge, ;) est égal & 1. Vu

=1, p est décomposable

Ly . \
dans c(\/xp”, Q); tout facteur premier de p a les deux caractéres

e

LR A ket R
q lq) T T
Le premier étant par hypothése égal & 1, il faudrait que ‘? fat égal a 1, con-
trairement & (173).
Notre hypothése %%i == 1 est donc fausse.
LemME 47. — q étant un idéal premier de deuxiéme espéce et g) un idéal premier
de premiére espéce, on a toujours
el 3.‘12
vy~ 1)
Démonstration. — Nous procédons, comme dans la démonstration du lemme 45,

en introduisant p au lieu de g et utilisant, dans le cours de la démonstration, le
lemme 46 au lieu de 44 pour établir la relation correspondante a (172).
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YV, W ., L,
§ 169. — LEMME SUR LE PRODUIT 1T # ETENDU A TOUS LES IDEAUX PREVIERS 1 =|= [.
LemmE 48. — v, p. étant deux entiers de c(¢) premiers a [, p. étant de plus congru,

mod I}, & 1a [¥=e puissance d’un entier de ¢({), on a.toujours
I 3

(w)

v, W
1w

=1,

le produit étant étendu 4 tous les idéaux premiers w de c(¢)==1.

Démonstration. — Vu les hypothéses, p. peut étre mis sous la forme d'un produit
de nombres primaires d’idéaux premiers divisé par la /™ puissance d'un nombre
de ¢(¥). Si v est en particulier égal & un nombre primaire » d’un idéal premier q de
deuxiéme espéce, le lemme résulte immédiatement des lemmes 46 et 47, c’est-a-dire
qu'on a, avec I'hypothése faite sur p.,

gLadE

o =

Considérons maintenant le corps kummerien c(\l/— , C). r étant le nombre des
caractéres distinctifs d'un genre de ce corps, il existe, d’aprés le lemme 35, au plus
"' genres dans ce corps. v,, .... v, étant alors r racines /" de I'unité dont le produit
soit égal & 1, nous pouvons démontrer, exactement comme dans la démonstration
du théoréme 164, qu’il existe toujours dans c(\l/;, ':) des idéaux dont les caractéres
sont y,, ..., y,. Il 0’y a qu’a ajouter aux conditions (155), (156), auxquelles doit
satisfaire I'idéal désigné par , les conditions supplémentaires

et o gl

¢ ---» g désignant les unités ¢, ..., €v " du paragraphe 166. De cette facon, on
trouve de méme que p doit étre un idéal de deuxiéme espéce et nous avons alors le
droit, d’aprés les lemmes 45 et 47, d’appliquer la loi de réciprocité de la méme ma-
niére qu'on 'a fait dans la démonstration du théoréme 164. Au lieu du théoréme 163
qu’on y a employé, nous utilisons ici la formule (175). Il en résulte en méme temps
qu’il y a effectivement I"™* genres dans c(\l/;, ;) et, par suite, que le produit des
r caractéres doit étre égal & 1 pour chacun d’eux. Appliquons maintenant ces résul-
tats & la démonstration du lemme 48 dans le cas ot v est unité, puis dans celui ot v
est nombre primaire d’un idéal premier de premiére espéce.

Soient encore ¢,, ..., ;= les unités dont il vient d’étre question; I,, ..., I, les

t idéaux premiers distincts qui entrent dans le discriminant relatif de c(\l/;., C), et



L4 D. HILBERT.

choisissons, comme au paragraphe 149, I,, {,_,, ..., I_ ; soient ), ..., X, des
nombres primaires correspondants et £ une unité quelconque de c¢(%). D’aprés le

théoréme 152, il existe un idéal premier ¢ et un exposant m premier a I, tels que
I'on ait

o e

q
_ )‘_,.'_u:_. _/ E m ')\Hg . E )m _‘_\;_ . izm
(177) 3q€—3tﬂ.§’ 3«%‘3@#’ §q$‘§l>'

Soit » un nombre primaire de q. Vu I'égalité

! \ . cqr . o
C(\/y., C), et, d’aprés les autres conditions (176), q est idéal premier de deuxiéme
espéce. Les r caractéres d'un facteur premier de g ont, comme on voit d’aprés (177)
et les lemmes 45 et 47 que I'on a :

%‘2:1, q se décompose dans

/ E——my” p‘) ;;-—my" lL}
=8 ) =1, ..., =,
(I/ ) ( lr—'r—l ‘ ' g [t )
les valeurs suivantes :
35_”‘%, o (5 ) T,
T et T

Or, d’aprés ce qui précede, leur produit doit étre égal & 1; ceci, joint & (178) et & la
derniére égalité (176), donne

r—m
III »

(w)

le produit s’étendant & tous les idéaux premiers w différents de I; on en tire, grice
a (175),
o—m

(179) II’gg ’“2:1, cest-a-dire I’
(w) w ) (w)

ST

’ {}'

1Y

le lemme 48 est donc démontré quand v est une unité quelconque de ¢({).
Soit ensuite p un idéal premier de premicre espéce, vérifiant la condition %S =1

1/ \ , :
et, par suite, décomposable dans C(\/p., ';). Les r caractéres d'un facteur premier
quelconque de p sont :

= désignant un nombre primaire de p et 5 une unité convenable de ¢({).
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Leur produit devant étre égal a 1, il en résulte encore

£,
rSﬁ"’ 3 =1,
w [ 1w
et on en tire, vu (179),
Il'§u?=1
w [ W)

Enfin, si p est un entier premier de premiére espéce premier a p., tel que I'on

ait —;:I: 1, on déterminera un idéal premier q de seconde espéce tel que l'on ait
9
£§ =|=1. Alors, d’aprés le lemme 44, on aura aussi gﬂ) ==1. « désignant un nombre
q )
e
primaire de q et »° une puissance de » telle que I'on ait gz]';' i: 1, on a, d’aprés ce
qui précede, /
AT -,
(w) 1

et comme on a aussi, d’aprés le lemme 47,

Il,,"xzzgié_‘sigzl’
w (W) » q
on a encore
mop
180 nm{—:=r1;
(180) 0 1

le lemme 48 est donc aussi démontré lorsque v est un nombre primaire d'un idéal de
premiére espéce. Des égalités (175). (179), (180) résulte sa compléte généralité.

§ 170. — LE sYMBOLE {v, yL} ET LA LOI DE RECIPROCITE ENTRE DEUX IDEAUX PREMIERS
QUELCONQUES.

Nous arrivons maintenant d’'une maniére trés simple & la nouvelle base de la
théorie des corps kummeriens réguliers annoncée au début de ce chapitre. Posons,
v et u étant deux entiers de c({),

v, p.e -
w)/

le produit L} étant encore étendu & tous les idéaux premiers de ¢() différents de [:
%)

(181) {v, p.% = <I“I'

(W)
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le symbole {v, y.% représente ainsi une racine [ de l'unité complétement déter-
minée par les nombres v, ., et on tire de (80) les formules

( b wd = o e 1
(182) %v, W p.,g} = %v, yn} %v, y.,§,
g =

Yy Ve Y. W, 1y, W, étant des entiers quelconques de 'c(c). r désignant ensuite une
racine primitive mod ! et s = ({: (") la substitution correspondante du groupe de
c({), on a

(183) %.S'v, Sp.} = %v, p.}r.
On a ensuite la proposition

LemME 49. — Siv, p.sont deux nombres primaires de ¢({), le symbole {v, y.% a tou-
jours la valeur 1.

Démonstration. — On a d’abord, a étant un entier rationnel quelconque premier
A ¢ et & v (théoréme 140), I'égalité

(184) v, a} =

v

a

== I.

1—1 )
o, devant étre primaire, p..s ? u est congru mod I*™* & un entier rationnel. On peut,
¢ l v Lo

par suite, déterminer un entier rationnel a tel que I'on ait la congruence

—t
a.y..ST!L =1, (Il),

et que de plus a soit premier & v. On obtient alors, en appliquant le lemme 48,

1—t 1t
%v, a} {v. ;J.} %v, s—i’_p}:%v, a.p..s—ﬂ—p.}: 1,

et par suite aussi, vu (184).

On démontre de méme

Puis on tire de (183)
b, wlds Ty, s ul=1.
Les trois derniéres égalités réunies donnent
{v,y‘ggz 1, Cclest-a-dire {v, p.s:I. C.q.f.d.
Si I'on choisit, en particulier pour v, u, des nombres primaires de deux idéaux

premiers quelconques p, q de ¢(%), 'énoncé du lemme 49 est équivalent & la loi
générale de réciprocité 161 pour ces idéaux premiers.
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§ 171, — COINCIDENCE DES SYMBOLES {V, p.% ET

Nous déduisons du théoréme 151, dont le cas w J=1 est seul utilisé, que gv, p.}
a toujours la valeur 1 si v est norme relative d’un entier du corps c(\'/;, ?;); et nous
arrivons enfin maintenant & montrer que {x, p} a aussi la valeur 1 si « est reste de
normes du corps c(\l/;, z). En effet, supposons pour abréger que les deux nombres
«, . soient premiers & [ et posons %= N,(A), mod [. A étant un entier de c(\l/;, C),
le nombre o.(N,(A) ™ est évidemment congru & la l*™ puissance d’un entier mod I*:
par suite on a, en utilisant les formules (182), les remarques faites et le lemme 48,

{2 (Ne(A)) ™ nt = wlIN(A), p} T =1, =1,

comme nous I'avions annoncé. Si I'un des nombres «, v ou tous les deux sont divi-
sibles par {, la démonstration se fait aussi sans difficulté au moyen des mémes
procédés.

Si u. est un entier de ¢() premier a [, on tire aisément de (181)

ar suite, expression |v. p.! remplit toutes les conditions que remplit le sym-
p P Py P q p Y

bole V_Ip_i (fin du § 133); on a donc. en prenant la définition du symbole V—’I-E—L-g
donnée pafagraphe 133,

v, p.g.
1

browf=

on retrouve dans cette égalité le théoréme 163.
Si les deux nombres v, u. sont premiers & [ et que v, 7 désignent des entiers de
¢(%) vérifiant les congruences

v=9, p=7g, (modl),

on obtient facilement, & I'aide du lemme 48,

De 14 et de la considération des formules (182) nous tirons le résultat suivant :

Si les deux nombres v, 1. sont premiers & [ et si 'on pose

v=a'(s + 01+ % L (043, (mod 19,
p=b'(x + V"1 + 1) (1 XY™, (mod 1Y,
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a, b et les exposants n et m étant des entiers rationnels, on a une égalité de la forme

v b

(

L. étant ici une fonction bilinéaire homogéne des deux séries de variables n,, ..

— CL(n,, e A3 M5 ey My—y) |

n_,. mg, ..., m_,, et les coefficients de L sont des entiers rationnels ne dépendant
que du nombre premier [ et faciles a calculer pour une valeur donnée de [ en pre-
nant des valeurs particuliéres pour v et ..

Aprés avoir défini le symbole ;Té et établi ses propriétés les plus importantes,

nous pouvons laisser de cOté la restriction maintenue jusqu'a présent dans ce cha-
pitre pour les corps kummeriens d’avoir leur discriminant relatif premier & : c’est
ce qu'on parvient & démontrer, comme plus haut, en s’appuyant sur les théo-
rémes 164, 165, 166 et surtout sur le théoreme fondamental 165. Ce dernier et le
théoréme 152 permettent de montrer ensuite que v, u. étant deux entiers quelconques
de ¢(%), tels que l'on ait %%é =1, et que v ne soit pas égal a la ™ puissance d’un
nombre de ¢(?), le nombre v est toujours résidu de normes, mod [, du corps kum-
merien c(\’/;.c, C). Par suite le théoréme 151 est vérifié par surcroit pour v =1, ainsi
par conséquent que le théoréme 150 pour v =1. Avec cette nouvelle maniére d’édi-
fier la théorie des corps kummeriens réguliers, ces théorémes 150 et 151 pour w =1
paraissent les clés de voiite de toute la construction, contrairement & la premiére

méthode.

CHAPITRE XXXVL

L’équation diophantine " + " + y" =o.

§ 172. — IMPOSSIBILITE DE L'EQUATION of + ,(s‘ + Y’_o POUR LES EXPOSANTS PREMIERS
REGULIERS [.

Fermat a émis l'assertion que I'équation
(lﬂl + bﬂl + c"l —0

est impossible en nombres entiers a, b, ¢ différents de o pour tout exposant entier
m > 1. Bien que déji avant Kummer on ait oblenu des résultats isolés remarquables
sur cette équation de Fermat [Abel!, Cauchy'? Dirichlet’*? Lamé"*3, Lebes-
que %3], c’est pourtant Kummer qui est parvenu le premier, en s'appuyant sur la
théorie des idéaux des corps circulaires réguliers, a démontrer le théoréme de Fermat
pour des classes trés étendues d’exposants m. Le plus important des résultats de

Kummer est le suivant :
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THEOREME 168. — [ étant un nombre premier régulier et x, 8, v des entiers quel-
conques du corps circulaire des racines [#m* de I'unité, dont aucun n’est nul, on n’a
jamais I'égalité
(185) ad+ 8 +~=o.

[Kummer®® ]

2iw

Démonstration. — Soit {=¢ ¢, k=1 — ¢, 1=(). Supposons que I'équation (185)
ait une solution =n nombres entiers «, &, v du corps ¢({) et distinguons les deux cas
ot aucun des trois enliers «, £, v nest divisible par [ et celui ot I'un au moins des
trois est divisible par [.

Dans le premier cas, on doit en tout cas exclure les valeurs 3 et 5 pour I'expo-
sant {. En effet, pour {=3 chacun des trois nombres =, §, y serait =:t1, mod I, et
par suite chacune des trois puissances o, ¢, y¥*= 1, mod I'; la somme «* + B4+
serait donc congrue & =1 ou & =3, mod I, ce qui est incompatible avec I'équa-
tion (185). On arrive & une contradiction semblable avec l=3>3, si l'on considére que
dans ce cas chacun des trois nombres «, 8, y est congru, mod I, a—+1o0u-+2, et
par suite chacune des trois puissances o®, §°, v° devrait étre congrue a + 1, + 32,
mod I (1).

Soit donc [>> 7. Si I'équation (185) est vérifiée par les trois nombres «, &, v. on a
évidemment aussi o 4+ 8% 4 4™ = o, en désignant par «*, §*, y* les produits de «, §§, v
par des racines " quelconques de l'unité. Cela étant, nous pouvons dorénavant
admettre que les trois nombres =, 8, y vérifiant I'équation (185) sont semi-primaires.

Mettons alors I'équation (185) sous la forme

(186) (x+ 8@+ B+ 08 .. e+ B =

l
.

Si deux facteurs du premier membre, par exemple « + "B et o+ "8, avaient
un facteur commun, celui-ci devrait aussi diviser (1Y — 1)x et (1 —¢”)8, et comme

g

I—

: est une unité et que I ne divise pas y, ce facteur commun devrait nécessaire-
I —

(") N. T. — Pour {=17, la contradiction relevée dans le premier cas pour =3, =5
n’existe pas. En prenant, en effet,

o =—1, f=—a2, v =+3, mod 1,
on a
v=—1, p=-—128, ¥y =+ 2187, mod (I'=7.1),
et
o=uo + K 4+ ¢y =2058 ou 7X204=7X7X42, mod7.I,
ou

77X 42=o0, modl,
congruence qui est vérifiée.

Fac. de T., 3¢ S., 1. 57
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ment appartenir aux nombres o et . Tout facteur premier ne figurant que dans un
seul des [ facteurs du premier membre de (186) doit évidemment, d’aprés cette
¢quation méme, avoir un exposant multiple de {; les [ facteurs du premier membre
de (186) se décomposent donc comme suit :

wt+p  =ija,
U.+:.B :jia,
1+ 08 =ila,

o+ =jl"a,
a désignant le plus grand commun diviseur idéal des nombres « et B,oeb i, 4, ...,
j,_, des idéaux de ¢({). Comme a + '™*B, en particulier, est premier a [, on peut
déterminer une racine I*" de T'unité %, telle que ¢*(x 4 {"™'8) soil semi-primaire.
Posons
_ ¢
TR TR

On obtient alors

i 1
v+ = (—l> s
(187) ( = | R

c’est-d-dire que I'on a
N TN : [
<-,)—>~1, (.—,l-)'s'l, e <l.’—_?>~l,
Jis VA 1[—1

(188) pot ="

et on a de plus

h désignant le nombre des classes d’idéaux de ¢(%), on a, d’autre part,

: h ' : h : h
(i (A m i (=
| Y ll—l P

el, comme h est premier & 1, on en déduit
] l~z . 71—2 ~
1[—4 ]l—l )I—l

Par conséquent, on peut (voir.théoréme 127, § ¢8) mettre les relations (187)
sous la orme

([89) w4 gu‘g = Ce"au 7,;, (=01, 2, .., 1—2),
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les e, désignant des exposants entiers rationnels, les ¢, des unités réelles du corps
circulaire ¢(?) et les , des nombres de ¢({) entiers ou fractionnaires & numérateurs
et dénominateurs premiers a [. La [*™ puissance du nombre «, étant toujours con-
grue & un certain entier rationnel a,, mod I*(?), on tire des égalités (189) les con-

gruences v
(190) bt = ey, (1), (=0, 1,2 ey 12),

Effectuons dans ces congruences la substitution (¢ {™") et désignons par p." et ¢/
les transformés de p. et o par cette substitution; il vient

(191) AT =0, (1), =0,1,2 .., =2
De (1go) et (191) résulte '
(192) w4 Cup = o P" + Ceeu—upl’ (Il), W= 001, 2, s ),

En posant u=m, g=r, mod I, m et r étant des entiers rationnels (?), il résulte

)

(*) N. T. — La puissance [¥me de tout nombre « de c¢({) est congrue mod {! 4 un certain entier
rationnel a.
En effet, « peut étre mis sous la forme

2 l—2
o — a, + aak + aa)‘ + ..+ al—z)\ (les a,, @, ... et b, -étant

b entiers rationnels.)
0

a, et b, étant premiers & /; on a donc :
br=a, (modI).
On peut toujours déterminer un entier b tel que 1’on ait

' bb,=1, (mod l),
alors on a
bb,x =a,b, (modI),
c’est-a-dire
e=ab, (modIl),

et par suite
' =a, (mod 1Y),

a étant entier rationnel.

() N. T. — En effet,
a4 a)+ . a2\
b+ bR b N

car u est le quotient de deux nombres semi-primaires.

o

p=m, (mod [?),
revient donc a
bm=a,, (mod*);
or b, et a, élant premiers a /, la congruence
bm=a,, (mod]),
a toujours une solution /m =|= 0, et par suite I'on a aussi

bm=aqa,, (modI*).
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de (192)
(193) m+r=C%m+ P, ().

et, & cause de la relation générale (Y=1— g, mod I*, (193) donne la congruence

ae,(m+r)y=z2ru, (mod]l).

D’autre part, il résulte de 1'égalité (188) :m+r=r1, mod I, et par suite nous
avons ‘

e, =ru, (mod]/), (0=10,1,2, ., 1-2).

Prenons alors, en tenant compte de cette relation, les congruences (192) pour
w=o, 1, 2, 3; on en tire, en éliminant ., ¢, p’, ¢'

28]
I, I, 1, T
I, Z’ 1‘;27" v2r—1

" wne ar—ie | =0, (mod 0,
1, (O @) @
L@ @

c’est-a-dire
(19!‘) (I J— c)(]. — ;‘ﬁr)(l — C”Zr——'l)(z —_ Cﬂr)(!; o ;IT—K)(;Q" - Cﬂr—l E O, (Il)'

Aucun des facteurs du premier membre n’est égal & o, car autrement on aurait soit
r=o, soit r=1. soit r=13, mod /. Si 'on avait r=o0, mod [, il en résulterait
8=o0, mod I; si I'on avait r=1, mod [, il en résulterait p=1, mod [, c’est-a-
dire =2+ £ ou a«=o0, mod I. Dans les deux cas c’est impossible, vu notre hypo-
thése sur les nombres «, 8, v. Si I'on avait r=3, mod I, on aurait g=3. mod I,
c’est-a-dire 28 =a +  ou x=§, mod [. Mais comme «, B, y entrent symétrique-
ment dans I'équation (185), on aurait aussi « =8=1v, mod I, et par suite

4+ g +y=3u=o0,

c’est-a-dire a==0, mod [, contrairement encore a I'hypothése. Chaque facteur du
premier membre de la congruence (194) est par suile divisible par [, mais non par [*;
celte congruence est donc impossible, puisqu’on a 12> 7.

Supposons maintenant, en second lieu, que dans I'équation (185) I'un des trois
nombres «, B. vy, par exemple ~, soit divisible par [ et contienne ce facteur & la
mi®me puissance. Si 'on remplace alors y par 23, 3 étant un entier de ¢({) premier
a1, I'équation (185) prend la forme

(19:)) ) CLI + 581 — s)\lmal’

¢ élant ici égal & — 1. On va montrer qu’'une équation de cette forme (195) est méme
impossible, «, 8, ¢ élant des entiers quelconques de ¢({) premiers & [ et = une unité
quelconque du corps circulaire ¢(¢). Pour cela, supposons encore les nombres «, 8
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semi-primaires et observons d’abord que «, 8’ sont congrus & des entiers rationnels,
mod ", et que, vu (195), ¢A™?' doit aussi étre congru & un entier rationnel,
mod [""*; m doit donc &tre > 1. On trouve ensuite, par des considérations analogues
a celles du cas précédent et en tenant compte de ce que « + § est semi-primaire, les

égalités
/ o + ‘3 — )\I(m—q)—Hila’
, Yatris =lila,
(196) ’
Vet = A a,
ou j, j,, ..., i,_,. a sont des idéaux premiers a [ de ¢(¢). Si /=3, le nombre de

classes h du corps ¢({) est égal a 1 et, par suite, tout idéal de c(¢) est un idéal prin-
cipal. En posant dans ce cas a = (), » étant un entier de ¢({), et ensuite

o
!J'—;r P— ’

8
%

les égalités (196) deviennent

§L+ P =)\3(m——1)+1il’
(197) b+ G =2,
b o =i

Dans le cas de [ 3, formons les nombres

ak A

}).:m, p:m,

on peut aussi les mettre sous forme de fractions dont le numérateur et le dénomi-
nateur soient premiers & I. Les trois premiéres et la derniére des égalités (196) nous
donnent

/

" + b = )\l(M——i)—Fi/ 1

G

i l

(198) wAlp = A(-—‘—) )
I—

1' 1

y+§’p=l<. ’>-
ll—l

Nous en concluons encore
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et par suite nous pouvons meltre les égalités (198) sous la forme

s*)\l(m—l)-i»i v*l

btp =—-—>,
P y
ha*!
(199) w+lp = —
5)\6*1
vt Co= s
| v

v, o, 8%, v* étant des entiers de ¢({) premiers & [ et ¢ et ¢* des unités de ce corps.
A cause de (197), on a également, si /=3, un systéme comme (199). En éliminant .
et p, on obtient, aussi bien pour !=23 que pour {>> 3, une équation de la forme

! ! N H{m— 1
(200) D e
\ * [ 7 1 ]_“": \ C(l_t)* s *! *l 1
ou v et n* | égales a — —eeta—-———":)sont des unités de ¢({). «™, 6™ étant
I—q 1I—4

congrus mod I' & des entiers rationnels et m étant > 1, comme on I'a démontré, il
résulte de cette équation (200) que v aussi doit étre congru & un entier rationncl
mod [, et par suite (théoréme 156, § 141) 4 est la [*m puissance d'une unité de c(%).
En mettant alors .B*-q_i? a la place de §* dans (200) cette équation prend la forme de
(195), sauf que I'exposant m a diminué d’'une unité. En continuant ce procédé, on
finirait par arriver a une équation de la forme (195) avec m =1, et par suite par
arriver a une contradiction. Le théoréme 168 est donc complétement démontré.

§ 173. — AUTRES RECHERCHES SUR L’IMPOSSIBILITE DE o + 8™ 4+ v" —o.

Kummer a encore donné la démonstration de Yimpossibilité de I'équation

1 L 1
v+ +yv=0
en nombres entiers «, 8, v du corps circulaire des racines /*m de l'unité, dans le
cas ou [ est un nombre premier divisant le nombre de classes & du corps circu-

laire c(ez%'), h n’étant d’ailleurs pas divisible par £ (1). [Kummer !*.] D’apres la re-
marque paragraphe 139, le théoréme de Fermat est donc reconnu exact pour tous
les exposants m < 100. La démonstration de la proposition de Fermat dans toute sa
généralité est encore a trouver.

11 reste encore & traiter le cas ou l'exposant m est une puissance de 2. L'équa-
tion a®+ b*=c* a, comme on sait, une infinité de solutions en nombres entiers
rationnels a, b, ¢. Cependant, on a ensuite le '

(1) N. T. — Voir, pour cette démonstration, la note V1.



THEORIE DES CORPS DE NOMBRES ALGEBRIQUES. 455

TrEOREME 169. — =, B, v étant des entiers =|= o0 du corps quadratique déterminé

par i — \/— 1, on n’a jamais I'équation

(201) of + B =",

Démonstration. — Admettons qu’il existe, au contraire, trois entiers «. 8, y véri-
fiant cette équation. Posons A=1 + i et {=(%). Nous voyons d’abord facilement
que I'un des deux nombres «, § doit étre divisible par . En effet, admettons que «
et B soient premieérs & A et observons qu'un entier de ¢(i) premier i X est toujours
=1 ou i, mod I*; son carré est par suite =1, mod [*, et $a quatriéme puissance
est =1 mod I°. Il en résulte «* + %*=12, mod [°. Par suite, v devrait &tre divisible

par [ et non par I*. Mais si nous posons en conséquence y =X + 2*y’, - étant encore
un entier de ¢(i). nous trouvons y*= 21, mod I*, et par suite toujours y* == «* + 8*,
mod [, contrairement & 'hypothése. Le cas ot les deux nombres « et 8 seraient divi-
sibles par I peut évidemment étre exclu de suite, car alors y serait divisible par I* et
on pourrait supprimer la puissance %* dans les deux membres de I'équation (201).

I1 ne reste donc que le cas ot un des nombres «, 8, par exemple «, est divisible
par [, 8 et v étant au contraire premiers & [. Nous posons «=2A\"«", ol «* est un
nombre premier & X, et nous considérons I'équation plus générale

(202) g

2 ___ am s
f =,

: désignant une unité de ¢ (). Nous déduisons de cette équation (202), en changeant
au besoin y en — vy, deux équations de la forme

. ‘62 + v = n)\tm—zau’
ﬁ@_Y — 9 B“,

(203)

ol 7, S sont des unités de ¢ (), o' et B’ des entiers de ¢(i) premiers & [. En addition-
nant les deux équations (203) et divisant le résultat par 32*, on obtient une équation

(20[;) pu _ :71 (2 — _fl!)\lm—t OL“

ou ', v/ sont des unités de c(i). Si m était égal & 1, cette équation serait slirement
impossible, car §', ', 8, v'. o' sont tous =1 mod [. Donc on a m > 1. Mais alors on
déduit de cette équation (204) la congruence 3’ =1 mod [*; par suite, on a 3’ = 1.
En posant 8 =+’ ou =1y, suivant que 3=+ 1 ou — 1, I'équation (204) prend la
forme (202), & part que m a diminué de 1. En continuant ainsi, on arrive & une
contradiction.

On déduit immédiatement du théoréme de Fermat pour =3 qu’il n’existe au
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cune équation du troisiéme degré a coefficients rationnels et de discriminant 1 en
dehors des deux suivantes :

x— x4+

@l

=o0
et de celles qui s’en déduisent par la substitution x =o'+ a (¢ étant rationnel).
[Kronecker®.]

On peut, comme Hurwitz, exprimer le théoréme de Fermat en disant que

N . m I3 . .
I'expression /1 — a™ représente toujours un nombre incommensurable pour m
entier =2 et x fractionnaire positif.



