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DEUXIÈME PARTIE.
LE CORPS DES NOMBRES DE GALOIS.

CHAPITRE X.

Les idéaux premiers du corps de Galois et de ses sous-corps.

§ 36. - LA DÉCOMPOSITION UNIQUE DES IDÉAUX DU CORPS DE GALOIS EN IDÉAUX PREMIERS.

Un corps K qui coïncide avec tous ses corps conjugués est dit un corps de Galois.
Soit 1~ un corps quelconque de degré m et soit k’, ..., kl1l-J les /?? corps conjugués à lr,
on peut, en réunissant tous les nombres appartenant aux corps lr, h’, ..., 1~~~’-’~,
former un nouveau corps K ; ce corps K est alors nécessairement un corps de Galois,

qui contient les corps k, k’, ..., , l~nt-’~ comme sous-corps. Tout corps ~.° peut donc être
considéré comme un sous-corps d’un corps de Galois. Par suite de cette circonstance

nous n’apporterions aucune restriction essentielle à l’étude des nombres algébriques
si nous commencions par étudier un corps de Galois, et si nous cherchions à voir

ensuite comment les lois de décomposition des idéaux de ce corps de Galois se modi-
fient lorsqu’on passe à un des sous-corps qu’il contient..
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La démonstration de la décomposition unique des idéaux en idéaux premiers est
très simple pour un corps de Galois Pour le voir, nous fixerons d’abord le

sens de certaines notations.

Soit 0 le nombre entier qui détermine le corps K de degré M ; 8 est une racine
d’une équation irréductible de degré M à coefficients entiers et rationnels. Désignons
les racines de cette équation par

où s , ..., s,~ désignent des fonctions rationnelles de 0 à coefficients rationnels. Si
l’on considère .... s~0 comme des substitutions, elles forment un groupe G de

degré M, car deux substitutions successives prises parmi ces M nous donnent encore
une de ces substitutions. Soit G le groupe du corps de Galois K. Un idéal 3 qui ne

change pas lorsqu’on y remplace ses nombres par leurs conjugués, c’est-à-dire

lorsqu’on fait les lI - I substitutions s2, ..., sM sera dit un Idéal invariant. Un idéal

invariant a les propriétés suivantes :

LEMME I I . - La puissance 1~2! ~me de tout idéal invariant ~ est un nombre entier
rationnel.

Démonstration. - Soit A un nombre de l’idéal J et soient Ai, A2, ..., AM les

M fonctions symétriques élémentaires des nombres A = slA, sJA, ... , , shsA. Nous

désignerons par A le plus grand commun diviseur des ~l nombres rationnels entiers

De même supposons qu’on ait calculé les mêmes fonctions symétriques et le

même plus grand commun diviseur relatifs à tous les nombres B, I1, ... , de l’idéal J
et soient B, C, ... ces diviseurs.

Soit J le plus grand commun diviseur de tous les nombres A, B, C, ... ainsi

obtenus.

En effet, les nombres conjugués à A étant aussi des nombres de ~, on a

et par suite tous les nombres (18) et de plus A sont - o, (~~’’).
Comme on peut en dire autant de B, C, ..., on a aussi J - o d’après ~~I’ .
D’autre part, les coefficients A~ , At’ ..., AM de l’équation de degré M en A sont

J- _~t J-
divisibles respectivement par J°’’ , ..., J"’ et par suite A est divisible par comme

on peut en dire autant de tous les nombres B, r; ... de l’idéal 3, il en résulte que ,~~‘ ~’’
est divisible par J.



THÉORÈME 67. -- A chaque idéal ~ du corps de Galois K on peut faire corres-

pondre un autre idéal ~, tel que le produit soit un idéal principal.

Démonstration. - L’idéal J _ ..... est un idéal invariant ; donc,

d’après le lemme II, l’idéal

est l’idéal indiqué au théorème 67.
Ce théorème 67 permet de développer les caractères de divisibilité dans un corps

de Galois, comme on l’a fait au paragraphe 5 en vertu du théorème 8 pour un corps
quelconque k.

Pour déduire alors des lois de divisibilité dans un corps de Galois, les lois de divi-
sibilité pour un corps quelconque k, il faudra démontrer d’abord dans un corps de
Galois les théorèmes de Kronecker i3 et I4 relatifs aux formes et on en conclura
l’exactitude de ces lois pour un sous-corps ~~°, ou bien on emploiera un moyen
direct et approprié de transposition d’un corps à l’autre. [Hilbert2.]

S 37. - LES LA DIFFÉRENTE ET LE DISCRIMINANT DU CORPS DE GALOIS.

Certaines notions établies antérieurement prennent un sens plus simple dans le
corps de Galois. Ainsi les éléments d’un corps de Galois sont des idéaux dans le corps
lui-même et on a les faits suivants :

THÉORÈME 68. - Les éléments d’un corps de Galois K se transforment les uns dans

les autres par les substitutions ..., sM. La différente ~ du corps K est un idéal

invariant, et le discriminant D =+ est comme idéal la puissance de ~.

Démonstration. - Désignons par ..., S~~ une base du corps K, les éléments
de K sont des idéaux de la forme

Appliquons une substitution quelconque s à l’un de ces éléments et remarquons

que les nombres sQi’ ..., SQM forment encore une base du corps; il en résulta que
si l’on pose 

L’invariance de la différente du corps résulte de sa représentation



~ 38. - LES SOUS-CORPS DU CORPS DE GALOIS.

Le corps de Galois permet une étude précise des lois de décomposition de ses
nombres en tenant compte des sous-corps qu’il contient, et les résultats qu’on obtient
ainsi sont très importants lorsqu’on veut appliquer la théorie générale des corps à
des corps algébriques particuliers. [Hilbert 3.]

Pour caractériser simplement un sous-corps du corps de Galois, nous emploierons
les expressions suivantes : Lorsque r substitutions s1= I, s~, ..., sr du groupe G forment
un sous-groupe g de degré r, l’ensemble des nombres de K qui ne changent pas
lorsqu’on applique toutes ces substitutions g, forme un corps contenu dans K et de

degré m = M r. Nous nommerons ce corps If le sous-corps correspondant au soils-

groupe g.

Le corps de Galois appartient au groupe formé par sJ :== j ; au groupe G des lZ
substitutions s correspond le corps des nombres rationnels. - Réciproquement,
chaque sous-corps 1~ du corps de Galois appartient à un certain sous-groupe g du

groupe G. Le groupe g s’appelle alors le sous-groupe qui détermine le corps lr.

§ 39. - LES CORPS DE DÉCOMPOSITION ET LE CORPS D’INERTIE D’LN IDÉAL PREMIER D.

Choisissons dans le corps de Galois K un certain idéal premier de degré f ; il y

a un certain nombre de sous-corps de K s’emboîtant les uns dans les autres, carac-

térisés par l’idéal premier ~3 et dont nous allons développer brièvement les merveil-
leuses propriétés.

Soitp le nombre premier rationnel divisible par de plus, soient z, z’, z", ...,

les substitutions du groupe G qui laissent invariable l’idéal premier ~; elles for-
ment un groupe de degré rz que nous nommerons le groupe de décomposition de
l’idéal premier D et que nous désignerons par gz. Le corps correspondant au

groupe fJZ, sera dit le corps de décomposition de l’idéal premier D ; il est de

degré m = - . .

De plus, soient t, t’, t", ... toutes les substitutions s du corps telles que pour tout t

nombre entier Q du corps K on ait sQ = Q suivant ~ et soit rt leur nombre, on voit

facilement que ces substitutions forment un groupe de degré Ce groupe, nous le

nommerons le groupe d’inertie de l’zdéal premier ~3 et nous le désignerons par gt Le

corps kt qui correspond à gt nous le désignerons par corps d’inertie de l’idéal pre-

mier D il est de degré m t = M .
rl 

.



Le rapport entre le groupe d’inertie et le groupe de décomposition résulte des
faits suivants :

THÉORÈME 69. - Le sous-groupe d’inertie g de l’idéal premier D est un. sous-

groupe invariant du groupe de décomposition ~ . On obtient toutes les substitutions
du groupe de décomposition et on n’obtient qu’une fois chacune d’elles en multi-

pliant les substitutions du groupe d’inertie par 1, z, z~, ..., zf-1, où z est une substi-
tution appropriée du groupe de décomposition.

Démonstration. - Soit t une substitution quelconque de gt et 03A9 un nombre entier

du corps K divisible par. Posons ~’ ~ t-‘~ ; on a, en vertu de la propriété du corps
d’inertie suivante c’est-à-dire suivante. L’application de la
substitution t donne Q = o suivant l’idéal premier Comme ceci a lieu pour tous

les nombres Q de l’idéal premier, il faut que ~ soit divisible par t et, par suite,
~ = c’est-à-dire que le groupe d’inertie est un sous-groupe du groupe de décom-

position.
Désignons maintenant par P un nombre primitif de l’idéal premier ~ congru à o

suivant tous les idéaux conjugués à ~ et premiers avec Le théorème 25 montre que
l’on peut former un pareil nombre. Ceci fait, composons la fonction entière à coeffi-
cients entiers de degré àl en x :

Comme P est une racine entière de la congruence F(x) ~ o suivant ~.~, on sait,

d’après le théorème 2 y, que PP est aussi racine de cette congruence, et il résulte de là

que, parmi les M substitutions, l’une au moins donne sP~Pp suivant D. Si alors on
avait =_ on aurait, en vertu du choix de P, la congruence P=o suivant 

et, par suite, suivante, ce qui est contraire à la congruence trouvée précé-
demment.

A cause de ~3 la substitution s appartient au groupe de décomposition ;
posons s = z ; en appliquant plusieurs fois de suite la substitution z à la con-

gruence zP _--_ l’p suivant nous aurons

c’est pourqnoi zf est une substitution du groupe d’inertie, car tout nombre entier du
corps Q du corps K peut être mis sous la forme de Q = P~ + il ou = II, où a est un

nombre entier rationnel et ~I un nombre du corps divisible par ~3. A cause de 

on a en effet zf03A9 = Q suivant D.
La congruence zP ~ Pp suivant D nous apprend que suivant D, où t

est une substitution quelconque du groupe d’inertie gt. Si nous posons et

si Q est un nombre entier du corps tel que suivant 

suivant et de même si suivant c’est-à-dire que z’ = appartient au

groupe d’inertie.



Soit donc P(P) la fonction entière à coefficients entiers de degré f de P qui -o

suivant ~ ; alors, d’après le théorème 2 ~, la congruence P(x) - o suivant ~ admet les
racines P, P~, et d’après le théorème 26 elle n’en a pas d’autres.

Soit maintenant z* une substitution quelconque du groupe de décomposition ;
il résulte de la congruence P(P) - o suivante, que et, par suite,
z~P - Ppt suivant où i a l’une des f valeurs o, I, ... , f - I . Comme d’autre part
ppi = ztP, P suivant et, par suite, Z-iZ* est une substitution t du

groupe d’inertie, c’est-à-dire z* = zit .

Toutes les substitutions du groupe de décomposition peuvent donc être repré-
sentées sous cette forme, et comme réciproquement zit pour i = o, I, ... f - I repré-
sente des substitutions distinctes, la dernière partie du théorème 6g est démontrée.
Enfin, l’invariance du groupe d’inertie résulte de ce fait que appartient à ce

groupe. De plus, on a = frt.

§ 40. - UN THÉORÈME RELATIF AU CORPS DE DÉCOMPOSITION.

Le théorème suivant exprime la propriété la plus importante du corps de décom-

position.
THÉORÈME 70. - L’idéal V = est situé dans le corps kz et il est un idéal premier

de ce corps du premier degré. Dans le corps de décomposition p = ~ a, où a est un

idéal premier avec ~ . .

Démonstration. - La norme relative de l’idéal premier D par rapport au corps kz
est _ Pour trouver la plus petite puissance de l’idéal premier ~ située
dans kz, supposons qu’on ait trouvé le plus grand commun diviseur des nombres
entiers de kz qui sont divisibles par Ce nombre est nécessairement un idéal pre-

mier D de et comme est dans D est certainement une puissance de soit

~ _ ~3". Pour déterminer u, nous ferons les considérations suivantes. Soit A un

nombre de K qui n’est pas divisible par ~ et qui satisfait à A -zA suivant ~ et si

A - pi suivant 1 « p suivant i, et, par suite, est divisible par I + p ~ p~
... + pf ’ , c’est-à-dire qu’il n’y a que p - I nombres incongrus suivant D de la

forme considérée ; on a donc A - a suivant où a est un nombre entier rationnel.

De là, il résulte en particulier que tout nombre (x du corps kz est congru à un nombre

rationnel a suivant et par suite aussi suivant ~, c’est-à-dire que V est un idéal

premier du premier degré du corps kz. et la norme de D dans ce corps .

D’autre part, dans le corps K, la norme de D satisfait à et à cause

de D=Du et de N(D)=pf, il résulte c’est-à-dire u= rt.

La définition du corps de décomposition donne où u est un idéal

premier avec ~3. Si p = ~ a, on a = pf = et, par suite, af = ~ , ce qui dé-

montre la dernière partie du théorème ~o.



§ 4l. - LE CORPS DE RAMIFICATION D’UN IDÉAL PREMIER ~ .

Nous allons étudier de plus près la nature du corps d’inertie et désigner par A un
nombre bien déterminé du corps K divisible par D et non par et nous détermi-

nerons pour toutes les substitutions du corps d’inertie t, l’, t", ... les congruences

où a, a a", ... sont des nombres de la suite o, 1 , 2, ..., pf - 2.
Parmi ces substitutions t, t’, t", ..., désignons par v, v’, v", ... celles qui corres-

pondent à la valeur zéro des exposants a, a’, a", soit ri, leur nombre; elles forment,
il est facile de le voir, un sous-groupe invariant du groupe d’inertie. Nous désigne-
rons ce sous-groupe de degré rv par le nom de sous-groupe de ramification 
gungsgruppe) de l’idéal premier D, et nous écrirons gt,. Le corps kv qui lui appartient
sera dit le corps de ramification de 1"idéal prem.ier D.

Le théorème suivant caractérise les rapports du groupe de ramification et du

groupe d’inertie.

THÉORÈME 7I. - Le groupe de ramification g2, est un sous-groupe invariant du

groupe d’inertie; son degré est une puissance de p, soit On obtient toutes les

substitutions du groupe d’inertie et on n’obtient qu’une fois chacune d’elles, en
multipliant chaque substitution du groupe de ramification par 1 , t, t~, ..., th-i, où

h = rt ~ 2~ et où t est une substitution convenablement choisie du groupe d’inertie ;

h est un diviseur de pf - r.
Démonstration. - Soit une puissance assez élevée de D pour que pour toute

substitution v du groupe de ramification différente de i, on ait suivant 

Posons suivant B désignant un entier de K, il en résulte que
A suivant et, de même, v~~ A - A suivant et ainsi de suite ; enfin,

A suivant ~3~‘. Il en résulte que = r, c’est-à-dire que le degré rt, du

groupe de décomposition est une puissance dep; .

Soit maintenant a le plus petit parmi les exposants a, a’, a", ... qui ne sont pas
nuls, et soit h le nombre de ces exposants distincts. Tous ces nombres seront des

multiples de a et coïncident avec o, a, 2a, ... , (h - I ) a; et, de plus, ha = pf - r .
Nous reconnaissons en même temps que toutes les substitutions du groupe d’inertie
peuvent être mises sous la forme tiv, où i prend les valeurs o, i, ... , h - i, et où v
parcourt toutes les substitutions du groupe de ramification g2, . On a donc



§ 42. - UN THÉORÈME RELATIF AU CORPS D’INERTIE.

Le théorème suivant va nous expliquer comment se comportent les idéaux ~ et ~
dans le corps .

THÉORÈME 72. - Tout nombre du corps K est congru suivant à un nombre du

corps d’inertie. Le corps d’inertie ne décompose pas mais il en élève le degré, en
ce que ~, en passant du corps où il est un idéal premier du premier degré, se
transforme en passant dans le corps supérieur kt en un idéal premier du degré/. .

Démonstration. - Posons

nous entendons par P un nombre primitif suivant et par t une substitution comme
au théorème 71, le nombre 7: est un nombre du corps kv et le nombre x est situé dans
le corps Pour le démontrer, il suffit de se rappeler que ~n reste inaltéré lorsqu’on
rui applique la substitution t, car t’t appartient à g7, et parce que les nombres ~, t~,
..., , ne sont pas altérés par une substitution appartenant à g1’. Ces deux nom-

bres 7? et x sont tous deux congrus suivant l’idéal premier au nombre primitif P.
Comme par suite ~~ contient exactement p~ nombres incongrus suivant ~, ne

peut se décomposer dans le corps kt et il est dans ce corps un idéal premier de

degré f.

§ 43. - THÉORÈMES RELATIFS AU GROUPE DE RAMIFICATION ET AU CORPS DE RAMIFICATION.

Il est facile dès lors d’établir la propriété caractéristique du groupe de ramification
et qui est la suivante :

THÉORÈME 73. - Le groupe de ramification g2, se compose de toutes les substitu-

tions s qui, appliquées à tous les nombres entiers Q du corps K, donnent la con-

gruence

Démonstration. - Soit Q de K congru à c.~ du corps d’inertie suivant posons

par suite suivant ~1, où A a le sens du paragraphe 4i et où B est un
nombre convenablement choisi du corps K. Si nous appliquons une substitution v du

corps de ramification, il vient c~ - v (B.A) - BA = S~ - c~, c’est-à .dire - S~

suivant 

On reconnaît de plus facilement que l’on a :



THÉORÈME 74. - L’idéal Dv=Drv est situé dans le corps de ramification, dans

lequel il a le degré f, et l’on voit que, dans le corps de ramification, l’idéal D _ Dhv se
décompose en h facteurs premiers égaux.

~44. - LES CORPS DE RAMIFICATION SOULIGÉS D’UN IDÉAL PREMIER ~.

Nous nous proposons maintenant d’examiner de plus près la séparation de
en facteurs égaux.

Nous désignerons par L le plus grand exposant tel que pour toute substitution v
du groupe de ramification, tous les nombres entiers du corps K satisfassent à 

suivant et nous déterminerons toutes les substitutions s du groupe de ramifi-

cation, telles que s Q = Q suivant elles forment un sous-groupe gv du g roupe
de ramification que nous appellerons le groupe de ramification une fois souligné de
l’idéal premier D. Le corps correspondant à gv sera dit le corps de ramification une
fbis souligné de l’idéal D.

Voici les propriétés les plus importantes de ce corps.

THÉORÈME 75. - Le groupe de ramification une fois souligné gv est un sous-
groupe du groupe de ramification gv. Soit rv =~l son degré. On obtient toutes les
substitutions de gu et on ne les obtient qu’une fois, en multipliant toutes les substi-
tutions du groupe de ramification souligné une fois gv par certaines substitutions en
nombre p~, v~~, ..., du groupe de ramification ; ici ces p~~ substitutions offrent
cette particularité que pour deux quelconques d’entre elles on ait toujours
une relation de la forme vlvi, = où v est une substitution de gv. L’idéal

~v = est un idéal premier dans lt,~, ; et, par suite, dans ~,w, se

sépare en pc’ facteurs premiers égaux ; et e est un exposant qui ne dépasse pas le

degré f de l’idéal premier ,

Démonstration. - Soit A un entier de K divisible par p et non par D2; détermi-
nons un système de substitutions ..., vl’ du groupe de ramification tel que, si l’on
pose

les nombres entiers B,, ..., Bl. soient tous incongrus suivant et tel qu’on ne
puisse ajouter à ce système v,~, ..., z~~ de nouvelle substitution qui ne soit en con-
tradiction avec la dernière condition.

Choisissons alors une substitution quelconque v* du groupe de ramification ~z, et
posons - A + suivant B sera congru à l’un des nombres B,1, ..., Br
suivant ~; soit, par exemple, B - Bj suivant ~,~ , il en résulte que = ~~. sui-

vant Le théorème j2 nous apprend que tout nombre entier Q de K est congru



à une expression 03B1t + 03B2tA + ... + suivant où xt, ... 03BBt sont des nom-
bres entiers du corps d’inertie, et il s’ensuit que Q satisfait à sui-

vant DL+1, c’est-à-dire que ou que Cette égalité démontre les

propriétés du groupe ~~, affirmées au théorème Î~.
Posons et soit c = l - l . 

,

’ 

On voit comment il faut poursuivre la méthode. Soit L l’exposant le plus élevé,
tel que pour toute substitution v tous les nombres du corps K satisfont à la con-

gruence suivant ~~L, nous déterminerons toutes les substitutions v pour
lesquelles on a constamment suivant ~~+1. Ces substitutions forment un

sous-groupe invariant w du groupe groupe 4e ramification deux fois souligné
de l’idéal premier D, soit o,c,= pl son degré; posons é = 1 - l , on a = Dpve, où

est un idéal prem ier du corps qui correspond à g l;.
En continuant ainsi nous atteindrons le groupe de ramification trois fois souligné

et ainsi de suite. Supposons que le groupe de ramification i fois souligné de l’idéal
premier D soit celui qui ne contient plus que la substitution i ; ; le corps de ramifica-
tion i fois souligné de l’idéal premier D est alors le corps K lui-même et la nature

nous est alors parfaitement connue. Il est évident qu’il ne peut exister de corps
de ramification soulignés de l’idéal premier ~, que si le degré 1’T du corps K est divi-
sible par p.

§ 45. - UlB RÉSUMÉ RAPIDE DES THÉORÈMES RELATIFS A LA DÉCOMPOSITION D’UN

NOMBRE PREMIER RATIONNEL p DANS LE CORPS DE GALOIS.

Les théorèmes démontrés du paragraphe 3g au paragraphe 44 nous montrent tout
à fait ce qui se passe lorsqu’on décompose un nombre prernier rationnel p dans un

corps de Galois.

S’il s’agit d’un facteur déterminé ~3 de p, nous commencerons par mettre p sous
la forme dans le corps de décomposition de où D est un idéal premier du

premier degré et où a est un idéal du corps de décomposition qui n’est pas divisible

Le corps de décomposition de ~ est contenu comme sous-corps dans le corps
d’inertie de ~, qui, de son côté, ne produit aucune décomposition de ~, mais qui a
fait un idéal premier de degré f. Si le corps K est lui-même le corps de décom-

position ou le corps d’inertie, ce premier pas termine la décomposition. Sinon V peut
- encore être décomposé en d’autres facteurs dans K, ainsi V devient d’abord dans le

corps de ramification la puissance d’un idéal premier dont l’exposant est contenu
dans pf - i et n’est par suite pas divisible par p.

La condition nécessaire et suffisante pour que la décomposition de D soit alors



terminée, est que p ne soit pas contenu dans le degré du groupe d’inertie et que, par
suite, le corps K soit lui-même le corps de ramification. 

’

Dans les corps de ramification soulignés, la décomposition se poursuit sans cesse
et les exposants des puissances sont de la forme pe, pe, ... et aucun des expo-
sants é, é ne dépasse le degré f de l’idéal premier D.

La table qui va suivre donne une vue d’ensemble sur les résultats; la première
ligne désigne les corps, la seconde les degrés des groupes correspondants, la troisième
les degrés des corps, la quatrième leur degré relatif par rapport au corps immédia-
tement inférieur, la cinquième les idéaux premiers des corps et leurs représentations
au moyen des puissances de 

Nous admettrons que K est un corps de ramification trois fois souligné.
Tous les nombres indiquant les degrés ou les exposants dans cette table ont pour

tout idéal premier du corps K qui divise p les mêmes valeurs que pour ~ ; ils sont,
par suite, parfaitement déterminés par p.



CHAPITRE XI.

Les différentes et les discriminants du corps de Galois et de ses sous-corps.

§ 46. - LES DIFFÉRENTES DU CORPS D’INERTIE ET DES CORPS DE RAMIFICATION.

En rapprochant les résultats que nous venons d’acquérir de ceux du chapitre V,
nous aurons une source de vérités nouvelles. C’est ainsi, qu’en vertu du para-
graphe 41, nous pouvons énoncer un théorème qui va nous donner les propriétés les
plus importantes du corps d’inertie.

THÉORÈME 76. - La différente du corps d’inertie relatif a l’idéal premier n’est
pas divisible par . Le corps d’inertie comprend tous les sous-corps de K dont les
différentes ne sont pas divisibles par 

En ce qui concerne les différentes des corps de ramification, on a les théorèmes
suivants :

THÉORÈME 77. - La différente relative du corps de ramification par rapport au

corps d’inertie est divisible par _ ~h-’, et elle n’est pas divisible par une puis-
sance supérieure de 

Démonstration. - Soit 03B1 un nombre entier de qui est divisible par Dv=Drv,
mais qui ne l’est pas par ~~, et soit A un nombre de K divisible par mais ne con-

tenant pas 

Posons ~,,t, - P‘~ suivant ’t’, P désignant un nombre primitif suivant on a

x suivant Soit dès lors t~ une substitution quelconque du corps
d’inertie qui n’appartient pas à g.ll et supposons que suivant où a~ est

l’un des nombres a, 2a, ..., (h- I)a [voir ~ il en résultera que

Comme est une puissance de p, -- I suivant et, par suite, x - ne

peut être divisible par il est donc exactement divisible par ~~, - Si, de

plus, w est un nombre quelconque de ce nombre, d’après le théorème 72, est
nécessairement congru suivant ~ à un nombre Wt du corps d’inertie; il en résulte

que w - - o suivant D’où nous pouvons conclure que la différente considérée

est exactement divisible par - - .

On démontre de même le fait suivant :



THÉORÈME 78. - La différente relative du corps de ramification souligné une fois

par rapport au corps de ramification kv, contient exactement _ ~Û~~e-1~. La
différente relative du corps de ramification deux fois souligné par rapport il l~z,
contient exactement = ~‘~~~~~-1~ et ainsi de suite.

§ 47. - LES DIVISEURS DES DISCRIMINANTS DU CORPS DE GALOIS.

THÉORÈME 79. - Le nombre premier rationnel p est contenu dans le discrimi-

nant D du corps K à une puissance dont l’exposant est :

Démonstration. - Le théorème 4I rapproché des théorèmes 78 nous
apprend que la différente D du corps K contient l’idéal premier ~3 exactement à la
puissance

le théorème 68 exige alors l’exactitude de notre proposition.
Dans le cas où il n’existe pas de corps ramifié souligné, l’exposant de p prend

dans D la valeur - i).
D’après ce qui précède, ce cas se présentera toutes les fois que p est premier

avec M.

Ce résultat est à cornparer aux remarques du paragraphe 12.

THÉORÈME 80. 2014 L’exposant de la puissance du nombre premier rationnel p con-
tenue dans le discriminant D ne dépasse pas une certaine limite qui ne dépend que
du degré M du corps de Galois K.

Démonstration. - Tous les exposants L, L, ... qui correspondent à un certain
idéal premier ~ sont inférieurs à une limite déterminée par le nombre M. Pour
trouver la limite de L, nous désignerons par o un nombre entier de divisible

par mais non divisible par ~~,, et nous choisirons un système de pi’ substitutions
..., du groupe de ramification, tels qu’en les composant avec gv on ob-

tienne gll. Le nombre 
’

ne sera pas altéré par une substitution de g2, ; il appartient au corps A-,. D’autre part,
suivant ~3L, et, par suite, x -_-p~’c,~ suivant 

Si donc on avait on aurait a = o suivant et =~- o suivant 
Si donc l’on fait p = ~ a, oil a est un idéal du corps d’e décomposition premier
avec ~, et si l’on désigne par y un nombre de ce corps divisible par a et premier
avec D, 03B2=03B103B3epe est un nombre entier de ce nombre serait divisible par Dv et ne



le serait pas par ~~,~, et, par suite, contrairement au théorème ~5, ~t, serait un idéal
du corps k2,. Comme on peut trouver de même une limite supérieure pour les autres
exposants L, ..., on voit que l’exposant (indiqué au théorème ,9) de la puissance
de p contenue dans D ne peut dépasser une certaine limite qui ne dépend que du
degré M du corps K.

Le théorème 80 a d’autant plus d’importance qu’il limite a priori le nombre des
nombres premiers contenus dans lT . Rangeons dans un même type tous les corps de
degré QI pour lesquels la décomposition en facteurs premiers de ~~1 donne les mêmes
valeurs pour les nombres considérés.précéde111111ent. Nous pouvons affirmer que, pour
une valeur donnée de il n’y a qu’un nombre limité de types de corps possibles.

Comme exemple du théorème 80, nous indiquerons le corps quadratique (traité
complètement dans la troisième partie de ce livre) et dont le discriminant contient
tout nombre premier impair au plus à la première puissance et le nombre premier 2
au plus à la troisième. (Voir § 59, théorème g5.) .

. CHAPITRE XII.

Les rapports entre les propriétés arithmétiques et les propriétés algébriques
du corps de Galois.

§ 48. - LE CORPS DE GALOIS RELATIF, LE CORPS ABÉLIEN RELATIF,
LE CORPS CYCLIQUE RELATIF.

Lorsque le groupe G des substitutions ..., s,i d’un groupe de Galois forme

un groupe abélien, c’est-à-dire lorsque les substitutions Si’ ..., s" peuvent se per-
muter entre elles, le corps de Galois K est un corps abélien.

En particulier, si ce groupe de substitutions G est cyclique, si les 1~I

substitutions si, ..., peuvent toutes être représentées par des puissances de l’une
d’entre elles, le corps abélien K est dit un corps cyclique.

En appliquant aux substitutions d’un groupe abélien les considérations faites au
numéro 28 pour les classes d’idéaux, on arrive au théorème : tout corps abélien est

composé de corps cycliques. D’autre part, les corps cycliques se composent à leur
tour de corps cycliques particuliers, ceux dont le degré est un nombre premier ou la
puissance d’un nombre premier.

Ces notions peuvent être généralisées ainsi :
Soit 8 une racine de l’équation de degré 1 : : .



dont les coefficients a , ..., appartiennent à un corps 1~ de degré m . Supposons de
. plus cette équation irréductible dans le domaine k de rationalité et qu’elle ait la

propriété suivante, les l - 1 autres racines 8’, ..., (J‘-i de cette équation sont des
fonctions entières rationnelles de 0 dont les coefficients sont des nombres de 1~ .

Le corps de nombre I1 composé de 0 et des nombres de k est dit alors un corps
de Galois relatif par rapport au corps li de degré 1I = lm .

Le degré 1 de l’équation précédente est le degré relatif de K.
Si l’on pose 0’ = S., ~ , c~>t-’ = le groupe des substitutions Si’ 5,.,

..., Sl est appelé le groupe relatif; si ce groupe est abélien, le corps li est dit un corh.s
abélien relatif par rapport à k. Si ce groupe relatif est cyclique, le corps K est dit

cyclique relatif par rapport n k .

§ 49. - LES PROPRIÉTÉS ALGÉBRIQUES DU CORPS D’INERTIE ET DU CORPS DE RAMIFI-

CATION. - LA REPRÉSENTATION DES NOMBRES DU CORPS DE GALOIS PAR DES RADICAUX

DANS LE DOMAINE DU CORPS DE DÉCOMPOSITION.

A l’aide des notions que nous venons de définir, nous pourrons énoncer très sim-

plement quelques propriétés algébriques importantes du corps de décomposition et
du corps d’inertie, ainsi que des corps de ramification, qui sont d’ailleurs une consé-
quence des propriétés de leurs groupes démontrées plus haut.

. THÉORÈME 81. - Le corps d’inertie kt est un corps cyclique relatif de degré
relatif f par rapport au corps de décomposition Le corps de ramification est

cyclique relatif de degré relatif h par rapport à Le corps de ramification une fois

souligné A’~ est un corps abélien relatif de degré relatif ~~~ par rapport à l~t,; le

corps kv est un corps abélien relatif de degré relatif p’’ par rapport à h~, et ainsi de
suite. Les groupes abéliens relatifs des corps kv’ h~, ... ne contiennent que des subs-

titutions de degré p. ,

D’après ce théorème 81, la séparation en facteurs égaux s’opère au moyen d’une
suite d’équations abéliennes, et ce résultat exprime une propriété surprenante et
nouvelle du corps de décomposition.

THÉORÈME 82. - Le corps de décomposition de tout idéal premier dans K déter-
mine un domaine de rationalité, dans lequel les nombres du corps primitif K s’ex-
priment uniquement au moyen de radicaux.

Ce théorème 82 met bien en lumière toute l’importance des équations solubles
par radicaux ; car il montre que dans le problème de la décomposition des nombres
en idéaux premiers, les solutions les plus importantes et les plus difficiles se présen-
tent pour les corps relatifs, dont les nombres peuvent être représentés au moyen de
radicaux dans certains domaines de rationalité.



§ ~0. - LA DENSITÉ DES IDÉAUX PREMIERS DU PREMIER DEGRÉ ET LE RAPPORT ENTRE

CETTE DENSITÉ ET LES PROPRIÉTÉS ALGÉBRIQUES DU CORPS.

C’est un fait merveilleux que la fréquence de certains idéaux premiers du pre-
mier degré d’un corps permet de conclure des propositions relatives à la nature
algébrique de ce corps. [Kronecker ~~.] ]

Soit k un corps quelconque de degré rn et soit pi un nombre premier rationnel
qui peut se décomposer exactement en i idéaux premiers distincts du premier degré.
Si la limite

existe, en supposant que la somme écrite au numérateur s’étende à tous les nombres
premiers pi, nous dirons que les nombres premiers de l’espèce pi ont une densité; si
cette limite a pour valeur 0394i, nous dirons que 0394i est la densité des nombres premiers
de la forme Pi. Kronecker admet implicitement, dans ses recherches, que les nombres
premiers des n2 sortes Pi’ p~, ..., ont une densité. La vérité de cette hypothèse n’a
pas encore été démontrée (1). Par contre, on arrive à démontrer le théorème suivant :

THÉORÈME 83. - Si i sortes de nombres premiers parmi les m sortes p1, ..., pm
d’un corps de degré In ont une densité, la !ne aussi a une densité et on a entre les m
densités la relation

Démonstration. - Employant la deuxième expression de 03BE(s) indiquée au nu-
méro 27 et prenant le logarithme, il vient

(1) Dans le cas où le groupe de l’équation qui détermine k est le groupe symétrique, les

remarques de lironecker permettent de déterminer les densités ~1, ..., ~m; Frobenius a

démontré l’existence de ces densités et a déterminé leurs valeurs; ce sont des nombres rationnels
qui dépendent du groupe de l’équation de [Frobenius B]



où les sommes s’étendent à tous les idéaux premiers D du corps. Désignons par D1 les
idéaux premiers du premier degré; nous aurons évidemment

où la somme du premier membre s’étend à tous les idéaux du premier degré et

où la somme du second membre s’étend à tous les nombres premiers ration-

nels pk, ps, ..., pm.
Nous remarquons, d’autre part, que pour tous les idéaux D de degré supérieur au

premier ~ p2, et qu’un nombre premier quelconquep contient au plus m idéaux
premiers; il en résulte que

où la dernière somme s’étend à tous les entiers h> i.

On trouve de même que

On déduit de ces inégalités que

tend vers une limite finie pour s === i.

D’après le théorème 56, log tend aussi vers une limite finie

pour s = i ; on peut en dire autant de

c’est-à-dire que

d’où, en tenant compte de (19), la vérité de notre affirmation.
Pour un corps de Galois K de degré M, on = o, ~2 = o, ..., == o, et, par

suite, en vertu du théorème 83, le



THÉORÈME 84. - Dans un corps de Galois de degré M, les nombres premiers pM qui
se décomposent en idéaux premiers du premier degré ont une densité, cette densité

est J" _ - . °
Soit lé un corps quelconque et K le corps de Galois de degré formé de k et de

ses conjugués ... , , h~"‘-’~, on reconnaît facilement que les nombres premiers ~~~t
de coïncident avec les nombres premiers p~, de li, et par suite les nombres pre-

miers p~t de l~ ont une densité, et cette densité est égale à I, , c’est-à-dire à l’inverse
du degré de la résolvante de Galois. 

’

CHAPITRE XIII.

La composition des corps de nombres.

§ 5l. - LE CORPS DE GALOIS COMPOSÉ D’UN CORPS If ET DE SES CONJUGUÉS.

THÉORÈME 85. - Si des deux corps ki et on compose un corps K, le discrimi-

nant du corps composé contient comme facteurs premiers rationnels ceux contenus
dans le discriminant de ou dans celui de ou dans les deux, et ne contient que
ceux-là.

La démonstration de ce théorème résulte immédiatement du théorème 39. Une
conséquence immédiate du théorème 85 est la suivante :

THÉORÈME 86. - Si d’un corps ~.~ de degré m et de tous ses corps conjugués ... ,

h~~i-1~ on compose un corps de Galois K, le discriminant du corps K contient tous les

facteurs premiers de k et il n’en contient pas d’autres.

~ 5 2 . - LA COMPOSITION DE DEUX CORPS DONT LES DISCRIMINANTS SONT PREMIERS ENTRE EUX.

Le cas de-deux corps dont les discriminants sont premiers entre eux présente un
intérêt particulier. Le théorème le plus important et le plus fertile de ce cas est le
suivant :

THÉORÈME 8i. - Deux corps et k2 de degrés respectifs dont les discri-

minants sont premiers entre eux, se composent toujours en un corps de degré 
Démonstration. - Soit h, le corps de Galois composé de et de tous ses conju-

gués ; le discriminant de Ki, d’après le théorème 86, est premier avec celui de h~,.



Soit;; un nombre qui détermine ce nombre est racine d’une équation irré-

ductible de degré à coefficien ts entiers et rationnels.

Si donc le corps composé de et de k2 était d’un degré inférieur à ny cette

équation se réduirait dans le domaine k2, c’est-à-dire que :3" serait racine d’une équa-
tion de la forme

de degré rC ny et dont les coefficients ~i, ..., x~, seraient des nombres de 1~~. Soit 1~
le corps de nombres formé avec ~1, ..., Comme xl, ..., peuvent être exprimées
rationnellement en fonction des racines de la dernière équation, li est un sous-corps
de kj, et comme k est aussi un sous-corps de h~, le discriminant de k d’après le théo-
rème 3g diviserait celui de lt1 et’ celui de k"J’ et le discriminant de ce corps A- serait

égal à 1, ce qui est contraire au théorème 44.
Nous signalerons encore les faits suivants, faciles à vérifier.

THÉORÈME 88. - Si k1 et k2 sont deux corps, le premier de degré le second de

degré m2 de discriminants d1 et d2 premiers entre eux, le discriminant du corps Con1-
posé K est .

On obtient les nombres d’une base du corps K, en multipliant chacun des m1,
nombres d’une base du corps par chacun des m~, nombres d’une base du corps A- .
Soit p un nombre rationnel qui se décompose en p _ ~1~ ~e~ ... dans et en

p = q1 q~ ... A3, où ~1, ... , ~’, sont des idéaux premiers distincts de et (fs

des idéaux distincts de k2; on a dans li la décomposition p=03A0 Jeiil, où le produi t

s’étend à i= I, ..., r, l= r, ..., s. et où est l’idéal de K défini comme étant le

plus grand commun diviseur et de Les idéaux 3u ne sont pas nécessairement
des idéaux premiers de K.

Lorsqu’on part de deux corps k2 de discriminants quelconques, la solution de
la question ne devient simple que si l’on fait des hypothèses restrictives sur la nature
du corps et des nombres premiers que l’on veut décomposer. [HenseI3.]

Les résultats exposés dans les chapitres X à XIII me semblent être les principes
les plus importants d’une théorie des idéaux et des discriminants d’un corps de
Galois. Les méthodes suivies pourraient encore être développées dans bien des direc- -

tions, en particulier on pourrait étendre sans y changer beaucoup au corps de Galois
relatif une série de théorèmes démontrés depuis le paragraphe 3c) jusqu’au para-
graphe 44. [Dedekind ~.]



CHAPITRE XIV.

Les idéaux premiers du premier degré et la notion de classe.

§ 53. - LES IDÉAUX PREMIERS DU PREMIER DEGRÉ ENGENDRENT DES CLASSES D’IDÉAUX.

Il est intéressant de voir que les principes développés dans les chapitres X-XlI
éclairent aussi la génération et la nature des classes d’idéaux. Nous exposerons dans
ce chapitre et dans le suivant les théorèmes généraux irnportants relatifs à ces ques-
tions. Le premier théorème concerne la génération des classes d’idéaux d’un corps de
Galois au moyen d’idéaux premiers du premier degré et s’énonce :

THÉORÈME 89. - Dans toute classe d’idéaux d’un corps de Galois il y a des idéaux
dont tous les facteurs premiers sont des idéaux du premier degré.

Nous démontrerons d’abord le

LEMME 12. - Soit K un corps de Galois de degré et de discriminant D et ~ un
idéal premier de ce corps de degré f ~ i qui n’est pas contenu dans DM ! ; ; il y a

toujours dans K un nombre entier Q premier avec DM!, divisible par ~ et non par
~3~, et dont tous les. autres facteurs premiers sont de degré inférieur à f.

Démonstration. - Soit p un entier du corps K, tel que tout autre entier Q soit

congru à une fonction entière à coefficients entiers de p suivant D’après le théo-
rème 2g, ce nombre existe. Désignons par (~3’), ..., (~3~"~’) les idéaux conjugués de
~ et distincts de ~~, et déterminons un nombre A de K qui satisfait aux con-

gruences

Et soit z une substitution du groupe de décomposition telle que zp == pp suivant ~,
il est évident que les f - i différences A - zA, A - A - zr-fA sont premières
avec ~.~. Si, d’autre part, s est une substitution n’appartenant pas au groupe de

décomposition, sA est divisible par ~, et, par suite, la différence A - s A est pre-
mière avec La différente de A sera donc aussi première avec D, et il en résulte

que A est un nombre qui détermine K, d’après une remarque antérieure. En tenant

compte du théorème 31, on voit que K est le corps d’inertie de D et, par conséquent,
A satisfait à une équation de la forme

où 7~ , ..., (x~ sont des nombres du corps de décomposition Ii de l’idéal premier ~.



Nous désignerons par k’. ... les autres sous-corps de même ; A est

alors racine des équations

x~’, ..., étant des nombres de k’, ~1"; ..., , a f" des nombres de k", etc. Déterminons,
dès lors,.1 nombres entiers rationnels tels que

ceci est possible, car, d’après le théorème ;o, ~ est du premier degré dans ~. Soient
ensuite ..., , bt., f entiers rationnels satisfaisant aux congruences

et pour lesquels, de plus, aucune des différences appartenant à l’indice 1

ne s’annule.

Nous poserons, de plus,

Enfin, nous désignerons par Q1’ ..., Qz les nombres premiers rationnels tous
différents de p, qui sont contenus dans le discriminant A de A ou dans les normes
des nombres (31, ,j~’, ... et qui sont plus grands que M. Soit qi un quelconque de ces
nombres, il ne peut contenir dans K que 1~ facteurs premiers au plus ; il faudra

donc que l’un des qi nombres (qi > B, B + 1, B + 2, ..., B + qi - I, soit pre-

mier avec q, ; soit, par exemple, B un nombre premier avec q,. Si l’on calcule

un nombre entier rationnel c qui satisfait aux l congruences = cl suivant q~

pour i = 1, 2, ..., /,

est un nombre qui a les propriétés exigées par le lemme 12.
En effet ’ d’après la congruence .A - I suivant M !, le nombre Q est premier

avec tous les nombres premiers rationnels ~ M ; et, à cause des conditions qui nous
ont servies à déterminer c, Q est premier avec tous les nombres premiers rationnels
contenus dans A et supérieurs à M. Le nombre Q est donc premier avec tous les
nombres premiers rationnels contenus dans A et différents de p.

De plus, û est divisible par D et non par D’, D", ..., D(m), car 
suivant p. Le nombre Q est de la forme



où m1 ..., sont des entiers rationnels. Comme p suivent D2 et que p ne peut
satisfaire à aucune congruence de degré inférieur à 2 f suivant ne peut pas
être divisible par ~J. Si, d’autre part, Q était divisible par un idéal prernier 
degré f’ > f et si l’on désignait par 1, z’, ..., les f’ substitutions dit groupe
de décomposition par lesquelles ce dernier groupe résulte du groupe d’inertie,
on aurait congruences

et ceci exigerait que le discriminant A de A soit divisible par ~, ce qui n’a pas lieu.
Enfin, supposons que Q soit divisible par un idéal premier ~ de degré f ; l’un

des corps lt, k’, ... serait le corps de décomposition de ~, soit, par exemple, le
corps k’.

Ecrivons alors Q sous la forme

où ~31’, ..., ~ f‘ sont des nombres de k’. Si i, z’, z’~, ..., Z’{-1 sont les f substitutions
qui font résulter le corps de décomposition de 0 de son corps d’inertie, on voit aue

et ces congruences démontreraient que soit A, soit fut divisible par ~, , ce qui
est contraire à ce qui précède.

Dans chaque classe on peut trouver un idéal premier avec DM ! ; on voit alors
facilement, en tenant compte du lemme 12, qu’on a le droit d’affirmer le théo-

rème 8g. Kunlnler l’avait déjà démontré pour le corps circulaire (Kreiskörper).
]

CHAPITRE 

Le corps relatif cyclique de degré premier.

§ 54. - LA PUISSANCE SYMBOLIQUE. - UN THÉORÈME SUR LES NOMBRES DE NORME RELATIVE

ÉGALE .B I.

Nous allons démontrer une série de théorèmes fondamentaux concernant les

corps abéliens relatifs. Pour mieux pouvoir les énoncer et les démontrer, nous allons
fixer quelques notations et quelques définitions.

Soit K un corps de nombres de degré cyclique relatif par rapport au corps 1;



de degré le degré relatif l étant un nombre premier . Soient l, S, S~, ..., les

substitutions du groupe cyclique relatif. Enfin, nous définissons ainsi la notion de

puissance symbolique d’un nombre A du corps K : Soit A un nombre quelconque
de K entier ou fractionnaire et soient a, c~~, ... des nombres entiers ration-

nels quelconques, nous écrirons

sous la forme abrégée

où F(S) désigne la fonction entière à coefficients entiers qui constitue l’exposant
du premier membre. La puissance symbolique de degré F(S) de A est à son tour un
nombre entier ou fractionnaire de K. Ces exposants symboliques peuvent être consi-
dérés comme une généralisation d’une notation introduite par Kronecker au sujet
du corps circulaire. [Kronecker 1.]

Ceci posé, nous aurons une suite de théorèmes.

THÉORÈME go. - Tout nombre entier ou fractionnaire A de K dont la norme

relative, par rapport à k, est égale à i peut être considéré comme la puissance sym-
bolique de degré (i - S) d’un certain nombre B du corps K.

Démonstration. - Soit x une variable et 0 un nombre qui détermine K ; posons

et remarquons qu’en vertu de l’hypothèse

et que, par suite, on a aussi

il en résulte que

Bx est une fonction rationnelle de x qui n’est pas identiquement nulle; on peut
donc trouver un nombre x = a tel que B~ ne soit pas nul dans K. Le nombre

satisfait alors à

Posons g~ - B, b où B désigne un entier algébrique de K et b un entier rationnel ; ’
on a aussi



§ 55. - LE SYSTÈME DES UNITÉS FONDAMENTALES RELATIVES. - ON DÉMONTRE

QU’ELLES EXISTENT.

Un deuxième théorème important concerne les unités du corps K. Supposons
que, parmi les ni corps conjugués déterminés par l~, n~ soient réels et qu’il y ait

r°~ couples de corps imaginaires conjugués, d’après le théorème 4y le nombre des
unités fondamentales de lé est r= r1 + r2 - I. Nous entendrons par système d’unités
fondamentales relatives du corps K par rapport à k un système de n + I unités H1,
H~, ..., du corps K, telles qu’une unité de la forme

ne peut être la puissance symbolique de degré (1- S) d’une unité de K que si les
entiers algébriques F1(~), ..., F~?~~~~(~) sont tous divisibles par T - ~ .

Ici, F~(S), ..., sont des fonctions entières à coefficients entiers de S,

[~] est une unité quelconque de k ou une unité du corps K dont la puissance est

une unité dans k ; et enfin , § est une racine 1"’ne de l’unité différente de 1.

THÉORÈME 91. - Lorsque le degré relatif 1 du corps K cyclique relatif par rapport
au corps k est un nombre premier impair, K possède un système de n ~ ~ unités
relatives fondamentales, où r a par rapport à k le sens du théorème 4 ~ .

Démonstration. - Comme l=|= 2 parmi les lm corps conjugués déterminés par K,
il y a h°1 corps réels et couples de corps imaginaires. Soient ~1, ~~, ..., ‘?, un sys-
tèrne de r==/B-~-r,2014ï 1 unités fondamentales du corps k. Choisissons parmi les
unités de K une unité E,1, telle que ~~ , ... , SI’ soit un système d’unités indépen-
dantes; nous pouvons affirmer qu’alors

forment un système d’unités indépendantes.
Pour le démontrer, supposons qu’il n’en soit pas ainsi et imaginons ~~,

où F(S) est une fonction entière à coefficients entiers de degré (l- 2) qui n’est

pas identiquement nulle et est une unité du corps Comme la fonction

1 + S + ... + Sl-’ est irréductible (comparer à la remarque qui termine le § gi), on

peut déterminer deux fonctions entières à coefficients entiers, G1 et G2 de S, et un
nombre entier rationnel a différent de zéro, tel~ que



. Il en résulte, en tenant compte de

ce qui est contraire à l’hypothèse. Ici, ~~~ et ê*" sont des unités de k .
Choisissons maintenant E2 telles que E~, Ei, E1, ..., s , ..., Sr forment un

système d’unités indépendantes; nous montrerons, comme précédemment, qu’alors
aussi les unités E2, E2 , ..., E~l-~, E,1, ..., , E1l-~, Si’ ..., Sr forment un système
d’unités indépendantes. En continuant ainsi, nous obtiendrons ri + n~~ n + 1 unités

El, ..., telles que les unités

forment un système d’unités indépendantes.
Le nombre de ces unités est

Soit maintenant l"t une puissance assez élevée de l, pour que l’expression

où F1(S), ... , F’~~(S) sont des fonctions entières à coefficients entiers quelconques
de S et où [s] a le sens indiqué au début du paragraphe et ne puisse devenir la
puissance d’exposant l"t d’une unité de K que si tous les coefficient;; des fonctions

F~(S), ..., sont divisibles par l. On voit qu’un pareil exposant f existe si l’on
considère les lr2 - unités du corps K données par le théorème f~ ~. ,

Tenons compte maintenant de l’identité

où G est une fonction entière; comme d’après cela la (i - puissance symbo-
lique d’un nombre de K est aussi une véritable puissance lmème, il en résulte que
l’expression (20) ne peut être la puissance symbolique d’exposant (I - S)1"t d’une
unité que si tous les entiers algébriques F,(~), ... , sont tous divisibles par
1-~.

Soit et le plus grand nombre entier rationnel ~ o, tel qu’une expression de la
forme (20) soit une puissance symbolique d’exposant 1 d’une unité, sans

.que tous les nombres 111(~), ... , soient tous divisibles par 1- ~ ; admettons

que

soit une pareille expression où F1(S), ..., F,~,(S) sont certaines fonctions entières
rationnelles de S et où Fi(S), par exemple, n’est pas divisible par 1- ~; [~~ a la si-
gnification précédente et Hj est une certaine unité de K.



Admettons rnaintenant que e~ est le plus grand entier > o tel qu’il existe une
expression correspondante formée des unités Ez, ..., qui soit la puissance sym-
bolique de degré (i - S)e2 d’une unité de K, soit

où F2(S), ... , sont encore des fonctions rationnelles entières de S et où F (Q,
par exemple, n’est pas divisible par I - ~. En continuant ainsi, nous trouverons
r ~- i unités, H~, H~, ..., qui forment un système d’unités relatives fonda-
mentales de K.

Pour le démontrer, admettons qu’il n’en soit pas ainsi ; il y7 aurait alors r+ 1

fonctions entières rationnelles G1(S), ..., telles que

où Z est une unité de K; soit, de plus, parmi les nombres Cx1(~), ..., par

exemple G,1(~), le premier, qui n’est pas divisible par 1- ~, il est évident que la

seconde partie du dernier produit, c’est-à-dire

serait aussi la puissance symbolique de degré i - S d’une unité du corps K. Mais

dans la suite des nombres ei, e~, ..., aucun ne dépasse le précédent ; en élevant
le dernier produit à la puissance (i 2014 S)eh et en introduisant les unités Ej~, ..., E~,~ 1

nous nous heurterions à une contradiction.

Ce théorème gi est vrai aussi pour l= 2, comme on le voit facilement, si,

parmi les 2m corps conjugués déterminés par K, il y a deux fois autant de corps
réels que dans les m corps conjugués déterminés par k.

§ 56. - L’EXISTENCE D’UNE UNITÉ DE K, DONT LA NORME RELATIVE EST ÉGALE A 1 ET QUI

CEPENDANT N’EST PAS LE QUOTIENT DE DEUX UNITÉS RELATIVES CONJUGUÉES.

THÉORÈME g2. - Dans le cas où le degré relatif l du corps cyclique relatif K par
rapport à k est un nombre premier impair, il y a toujours dans K une unité H, dont
la norme relative par rapport à ~ est égale à i et qui n’est pas la puissance symbo-
lique de degré ( - S) d’une unité du corps K.

Démonstration. - Admettons d’abord que le corps k ne contient pas la racine 

de l’unité § . Soient r;~, ..., r~ + I unités quelconques de il en résulte qu’il
existe toujours r -}- i entiers rationnels ai, ..., a~,+~, qui ne sont pas tous divisibles

par l et tels que ~a11, ... , r,1+1’ = 1 . En effet, si dans cette dernière égalité tous les

exposants ..., étaient tous divisibles par ~, ... r,r+~ serait racine lème de



l’unité, qui serait == en vertu de l’hypothèse; de là, par la répétition du procédé,
résulte la démonstration. Si ..., r~ sont les normes relatives des H1, ... , H,.,,
unités fondamentales de k et que nous posions

il en résulte que

ct par suite, d’après le théorème go, H == A1-S; comme Hi, ..., H~,~1 sont des unités

fondamentales relatives, il en résulte que A n’est pas une unité.

Pour démontrer le théorème 92 dans le cas général, nous admettrons que k con-

tient la racine primitive yi = 03BE’, mais qu’il ne contient pas la racine primitive d’in-
dice On reconnaît, par un procédé analogue au précédent, que si r~, ... , r,~o_,_~

sont n ~ 2 unités quelconques de 1~, on peut toujours trouver un nombre entier
rationnel x et, de plus, r + 2 entiers rationnels ai, ..., non tous divisibles par l,

tels que

Considérons, d’autre part, que la norme relative

et que par conséquent, d’après le théorème go, ~ doit être une puissance symbolique
de degré (i 2014 S). Si donc il n’y avait aucune unité E de telle que ’§ = E’-~, ~ serait
lui-même un nombre répondant à la question. Dans le cas contraire, il faut que

E‘~1-~~ =1, c’est-à-dire EL = et, par suite’, E‘ serait une unité  de k , tandis que E

lui-même n’est pas dans k. Comme ~Ï ~(E) = E‘ _ ~ . Soit ..., H,,_; ~
un système d’unités relatives fondamentales dans A’, nous poserons

où a, ai, ..., a~,~$ sont les nombres déterminés précédemment, et où.[e] est la racine 
d’une unité du corps 1~ ; alors Nk(H)  1. Les nombres ..., ne peuvent pas
tous être divisibles par l. Car de

on tirerait

où b est un entier rationnel. Comme d’après notre hypothèse ne peut pas aussi
être divisible par l, il résulterait des dernières égalités que E est dans ce qui n’a

pas lieu. L’unité H remplit toutes les conditions du théorème 92 .



Les théorèmes go, 91 et 92 ont été démontrés en partie et sous une autre forme

par Kummer, dans le cas où le sous-corps Ii est le corps circulaire (Kreiskôrper) de
degré l - 1 déterminé par ~. 

§ 5y. - LES IDÉAUX AMBIGES ET LA DIFFÉRENTE RELATIVE DU CORPS CYCLIQUE RELATIF K.

Lorsqu’un idéal @1 du corps cyclique relatif reste inaltéré après la substitution S
et qu’il ne contient aucun facteur qui soit un idéal de li, on dit que ~ est un idéal

an1bige. En particulier, un idéal premier du corps K qui n’est pas altéré par la subs-
titution S et qui n’appartient pas à k est dit un idéal pnemier ambige.

THÉORÈME g3. - La différente du corps cyclique relatif K par rapport à Ii contient
tous les idéaux premiers ~~ qui sont ambiges et elle n’en contient pas d’autres.

Démonstration. - Soit D un idéal anlbige; sa norme relative est Nk(D) = 

Comme k ne peut contenir une puissance inférieure de ~, = ~ est un idéal pre-

mier de Ii. Réciproquement, si D idéal premier de Ii est égal à la puissance d’un

idéal ~ dans est un idéal premier ambige.
Nous distinguerons trois espèces d’idéaux premiers ~ du corps : d’abord, ceux

qui sont égaux à la puissance d’un idéal premier D de K; deuxièmement, ceux

qui dans K se décomposent en 1 idéaux premiers distincts de K, ..., et enfin

ceux qui sont aussi des idéaux premiers de K.
Dans le premier cas, la norme = pf, d’où Br(~) = = et, par suite,

la norme de l’idéal premier l’ du corps 1~ est aussi égale à pf. L’égalité des
normes permet d’affirmer que tout nombre entier de K est congru à un nombre

entier de k suivant ~.~ ; ceci permet de reconnaître que la différente relative de K par

rapport à A- est nécessairement divisible par ~. ..

Dans le second cas, on peut toujours trouver dans K un entier A qui n’est pas
divisible par ~~1, mais qui l’est par tous les autres idéaux premiers ~3~, ..., 

~j~, , ... , , l; ; c’est ce qui fait que la différente relative de A, et par suite celle du

corps K, n’est pas divisible par ~~i. ,

Pour ce qui concerne enfin les idéaux ~ de la troisième espèce, soit p un

nombre primitif suivant l’idéal premier l’ de K et p un nombre primitif suivant l’
dans et supposons aussi que p soit un nombre qui détermine le corps. p satisfait
alors à une équation de degré 1 de la forme

dont les coefficients ~~ , ... , sont des nombres entiers de lc .



Posons

..., sont des fonctions entières à coefficients entiers de p. Nous obtien-

drons la congruence

Comme N(V) = le nombre des entiers de K incongrus suivant V est égal à
la lème puissance du nombre des entiers de k incongrus suivant D. p ne peut satis-
faire à aucune congruence de même espèce et de degré inférieur à l, c’est-à-dire

que 03B8F(P) 03B8P ~|~O suivant y, ou encore la différente relative du nombre p n’est pas
divisible par ~.

Ces considérations nous montrent que la différente relative du corps K est tou-

jours un nombre premier avec les idéaux premiers de seconde et de troisième

espèce, d’où le théorème g3.

§ 58. - LE THÉORÈME FONDAMENTAL SUR LE CORPS CYCLIQUE RELATIF DONT LA DIFFÉRENTE

RELATIVE EST ÉGALE A T . - ON DÉSIGNE CE CORPS LE CORPS DE CLASSE.

Les théorèmes go, g2, g3 nous apprennent un fait de très grande importance
pour la théorie des corps de nombres. Ce fait s’énonce :

THÉORÈME 94. - Lorsque le corps cyclique relatif K de degré premier impair 1 a
par rapport à k sa différente relative égale à i, il y a toujours dans lé un idéal j[,
qui n’est pas un idéal principal de If, mais qui devient un idéal principal dans K.
La puissance de cet idéal j est alors aussi nécessairement un idéal principal dans
If et le nombre des classes du corps k est divisible par l.

Démonstration. - D’après le théorème 92, il y a une unité H de norme relative

égale à I qui n’est pas la puissance de degré (I - S) d’une unité. D’après le théo-
rème go, H = p’-‘, où A est un nombre entier de K, c’est-à-dire que A = HS CA).
L’idéal principal d=(A) est tel L’idéal D fait partie du corps k.

Car, soit ~ un idéal premier de K contenu dans ~, qui ne fait pas partie de 1~, le
théorème 93, comme l’hypothèse nous montre que le discriminant relatif n’a pas
de diviseur, montre que =/= S(~) et, par suite, A contient aussi la norme relative

qui est un idéal premier de L’idéal A n’est pas un idéal principal du
corps k ; car, dans ce cas, on aurait A = H’~~, où H* est une unité et a un nombre
de Il en résulterait que H = H~i-‘, ce qui est contraire à ce qui précède. Ce qui
démontre la première partie du théorème Comme est un nombre de Il



et, par suite, _ ~~ _ est un idéal principal de nous avons la démons-

tration complète du théorème g!~.
Les théorèmes 92 et 94 sont vrais aussi pour /==2, si l’on fait la restriction

indiquée à la fin du § 55.
Il n’y a pas de grandes difficultés de principe lorsqu’on veut étendre le théo-

rème 94 à des corps abéliens relatifs K de différente relative égale à J et dont le

degré relatif est un nombre composé.
Les rapports étroits du corps K avec certaines classses d’idéaux du corps k, mis à

jour par le théorème g4, ont fait appeler ce corps K un corps de classes du corps k.



CHAPITRE W’I.

La décomposition des nombres dans le corps quadratique.

~ 5g. - LA BASE ET LE DISCRIMINANT DU CORPS QUADRATIQUE.

Soit m un entier rationnel positif ou négatif différent de r, et qui n’est divisible
par le carré d’aucun nombre autre que i ; l’équation du second degré

est irréductible dans le domaine des nombres rationnels.

Dans ce qui suit, nous désignerons par la racine positive de cette équation
lorsque m ~ o et lorsque sa racine imaginaire positive. Le nombre algé-
brique ~m ainsi bien fixé détermine un corps réel ou imaginaire suivant les cas.
Nous le désignerons par ou, plus simplement, par k ; ce corps est toujours un
corps de Galois. En remplaçant -}- V m par - on passe d’un nombre à son con-

jugué ou d’un idéal à son conjugué. Nous continuerons à employer la notation s pour
indiquer cette transformation.

Le premier problème qui se présente à nous est la recherche d’une base du corps
quadratique ainsi que de son discriminant. [Dedekind 1.]

THÉORÈME g5. - Les nombres I, w, forment une base du corps quadratique 1~, si
l’on pose

suivant que m - 1 (4) ou m. 1 (4).
Le discriminant de k est, suivant les deux cas,



Démonstration. - Le nombre 03C9 est toujours un nombre entier, car il satisfait

toujours soit à

soit c~’=s~~ le nombre conjugué de M, le discriminant de o est cl= - c,~’)~.
D’après le paragraphe 3, tout nombre entier du corps k est de la forme

où 1.1, v sont des entiers rationnels.

Dans le cas où m -1 (4) , la congruence 203B1m=2u+v+vm~o suivant m
nous apprend que 2M -t- v est divisible par et, par suite, 2u + v - o, (m). Cette
dernière congruence, en tenant compte de la première o, (ni), c’est-à-dire

que v est divisible par ~m et, par suite, par m.. Les deux nombres il et v sont donc
tous les deux divisibles par d = m, et l’on peu t débarrasser le nombre x de son

dénominateur.

D’autre part, soit =~= 1 (4), la congruence

nous montre comme précédemment que u et v sont divisibles par ro et que, par

suite, m est contenu dans le numérateur et dans le dénominateur de l’expression qui
donne a et qu’on peut simplifier par m .

Nous aurons donc (x = 
Ib’ + v’m 4 où u’ et v’ sont des entiers ralionnels. Il est

facile de voir, en formant la norme rx. S rx, que pour m- 2, aussi bien que pour

m 3 suivant 4, une expression de la forme n’ + v’V nt avec u’ et v’ entiers et ration-
nels ne peut être divisible par 2 que si u’ et v’ sont tous les deux pairs. Si on applique
ce résultat d’abord à 4x, puis à 2x, on voit que aussi dans le cas de ni. 5)= 1 (4) tout
entier du corps lr , s’écrit u + v03C9 avec u et v entiers et rationnels.

La seconde partie du théorème résulte de la formule

qui, d’après le paragraphe 3, définit le discriminant du corps.

§ 60. - LES IDÉAUX PREMIERS DU CORPS.

Le problème de la décomposition des nombres premiers rationnels en idéaux

premiers du corps k est complètement résolu par le théorème suivant :

THÉORÈME g6. - Tout nombre premier rationnel 1 facteur de cl est le carré d’un



idéal premier de k . Tout nombre premier impair rationnel p qui ne divise pas cl ou
bien se décompose dans k en un produit de deux idéaux premiers conjugués du pre-
mier degré ;)) ou représente un idéal premier du second degré, suivant que d est
reste quadratique de p ou non reste. Le nombre premier 2 est, dans le cas de m « 
le produit de deux idéaux conjugués distincts du premier degré de k, ou est lui-même
un idéal premier suivant que m - 1 ou 1?z - ~ suivant 8.

Démonstration. - La première partie de la proposition, celle qui a rapport aux
facteurs premiers l de d, est une conséquence du théorème général 31. Soit l un fac-
teur premier impair de d, nous trouvons

où r= l,m) est un idéal pre.mier du premier degré, qui est égal à son conjugué.
Si 2 divise cl, on a

suivant que /?? ~ 2 ou /~ ~ 3 suivant 4. ,

La décomposition des nombres premiers non contenus dans d s’opère en tenant
compte du théorème 33 et de la remarque qui s’y rapporte faite au paragraphe 13.

D’après ces considérations, tout nombre premier p qui ne divise pas d se décom-
pose dans le corps k en deux idéaux premiers distincts ou est lui-même un idéal

premier, suivant que le premier membre de l’équation correspondante (21) est réduc-
tible ou irréductible dans le sens de la congruence suivant p.

Si p est impair, nous trouvons que la congruence

n’est résoluble que si rra est reste quadratique de p et qu’elle est irrésoluble si ni est
non-reste quadratique de p.

Posons dans le premier cas ni. « aJ suivant p; il vient

Les deux idéaux premiers D et D’ sont bien distincts à cause de

Dans le cas de ni « r (4), la congruence xz - x - 4 4 1- o suivant 2 est évi-

demment résoluble ou irrésoluble suivant que ==o ou ~ i suivant 2, c’est
4

à-dire m - I ou - ~ su!vant 8..

Dans le premier cas, on trouve . 
’



Les deux idéaux de droite sont différents, car

Nous pouvons prendre comme nombres de bases des idéaux que nous venons de
trouver, soit

suivant que m - 2, 3 (4~.
On reconnaît facilement ce fait par une réciproque du théorème rg, si l’on forme

le déterminant obtenu en adjoignant à chacun de ces couples de nombres le couple
conjugué. Dans la deuxième ligne du petit tableau que l’on vient d’établir, a désigne
un nombre satisfaisant à la congruence

et qui, de plus, est supposé impair dans le cas de /?? - 1 (4).

Pour pouvoir donner un énoncé résumé et complet des résultats acquis, nous
introduirons le symbole suivant : Soit a un entier quelconque rationnel et w un

nombre premier rationnel impair, le symbole a a la valeur + 1, - r ou o suivant

que a est reste quadratique ou non-reste quadratique de p ou qu’il est divisible

par p ; de plus, admettons que ( - ) égale -}-1, -1 i ou o suivant que a impair est reste
quadratique ou non-reste de 23 = 8, ou suivant qu’il est divisible par 2.

On peut alors donner au théorème 96 l’énoncé

THÉORÈME g I . - Un nombre premier rationnel quelconque p (= 2 ou =|= 2) se
décompose dans le corps If en deux idéaux premiers distincts, est lui-même un idéal
premier, ou est le carré d’un idéal premier suivant que



Ceci nous amène à considérer trois espèces d’idéaux premiers :
1° ° Les idéaux premiers du premier degré ~ distincts de leurs conjugués V’.
2° Les idéaux du second degré (p) représentés par les nombres premiers qui ne

se décomposent pas dans 1~ .
3° Les idéaux du premier degré 1 dont les carrés sont des nombres premiers con-

tenus dans d.

D’après les définitions des paragraphes 39 et le corps li est le corps de décom-

position des idéaux premiers p de la première espèce, il est le corps d’inertie

pour les idéaux premiers p de la seconde espèce et enfin le corps de ramification

pour les idéaux { de la troisième espèce.

S 62. - LES UNITÉS DU CORPS QUADRATIQUE.

Pour ce qui concerne les unités de Ii, le théorème 47 nous apprend que nous
avons à considérer deux cas, suivant que l~. est un corps imaginaire ou un corps réel.

Dans le premier cas, lî ne peut contenir d’autres unités que celles qui sont des
racines de l’unité, et comme le corps quadratique ne peut contenir que les racines

primitives de la racine cubique, quatrième ou sixième de l’unité, les seuls corps qua-
dratiques imaginaires qui peuvent contenir d’autres unités que - I et + I sont les

deux corps k(~- i) et A-(~/20143). Le premier corps contient les unités -+ i; le second,
les quatres unités + 

I -±3 2. Les discriminants de ces deux corps sont -4

et - 3 ; d’après le théorème 50, il y a dans toute classe d’idéaux de ces corps un

idéal dont la norme  2 pour le premier, ~ 3 pour le second. Comme d’ailleurs
dans le corps i), le nombre 2 est la norme de l’idéal principal (I + i) ; il en

résulte que chacun de ces deux corps ne possède qu’une classe d’idéaux. Ces corps
ne renferment donc que des idéaux principaux, et tout nombre positif entier ra-
tionnel qui peut être pris pour norme d’un idéal de i) ou de A’(B/2014 3) est aussi 1
la norme d’un entier algébrique dans le corps correspondant, d’où résultent les
théorèmes connus sur la représentation des entiers rationnels sous les formes ~;~ + y~
ou x2 + xy + y~, x et y étant des entiers rationnels.

Par contre, si k est un corps réel, le théorème 4y nous apprend qu’il existe tou-
jours une unité fondamentale s différente de + I, et au moyen de laquelle toute
imité du corps peut être mise d’une seule façon sous la forme + sa, où a est un entier
rationnel.

Les circonstances dans lesquelles la norme de. cette unité fondamentale est égale
à + I ou à - I n’ont été découvertes que dans certains cas particuliers. [Arndt ~, ,
Dirichlet 4, Legendre 1, - Comparez à ce que nous venons de dire la pre-
mière partie de la démonstration du lemme 13.



§ 63. - LES CLASSES D’IDÉAUX.

Les calculs du paragraphe 24 permettent d’établir toutes les classes d’idéaux du

corps quadratique lé pour chaque valeur particulière de m. Il a été construit des

tables basées sur la théorie des formes quadratiques réduites et qu’il faudrait citer
ici. [Gauss 1, Cayley 1.] ]

CHAPITRE XVII.

Les genres dans le corps quadratique et leurs systèmes de caractères.

§ 64. - LE SYMBOLE .S 64. - LE SYMBOLE 
w 7 

.

Pour la répartition des classes d’idéaux, nous introduirons dans les développe-
ments de la théorie du corps quadratique un nouveau symbole. Soient n et m deux
entiers rationnels, où n n n’est pas un carré et où w est un nombre premier rationnel

quelconque ; nous donnerons au symbole la valeur +I, dès que le nombre n

est congru à la norme d’un entier du corps algébrique k(m), et si, de plus, il

existe pour toute puissance plus élevée de 2a dans un nombre entier dont la

norme est congrue à n suivant cette puissance de dans tout autre cas, nous pose-

rons f 20142014 ) = - I . Les nombres pour lesquels (n, m w) = + 1 seront dits les restes
normiques du corps k su ivant w ; les nombres n pour lesquels ( l2, ll t - - I .

seront les non-restes normiques du corps suivant w.

Lorsque m est carré parfait, sera toujours pris égal à iL

Le théorème suivant nous indique les propriétés du symbole (n, m w) qui nous
permettront de le calculer.

THÉORÈME 98. - Soient n et 111 deux entiers rationnels, qui ne sont pas divisibles

par zu ; on a les règles suivantes :



Pour les nombres premiers impairs w, on a

pour w = 2 :

De plus, pour des nombres entiers rationnels quelconques n, n’, m, m’ par rap-
port à tout nombre premier w. on a les formules

Démonstration. - D’abord il est évident que si n est la norme d’un entier de ,

on a 20142014 = + I.
’ 

De plus, comme est la norme de y/?7, on en conclut l’exactitude de (c’). De
plus, si n et n’ sont deux entiers rationnels =1= 0, dont le quotient est la norme d’un
entier ou d’une fraction de l’égalité

est évidente d’après la définition du symbole.

Si n n, est le carré d’un nombre rationnel, il en résulte en particulier ce fait très

simple que la valeur du symbole ne change pas si l’on multiplie n ou si on

le divise par le carré d’un nombre rationnel entier. Nous admettrons, pour plus de

simplicité, que ni n ni m, ne contienne le carré d’un nombre premier.
Pour reconnaître l’exactitude de notre système de formules, nous traiterons dans

l’ordre les trois cas particuliers suivants :



1) Soit w un nombre premier impair qui divise ln.

Si n n’est pas aussi divisible par w, la congruence

n’admet de solution entière en x et y que si ( 2014 j ===-}- y. Réciproquement, si la der-
nière condition est satisfaite, la congruence rcQ - x2 admet des solutions suivant

toutes les puissances de w, et il en est évidemment de même de la congruence (22).
Donc, en vertu des hypothèses admises,

D’autre part, si n est divisible par 2a,

2) Soit w un nombre premier impair qui ne divise pas n~ . Si n aussi n’est pas

divisible par iU, la congruence

admet toujours des solutions, car le second membre de cette congruence donne tous

les restes quadratiques suivant w, lorsqu’on = 1 , 2 , ..., y = o ; et, dans

le cas de = - I, elle donne tous les restes non quadratiques suivant w, pour

x=o, y==:i, 2, ..., .

Par contre, soit (-m w) = -E- I, désignons par a le plus petit non-reste quadra-
tique du nombre premier et soit y=b une racine de la congruence-my2~a- i(w)
qui a certainement des solutions : comme a- i - suivant 2u, la forme x2 m(bx)2

représente pour x = 1 , 2, ... , - tous les non-restes quadratiques suivant tV.
Comme la congruence n - x2 - suivant w admet des solutions, on en conclut t

qu’elle en admet aussi suivant toutes les puissances de w, c’est-à-dire qu’avec nos

hypothèses

Admettons maintenant que n est divisible par iu, mais qu’il ne l’est pas par 
conformément aux hypothèses du début, une solution de n - x~ - suivant 



représenterait un nombre du corps dont la norme x . sx =n(a) contiendrait

en facteur w et non pas c’est-à-dire que w se décomposerait dans le corps 
en deux idéaux premiers distincts m et m’, ce qui exige comme condition nécessaire

et suffisante, d’aprés le théorème 97, ( m w) = + 1.
Réciproquement donc, si cette condition est remplie, w est dans le corps 

un produit ww’ de deux idéaux premiers distincts. Si l’on désigne alors par 03B1 un
nombre entier de divisible par tv, mais non par ou par tv‘,

c’est-à-dire qu’avec les hypothèses actuelles, on a toujours = - . m ) .
Les résultats acquis établissent immédiatement l’exactitude des formules (a’)

et (a") ; de plus, ils don,nent pour des nombres premiers impairs les formules (c’)
et (c"), et ils les donnent complètement si l’on examine dans l’ordre les différents cas

qui peuvent se présenter en tenant compte de la divisibilité ou de la non-divisibilité
des nombres r~’, in par w.

3) Dans le cas de w = 2, nous ferons d’abord les considérations suivantes. Soit

f(xy) une fonction homogène du second degré à coemcients entiers de x et de y, et n
un nombre entier rationnel impair; si la congruence n- f(x4v) suivant z3 admet
des racines, elle en admet aussi suivant toute puissance supérieure de 2, 2e+’ (e > 3).
Nous le démontrerons en concluant de e à e + 1. Soient a, b deux entiers rationnels,
tels que f(a, b) - n suivant 2e, où e > 3 ; si l’on n’a pas n b) suivant 
mais bien mieux rt- f(a, b) + 2e suivant 2e- ‘, nous déterminerons un nombre c,
tel que c2 ~ I + 2e su ivant 2e+1, ce qui est possible à cause de e > 2 ; et alors

c’est ce que nous voulions démontrer.

Dès lors, si nous voulons établir la valeur de (n, m 2) pour n impair, il nous faut
chercher quelles sont les valeurs de n et de m qui se correspondent de manière à
rendre possibles les congruences

Un calcul 1res court nous fournit la table suivante :



Dans cette table, nous avons mis dans la colonne des na les six restes suivant 2S à

considérer, et, dans la colonne des n, les restes impairs suivant 23 qui leur corres-

pondent et rendent possible la congruence 23 :

Cette table nous montre que pour n et m impairs l’égalité (b’) est vraie ; elle montre
aussi que pour n impair, ni pair== 2m’; on a :

D’autre part, si n est pair = 2n’ et m impair, il faut distinguer les deux cas m - i
et m ~ 3 suivant 4.

Dans le premier cas, il faut que 2 soit dans le corps le produit de deux

idéaux premiers distincts dès que n = 2n’ est reste normique de 2 dans k(m), c’est-
. a-dire que ( 2014 ) doit être égal à + i. Si cette condition est remplie, on peut toujours
trouver un nombre 03B1 dans dont la norme est divisible par 2 et non par 4;

on a alors

et ce dernier symbole suivant (b’) est égal à + i ; on a donc



Dans l’autre cas m-3 (4), la valeur du symbole en question dépend de la possi-
bilité de la congruence 2r~’- ~~ - my00FF suivant une puissance quelconque de 2, ze.

Une pareille congruence, comme on le voit aisément, n’est possible que s’il en est

ainsi de

suivant la même puissance 2e; c’est-à-dire que

Enfin, si n et m sont tous les deux divisibles par 2, n=2n’, m=2m’, on a

Les résultats obtenus ont pour conséquence immédiate la formule (b"), et nous

reconnaissons en même temps que les formules (c") et (c"‘) sont exactes pour w = 2.
La formule se déduit d’une combinaison de (c") et (c"’).

Le théorème g8 est complètement démontré.
Des formules (a’), (a"), (b’), (b") du théorème 98, on déduit ce qui suit :
Si l’on considère un système complet de nornbres premiers avec w et incongrus

suivant we, où e > 1 et même e > 2 dans le cas de ~u = z , tous ces nombres sont des
restes normiques du corps suivant ou bien ils forment la moitié de ces

restes, suivant que iu est premier avec le discriminant de ou qu’il ne l’est pas.

§ 65. - LES SYSTÈMES DE CARACTÈRES D’LiV IDÉAL.

Soit t le nombre des diviseurs premiers rationnels des discriminants de 

désignons-les par li, l~, ..., lt.
A chaque nombre entier rationnel correspondent alors des valeurs parfaitement

déterminées (-~- i ou - 1) des l symboles

dont le sens est déterminé par le paragraphe précédent; ces t unités + i prendront
le nom de système des caractères du nombre a dans le corps Pour pouvoir
attribuer aussi à tou t idéal a du corps un système de caractères bien déter-
miné, nous distinguerons deux cas suivant que lé est un corps imaginaire ou un corps
réel. Dans le premier cas, les normes des nombres de sont toujours positives ;
nous poserons n = t, n = + n(a), et nous dirons que les r unités



forment le système des caractères de l’idéal a, il est parfaitement déterminé par
l’idéal a. Dans le second cas, nous formerons d’abord le système des caractères du
nombre 2014 1 :

Si toutes ces unités sont égales à + i, nous poserons, comme dans le premier cas,
l~= t, et nous dirons encore que le système zf~ est le système des carac-

tères de a. Par contre, si parmi les 1 caractères (25) se trouve l’unité - i, soit par

exemple - 1, l t m -- I, nous poserons r= t- I et n=+ rt(a) en choisissant le

signe de façon que J == -p 1, et nous désignerons les r unités (z4) résultant de
ces hypothèses sur r et sur n le système des caractères de l’idéal a.

Les conventions que nous venons de faire nous permettent d’énoncer le théorème
suivant :

S 66. - LE SYSTÈME DE CARACTÈRES CLASSE D’IDÉAUX ET LA KOTION DE GENRE.

THÉORÈME 99. - Tous les idéaux d’une même classe du corps admettent
le même système de caractères.

Démonstration. - Soient a et a’ deux idéaux de appartenant à la même

classe; il existe un nombre 03B1 entier ou fractionnaire de tel que Par

suite, n(a’)=±n(a)n(a), où + désigne le signe de r~(x), et, par suite,

pour ..., lt. En tenant compte des conventions du paragraphe. 65, on obtient
le théorème ()().

De cette façon, à chaque classe d’idéaux correspond un système de caractères.
Nous rangerons dans le même genre toutes les classes d’idéaux qui ont le même sys-
tème de caractères, et, en particulier, nous définirons genre principal l’ensemble de
toutes les classes dont les systèmes de caractères est formé d’unités toutes positives.
Comme le système de caractères de la classe principale a évidemment cette propriété,
la classe principale appartient au genre principal. De la formule c", paragraphe Gl ,
nous déduirons facilement ce fait, que la multiplication des classes d’idéaux de deux

genres fournit la classe d’idéaux d’un genre, dont le système de caractères s’obtient

par la multiplication des caractères correspondants des deux genres. Il en résulte en

particulier que le système des caractères du carré d’une classe d’idéaux d’un genre
quelconque ne contient que des unités positives, et, par suite, le carré de toute classe
d’idéaux appartient au genre principal.

Tout genre contient le même nombre de classes.



§ 6’y. - THÉORÈME FONDAMENTAL RELATIF AUX GENRES DU CORPS QUADRATIQI E.

Une question se pose : Un système quelconque de r unités + i peut-il être le sys-
tème de caractères d’un genre du corps k~~~ a La solution de cette question est
d’une importance capitale pour la théorie du corps quadratique; elle est contenue
dans un théorème dont la démonstration nous occupera jusqu’au paragraphe 78 et

qui s’énonce :

THÉORÈME 100. - La condition nécessaire et suffisante pour qu’un système quel-

conque de r unités + i soit le système des caractères d’un genre du corps l~ ( ~ ) est
que le produit des r unités soit égal à + i. C’est pourquoi le nombre des genres du

corps est égal à 2r-1. [Gaussa]

§ 68. - UN LEMME S’APPLIQUANT AUX CORPS QUADRATIQUES DONT LE DISCRIMINANT NE

CONTIENT QU UN DIVISEUR PREMIER.

Pour nous rapprocher du but indiqué au théorème 100, nous démontrerons
d’abord le

LEMME 13. - Lorsque le discriminant d’un corps ne contient qu’un
diviseur premier rationnel l, le nombre des classes d’idéaux de fi est impair. Le sys-
tème des caractères se compose d’un caractère unique relatif à 1; ce caractère est

toujours égal à + i, c’est-à-dire que dans le corps il n’y a qu’un genre : le genre

principal.
Démonstration. - Désignons par s la substitution qui transforme un nombre du

corps k en son conjugué. Désignons encore, lorsque m>o, par ~ une unité fonda-

mentale du corps k, - s, I , - I représentent des unités du même genre; nous dé-
s s

montrerons tout d’abord que l’hypothèse du lemme nous donne n(~) _ ~ . s _ _ -1.
En effet, admettons que /ï(s) = + i, on pourrait trouver, d’après le ’théorème go, un

entier a du corps tel que t = ; il en résulte , c’est-à-dire que tout fac-

teur idéal premier contenu dans a le serait dans sx. Mais d’après l’hypothèse faite
dans l’énoncé, lorsque ~ est le seul facteur premier de qui est égal à
son conjugué et qui n’est pas rationnel, on a ou bien

r~ étant une unité et a un entier rationnel positif ou négatif; il en résulterait

~ _+ ~1-s=± ~2, et ~ ne serait pas une unité fondamentale, ce qui est contraire à

l’hypothèse.



Démontrons maintenant la première partie du lemme. Si le nombre h des classes
du corps I~ était pair, il y aurait, suivant le théorème 57, un idéal ) n’appartenant
pas à la classe principale, tel que mais comme ~ i, on en conclurait j 

Posons j = = x ; x est un nombre de k dont la norme n(x) _+ 1.
Dans le cas où le signe serait + , posons ;~ = x.; le sec~ nd n’est évidemment possible
que pour un corps réel; faisons p == sx, s désignant comme tout à l’heure l’unité fon-
damentale de k . . Avec ces hypothèses-, on aurait à chaque fois n(;i) _ ~ 1, et, par

suite, d’après le théorème 90, I 03B2=03B31-s, où y est un entier De x = i1-s résulte-

rait =1, c’est-à-dire = et on conclurait comme précédemment que
l’idéal (y)j est ou bien = (a) ou (a)1 , où a est un nombre entier rationnel et 1 le

seul nombre premier de k égal à son conjugué et non rationnel. Or, lorsque m=~=-1,
ce facteur premier I = ~m , et, pour m = - I , 1 = c’est-à-dire qu’on a

toujours l ~ 1 , et, par suite, j ~ i, ce qui est contraire à l’hypothèse.
Lorsque l~ est un corps réel, n(s) == 2014 1 no~s indique de suite que

et alors, d’après le paragraphe 65, le système du caractère d’un idéal j est consti’.ué

par l’unité l ; ce caractère unique est égal à + I pour chaque idéal j du

corps sans quoi l’ensemble des classes d’idéaux de ~,° se répartirait en deux genres
et le nombre des classes h serait pair.

Ce lemme 13 nous montre que le théorème fondamental 100 est vrai dans le cas

le plus simple, le cas du corps quadratique dont le discriminant d ne
contient qu’un diviseur premier rationnel.

§ 69. - LE THÉORÈME DE RÉCIPROCITÉ POUR LES RESTES QUADRATIQUES.

UN LEMME RELATIF AU SYMBOLE l2, l)1 .

THÉORÈME ici. - Soit p et q deux nombres premiers rationnels impairs positifs
différents l’un de l’autre ; on a la règle

dite loi de réciprocité des restes quadratiques. On a, de plus,

dits théorèmes complémentaires à la loi de réciprocité quadratique. [Gauss ~.~ ]



Démonstr~ation. - Soit un corps dont le discriminant ne contient qu’un
diviseur premier l, et désignons par n la norme d’un idéal de ce corps k ; d’après le

lemme 1 on a toujours = + i. Mais d’après les théorèmes g6 et 97, on voit.

qu’en particulier, tout nombre premier positif impair qui ne divise pas m et dont m
est reste quadratique est la norme d’un idéal de Nous utiliserons ce fait

pour dresser le tableau suivant : nous désignerons parp et p’~deux nombres premiers
rationnels distincts congrus à 1 suivant 4, par q et q’ deux nombres premiers dis-
tincts congrus à 3 suivant 4, tandis que r représentera un nombre premier rationnel

impair dont nous ne préjugeons pas le reste par 4.

Dans un corps A’(B//)), n(~)=-1 nous apprend que (20142014 )==-pi; ajoutons
cette remarque à la ligne i, il en résulte que, d’une façon générale, 20142014 ) =(2014I)r-1 2.

Appliquons la proposition citée au début de cette démonstration au nombre pre-
mier /~==2, et remarquant que 2 est toujours la norme d’un idéal dans ou

/ 20142014B , p’~ 9~-1

dès que (2014 r) ~ == -~- i ou (2014 i) ~ === -p i, il en résulte que, si ces con-

ditions sont satisfaites, ( 2014’- ) = (- j = + r, ou ( 201420142014- )=(-)= 4- i, c’est-à-

dire que si (2014 ï) s = + I, on a (2 r) = + i. Ajoutons ce résultat à la ligne 2, on a.
d’une façon générale, (2 r)=(-I)r2-1 8. Le contenu de la ligne 3 montre que

(p p’)=(p’ p).



Les lignes 4 et 5 nous apprennent que

et la ligne 6 que (q q’) =2014 ( "r , où il faut tenir compte du caractère du reste de2014I,
qui a été trouvé d’abord.

Il reste à démontrer que si (2014)=-}- i, on a nécessairement (q’ q)=- i. Le

théorème de réciprocité pour deux nombres premiers rationnels q et q’, qui tous
deux = 3 suivant (4), s’obtient le plus simplement en considérant le corps ,

car comme (20142014’20142014)=2014i, la norme de l’unité fondamentale E de ce corps est

certainement = + i, et il y a un entier (x (voir théorème go), tel que s = == 20142014,
où est le nombre conjugué de (x. Nous en conclurons facilement que l’idéal pre-
mier q contenu dans q est un idéal principal. Par suite, en choisissant convena-
blement le signe,

et en tenant compte de la formule (c’) du théorème g8 :

LEMME - Soient n et n2 deux entiers rationnels quelconques qui ne sont pas
tous deux négatifs ; on a

où le produit II s’étend à tous les nombres premiers rationnels.

Démonstr^ation. - Soient p et q deux entiers rationnels distincts impairs et tous
deux premiers; les règles (a"), (b’), du paragraphe 64 et le théorème 101 nous

permettent d’écrire : 
’



et grâce à la règle (a’) du paragraphe 6/t, le lemme i4 subsiste pour le cas où les

nombres n et in égalent + i ou ne contiennent qu’un nombre premier. Les for-
mules (c"’) et (c"") montrent que le lemme i4 est général.

De = - i, il résulte que si n et m sont tous deux négatifs, le pro-

duit 03A0 est égal à - 1 .

On peut exprimer plus simplement la proposition contenue dans le lemme i4 et

celle que nous venons d’énoncer en employant le nouveau symbole (n, 7) = + i,
en lui donnant la valeur + i, si l’un des nombres n ou m est négatif, et la valeur - t

lorsqu’ils le sont tous les deux.

§ - DÉMONSTRATION DES RAPPORTS ENTRE L’ENSEMBLE DES CARACTÈRES D’LN

GENRE ÉNONCÉS DANS LE THÉORÈME FONDAMENTAL I00.

Appliquons le lemme Soit ~ une classe d’idéaux du corps et soit a un

idéal de cette classe premier avec 2 et avec cl, et soit n =-+ n(a) la norme de l’idéal a

pourvue du signe prévu au paragraphe 65 ; le produit de tous les caractères de la
classe ~ est donné par

Comme n(a) est la norme d’un idéal, tout nombre premier rationnel p contenu
dans n se décompose dans le corps et, par suite, d’après le théorème 96,
m est reste quadratique de tout pareil nombre.

Du lemme 14, et en tenant compte des formules (c"’), (a’), (a") du théorème 98,
on a

lorsque w prend les valeurs des nombres premiers impairs contenus dans d, ainsi
que la valeur 2.

Si donc le discriminant d du corps contient le nombre premier 2, il est

démontré déjà que pour toute classe de le produit de tous les carac-

tères = + i.

Par contre, si 2 n’est pas contenu dans d, comme i suivant 4, on a

(n, m 2)=+I, et le théorème est aussi démontré dans ce cas.



Ayant démontré que le produit des caractères est égal à + i, nous reconnaissons
de suite que le nombre des genres dans le corps quadratique est au plus égal
à la moitié de tous les systèmes de caractères imaginables, c’est-à-dire au plus
égal à ~r-’.

CHAPITRE XVIII.

L’existence des genres dans le corps quadratique.

§ 71. - LE THÉORÈME SUR LES FORMES DES NOMBRES D’UN CORPS QUADRATIQUE.

Il reste à faire voir que la seconde partie du théorème 100 est vraie, c’est-à-dire à
démontrer que la condition que nous avons reconnue nécessaire pour qu’un système
de r unités + 1 forme le système de caractères d’un genre dans est aussi suf-

fisante. On peut y arriver par deux voies bien distinctes : la première est de nature
purement arithmétique, la seconde a des moyens transcendants. La première dé-
monstration résulte des raisonnements suivants :

THÉORÈME I02. - Si n, m, sont deux entiers rationnels, m n’étallt. pas un carré

parfait, qui remplissent pour tout nombre premier w la condition

le nombre n est toujours la norme d’un nombre entier ou fractionnaire x du

corps 

Démonstration. - La condition ]j ’ - 
n, m w) exige, comme il résulte de la re-

marque faite à la fin du paragraphe 69, que l’un des nombres n ou m au moins soit
positif. Nous pouvons admettre que n et m ne renferment pas de facteur rationnel au
carré. Soit alors p un facteur premier de n qui divise aussi le discriminant ct du

corps k(m); p est la norme d’un idéal de De plus. si p est un nombre

premier impair qui divise n et ou comme (n, m p)=( 2014 B === + i, p est aussi lapremier impair qui divise _ n et nr ou m, comme B = (m p) =+ I, p est aussi la

norme d’un idéal de Enfin, si 2 divise n et ne divise pas le discriminant du

comme 2 % = 2 _ (-1 ) R 
= + i, 2 est encore la norme

d’un idéal de et, par suite, contient certainement un idéal ), tel

que |n| = n(j). Choisissons dès lors dans la classe d’idéaux déterminée par j un



idéal j’, dont la norme ou d est le discriminant du corps 1;(v/m) . Ceci,

d’après le théorème 50, est toujours possible. Nous poserons et ~==~./~(x),
où x est un nombre entier ou fractionnaire de on aura n’=±n(i) avec le
signe + ou le signe - suivant que ~(~) est positif ou négatif. Le nombre entier ra-
tionnel n’est donc en particulier sûrement positif lorsque in est négatif. Comme ~ a

pour valeur m ou on a ~j~2~B//~ ’ et il en résulte dès que

2)B/~j~~, [~~~>4. D’autre part, comme ~==/~.~(x), on a

== ( 20142014 )==-}- j, et, par suite, à cause de la formule (c~) du théorème 98,

pour tout nombre premier w .
Admettons que le théorème 102, que nous voulons démontrer, soit vrai pour tout

corps pour lequel le nombre m’, qu’il soit positif ou négatif, satisfait à

~m’) ~ ~m~ . Le nombre n’ que nous venons de trouver satisfait à 1 n’ [ ~m~ [ et n’est

pas un carré, et comme on a de plus m’ w n % 1= + i pour tout nombre premier zu, il

faut, grâce à notre hypothèse, que le nombre m soit la norme d’un dans

le corps A’(yy~), c’est-à-dire qu’il existe deux nombres entiers ou fractionnaires ra-
tionnels tels que 

’

d’autre part, si n’ est un carré, la possibilité de cette égalité est évidente. Comme

il faut que b soit =1= o, on voit que n’= ( _ ) ~ - m =n(),), c’est-à-dire que n’ est

la norme d’un nombre ), dans le corps En rapprochant ce fait de ~t’= 

on voit que n = n(x), où x = 03BB x est encore un nombre de .

La démonstration complète du théorème 102 sera accomplie dès que nous aurons
montré que le théorème est vrai pour 4 avec  En restreignant ainsi
les nombres n et les conditions du théorème 102 ne sont remplies que dans
huit cas.

Les égalités

montrent que dans ces huit cas le théorème 102 est vrai.



On reconnaît que le théorème 102 est encore vrai si on en modifie l’énoncé en

exigeant que la condition = + I ne soit remplie que pour tous les nombres

premiers impairs w ; mais il faut alors ajouter cette condition que l’un des nombres
n et m au moins est négatif. [Lagrange 1, Legendre1, Gauss’.] Et, en effet, d’après le

lemme I4, l’égalité (n, m 2) = i est alors satisfaite d’elle-même.

§ 72. - LES CLASSES DU GENRE PRINCIPAL.

A la fin du paragraphe 66 nous avons montré que le carré d’une classe d’idéaux
appartient toujours au genre principal. Le théorème 102 du paragraphe 71 nous
permet de montrer la réciproque. 

,

THÉORÈME I03. - Dans un corps quadratique, toute classe du genre principal est
le carré d’une classe. [Gaussa] ]

Démonstration. - Soit Il une classe du genre principal du corps et h un
idéal de cette classe première avec le d du corps soit n la norme de l’idéal h
précédée du signe prévu au paragraphe 65. Ce nombre fi remplit alors, quel que soit

le nombre premier w, la condition ~~ ~ n, 2~ m _ ~ I , et par suite on a n = n(x), où x

est un nombre entier ou fractionnaire du corps Posons donc h 03B1 = B B’, B et
fj étant des idéaux premiers entre eux; il en résulte que BsB B’sB’ = I et, par suite,

Comme BsB ~ I , il en résulte que 1) ~ B2.
Cette propriété caractéristique des idéaux du genre principal a un rapport étroit

avec une autre propriété également caractéristique de ces idéaux et qui est exprimée
par le théorème suivant :

THÉORÈME io4. - Soient 03C91, 03C92 deux nombres de base du corps quadratique k et

r,~ deux nombres de base d’un idéal % appartenant au genre principal de I~, et
enfin soit N un nombre entier rationnel quelconque donné; on peut toujours trouver
quatre nombres rationnels rl, r~~~ dont les dénominateurs sont premiers
avec ~V , dont le déterminant ~’~1j’1~ _ -~ I, et tels que

Démonstration. - Déterminons un idéal h’ équivalent à h; h’= 03B2h premier
avec 1 d .

Ainsi que nous l’avons déjà utilisé dans la démonstration du théorème io3,

i2=+n(~’) est égal à la norme d’un nombre x entier ou fractionnaire du corps k,
si l’on choisit le signe + ou le signe - d’après les conventions du paragraphe 65.



L’idéal «~’_ admet les nombres de base

où au’ aR~ sont des entiers rationnels. Comme n(a~’)=n~, le déterminant
- _ + n~, et par suite les quatre nombres

ont les propriétés indiquées dans l’énoncé.

§ y 3. - LES IDÉAUX AMBIGES.

Nous dirons qu’un idéal a du corps est un idéal a111bige si l’opération

s = ~~m ; - ~m) le laisse inaltéré et s’il ne contient pas d’autre facteur entier

rationnel que + I (voir § 5 ~). On a le

THÉORÈME I05. - Les t idéaux premiers fi, I2, ..., It distincts contenus dans le
discriminant d du corps 1~ sont des idéaux ambiges premiers du corps 1;, et il n’y
en a pas d’autres. Les 2t idéaux I, r~, ... , I1 I~, ... , I1 I~ ... rt forment l’ensemble
de tous les idéaux ambiges du corps 

’

Démonstration. - Que les idéaux premiers r,l, ... , It sont ambiges et qu’il n’y en
a pas d’autres, cela résulte du théorème go. Soit maintenant a = ~ . q ... r un idéal

ambige quelconque décomposé en idéaux premiers ; comme a = sa, il faut que les
idéaux conjugués à ~, q, ..., r, sp, sq , ..., , sr, abstraction faite de leur ordre,
soient égaux à ~, q, ..., r. Si on avait, par exemple, contiendrait le fac-
teur qui est un entier rationnel; comme ceci est contraire à la définition d’un
idéal ambige, il faut , q = sq , ... , c’est-à-dire que tous les idéaux soient

ambiges. Comme les carrés des idéaux 1 , ... , it sont des entiers rationnels, nous en
concluerons que ~, q , ... , r sont nécessairement distincts, et la dernière partie du
théorème Io5 est démontrée.

§ - LES CLASSES AMBIGES D’IDÉAUX.

Soit a un idéal de la classe A; nous désignerons par sA la classe à laquelle appar-
tient sa, Et, en particulier, si A = sA, la classe A est dite une classe al11bige
d’idéaux. Comme le produit asa ~ I, A.sA= I ; et par suite, le carré de toute classe
ambige est égal à la classe principale i. Réciproquement, lorsque le carré d’une

classe A égale I, A = I = sl~ , et par suite la classe A est ambige.



S 75. - LES CLASSES AMBIGES D’IDÉAUX DÉTERMINÉES PAR LES IDÉAUX AMBIGES.

Il s’agit maintenant d’établir les classes ambiges de Comme tout idéal ambige
a détermine une classe ambige en vertu de sa propriété a=sa, il nous faut d’abord
rechercher combien de classes ambiges distinctes résultent des 2t idéaux ambiges.
Nous dirons que plusieurs classes d’idéaux sont classes indépendantes
lorsqu’aucune d’elles n’est égale à la classe I et lorsqu’elle n’est pas non plus égale à
un produit de puissances des autres classes. Nous énoncerons alors le

THÉORÈME 106. - Les t idéaux premiers ambiges déterminent toujours t- 1 classes

ambiges indépendantes dans le cas d’un corps imaginaire ; dans le cas d’un corps
réel, elles déterminent t - 2 ou 1 - 1 classes indépendantes, suivant que la norme
de l’unité fondamentale ~ du corps n()=+ i ou - J. L’ensemble des 2t idéaux

ambiges détermine, dans le cas d’un corps imaginaire 2t-00FF et dans le cas d’un corps
réel 2t-~ ou 2t-1 classes indépendantes, la distinction entre 2‘-J ou 2t-1 se faisant par
le signe de n(2).

Démonstration. - Le produit de tous les idéaux premiers facteurs de rn est égal
à il est donc un idéal pr incipal de k. Soi t d’abord m négatif, mais différent de
- 1 et de - 3, et soit (v) un idéal principal ambige de on a nécessairement

_ (- car est une unité. e ne pou;ant être égal qu’à o ou à I . Il en résulte

que

c’est-à-dire que (x(B//~ est un entier rationnel. Ce qui démontre que dans un corps
imaginaire, /~(B/2014 i) et A-(B/20143) exceptés, il ne peut y avoir d’autre idéal principal
ambige que i et y;. Les deux exceptions, traitées en particulier, donnent immé-
diatement le résultat énoncé au théorème 106.

Soit un corps réel, pour lequel n(~) _ ~ I ; d’après le théorème go, ~ ^ ~.’-‘, oÙ a
est un nombre de 1; que nous avons le droit de supposer dégagé de tout facteur

rationnel différent de + i. Comme a. (x) est un idéal principal ambige. Cet

idéal principal (o) est distinct de I et de car si l’on avait « =-i- ~f ou

== + ~r~m, où f est un entier rationnel, on aurait

mais ce nombre est toujours différent de s. Si, d’autre part. a’ est un idéal principal

ambige quelconque du corps k , on a nécessairement 03B1’1-s=(-I)e~f, où e et f sont

des entiers rationnels. Posons 03B1"=03B1’ (m)e03B1’; on voit ’==1, c’est-à dire que



a" est un nombre rationnel, et par suite, outre 1, et a, il ne peut y avoir qu’un
idéal principal ambige obtenu en débarrassant le produit de tout facteur

rationnel différent de + 1.

D’autre part, si r~(~) _ - r, il a pas dans 1~ d’idéal principal ambige différent

de 1 et de y~?, car, soit a un idéal ambige quelconque de h, on aurait nécessairement

avec e et f entiers rationnels, et comme n(xl-’)= + I, (n(~)~f = + 1, c’est-à-dire
que f est pair. Posons

nous trouvons x"-’ = + I, c’est-à-dire que x’ est un nombre rationnel.
Nous exprimerons donc un des t idéaux premiers ambiges de k approprié au

moyen de et des t - i autres idéaux premiers ambiges, et lorsque le corps est
réel et que r~(~) = + i, nous choisirons parmi ces t - 1 idéaux premiers ambiges un
idéal approprié que nous exprimerons au,moyen de r et des t - 2 autres. Ceci nous
montre que la deuxième partie du théorème 106 est exacte.

§ 76. - LES CLASSES AMBIGES QCI NE CONTIENNENT PAS D’IDÉAL AMBIGE.

THÉORÈME I07. - La condition nécessaire et suffisante pour qu’un corps quadra-
tique 1; contienne une classe ambige qui ne contienne pas elle-même d’idéal ambige
est que le système de caractères de - i soit composé d’unités toutes positives et que
la norme de l’unité fondamentale _ ~ I . Lorsque ces conditions sont remplies,
les classes ayant cette propriété s’obtiennent en multipliant l’une quelconque d’entre
elles successivement par chacune des classes provenant des idéaux ambiges.

Démonstration. - Lorsque le corps k est réel et que le système des caractères de
- i n’est composé que d’unités positives, il y a toujours dans fi, d’après le théo-
rème 102, un uombre entier ou fractionnaire a dont la norme égale - I. Si, de plus,
la norme de l’unité fondamentale n(~) _ + i, ce nombre (y est nécessairement frac-

tionnaire, Posons 03B1=i i’, où j et j’ sont des idéaux premiers entre eux; il en résulte

que 
isi i’si’ 
= I, et par suite i’=si; par suite, i~si et i détermine une classe ambige.

Cette classe ambige ne contient pas d’idéal ambige, car si un idéal de cette classe
a = j,a , où 03B2 est un nombre de k entier ou fractionnaire, était ambige, on en con-
cluerait que et par suite serait une unité, par exemple =(- 
et par suite I2(x) _ + 1 , ce qui est contraire à la façon dont f a été obtenu. Ceci
nous prouve que la classe j ne contient pas d’idéal ambige.



Soit maintenant A une classe ambige quelconque donnée et j un de ses idéaux ;
est égal à un nombre entier ou fractionnaire fi du corps k et, de plus, n(«) _ + I

ou - I . Le premier cas est le seul possible, lorsque le corps est imaginaire ou lorsque

le corps k est réel et que l’un au moins des caractères égal à - I.

Comme = + I, il résulte du théorème go que I = 03B21-s, 03B2 étant un nombre

entier de k, et alors (jrJ)1-’’= i, c’est-à-dire que i03B2 est le produit d’un idéal ambige
par un nombre rationnel et la classe A contient un idéal ambige. D’autre part, si

_ - I avec _ - I , n(~03B1) = + I, et nous démontrerons comme précédem-
ment que la classe A contient un idéal ambige. Ceci nous montre que toute classe

ambige contient un idéal ambige dans le cas où le corps est imaginaire ou bien dans
le cas où le corps est réel et que l’un des caractères de - i égale - i, ou encore que

_ - I .

Admettons maintenant que, dans le cas où aucune de ces circonstances ne se

produit, il y ait dans k plusieurs classes anibiges d’idéaux qui ne contiennent pas
d’idéal ambige, et prenons dans l’une d’elles un idéal j, dans une autre un idéal j’ ;
les développements qui précèdent montrent que les normes des deux nombres

u = i1-s, ce’ = sont égales toutes deux à - I, et par suite = + I . Le théo-

rème go nous permet de mettre 2014=== 03B21-s, 03B2 un nombre convenablement choisi de k.
~~ 

x

Posons -= ba, où b est rationnel et n un idéal sans facteur rationnel -~_-~- I,
) 

’ ""

(i’03B2 i)1-s=i entraîne c’est-à-dire que ce est un idéal ambige, et on a j’ = aj .

Ce qui démontre la dernière partie du théorème 

§ 77. - LE NOMBRE DE TOUTES LES CLASSES AMBIGES.

Les théorèmes 106 et I07 permettent d’énumérer toutes les classes ambiges.

THÉORÈME 108. - Dans tous les cas, le corps k contient exactement r - i classes

ambiges indépendantes, r étant le nombre des caractères qui détermine le genre
d’une classe. Le nombre total des classes ambiges distinctes est par suite 2’’B

Démonstration. - Soit encore t le nombre des entiers premiers rationnels con-
tenus dans le discriminant cl du corps Il. . Considérons d’abord le cas où l~; est un

corps imaginaire. Il résulte des théorèmes 106 et Io7 qu’il y a exactement ~‘-1 classes

ambiges dans k ; elles résultent toutes d’idéaux ambiges. Supposons le corps h réel :
si le système des caractères de - i dans k ne contient que des unités positives, il y a
exactement 2t-’1 classes ambiges dans If; ces 2t-1 proviennent toutes d’idéaux ambiges



ou la moitié d’entre elles proviennent d’idéaux ambiges suivant que ~(e)===2014 i ou

n(_) _ ~ 1 . Toutefois, si - I a au moins un caractère négatif, _ ~ I, et les

théorèmes 106 et 107 nous affirment qu’il n’y a alors que 2t-~ classes ambiges dans h°,
provenant toutes d’idéaux ambiges. Mais le nombre des caractères = t - I lorsque le

corps est réel et que le nombre - I a au moins un caractère négatif; on a r=t dans
tous les autres cas. Le théorème 108 est démontré.

§ ~8. - LA DÉMONSTRATION ARITHMÉTIQUE DE L’EXISTENCE DES GENRES.

Les résultats acquis nous permettent d’évaluer le nombre des genres et de ré-
pondre à la question posée au théorème 100; car il nous est facile de démontrer que
ce nombre est égal à 2r-’ et, par suite, que tous les systèmes de caractères qui satis-
font aux conditions du théorème 100 sont représentés parmi les genres. Nous dési-
gnerons par g le nombre des genres et par f le nombre des classes du genre principal.
D’après le paragraphe 66, tous les genres renferment le même nombre de classes,
par suite le nombre des classes h = gf. Désignons par ..., H f les f classes du
genre principal; le théorème Io3 nous apprend que nous pouvons écrire H~=K1, ...,
H f= Hf, où K1, ..., K f représentent f certaines classes du corps.

Soit alors C une classe quelconque du corps; comme C2 appartient au genre prin-
cipal, C~ = K ~, où Ka représente une classe bien déterminée parmi les f classes 

.... Kf que nous venons de définir. Alors la classe Ç , c’est-à-dire la classe A parfai-
tement déterminée pour laquelle C == AKa, est une classe ambige et par suite l’expres-
sion AK, où A représente successivement toutes les classes ambiges et où K prend
toutes les valeurs K~...., K‘, fournit toutes les classes du corps et ne donne chacune
d’elles qu’une fois. Mais d’après le théorème 108, le nombre des classes ambiges
est 2r-’; par suite Iz=2’’-’f, et comme h=gf, on voit que g=2r-’. Le théorème
fondamental I00 est complètement démontré. [Gauss1.]

§ 79. - LA REPRÉSENTATION TRANSCENDANTE DU NOMBRE DES CLASSES ; ELLE PERMET

D’ÉTABLIR QUE LA LIMITE D’UN CERTAIN PRODUIT INFINI EST POSITIVE.

La deuxième démonstration de l’existence des genres s’appuie sur des consi-
dérations transcendantes, .

THÉORÈME I09. - Le nombre h des classes d’idéaux du corps k de discriminant cl
est déterminé par la formule



le produit du second membre s’étend à tous les nombres premiers p rationnels et le

symbole (-) a le sens fixé au paragraphe 61. Le facteur ;., suivant q ue k est ima-
ginaire ou réel, c’est-à-dire suivant que d est négatif ou positif, a la valeur ..

w a la valeur 6 pour d = - 3, pour d = - l~ la valeur 4; il est égal à 2 pour toute
autre valeur négative de d; d’autre part, pour tout corps réel e sera celle de ses

quatre unités fondamentales, qui est > i, et log e sera la partie réelle du logarithme
de cette unité fondamentale ~. [Dirichlet 8, 9.]

Démonstration. - D’après le paragraphe 2;, on a, tant que s est réel et > 1 :

le produit s’étendant à tous les idéaux premiers du corps k . Ordonnons ce produit
d’après les nombres premiers rationnels p d’où proviennent ces idéaux premiers ~;
on voit, d’après le théorème 97, qu’à tout nombre premier rationnel p correspond
dans ce produit le facteur

suivant ue ~ 1= ~ I, ’ _ -- I, ’ = o. Nous écrirons ces trois expressions sous une
forme qui leur est commune

et nous obtenons

où les deux produits du second membre s’étendent à tous les nombres premiers
rationnels p. En vertu de

où n prend toutes les valeurs entières rationnelles,



Notre théorème log va résulter du théorème 56, si nous évaluons x d’après le

paragraphe 25. Pour trouver iu, il faut remarquer que le corps ~:(~- 3) contient

six racines de Funité + 1, + 1±~/-3 et que le corps k(~- i) contient les
2

quatre racines de l’unité + i, + i; par contre, tout autre corps imaginaire k ne con-
tient que les deux racines de l’unité + 1. (Comparez § 62.)

La conséquence la plus importante que nous en tirerons est le

THÉORÈME 110. - Soit a un nombre entier rationnel quelconque positif ou négatif,
non carré parfait ; la limite de

est toujours une grandeur finie différente de o. [Dirichlet 8, q.J

Démonstration. - Soit a = b2 étant le plus grand carré contenu dans a ;

soit, de plus, d le discriminant du corps déterminé par Pour tout nombre pre-

mier impair p qui ne divise pas b, on a les deux produits infinis

ne peuvent différer que d’un nombre fini de facteurs. Le premier produit restant fini

pour s = I, d’après le théorème Io9, il s’ensuit que le second tend vers une limite

finie.

§ 80. - IL Y A UNE INFINITÉ DE NOMBRES PREMIERS RATIONNELS PAR RAPPORT AUXQUELS

LES CARACTÈRES DE RESTES QUADRATIQUES DES NOMBRES DONNÉS SONT DONNÉS.

Le théorème I0 va nous permettre de démontrer les propositions suivantes :

[Dirichlet 9, Kronecker10.]

THÉORÈME I I I. . - Soient a1, a2, ..., at, t nombres entiers rationnels quelconques
positifs ou négatifs, mais tels qu’aucun des 2t - 1 nombres ai, a2, ..., 

..., at-iat; ..., ... , at ne soit un carré, et désignons par ci, c~, ... , unités

quelconques + I ou - I, il y a une infinité de nombres premiers rationnels p, tels
que



Démonstration. - Tant que s > 1,

L’expression S, on l’a montré au paragraphe 50, reste finie pour ~s = i ; il en

résulte que la somme étendue à tous les nombres premiers rationnels p

croît au delà de toute limite lorsque s tend vers l’unité, Soit, de plus, a un nombre
entier rationnel quelconque ; on a pour ~ ~> 1

Lorsque a n’est pas carré parfait, nous savons (théorème II0) que log II 
1

est fini pour s=I, et, comme on peut en dire autant de S~, il en résulte que la
.

somme

tend vers une limite finie pour ~== i. Remplaçons dans (27)

et donnons à chacun des t exposants at, a~, ..., at la valeur o ou i, en exceptant tou-

tefois le système de valeurs

Multiplions ensuite chacune des sommes déduites ainsi de (27) par le facteur cor-

respondant cu22cutt, et additionnant les Zt - 1 expressions à (26), il nous vient

Cette somme, tout comme la somme 26, croîtra indéfiniment quand s tend

vers 1. Faisant abstraction des nombres premiers p contenus dans as, ... , at, et

qui sont en nombre fini, la somme (28) égale 2t II I,J , où p’ ne prend que les valeurs
- c~,~ p

des nombres premiers p qui remplissent toutes les conditions de l’énoncé du théo-

rème ni. Et comme cette somme croît elle aussi au delà de toute limite, il faut que

les nombres premiers p’ existent en nombre infini. Le théorème III est démontré.



§ 81. - L’EXISTENCE D’UNE INFINITÉ D’IDÉAUX PREMIERS DE CARACTÈRES DONNÉS DANS UN
CORPS QUADRATIQUE.

THÉORÈME 112. - Soient

les r caractères qui déterminent le genre d’un idéal ) de k, et soient c , ..., c, ,
r unités quelconques + i satisfaisant à la condition c,, _ -~--1; il y a une infinité

d’idéaux premiers V du corps k pour lesquels

Démonstration. - Supposons que le discriminant du corps contienne les 1 nom-

bres premiers rationnels 1, , ... , Q ; 1 = r ou = iOE + i , dans. ce dernier cas, soit

( 
I, m lt) = - i , et la condit,ion (± n(i), m lt) = + i servira. à déterminer le signe

devant n(1). Nous écrirons dans ce cas ct = = + i . Nous démontrerons d’abord

qu’il y a une infinité de nombres premiers rationnels p pour lesquels

et nous distinguerons pour cela trois cas, suivant que

Dans le premier cas, nous partirons de l’hypothèse

Le théorème III nous apprend qu’il y a une infinité de nombres premiers p qui
satisfont à ces conditions. Comme la première condition revient à p - i suivant /, on
a pour ces nombres premiers p

pour i =1, ..., t.

Dans le second. cas, désignons par h celui des nombres premiers ..., l~, qui est
égal à 2. Soit alors c~ _ -+- ~ ; nous prendrons comme point de départ l’hypothèse



et il résulte du t.héorème lit qu’il existe une infinité de nombres premiers p satis-

faisant à ces conditions. La première égalité nous apprend que ("2014) == -~- i =c ,
B 2 / 

~

et, de plus,

pour i=1, ..., z- l, N ~- 1, ..., t.
Par contre, si c~==2014 i, nous admettrons que

et les nombres premiers (en nombre infini) qui remplissent ces conditions satisfont
aussi à

pour 1 = 1 , ..., z- I, z ~ 1, ..., t.

Dans le troisième cas, nous considérerons en particulier l. = 2. Nous admettrons

que

le théorème III nous montre qu’il y a une infinité de nombres premiers satisfaisant
à ces conditions et pour lesquels

et, de plus,

pour i= 1 , ..., z- i, z + I, ..., t.

Soit alors p l’un quelconque des nombres premiers rationnels p, tels que

D’après le lemme i4. on a

et, par suite,

c’est-à-dire que p, dans le corps se décompose en deux idéaux premiers V et V’.
Chacun de ces idéaux ~ répond aux conditions du théorème 112; c’est ce que
nous voulions démontrer.



§ 82. - LA DÉMONSTRATION TRANSCENDANTE DE L’EXISTENCE DES GENRES ET DES RÉSULTATS

ÉNONCÉS DU § 71 AU § ’y~.

Le théorème 112 démontre l’existence des 2r-t genres, mais il nous fait découvrir

aussi un fait plus profond.
THÉORÈIE 113. - Parmi les idéaux d’un genre quelconque du corps quadratique,

il y a une infinité d’idéaux premiers.
Lorsqu’on a démontré l’existence des 211-1 genres par ces moyens transcendants et

indépendamment des théorèmes 102, Io3 et 108, il est facile d’en déduire aussi ces

théorèmes. Il suffit de savoir que le nombre a des classes arnbiges de fi est tou-

jours  2’’-’. Ce fait se déduit du théorème Io6 relatif au nombre des classes am-

biges qui proviennent d’idéaux ambiges, en tenant compte des conclusions de la
deuxième et de la troisième partie du théorème ces déductions sont tout à fait

indépendantes du théorème 102.
Soit alors, comme avant, y le nombre des classes du genre principal, g le nombre

des genres et f’ le nombre de y classes du genre principal qui sont des carrés de classes.
Il en résulte, comme au paragraphe ~8, que g f = a f’, et comme, d’autre part,
g = 2’~-’, de plus a  2r-~, il faut que f’ , f, et, par suite, f’ = f, a = 2r~’.

La première égalité démontre le théorème io3; la seconde, le théorème 108, et,
par suite, le théorème 102 pour n = -1.

Le théorème 102 résulte complètement de io3 et des derniers résultats. Car le
nombre n en question, en vertu des conditions qui lui sont imposées, est alors la

norme d’un idéal % du genre principal, précédé du signe prévu au paragraphe 65.

Désignons par $ un idéal tel il faut que 03B1=hn(03B2) 03B22, soit un nombre

entier ou fractionnaire du corps et l’on a n(x) _+ n, d’où le théorème I02, si
l’on considère qu’il est vrai pour n = - i.

Nous voyons, en somme, que la méthode transcendante nous permet de démon-
trer les résultats des paragraphes 71-78 dans l’ordre inverse où les avons trouvés par
la voie arithmétique.

§ 83. - LE SENS PLUS ÉTROIT DE L’ÉQUIVALENCE ET DU CONCEPT DE CLASSES.

Si nous prenons pour base de l’équivalence de deux. idéaux le sens plus étroit

exposé au paragraphe 24, les théorèmes établis aux chapitres XVII, XVIII subissent
de légères modifications faciles à trouver.

Il est tout d’abord évident que le sens plus étroit de l’équivalence coïncide avec le
sens ordinaire dans tous les cas pour un corps imaginaire k, et pour un corps réel 1~

lorsque la norme de l’unité fondamentale " ~- I. Mais lorsque dans un corps
réel n(~) _ + i, une classe idéale au sens de la répartition primitive se répartit ici en



deux classes ; en particulier, la classe des idéaux principaux se décomposera ici en
deux classes représentées par l’idéal principal ( i ) et par l’idéal principal ~~m) .
Soit h’ le nombre des classes d’idéaux avec le sens plus étroit de l’équivalence; on a,
dans les circonstances actuelles, h’ ~ 2h . [Dedekind 1. ]

§ - LE THÉORÈME FONDAMENTAL POUR LE NOUVEAU CONCEPT DE CLASSE ET DE GENRE.

Au sens nouveau de classe correspond un sens nouveau de genre. Le genre d’un 
,

idéal ) du corps k(~m.) sera dorénavant défini dans tous les cas par lest unités :

Ici, la norme de j sera constamment prise avec le signe -}-. Pour un corps imagi-
naire, ce sens nouveau de l’équivalence coïncide totalement avec l’ancien. On peut en
dire autant d’un corps réel If, dans le cas où le système de caractères de -I n’est

composé que d’unités positives. Cette dernière circonstance se présente toujours
lorsque dans le corps la norme de l’unité fondamentale est égale à 2014 i. Supposons
donc k réel et la norme de l’unité fondamentale égale à + 1; il faut distinguer deux

cas, suivant que le système de caractères de - i se compose uniquement d’unités

positives ou non.
Dans le premier cas, les idéaux (i) et a=~~m) appartiennent l tous deux au

même genre, car

Les nouveaux genres comprennent les mêmes classes que les anciens, et le 

nombre des genres est 

Dans le second cas, les deux classes d’idéaux représentés par l’idéal (i) et

l’idéal ~==(B/y??) appartiennent à deux genres différents des genres nouveaux. Le
nombre des genres nouveaux est double de celui des anciens ; mais en ce qui con-
cerne ce cas, le nombre des caractères au sens primitif du genre était t - I, et le
nombre de ces genres 2t-~, tandis que le nombre des nouveaux genres est comme

dans les autres cas 2‘-’ . Et comme dans tous les cas le produit ,

le théorème fondamental 100 est vrai aussi en tenant compte du sens nouveau de

classes et de genre à la condition d’y écrire t au lieu de r.
Les autres propositions et démonstrations des chapitres XVII et XVIII se modi-

fient de même sans difficulté, et même quelques théorèmes s’énoncent plus sim-

plement.



CHAPITRE XIX.

La détermination du nombre des classes d’idéaux du corps quadratique.

§ 85. - LE SYMBOLE ( - ) POUR UN NOMBRE COMPOSÉ n .
~ 

n,

On obtient une expression remarquable du nombre h des classes d’idéaux du

corps quadratique Ii par la formule du théorème 109, en transformant par le calcul
le nombre

’ 

en un nombre fini.

Pour cela, il nous faut d’abord définir le symbole I ~n a , aussi pour le cas où n est
un nombre entier positif rationnel composé. Soit ... w, où p, q, ..., w sont

des nombres premiers rationnels égaux ou distincts ; nous définirons

de plus, soit (- = + i ; on a, pour s > i,

où la somme s’étend à tous les entiers positifs rationnels. Le calcul de la limite de
cette somme pour s = i nous donne un nombre fini pour le nombre des classes h.

Le résultat est donné par le théorème suivant.

§ 86. - L’EXPRESSION FINIE DONNANT LE NOMBRE DE CLASSES D’IDÉAUX.

THÉORÈME II4. - Le nombre h des classes d’idéaux du corps k(m) est



où la somme 1 s’étend aux entiers rationnels n=1, 2, ... et où les produits
(n)

II, II s’étendent à tous les nombres a et b parmi ces nombres satisfaisant à
(a) (b)

~ = + 1 et b - -1. [Dirichlet 8~ 9 ; Weber ’.]
Dém,onstration. - Soient n et n’ deux nombres positifs. Lorsque n et d ont un

diviseur commun, --+ - 1 (d n) = o. Par contre, lors q ue n est premier avec d, on
voit facilement que - = II (d, n w), où le produit s’étend à tous les nombres pre-
miers w qui divisent n. D’après le lemme i4? II représente la même unité

lorsque l parcourt toutes les valeurs des nombres premiers contenus dans d. Soit
n’ - n suivant d

De plus, on a

car nous pouvons déterminer un nombre b tel que (- ) --1 1 et on a, en tenant compte
de (29) :

La formule

donne, en tenant compte de la règle 29,

où l’on a posé

L’égalité 30 nous montre que F(x) admet le facteur i 2014 x, et la fonction ration-

nelle est finie pour / = o.
i 2014 e



Aussi

faisons le changement de variable x = e-t, on a

et la décomposition en fractions simples donne

où la somme s’étend à /~= r, 2, ... ~d~, et, d’après un théorème de Gauss, 
c’est-à-dire

n’ prend encore les valeurs 1, 2, ..., et Vd est positif pour d positif, imagi-
naire positif pour d négatif [voir § 1 a1~]. Comme, de plus.

où il faut prendre la valeur réelle du logarithme, on en tire sans difficulté le résultat
du théorème 114.
La forme de ce résultat est essentiellement différente, suivant que le corps est imagi-

naire ou réel. Dans le premier cas, h peut être déduit de la formule indiquée sans plus.
Dans le second cas, il faut d’abord connaître l’unité fondamentale e; le quotient des
deux produits II et II est, on le montrera au paragraphe 121, une certaine unité

(a) (b)

du corps quadratique provenant de la théorie de la division du cercle.
Prenons comme exemple le cas d’un corps imaginaire, soit m = - p, et p un

nombre rationnel premier positif ~ 3 suivant 4 et > 3 ; on a

ici, Eb désigne l’un la somme des restes quadratiques suivant p, l’autre la somme
des non-restes compris entre o et p. Une transformation simple permet de faire dispa-
raître le dénominateur p de cette expression. On voit alors que le nombre des classes

h est égal à l’excès du nombre des restes quadratiques de p situés entre o et p sur le
2

nombre des non-restes compris entre les mêmes limites, ou au tiers de cette diffé-
rence, suivant que p _--__ ~ ou - 3 suivant 8. Le premier nombre excède donc le second,
ce qui n’a pas encore été démontré par une voie purement arithmétique.



§ 87. - LE CORPS DE NOMBRES BIQUADRATIQUES DE DIRICHLET.

Le problème suivant est une généralisation de la théorie du corps quadratique
qui vient d’être développée. Au lieu de prendre comme base le domaine de ratio-
nalité formé par tous les nombres naturels rationnels, nous prendrons comme base
le domaine de rationalité formé par un corps quadratique k ; et nous examinerons

les corps I1 quadratiques relatifs par rapport à k, c’est-à-dire les corps biquadra-
tiques K qui admettent le corps donné fi comme sous-corps.

Lorsque le corps k est déterminé par l’unité imaginaire ~/2014 I, le corps K sera
dit le corps biquadratique de Dirichlet. On possède des recherches étendues pour ce

corps. [ Dirichlet 10, ", ~~, Eisenstein 3, ~, Bachmann 1, 3, Minnigerode 1 , Hilbert ~.~ ] Le

théorème roo s’applique encore à la répartition correspondante des idéaux du corps K
en genres ; ce théorème s’applique avec une transformation appropriée et les deux
méthodes de démonstration dii chapitre XVIII peuvent être employées dans le

corps K. de sorte que ce théorème fondamental pour le corps quadratique de Diri-
chlet peut être établi aussi bien sur une base purement arithmétique [Hilbert ~] qu’au
moyen de la méthode transcendante de Dirichlet [Dirichlet10, 11,12, Minnigerode1].

Si le corps K contient, .outre le corps quadratique ~- i, deux autres corps qua-
dratiques k~~-f- m~ et k~~- m~, présente un intérêt particulier. Pour un pareil
corps spécial de Dirichlet K , on a le fait suivant, auquel on parvient encore par la
voie transcendante ou par la voie purement arithmétique.

THÉORÈME 116. - Le nombre des classes d’idéaux d’un corps spécial biquadra-
tique de Dirichlet m, ~- m) est le produit du nombre des classes dans les
corps quadratiques A’(y+ /~) et ou la moitié de ce produit, suivant que
la norrne relative par rapport à k~~- i) de l’unité fondamentale du corps K est
égale à + ou à + i. Dirichlet désigne ce théorème comme l’un des plus beaux de
la théorie des imaginaires et il le trouve surprenant, parce qu’il révèle un rapport
entre les deux corps quadratiques déterminés par la racine de deux nombres opposés.

La démonstration arithmétique de ce théorème permet, et cela d’une façon très

simple, de distinguer au moyen de certaines conditions remplies par les caractères

du genre les classes d’idéaux des corps biquadratiques m, ~- m) qui peu-
vent être considérées comme le produit d’une classe d’idéaux de k~~-~- m) et d’une
d’une classe d’idéaux de 1~~~- [Hilbert 4.]



CHAPITRE XX.

Les anneaux de nombres et les modules du corps quadratique. 
’

§ 88. - LES ANNEAUX DE NOMBRES DU CORPS QUADRATIQUE.

La théorie des anneaux et des modules d’un corps quadratique s’obtient rapide-
ment en particularisant les théorèmes généraux du chapitre IX. On s’aperçoit faci-
lement que tout anneau du corps est obtenu au moyen d’un seul nombre de la
forme f « , où M est le nombre défini au paragraphe 59, celui qui forme avec i une
base du corps k, où f est un certain nombre entier rationnel, le conducteur de l’an-
neau. Si, de plus, d est négatif et ~2014 4, le théorème 66 nous apprend que le nombre
h?, des classes régulières de l’anneau r est donné par la formule

où le produit s’étend à toutes les valeurs des entiers rationnels premiers p contenus
dans/. [Dedekind 1, 3.]

§ 89. - UN THÉORÈME RELATIF AUX CLASSES DE MODULES DU CORPS QUADRATIQUE.
LES FORMES QUADRATIQUES BINAIRES.

THÉORÈME 116. - Dans une classe de modules du corps quadratique k, il y a

toujours des idéaux d’anneaux réguliers. [Dedekind 1.~ ]

Démonstration. - Soit [y.l, un module quelconque du corps 1£, où 1 et sont

des nombres entiers, et et le discriminant de la classe de modules déter-
minée par [u,l, de plus, désignons par ;~,~) l’idéal déterminé par les 

’

nombres et N.~, et soit s m = m’ l’idéal conjugué de m. Déterminons un entier du
. corps k, x, divisible par m’ et tel que x, soit premier avec ~. Posons alors .

m .

alors [«, , sera un module équivalent à [y.~ , ~,~] , alors que l’idéal est

premier avec ~ . , 
.



Supposons .) pair, nous considérerons d’abord les trois entiers ~,~, + a, ; parmi
ces nombres, l’un au moins est premier avec 2, sans quoi, parmi ces trois nombres,
deux au moins auraient un diviseur idéal commun avec 2, ce qui est contraire à
l’hypothèse que l’idéal a est premier avec ~. Soit premier avec 2. Désignons par
p, q , r,, ..., iu les facteurs premiers rationnels impairs de ~. Comme a est premier
avec p, il faut que l’un au moins des trois nombres x,,, x1 + «~, a.1 + z«2 soit premier
avec p. Supposons «1 + x03B12 premier avec p, a1 + y03B12 premier avec q, où x, y, ... sont

des entiers rationnels. Il en résultera facilement l’existence d’un entier rationnel a,
tel que + a x~ soit premier avec ~ .

Posons alors

où a/, ~ sont les nombres conjugués de y~; alors b est un entier rationnel positif
et 03B2 un entier algébrique, et le module + a03B12, xj est équivalent au mo-

dule [~, et, en même temps, comme (b , 6)==-’20142014~2014~-, la norme N(6, p)==6.

. 

Le module [6, 8] est évidemment un idéal d’anneau régulier de l’anneau r déterminé

par le nombre 6, r==(~); le théorème 116 est complètement démontré.
A cause de

le discriminant de l’anneau r est égal au discriminant de la classe de module consi-
dérée. L’anneau r est le seul qui offre parmi ses idéaux d’anneau réguliers des modules

équivalents à [N.1, Le théorème 116 nous montre que, pour le corps quadratique,
cela revient au même de considérer les classes de modules ou les classes d’anneaux

réguliers.
D’après les raisonnements des paragraphes 3o et 35, on voit qu’à chaque classe

de modules d’un corps quadratique A’(B/~) correspond une classe de formes binaires
quadratiques à coemcients entiers et rationnels, et, réciproquement, à chaque pareille
classe de formes dont le discriminant n’est pas un carré, correspond une classe de

, 
modules d’un corps quadratique, où les classes de modules et les formes ont même
discriminant. Nous avons complètement terminé les recherches sur les corps quadra-
tiques de discriminant donné ).

§ 90. - LA THÉORIE INFÉRIEURE ET LA THÉORIE SUPÉRIEURE DU CORPS QUADRATIQUE.

Les recherches faites dans la troisième partie de ce livre forment la théorie infé-
rieure du corps quadratique; je désigne par théorie supérieure les propriétés du corps



quadratique qui nécessitent, pour les établir, l’emploi de corps auxiliaires de degré
plus élevé. On trouvera un chapitre relatif à cette théorie dans la quatrième partie.

Pour construire la théorie d’un corps de classe relatif à un corps imaginaire
quadratique et du corps relatif abélien correspondant, il faut le secours de la multi-

plication complexe des fonctions elliptiques, et ceci est un obstacle qui m’a empêché
d’introduire cette étude dans mon rapport.
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QUATRIÈME PARTIE.
LES CORPS CIRCULAIRES.

CHAPITRE XXI.

Les racines de l’unité d’indice premier 1 et le corps circulaire

qu’elles définissent.

s ()I. - DEGRÉ DU CORPS CIRCULAIRE DES RACINES DE L’UNITÉ ET DÉCOMPOSITION

DU NOMBRE PRE! 1ER l DANS CE CORPS.

%ir

Soit l un nombre premier impair et 03B6 = el. L’équation de degré l

a les l racines

Ces nombres sont les racines [ièmes de l’unité. Le corps qu’elles définissent, c(~), s’ap-
pellera le corps circulaire des racines lièmes de l’unité. On a d’abord la proposition
suivante :



THÉORÈME II7. - Le degré du corps c(03B6) est l - 1 . Le nombre premier l admet

dans c(~) la décomposition l = h‘1, 1 étant l’idéal premier du premier degré (i - ~).

Démonstration. - Le nombre § vérifie l’équation

le degré du corps est donc au plus 1 2014 i ; ~, ~$, ... , ~l-~ étant les l - 1 racines de cette

équation, on a identiquement en x : :

D’où, pour x =1,

Soit maintenant g un entier quelconque ~> i non divisible par /, et soit g’ un

entier positif tel que gg’ -1 mod l Alors les quotients 
°

sont deux entiers algébriques, et par suite

est une unité du corps c(~). Si nous posons de plus ~ = 1 - ~ et I ._ (i~), la for-

mule (31) prend la forme

On conclut immédiatement du théorème 33 qu’un nombre premier rationnel ne

peut, dans un corps donné, être le produit d’un nombre d’idéaux premiers supérieur
au degré du corps. Le degré du corps c(~~ doit donc, vu la formule (32), être au

moins égal à 1 - 1 ; d’après ce qui précède, il est donc exactement égal à 1 - 1.

D’autre part, pour la même raison, l’idéal 1 doit être indécomposable dans c(~) et,

par suite, c’est un idéal premier. [Dedekind 1.]
Ce résultat montre en même temps que le polynome F(x) est irréductible dans le

domaine des nombres rationnels.



§ 92. - BASE ET DISCRIMINANT DU CORPS CIRCULAIRE.

THÉORÈME 118. - Dans le corps c(03B6) les nombres

forment une base. Le discriminant du corps est

Démonstration. - La différente du nombre 1 dans le corps c() est

on. tire

d’après la remarque faite au paragraphe 3, le discriminant du nombre § est alors

Comme le discriminant d(i,) du nombre À a certainement la même valeur d(s), la

remarque faite pour la formule (I) dans la démonstration du théorème 5, paragra-
phe 3, montre que tout entier 03B1 du corps c(03B6) peut être mis sous la forme

,.., étant des entier s rationnels.

Les nombres ai, ..., doivent alors nécessairement être tous divisibles par
le dénominateur l‘-~. Pour montrer d’abord qu’ils sont divisibles une fois par l, sup-
posons qu’il y en ait de non divisibles par l et soit a le premier; de - o, mod. l
résulterait alors, vu l= rl-!, a~),g-o, mod Ig~~, c’est-à-dire mod r, et par suite

aussi mod l contrairement à l’hypothèse. On peut donc supprimer un facteur 1 au

numérateur et au dénominateur de (33). En poursuivant cette simplification, on voit
finalement que tout entier du corps c(‘), dans ses représentations

avec des coefficients rationnels ao, ai, .... ou bo, ..., , admet pour tous

ces derniers des valeurs entières.

Puisque les puissances 1, ~, ..., ~l-2 du nombre ~ forment donc une base du
corps c(~), le discriminant d(~) du nombre ~ est en même temps le discriminant du
corps.



§ 93. - DÉCOMPOSITION DES NOMBRES PREMIERS DIFFÉRENTS DE 1.

La décomposition du nombre premier 1 dans c(~) a été donnée dans le théo-
rème i Pour celle des autres nombres premiers, on a la règle suivante :

THÉORÈME I I ~. - ~J étant un nombre premier différent de l et f le plus petit expo-
sant positif pour lequel i, mod /, , si l’on pose l - 1 = ef. on a dans c(~) la

décomposition

où ~1, ... , Ve sont des idéaux premiers distincts de degré f de c(~). 

Démonstration. - Soit x = a + a~~ + ... + a~_~~l-~ un entier arbitraire de c(~) ;
on a les congruences

Si maintenant est un idéal premier divisant p, la congruence (mod p) est
vérifiée a fortiori mod ~, c’est-à-dire la congruence 

..

est vérifiée par n’importe quel entier de c(~). Le nombre des racines de aette con-

gruence incongrues mod ~ est par suite égal au nombre des entiers de c incongrus
mod ~, c’est-à-dire à n(~)=p~’, f’ désignant le degré de l’ideal premier ~; mais le
degré de la congruence (34) est pr. . On a donc (théorème 26) p~’ c’est-à-dire

f ~ f.
D’autre part, vu le théorème de Fermât généralisé (théorème 24), on a sûrement

Comme, vu la formule (31), pour un exposant g non divisible par [le nombre
1 - ~~ est toujours premier à ~, il résulte de la congruence (35) p~’ - I ~ o, mod l,
et par suite f’  f. Donc f’= f, c’est-à-dire que tout idéal premier diviseur de p est
de degré f.

Comme p ne divise pas le discriminant du corps c(~), il résulte du théorème 31

que p se décompose en idéaux premiers tous distincts. En posant ... on a

n( p) = pZ-1 = c’est-à-dire l -1= e f, e’ = e. La démonstration du théorème II9

est ainsi complète. ,



Pour obtenir effectivement les idéaux premiers ..., Ve’ appliquons le théo-
rème 33, en ayant égard à la remarque faite à ce sujet paragraphe i3. On a, d’après
cela, la décomposition identique mod ~~

où F,(x), ..., Fe(x) sont des polynômes entiers de degré f à coefficients entiers, irré-
ductibles et incongrus mod p. Ces fonctions une fois déterminées, on obtient la

représentation cherchée par les formules

CHAPITRE XXII.

Racines mièmes de l’unité, m étant composé, et corps circulaire
’ 

correspondant.

~ 94. - L~ CORPS DES RACINES mièmes DE 

~’ i- 

’

Soit m un nombre entier positif quelconque et posons Z ~= em. . L’équation de
degré m

Ces nombres sont les racines mièmes de l’unité; elles définissent un corps c(Z), appelé
le corps circulaire des racines mièmes de l’unité.

Si m est composé, on a

, t, ... étant les facteurs premiers distincts de m, et l’on peut décomposer I ent ~ 

~rz

fractions simples :

où a~, a~, ... sont des entiers positifs ou négatifs et est premier à h, a~ à l~, etc.

(1) N. T. - Dans le cas particulier de/’= r, c’est-à-dire de -f- i , on a, en désignant
par y une racine primitive mod p :

et, par suite,



De là résulte

en posant

Le corps c(Z) résulte donc de la combinaison des corps des racines l1~ de

l’unité, c(Z,J, etc. Nous commencerons donc par traiter le cas le plus simple, où
nn = lh ne contient qu’un nombre premier. 

’

§ 95. - ."EGRÉ DU CORPS CIRCULAIRE DES Zhièmps RACINES DE ET DÉCOMPOSITION

DU NOMBRE PREMIER l DANS CE CORPS.

THÉORÈME 120. - Que l soit égal à 2 ou à un nombre premier impair, le degré du

corps c(Z), Z est égal à l’z-’(l- I). Le nombre premier 1 se décompose dans
c(Z) en l=~lh-1~l_’~, S étant un idéal du premier degré du corps.

Démonstration. - Z vérifie l’équation de degré 1)

Si l’on désigne par g un entier non divisible par l et g’ un entier tel que i

mod 1", on voit, comme au paragraphe 91, que

ainsi que l’inverse

sont des entiers du corps; par suite Eg est une unité. On en déduit, comme au para-
graphe 91, les égalités

et où les produits doivent être étendus à tous les entiers

positifs premiers à l et  lh.

On en conclut, comme paragraphe 91, que le degré du corps est au moins égal
à 1) et a, par suite, exactement cette valeur.



§ 96. - BASE ET DISCRIMINANT DU CORPS CIRCULAIRE DES RACINES DE I.

THÉORÈME 121. - Dans le corps circulaire Z = une base est formée

par les nombres

Le discriminant du corps est

avec le signe - pour lh = 4 ou 1- 3 mod 4. avec le signe + dans les autres cas.

’THÉORÈ)fE 122. - p étant un nombre premier différent de 1 et f étant le plus petit

exposant positif pour lequel I, mod lh, si l’on pose -1) = ef, on a la

décomposition

...,  e sont des idéaux premiers distincts de degré j.

Démonstration analogue à celle des théorèmes I I 8 et 119.

S - LE CORPS CIRCULAIRE GÉNÉRAL. DEGRÉ, DISCRIMINANT, IDÉAUX PREMIERS.

Soit maintenant m un produit de puissances de nombres premiers distincts

m = l1~ l2~ .... Le corps c( Z) des racines de l’unité est, comme on l’a vu, le

résultat de la composition des corps c(Z ~), ... des racines l1~ , 12~, ... èmes de

l’unité. Comme les discriminants de ces derniers sont premiers entre eux, on déduit

immédiatement du théorème 8~ (§ 52 ) la proposition :

THÉORÈME 1 23. - Le degré du corps c(Z) des racines m = lh11 lh22 ... 

ièmes de l’unité

est 
~’

En appliquant la deuxième partie du théorème 88 et ayant égard au théorème 121,
on obtient la proposition :

THÉORÈME 124. - Le corps circulaire c(Z) des racines de l’unité a pour base

Le discriminant du corps c(Z) s’obtient par l’application de la première partie du
théorème 88.

Enfin, on peut réaliser la décomposition d’un nombre premier p dans le corps



c(Z) en s’appuyant sur le théorème 88 et les propriétés des corps de décomposition
et d’inertie.

On obtient ainsi le théorème :

THÉORÈME 125. - p étant un nombre premier non diviseur de ...,

f’le plus petit exposant positif pour lequel pr == 1, mod m, si l’on pose ~~(n2) --__ ef,
p se décompose dans c(Z) en

~~1, ~ ~ ~ ,  e étant des idéaux premiers distincts de degré f de c(Z).
Si l’on pose on a dans le corps c(Z~) des racines de l’unité la

décomposition

..., étant des idéaux premiers distincts de degré f de c(Z*). [Kummer15,
Dedekind 5, Weber ~.~

Démonstration. - Supposons, pour abréger, ni = l1~ 12s, et désignons alors par
c~i~, les corps circulaires des racines 11~, de l’unité.

Soit p un nombre premier distinct de l1, l~ et soient ~t’~,~ ~~g~ deux facteurs pre-
miers idéaux de p dans et respectivement; nous désignerons les corps de

décomposition de ~~’~ dans et de dans c~~~ par c~‘~, , . Soient f, f~ les plus
petits exposants pour lesquels 1 mod , pf2 - I mod 122, et posons

alors sont les degrés des corps et fi, fi les degrés relatifs de par

rapport à et de c(2) par rapport à D’après le théorème 88, le nombre premier
p se décompose en et idéaux dans le corps ed’’ ~~ composé 

, 

de et cd ~ ; ; ces idéaux

sont donc tous premiers du premier degré dans ~~ . Nous considérons en particulier 
°

l’idéal premier D = (D(1), D(2)) et nous désignons par %’ un facteur premier de D dans
le corps c composé de c~’~ et c’2~; soit c~ le corps de décomposition de l’idéal premier
~ dans c. Il résulte d’abord de la définition d’un corps de décomposition que 
doit, ou bien coïncider avec ca, ou en faire partie comme sous-corps. Le groupe
relatif du corps composé de c~~~, par rapport à 

~~ est cyclique de degré fi; le

groupe relatif du corps composé de cd’~, par rapport à est cyclique de degré 12’
Nous en concluons que, f étant le plus petit commun multiple de f, le groupe

relatif de c par rapport à c~l’ ~? ne peut contenir aucun sous-groupe cyclique de degré
supérieur à f. Comme c, corps d’inertie de l’idéal premier ~, doit avoir un groupe
relatif cyclique par rapport à c~ et que c~ contient ~~, il en résulte que ce groupe

relatif cyclique de c par rapport à c~ est au plus de degré f.
D’autre part, faisons les remarques suivantes. Les deux corps et c~ ont comme

sous-corps commun le corps mais aucun autre de degré supérieur, car autrement



devrait encore être décomposable dans cr’~. De même les deux corps c~~~ et c~ ont

pour plus grand sous-corps commun. Prenons alors c~’ 
~~ 
pour domaine de ra tio-

nalité ; c~ est alors un corps relatif par rapport à cd’’ ~~, qui n’a ni avec ct’~, ni avec c~~~,
aucun sous-corps commun relatif par rapport à 

Nous en concluons facilement que c~ ne peut avoir un degré relatif par rapport

à c(1, 2)d supérieur à f’f J . Le corps c est donc au plus de degré c’est-à-dire

que le groupe relatif de c par rapport à cd est au moins de degré f. Ceci, joint au

théorème démontré plus haut, montre que le degré du groupe relatif de c par rap-

port à c~ doit être égal à f, ce qui montre l’exactitude du théorème 125 dans notre

cas particulier.

D’après le théorème 123, satisfait à une équation irréductible F(x) = o

de degré (P(m) à coefficien ts entiers, et d’après la démonstration du théorème 8 ~, cette

équation reste même irréductible si l’on prend pour domaine de rationalité

n’importe quel corps dont le discriminant soit premier à [Kronecker 3> ~’.]
Voici comment on forme le polynome F(x). Posons, pour abréger, xm - I = [m~

et

on a

[Dedekind t, Bachmann 2.]
Si a est un entier rationnel et p un facteur premier de F(x) premier à m, on voit

que d’après le théorème 1 25 on a toujours p - I mod m. Il y a par suite évidem-
ment une infinité de nombres premiers vérifiant cette congruence.

§ g8. - UNITÉS DU CORPS . DÉFINITION DES (( UNITÉS CIRCULAIRES » .

THÉORÈME 126. - m étant une puissance du nombre premier l et g un nombre
non divisible par l, l’expression

/ 2~B
représente toujours une unité du corps cBZ~=~/’



Si le nombre m contient plusieurs facteurs premiers et si g est premier à m,

l’expression

21r

représente toujours une unité dans le corps défini par .

Démonstration. - La première partie de ce théorème 126 a déjà été établie dans
les démonstrations des théorèmes II7 et 120. Pour démontrer la seconde, posons
rn = lh22lh38 ... e t

où a est un entier premier à l1 et b un entier premier à .... On a

Or, on a

le produit étant étendu à x = o, 1 , 2, ..., l~~ -1, ou

le produit étant étendu seulement à x’ =1, 2, ..., l1~ _ ~ ,

Distinguons maintenant deux cas, suivant qu’il y a dans m deux facteurs premiers

l1, h, ..., ou davantage : Dans le premier cas, le second membre de (3~) est une
unité d’après la première partie du théorème 126. Dans le second cas, nous pouvons

admettre que le théorème 126 ait été démontré pour les corps c~e nt"~ , dont le
nombre moins de facteurs premiers que ni.. Le théorème s’applique donc au

corps formé des racines h2 èmes de l’unité. Par suite, le numérateur et le dénomina-
teur de la fraction du second nombre de (37) sont des unités. L’expression (36) est

un facteur du produit du premier membre de (3;), et, par conséquent, dans tous les

cas, c’est une unité. C. q. f. d. 

Une unité quelconque du corps circulaire est le produit d’une racine de

l’unité et d’une unité réelle. La racine de l’unité n’appartient pas toujours au

corps mais peut, si m contient plusieurs facteurs premiers différents, être,

dans le cas de m pair, une racine 2mième de l’unité, et, dans le cas de 171 impair, une

racine [Kronecker ~.] On a en particulier le théorème suivant déjà trouvé par
Kummer.



THÉORÈME I27. - 1 étant un nombre premier impair, si l’on considère, dans le

corps c(03B6) défini , le sous-corps c(03B6 + 03B6-1) de degré 
l _ I 

défini par

03B6+03B6-1, un système quelconque d’unités fondamentales de ce corps réel c(03B6 + 03B6-1)
est en même temps système d’unités fondamentales de c(~).

Démonstration. - ~(03B6) étant une unité quelconque de c(03B6), ,,_1 en est une autre,’ ’ 

)
ayant ainsi que ses conjuguées pour valeur absolue i, et c’est par suite, d’après le théo-

rème 48, une racine de l’unité; p osons _ -±- 03B62g( 1 , où est un entier.

L’unité r(~) _ ~(~) ~-~ possède alors la propriété

Dans cette formule (38), le signe + est seul possible. Autrement r(~) serait une
unité purement imaginaire ; alors, posons r," _ ~ , est une unité du sous-corps
réel c(~ + ~-’). La différente relative du nombre -r, == B/2.j par rapport au sous-corps
réel c(~ + S-1) est 2 ~, et, par suite, première à l. Par suite, la différente relative du
corps c(Q par rapport à c(s + ~-’) devrait être première à l. Or, si r~ désigne un fac-
teur idéal premier quelconque de l dans le corps réel c(~ + ~~’), cet idéal ne serait
donc pas, d’après le théorème 93, égal. au carré d’un idéal premier du corps c(~).
Mais comme I* entre au plus à la puissance - dans l, cette dernière conséquence
serait contraire au théorème II7 sur la décomposition du nombre 1 dans c(T); donc,
le second membre de (38) a bien le signe + . De ~r,(~) _ ~r,(~~1) su i t que ~~,(~) est réel.
C. q. f. d.

Les unités données au théorème 126 sont imaginaires.
Pour en obtenir de réelles, formons, suivant que m est une puissance d’un nombre

premier, ou contient plusieurs facteurs premiers différents, les expressions

où g est premier à m et où les B/ sont pris avec le signe +. Ces unités s’appelleront
simplement unités circulaires. Comme r - Z-y = - I - Z-g), on reconnaît que,
dans le premier cas, ces unités appartiennent au corps c(Z) lui-même, tandis que,
dans le second, ce sont des produits d’unités du corps c(Z) par des racines 2 mièmes ou
4 mièmes de l’unité, suivant que m est pair ou impair.

(1) N. T. - On peut prendre un exposant pair, car on peut ajouter à l’exposant un multiple
quelconque de 1 qui est impair.



CHAPITRE XXIII.

Propriétés du corps circulaire comme corps abélien.

§ 99. - LE GROUPE DU CORPS CIRCULAIRE DES RACINES 111ièmes DE 

Le corps circulaire des racines de l’unité est toujours abélien et l’on a les
théorèmes plus spéciaux ci-après.

THÉORÈME 128. - l étant premier impair, le corps circulaire défini par Z- e 2i03C0 lh
est un corps cyclique. 

’

Le corps circulaire défini par Z =ei03C0 2h > 2) est composé du corps quadratique

imaginaire c(i) et du corps réel + e-i03C0 2h). Ce corps réel est cyclique de

degré 2 h-l .

Démonstration. - La première partie du théorème I28 résulte de l’introduction
de la substitution s = (Z ; Z’), où r est une racine primitive, mod l’‘. Il est alors

évident que toutes les substitutions du groupe de c(Z) sont des puissances de s.
Pour démontrer la deuxième partie (1), considérons les substitutions :

Il en résulte aisément que les puissances de s et leurs produits par s’ représentent
toutes les substitutions du corps c(Z).

Le théorème 138 conduit immédiatement au groupe d’un corps circulaire des ra-

cines de l’unité, in étant composé.
La détermination des corps de décomposition, d’inertie et de ramification pour

un idéal premier donné de c(e2i03C0 m) peut se faire facilement avec l’aide des théorèmes
démontrés paragraphes 95. 96 et 97, sur la décomposition d’un nombre premier dans
un corps circulaire. On obtient ainsi en particulier ce résultat :

THÉORÈME 129. - l étant premier impair, dans le corps circulaire c(Z) des 
racines de l’unité, l’idéal contenu dans l a pour corps de rami-

fication le corps c(Z) lui-même, et l’ensemble des nombres rationnels est à la fois

corps de décomposition et corps d’inertie. ~ étant un idéal premier de degré f de c(Z),
différent de S, c(Z) est le corps d’inertie, et le corps de décomposition de D est le

sous-corps de degré e~ ln_~(l t, _ ~) correspondant aux substitutions
s désignant une substitution Z ; Zr dont les puissances engendrent complètement le

groupe de c(Z).

( ~ ) ~. T. - Il n’existe pas en effet de racines primitives, mod 2’‘+’, pour h ~ 2.



§ 100. - GÉNÉRALISATION. - THÉORÈME FONDAMENTAL SUR LES CORPS 

Généralisons maintenant la notion de corps circulaire ; désignons sous le nom de

cor p s circulaire tout court non seulement tout corps défini par des racines de

l’unité d’indice m quelconque, mais aussi n’importe quel sous-corps du corps 

Comme le corps c(e nt ) est toujours abélien, et que m et m,‘ étant des exposants quel-
conques, le corps des racines ln ièmes et celui des racines de l’unité sont tous les

deux des sous-corps du corps des racines nz . on a pour les corps circulaires

plus généraux qu’on vient de définir les propositions suivantes :

THÉORÈME I30. - Tout corps circulaire est abélien. Tout sous-corps d’un corps

circulaire est un corps circulaire. Tout corps composé de corps circulaires est aussi
circulaire :

Voici maintenant une proposition fondamentale qui fournit la réciproque de la

première partie du théorane précédent.

THÉORÈME I3I. - Tout corps abélien dans le domaine cle rationalité des nombres

rationnels est un corps ctrculaire. [Kronecker 2, 13, Weber 1, Hilbert 5.]
Pour nous préparer à démontrer ce théorème fondamental, rappelons-nous que,

d’après le théorème 48, tout corps abélien se compose de corps cycliques dont les
degrés sont des nombres premiers ou des puissances de nombres premiers. Nous
construisons alors les corps cycliques particuliers suivants. Soit u un nombre prem ier
impair et uh une de ses puissances d’exposant positif ; alors le corps déterminé

2m

par est un corps cyclique de degré uh(u - I). Désignons par Uh le sous-corps
. 

i;c -ia

cyclique de degré de ce corps. Le nombre e’-’h+’ + détermine un corps cycli-
que réel de degré 2h. Soit Hh ce dernier corps. Enfin, soit lh une puissance d’un
nombre premier quelconque 1 (égala 2 ou non) et soit, en outre, un nombre

premier = I, mod alors le corps circulaire de degré p - i a évidemment
un sous-corps cyclique de degré lh. Soit Ph ce corps cyclique de degré lh. Les corps
Un, IIh, Ph sont des corps circulaires de degrés uh, 2h, lh; les discriminants de ces

corps sont, vu les théorèmes 3g et I2 T, des puissances de u, de 2 et de p respecti-
vement.

Nous montrerons dans les paragraphes suivants que tout corps abélien est un

sous-corps d’un corps composé de c(i) et de corps appropriés U h’ Ph. Il faut pour
cela une série de considérations auxiliaires.

~~j Voir la dernière remarque, ~ g7.



§ 10 t. - LEMME SUR LES CORPS CYCLIQUES.

I5. - Si un corps cyclique Ch de degré lh (1 étant premier quelconque 1=3
ou == 2) ne contient pas comme sous-corps le corps correspondant U ou on

Zi~

obtient, en composant Ch avec le corps c(Z) déterminé par un corps

c( z , Ch) de degré l~’L-’(l- I), et il y a toujours dans c(Z) un nombre ~c ayant les pro-
priétés suivantes : le corps cCZ, Ch) est aussi déterminé par les nombres Z et si

r est un entier quelconque non divisible par l, i Z r), la substitution corres .
pondante du corps c(Z), xs~’’ est la puissance d’un nombre de c(Z).

Démonstration. - L’assertion relative au degré du corps c(Z, est une consé-

quence immédiate de ce que c(Z) et Ch n’ont aucun sous-corps commun en dehors
du corps des nombres rationnels. Soit alors a un nombre générateur du corps Ch, tel
qu’aucune de ses puissances ne soit contenue dans un sous-corps de soit, de plus.
t une substitution qui, avec ses puissances, engendre le groupe Posons, a et b
étant des exposants quelconques,

Les expressions Z), K(~,~, Z)...., Z) nepeuvents’annulerensemble,
car autrement, comme h(x°, Z) == 0, le déterminant suivant

devrait également s’annuler, et, vu la remarque du paragraphe 3, le nombre ce ne serait

pas un nombre générateur du corps C~. Soit ~==a~ une puissance de ~, pour la-

quelle K=K(03B1*, Z), soit =|=o. Comme Zb)= Z-bK(03B1*, Zb), il en résulte que
le nombre et aussi tous les nombres 20142014~2014 sont des nombres du corps c(Z).K
Comme on a

et que est un nombre générateur du corps Ch, nous voycns que le corps défini par
K et Z, de degré au plus égal à l2h-1(~-1), contient le corps c(Z, Ch) de degré
l~’‘-’(l -1); le premier corps et le dernier sont donc identiques et le nombre ~~~= hr~
possède la propriété indiquée dans le lemme 15.

Faisons encore la remarque suivante. Le corps déterminé par Z et est, on le

voit aisément, cyclique relatif de degré relatif vis-à-vis de c(Z), et possède, par



suite, un seul sous-corps, qui contient c(Z) et qui est cyclique relatif de degré 1 vis-

à-vis de c(Z). Si alors C~ désigne le sous-corps de degré l de Ch, le corps formé de

c(Z) et C~ doit être identique avec le corps formé de Z et B/y..

§ I02. - SUR CERTAINS FACTELRS PREMIERS De DISCRIMINAIT CORPS CYCLIQUE

~ 

DE DEGRÉ lh.

LEMME 16. - Si Cn est un corps cyclique de degré lh, l étant premier quelconque
(= 2 ou =;= 2), et si Ct est le sous-corps de degré l de Ch, les facteurs premiers p dif-
férents de 1 du discriminant de Ci sont toujours = I, mod l’l.

Démonstration. - Considérons d’abord le cas on 1 est premier impair et où h = I ,
et supposons que. contrairement au théorème, le discriminant de C1 contienne un

facteur premier p ~|~ I mod l. Soit §= e l , r un nombre primitif mod l, et pre-

nons dans le groupe du corps c(03B6) la substitution s = (03B6: 03B6r). Si D est un facteur idéal

premier de p dans le corps c(~), il est, v u le théorème I 19, comme p =1= I mod l,

d’un degré y ~> I ; donc, vu le théorème 1 29, le degré e du corps de décomposition de
l’idéal premier V est  1 - 1 ; les autres facteurs premiers de p sont alors

tandis que s~~ == ~, c’est~~à-dire

On a de même, pour les idéaux premiers conjugués de D : D’, D", etc., les égalités
correspondantes

D’après le lemme 1 5 , il y a dans c(~) un entier ~ , tel que les deux nombres ~ et

~~ engendrent le corps c(~, C,) composé de c(~) et de CI, et que xs-r est égal à la

puissance d’un nombre de c(~). Comme s - r et se- i sont deux polynômes
entiers à coefficients entiers en s, qui n’ont mod 1 aucun facteur commun, il existe

trois polynômes entiers à coeflicients entiers J(s), ~! (s), ~(s), tels que

et de là résulte

où x est un nombre de c(Q. Vu les égalités (39) et est un nombre entier ou

fractionnaire, tel que le numérateur et le dénominateur ne contiennent aucun facteur

premier ~, ~B ... , et sont, par suite, premiers à p; il en est donc de même de

~(se-1)03C6(s). Nous posons ~(se-1)03C6(s)=03C1 al, de façon que p soit un entier de c(03B6) premier à p



et a un entier rationnel. Le corps c(~, C~) est alors aussi engendré par les deux nom-
bres ~ et Le discriminant relatif du nombre par rapport à c(~), est + ;

et comme p est premier à p, le discriminant relatif de c(~, CJ, par rapport à c(~), est
aussi premier à p. Comme, d’autre part, le discriminant de c(~) n’est pas non plus
divisible par p, le discriminant de c(~, C~) est, vu le théorème 3g, premier à p, et
par suite aussi (théorème 85) le discriminant du corps C,, contrairement à notre
hypothèse.

2t7:

l étant encore impair, soit /~~> I. Soit un nombre primitif mod l’‘, et
soit, dans le corps c( Z ), la substitution s = (Z ; I Z’’). Soit p un facteur premier =~= l
du discriminant de C, et D un facteur idéal premier de p dans c(Z).

Si nous supposons mod l, mais I mod lit, l’idéal premier ~ appartient
toujours au sous-corps c(Zl) du corps c(Z), c’est-à-dire que

et de même pour les conjugués

Comme r est nombre primitif mod lh, -~= __ I mod lh, et on peut, par suite,
déterminer trois polynômes à coefficients entiers ~! (s), ~(s), tels que

on en déduit, 7. étant déterminé comme au lemme I5,

oû x est un nombre de c(Z). Vu les propriétés déjà démontrées des idéaux premiers

~, , ~’, ~", ... , et, par suite, ,~cszj~-~~r-l_~)‘~’~ sont des nombres dont le nu-
mérateur et le dénominateur sont premiers à p. Xous pouvons donc mettre le der-

nier nombre sous la forme de façon que p soit un entier de c(Z) premier à p et a

un entier rationnel. Alors = ~ a d’où on tire ~ = c~n-1, c étant aussi dans c(Z).

Comme le corps c(z, est, ainsi qu’on l’a remarqué à la fin du paragraphe 101,
identique au corps composé de c(Z) et de Ci et que le discriminant relatif du

nombre yc vis-à-vis de c(Z) a la valeur + llcrz-t première à p, le discriminant relatif
du corps c(Z, C,) de c(Z) est premier à p. D’autre part, le discriminant de

c(Z) n’est pas davantage divisible par p, et il en est donc de même du discriminant
de c(Z, Ci) et par suite aussi de celui du corps C~ . Mais ceci est contraire à notre

hypothèse.
Pour le cas de l _-.- 2, supposons d’abord h = 2 et appliquons alors te lemme 15

au corps cyclique Ci du quatrième degré. Posons = et considérons la subs-

titution de c(Z) s’=(i, - i). Soit t Ci le sous-corps quadratique de C2 et supposons



qu’il y ait dans le discrirninant de Ct un facteur premierp impair mod 4. Vu la

dernière propriété, p est indécomposable dans c(i). Si le nombre x du lemme 15 est
divisible parp, posons ~ _ ~~’-’. Comme d’autre part, d’après le lemme 15, on doit
avoir étant dans c(i), il en résulte ~2 = 03C1-103B14, c’est-à-dire 

Donc p est le carré d’un nombre de c(i:) ; nous pouvons poser , = £ de façon que r
soit un entier de c(i) premier à p et a un entier rationnel. Comme le corps c(i J CJ
coïncide avec c( i, et que, d’autre part, le discriminant relatif du nombre B/T
vis-à-vis de c(i) est premier à p, le discriminant relatif du corps c(i, C,) vis-à-vis de
C(i) est aussi prernier à p ; d’où il suit que le discriminant de C, n’est pas divisible
par p, contrairement à l’hypothèse.

Si, 1 étant égal à 2, h est > 2, posons Z = e2i03C0 h-1. Supposons que le discriminant
de C, contienne un facteur premier p== I mod 4 et -~= 1 mod 2h, et soit V un facteur
premier idéal de p dans c(Z); V resterait invariant dans une substitution s~h 3, oùs~

~~20143 h-3
est soit (Z : i Z ’J), soit (Z : Z’’); on aurait donc Ds2* =1. Comme (-±-5)Q ~|~ I mod 2h,
on aurait, comme plus haut, une égalité de la forme

d’où l’on tirerait une conclusion contraire à l’hypothèse que p divise le discriminant
de C, .

Le lemme 16 est ainsi complètement démontré et l’on en déduit sans difficulté la
nouvelle proposition

, LEMME - Soit Ch un corps cyclique de degré lh (1 premier ==2 ou =|= 2); § soit

Ci le sous-corps du degré de soit p un facteur premier différent de 1 du dis-

criminant du corps Ci : on peut toujours trouver un corps abélien de degré
l~’  l’‘ ayant les deux propriétés suivantes :

I° Le corps composé de C’,~~ et d’un certain corps circulaire contient Ch comme
sous-corps ;

2° Le discrirninant du corps C’~~ ne contient que des facteurs premiers du discri-
minant du corps C , sauf le facteur p.

Démonstration. - D’après le lemme 16, le nombre premier p est ‘ 1, mod l’’;
construisons d’après le paragraphe 100 le corps circulaire cyclique P~‘ de degré /B
dont le discriminant est une puissance de p, et formons le corps composé de Ch et
P,z dont le degré est Dans Ph, on a p = où D est un idéal premier de 
Soit D un idéal premier facteur de D dans c(Ch, Ph). Comme l’idéal premier ne
divise pas le. degré lh+h’ du corps c(Ch, Ph), ce corps est le corps de ramification de
l’idéal premier et par suite, vu le théorème 81, il est relatif cyclique et de degré
relatif au moins égal à lh par rapport au corps d’inertie C’h, de l’idéal premier D.



Comme d’ailleurs il ne peut y avoir dans c(Ch, Ph) de corps cycliques relatifs de

degré supérieur à lh, Ph) est donc exactement de degré lh par rapport à C’h’.
Donc, le corps C’h, est de degré lh’. La différente du corps d’inertie n’est pas divi-

sible par D (théorème y6) et par suite, eu égard au théorème 68, le discriminant du
corps C’h’ n’est pas divisible par p. D’un autre côté, ce discriminant n’a d’autres fac-
teurs premiers (théorème 39) que ceux qui divisent le discriminant de Ch. Enfin, il
résulte du théorème 8y que le corps composé de C’h, et Ph coïncide avec 
Le corps C’h possède donc les propriétés énoncées dans le lemme I j.

~ I03. - LE CORPS CYCLIQUE DE DEGRÉ U, DONT LE DISCRIMINANT NE CONTIENT QUE U,
ET LES CORPS CYCLIQUES DE DEGRÉ ~rt ET 2h QUI CONTIENNENT U~ ET IIi COMME SOUS-
CORPS.

LEMME 18. - Si le discriminant d’un corps cyclique Ci de degré premier impair u
ne contient que u, C, coïncide avec U~ . 

’

’ 

Démonstration. 
- Nous posons § = et s = (03B6 : 03B6r), r étant racine primitive

mod u ; î, = 1 - ~ , et 1 = ().) idéal premier de c(~), u = Iu-~ ; enfin

Puis considérons le nombre x du lemme I ~. Comme l’idéal premier ~I de c(~) est du

premier degré, il en résulte, si l’on vu l’égalité et le théo-

rème 24, la congruence ?= I, mod L (Si l’on a dans un corps c un idéal j et deux
nombres fractionnaires ~ , ~, la congruence ~ - p, mod x, doit s’entendre en ce sens

qu’il y a dans c un nombre ~~ premier à j pour lequel ;~.x, sont des entiers de c

tels que mod (j)). Comme r- ~ est premier à u, le corps composé de C1 et c(~)
sera aussi engendré 

, 

par ’§ et En posant ? = I -~- a),, mod F, où a est un entier

rationnel, on = ~ ~~ - I , mod t2.
Démontrons maintenant que l’on a c - l, 1110d ru. Pour cela, supposons que

c= I ~ mod l’exposant e étant  u et a un entier rationnel non divisible

par u.

Nous remarquons que, d’après le théorème 15, ~..s-’’, et par suite aussi c‘-’’, est la

puissance d’un nombre de c(Q : soit = ;~u. Cette égalité donne la congruence
I + - 03B2u, mod Ie+1. De là résulte d’abord 03B2 -1, mod i , et ensuite

l, mod On aurait enfin mod r, ce qui est impossible, puisque r
doit être racine primitive, mod u, et que e > 1. Par conséquent, on a bien e - l,
mod r2‘.

Posons maintenant c = étant un entier de c() et a un entier rationnel ;

alors on a ï = i, mod Si nous supposons alors le corps Ct distinct du corps Ui, on



obtient en composant les corps c(), UI et Ct le corps c( ~G ~, ?L ~) de degré r u ?’ (u -1).

D’autre part, ~ _ , est, comme le montre l’équation ~~~ î, t~ ~ = o, un
entier du corps c(u03B6, u03C4), et le discriminant relatif de ce nombre vis à-vis de

c( ~~ ~) est égal étant une unité. Comme r est premier à u, le discriminant

relatif du corps c(t~ ~, du corps c( j~~) est aussi premier à u. Désignons
donc par 8 un facteur premier idéal de t dans le corps c(’~ ~, ~~ ~) ; vu le théorème g3,
~ aura dans ce corps un corps d’inertie 1 qui sera de degré u. Le discriminant de

ce corps d’inertie 1 est premier à ii et, vu le théorème 85, devrait alors avoir la

valeur + 1 ou - I. Mais il n’y a pas de corps cyclique de degré premier u et de dis-

criminant + 1; ; cela résulte soit immédiatement du théorème 44. soit du théo-

rème ()4, en prenant pour le corps c de ce théorème le corps des nombres rationnels,

corps dans lequel tous les idéaux sont des idéaux principaux. Le lemme 18 est donc

démontré.

LEMME 1 g. - Si un corps cyclique Cn de degré lB où l est un nombre premier
impair ou est égal à 2, contient le corps U~ ou le corps III comme sous-corps, C~ est
un sous-corps d’un corps composé de U h ou de IIh avec un corps cyclique de

degré lh’  

Démonstration. 2014 Soit ou IIh. Soit Lh. le plus grand sous-corps contenu
dans Ch en même temps que dans U, ou dans IIh; soit le degré de L~t., h~ étant un
nombre positif  h. Soit t une substitution qui, jointe à ses puissances, engendre le

groupe du corps Cjl, et z une substitution engendrant de même le corps Dit ou le

corps IIh. Si nous posons t~--_ tlh et , t~ et z~ engendrent les sous-groupes
de degré auxquels L~. appartient comme sous-corps, d’une part de Ch, d’autre

part de Uh ou de IIh. Le corps C composé de Ch et de Uh ou IIh a, vis-à- vis de un

degré relatif et a donc un degré principal l’h-~’.
Pour obtenir le groupe G du corps C, désignons par 3 un nombre générateur de

Ch et par y un nombre générateur du corps Uh ou ét soient x, y des paramètres
indéterminés. L’expression n = + y,~ vérifie une équation de degré dont les

coeflicients sont des polynômes à coefficients entiers en x, y, et qui est irréductible
dans le domaine de rationalité de ces paramètres. Les diverses racines de cette équa-
tion sont de la forme

Comme, d’après un théorème connu, 3- ainsi que y s’expriment rationnellement en 8
avec des coefficients polynômes à coefficients entiers en x, y, il en est de même des
racines nous posons donc 

.



~ étant une telle fonction rationnelle. Soit maintenant A un nombre quelconque de
C ou une fonction rationnelle de .r, y à coefficients dans C; alors A est égala une
fonction rationnelle F(Q) à coefficients polynômes entiers en x, y. Les conjugués de
A s’expriment ainsi :

et le système des substitutions correspondantes S~",~ f’ormera le groupe G du

corps C. Vu

d’où résulte

en convenant que l’on aura si et n = n*, mod h‘. De (4I) résulte

que le groupe G est permutable, c’est-à-dire que le corps C est un corps abélien.
Soit r une racine primitive, mod ~~~‘; comme zl’y est un des conjugués de y, il doit

y avoir une substitution de G pour laquelle 11 soit ==/B mod /B Soit une telle

substitution. Le degré du groupe cyclique engendré par s est l’‘. On reconnaît aisément

que toutes les substitutions du groupe G dont le second indice est ~o mod 1" for-

ment un sous-groupe de degré l’‘-’‘‘. Soit une substitution génératrice de ce

groupe cyclique. Le groupe G résulte alors évidemment de la composition des t

puissances de s et des puissances de sous-groupe des puissances de s*

correspond évidemment dans le corps C le sous-corps cyclique Ull ou Au groupe

engendré par s correspond dans C un certain sous-corps cyclique de degré 
Les deux corps Uj‘ ou et C’,‘, n’ont pas de sous-corps commun en dehors du corps
des nombres rationnels et le corps C résulte par suite de la composition de ces deux

corps cycliques. Ce qui démontre le lemme 1 g.

§ - DÉMONSTRATION DU THÉORÈME FONDAMENTAL SUR LES CORPS ABÉLIENS.

On a déjà montré (§ 48) que tout corps abélien est composé de corps cycliques
dont les degrés sont des nombres premiers ou puissances de nombres premiers; il

n’y a donc plus qu’à montrer que tout corps cyclique Ch de degré t, 1 étant premier,
est un corps circulaire.

Pour le démontrer, supposons la proposition déja établie pour les corps abéliens

de degré l~’  l~.

Envisageons alors le sous-corps Ci de degré contenu dans Si nous supposons

que le discriminant de C contient un facteur prernier p différent de l, le discrinii-



nant de Ch est aussi divisible par p (théorème 3g). Il existe de plus (lemme 1;) un

corps abélien C’h’ de degré l’’‘  tel que Ch est composé de et du corps circu-

laire Ph. Si donc C’h’ est un corps cyclique de degré inférieur ou s’il est composé
de plusieurs corps cycliques, C’,~‘ est donc un corps circulaire, vu notre hypothèse, et
il en est donc de même de Cn. Reste seulement à examiner le cas de h’ = h , , C’~, = C’h
étant alors un corps cyclique de degré lh. Comme l’indique le même lemme 17, le

discriminant de Ch’ ne contient que des facteurs premiers du discriminant de Ch,
mais non le facteur p ; le discriminant de a donc au moins un facteur premier de
moins que celui de Ch.

Désignons par C,’ le sous-corps de degré 1 de Ch’. Alors, si le discriminant de C,
contient encore un facteur premier p’ différent de l, nous pouvons faire pour le corps
Ch’ la même réduction que pour le corps Ch et nous arriverons, soit à conclure que
Ch’ est un corps circulaire, soit à un corps cyclique Ch" de degré dont le discrimi-

nant contient un facteur premier de moins (p’) que celui de Après avoir appliqué
l~a fois de suite le même procédé, ou bien nous arriverons à un corps qui sera

circulaire, en vertu de notre hypothèse, ou à un corps cyclique de degré lh. tel

que le sous-corps C1n’) de degré l contenu contenu dans aura un discriminant

sans facteurs premiers ou n’ayant que le facteur 1 . Comrne (voir lemme 18) un corps
cyclique de degré l ne peut avoir un discriminant + i, c’est nécessairement le second
cas qui se présente.

Distinguons alors le cas de l impair et celui de l = 2.
Dans le premier cas, coïncide avec U1 (lemme 18). Dans le second cas l = 2,

si h i le corps Cnm) = C(~) est égal 1 soit à c(i), soit à c~~2) = II,, c’est-à-dire est
circulaire. Pour h ~ r, on a encore égal à c(B/2) En effet, si ~,~ est réel,

l’est évidemment aussi, d’où la conclusion. Si est imaginaire, tous ses norn-
bres réels forment un sous-corps réel de degré 2h-B et comme C(1’) est nécessairement
contenu dans ce corps réel, est encore réel et coïncide avec II, .

Dans les deux cas ainsi séparés (en dehors de l= 2, h =1 ), le corps = U~
ou II,. D’après le lemme ig, est donc sous-corps d’un corps composé de Uh ou

IIh et d’un corps cyclique Ch~ de degré lh’  f’’. Or, vu notre supposition, C,~. est alors
circulaire. Le théorème 131 est donc complètement démontré et l’on voit, de plus,
le moyen de construire tous les corps abéliens de groupe et de discriminant donné.



CHAPITRE XXIV.

Les résolvantes d’un corps circulaire des racines 1èmeS de l’unité.

§ I05. - DÉFINITION ET EXISTENCE DE LA BASE NORMALE.

Une base d’un corps abélien C sera dite normale lorsqu’elle se composera d’un
entier N de C et de ses conjugués 1’, 1", ..., (M étant le degré de C).

LEMME 20. - Si un corps abélien C possède une base normale, il en est de même
de tout sous-corps c de C.

Démonstration. - M étant le degré de C, soient ti, ... les substitutions de ce

corps abélien ; soit N un entier de G formant avec ses conjugués une base normale
de C. Si t~ , ..., , t1, forment alors le sous-groupe de ce groupe de substitutions,

auquel appartient le sous-corps c de C, on peut trouver ni = - substitutions ...,

t’m de la série ..., tM telles que ces NI substitutions peuvent, à l’ordre près, se

représenter par les produits

a. étant un entier de c et par suite aussi de C, on a une égalité

les a étant des entiers rationnels. Remarquons que les subti tu tions 

invariant, et que, d’autre part, il n’y a entre les = mr nombres ti’ti N, ... 
..., aucune relation linéaire à coefficients entiers non tous nuls ; il en résulte

évidemment

donc, en posant

les in, nombres 1,’v , ..., t??1v forment une base normale du corps c.

THÉORÈME 132. - Tout corps abélien C de degré M, dont le discriminant D est

premier à possède une base normale.

Démonstration. - Soient p, p’, ..., les facteurs premiers différents de D. Aucun

d’eux ne divise M, et, par suite, vu la démonstration du théorème le corps abé-



lien C est contenu comme sous-corps dans le corps engendré par les 
.

~=~p’, etc., c’est-à-dire par Z==~p~. . D’après le théorème 118, les nombres 1 ,

~, ... ~p-~ ou §, ~~, ..., ~~-~ forment une base de c(~) ; cette dernière est une base

normale de ce corps. De même pour c(~’), ....
Formons alors le système des (p - I ) (p’ - I ) ..., nombres ~h~’n~, où h , , h’ , ... , ,

prennent chacun toutes les valeurs 1 , 2, ..., p - i ; 1, 2, ..., p’ - I ; ... Ce système
de ...) nombres forme (théorème 88) une base de c(Z), qui est évidemment
normale. D’après le lemme 20, le corps abélien C a donc aussi une base normale.

C. q. f. d.

§ 106. - LES CORPS ABÉLIE~S DE DEGRÉ PREMIER 1 ET DE DISCRIMINANT 

Les corps abéliens les plus simples et les plus importants avec les corps quadra-
tiques sont ceux dont le degré est un nombre premier impair l et dont le discrimi-

nant d ne contient qu’un facteur premier p, ce dernier étant =1= 1 . Soit c un tel corps.
D’après le lemme 16, on a nécessairement p- I mod 1. Le nombre premier? est
dans c la puissance d’un idéal premier du premier degré. D’après les remarques
du théorème 79 et vu que c est toujours un corps réel, et que. par suite, d est positif,
on a d == pl-1 .

Soient 1 , t, t°, ..., tl-1 les substitutions du groupe du corps c, et soit v, ...,

une base normale de c. (Voir théorème 1 32 .) Le nombre v est alors toujours un

nombre générateur du corps. l’expression

s’appellera une résolvante (’) dit corps c = c(v).
Une telle résolvante ~ est évidemment un entier du corps c(v, Q composé de c(v)

etc ( ) .
L’étude des bases normales et des résolvantes du corps abélien c(v) conduit à des

conséquences importantes relativement aux idéaux premiers facteurs de p dans c(~).
Les développements de ce chapitre n’éprouvent que de légers changements, lorsqu’on
prend le nombre 2 au lieu du nombre premier impair l.

e) N. T. - Nous croyons devoir traduire ainsi l’expression « Wurzel » ou « Wurzelzahl »
employée par i1’I. Hilbert; le mot résolvante est en effet le terme consacré depuis 
(Réflexions sur la résolution algébrique des équations, , Mémoires de l’Académie de Berlin,
I 7’~ 0- I ~ ~ I . ~



§ - PROPRIÉTÉS CARACTÉRISTIQUES DES RÉSOLVANTES.

THÉORÈME 133. - Étant donné un corps abélien c de degré l et de discriminant
cl = pl-1, l et p étant deux nombres premiers distincts, soit v, tv, ... une base

normale de ce corps. Si l’on pose 03B6=e2i03C0 l, I = (I1 - §) , et s = (03B6 : 03B6r), r étant une
racine primitive mod l, la résolvante Q du corps c(v), déduite de cette base normale,
a les trois propriétés ci-après :

I° La lième puissance de la résolvante 03C9 = 03A9l est un nombre du corps circulaire
c(~), et, de plus, (ù8-r est égal à la l’è’ne puissance d’un nombre de c(~).

2° On a les congruences

1(1-1)
3° n(o), norme de m dans c(~), est égale à 

Démonstration. - Les nombres 03A9l et sont des nombres de c(03B6, v) invariants
par la substitution (v tv). Ils appartiennent donc à c(~), d’où la première propriété.

Comme v, t’l, ..., tl-tv forment une base du corps c(v), on a en particulier

avec des coefficients a entiers. En effectuant sur cette égalité la substitution t, on voit
que ao = a1,= ... = cc~_~ _± i, car ces coefficients ne peuvent avoir d’autre commun
diviseur que ± 1.

Donc, v + tv + ... = + 1 . D’où

Puis, comme =p i I) (~y =P 1) ... (~l-’~ + 1), on trouve la deuxième pro-
priété du nombre w .

Enfin, en appliquant convenablement la règle de multiplication des détermi-
nants, on a

est la norme relative de Q par rapport au corps c(v). Le carré du déterminant du



premier membre est égal au discriminant du corps c(v), c’est-à-dire et, par

suite,

Les trois propriétés précédentes de Q suffisent inversement à caractériser complè-
tement une telle résolvante. On a en effet la proposition suivante.

° 

THÉORÈME 134. - Soit l un nombre premier impair , et p un nombre

premier - ~ i mod 1; si o est un nombre du corps circulaire c(~), non égal à la

puissance d’un nombre de ce corps, et possédant les trois propriétés du
théorème r 33, ~ = j~co est une résolvante du corps abélien de degré l et de discri-

minant pl-l .

Démonstration. - Le nombre 03A9 = l03C9 détermine un corps galoisien relatif de

degré relatif l par rapport au corps c(~). Soit t la substitution du groupe relatif, pour
laquelle tQ == ~-1~ . Vu la première propriété du nombre ~~~ , qui s’exprime par la
formule s~~ =~~,al, où a est un nombre de c(‘), le corps de degré l(l- 1), composé
de § et de Q, est un corps galoisien. Le nombre 03B1 vérifie l’égalité

nous en déduisons la nouvelle relation

Nous entendrons maintenant par l et s les substitutions déterminées du groupe
de ce corps galoisien c(~, Q), qui, en plus des conditions déjà fixées, remplissent en-
core les suivantes t03B6 = 03B6 et 03A9r03B1. Ces deux substitutions s ct t sont permutables,
car on a

c’est-à-dire que le corps c(~, (2) est un corps abélien. Le sous-groupe de c(~, Q),
composé des puissances de s, est de degré l- 1 . Le sous-corps de c(~, Q) correspon-
dant à ce sous-groupe est par suite de degré l; c’est encore un corps abélien, que nous

désignerons par c.
Démontrons d’abord que le discriminant de ce corps c est premier à l. Comme

Q=±i, mod Ï=(i2014Q, le est un nombre entier. Comme

t~ _ ~-’~~ , la différente relative de cet entier par rapport au corps c(~) a la valeur
E étant une unité, et, par suite, la différente relative du corps c(~, Q) par rap-

port au corps c(~) est première à l. Si £ est un idéal premier facteur de { dans c(~, Q),
il n’y entre, ;u le théorème g3 , qu’à la première puissance, c’est-à-dire que

où ~t’ n’est plus divisible par 8. De là résulte, vu les paragraphes 3rp



et 40, que le corps d’inertie de l’idéal premier doit être de degré l, et que, par
suite, c est lui-même ce corps d’inertie. D’après le théorème y6, la différente du

corps c n’est pas divisible par ., et, par suite (théorème 68), le discriminant de c ne
l’est pas non plus.

Nous posons

où le signe de 1 est le même que dans les congruences S~ _--_ ~-- i, . s . S~ _ + 1, ...,

mod I; le numérateur de cette expression (4i) à forme fractionnaire est donc « o,
mod I . Ce numérateur représente un nombre de c. Si l est idéal premier dans c, ce
numérateur doit donc être divisible par l et v est un entier de c. Sinon, comme le dis-
criminant de c ne contient pas le facteur ~, on a dans ce corps une décomposition

... Il de l en l idéaux premiers distincts, et on a alors dans c(~, ~~), comme le
montre le théorème 88, la décomposition

Comme le numérateur de l’expression du second membre de (4i) est divisible par
l’idéal ({, Is), il est donc aussi, comme nombre entier de c, divisible par Il en

résulte la divisibilité de ce numérateur par r2, ..., et, par suite, finalement par l,
de sorte que n est encore un nombre entier du corps.

En se servant de la relation tQ = ~-’ n , on tire de les deux égalités

En appliquant la règle de multiplication des déterminants (comme déjà dans la
démonstration du théorème 133), on obtient ensuite

d’où résulte, vu la troisième propriété de w (théorème 133), la relation

et, par conséquent,



Nous démontrons ensuite que le discriminant du corps c est nécessairement égal
à En effet, c’est, d’après la dernière relation, un diviseur positif de Comme

ce ne peut être i (théorème 44 ou théorème 94), il contient donc le facteurp, et cela
à la puissance l - 1 , d’après les remarques relatives au théorème 79. De la propo-
sition ainsi démontrée, suit que v, tv, ..., tl-’v forment une base, évidemment nor-

male, du corps c. Et le nombre Q est, vu (42), la résolvante du corps c déduite de

cette base normale.

§ 108. - DÉCOMPOSITION DE LA PUISSANCE LE CORPS

DES RACINES DE L’UNITÉ.

THÉORÈME 135. - l, p, 03B6, r, s ayant leur signification précédente, c(v) étant un

corps abélien de degré 1 de discriminant cl = et Q une résolvante du corps c(v),
le nombre a dans c(~) la décomposition

oû D est un idéal premier déterminé, facteur de p dans c(03B6), et où désigne le plus
petit entier positif congru mod l à la puissance - i’é’ne (r,-i) de la racine primitive r.

]

Démonstration. - Le nombre premier p se décompose dans c(03B6) en l - I facteurs

premiers idéaux distincts ~, , ..., le nombre ~~ doit être divisible par chacun

d’eux. Car, d’après la démonstration du théorème 134, la différente relative du

corps c(~, Q) par rapport au corps c(~) est un diviseur de Q~ ==(,); or, si b) était pre-
mier à p, la différente relative le serait aussi, ainsi que le discrirninant de c(~, Q)
(théorème 68), ce qui est impossible, puisqu’il est divisible par le discriminant

de c(v). A cause de /~(co)=p ~ , , ~, ..., sont en même temps les seuls fac-

teurs premiers idéaux de 03C9. Soit D un de ces idéaux premiers dont l’exposant dans (1)
soit le plus petit possible; nous avons alors

, ... , étant des entiers positifs, dont aucun n’est inférieur à En formant 

on obtient

Comme ao, ..., sont tous positifs, ces nombres ne peuvent donc tous être
divisibles par 1. A cause de la première propriété démontrée théorème 133, on a



où x est un nombre de c(03B6). Comme les Idéaux premiers conjugués de D en sont tous
distincts et sont distincts entre eux, le polynôme en s

une fois développé, ayant été remplacé par i, doit avoir tous ses coefficients

divisibles par l, c’est-à-dire que ce polynôme est - - r), mod l. Donc, g

mod l, et si l’on pose mod l, où ni désigne l’un des 
bres o, 1, ..., 1 - 2, on a pour i = o, 1, ..., l - 2 la congruence

Nous posons d’une façon générale

de façon que o [ u~~_i[ l et bi étant un entier rationnel ] o. Comme

on a bo + ... + = o, et, par suite,

c’est-à-dire

Parmi les nombres r~, ..., r~_~, I est évidemment le plus petit, et

commet doit être le plus petit de aa, a1, ..., al_~, on a c’est-à-dire m==o,

et alors a~ = r_i . C. q. f. d.

§ IOg. - UNE ÉQUIVALENCE RELATIVE AUX IDÉAUX PREMIERS DU PREMIER DEGRÉ

DU CORPS DES RACINES DE L’U:XITÉ.

Les développements précédents nous conduisent à une importante propriété des
idéaux premiers facteurs d’un nombre premier - I, mod l, dans le corps des S ra-

cines de l’unité.

THÉORÈME 136. - Soit l un nombre premier un nombre po-

sitif racine primitive, mod l, s = (~ ; ~r), ~ étant alors un idéal premier du premier

degré quelconque du corps circulaire c(~), on a l’équivalence

où les quantités q-i sont les entiers non négatifs définis par les égalités

~  ~-/-a ont le même sens qu’au théorème 135 et, de plus, /~==r_~~.

]



Démonstration. - Donnons à p et à 03C9 le même sens que dans le théorème 133 ;

est alors la llème puissance d’un nombre oL dans c(03B6). En remplaçant 03C9 par son

expression en fonction de D donnée au théorème 135, on a

et cette égalité montre l’exactitude du théorème 136, si nous en tirons la décomposi-
tion de 03B1.

C étant une classe quelconque d’idéaux du corps c(03B6) et j un idéal de C, si l’on

désigne par sC, S2C, ..., les classes déterminées par sj , s’Zj, ..., on tire du

théorème 136 et du théorème 8g la relation

- DÉTERMINATION DE TOUTES LES BASES NORMALES ET DE TOUTES LES RÉSOLVANTES.

Les théorèmes 133, 134, 135 permettent maintenant de déterminer toutes les

résolvantes du corps abélien 

THÉORÈME 137. - Q et Q* désignant deux résolvantes distinctes du corps abélien
c de degré premier l et de discriminant mais déduites de la même substitution

génératrice t du groupe de ce corps, on a toujours étant une unité du

corps c(~) vérifiant la congruence e=;±; I, mod Ï==(i 2014 Q. Réciproquement, si e
est une telle unité dans c(~) et Q une résolvante quelconque de c, ~O= ~~ est encore
une résolvante de ce corps abélien c.

Démonstration. - Vu les hypothèses de la première partie, le quotient 

est un nombre du corps composé de c et de c(~), qui reste invariant dons le change-
ment de ~, v et qui appartient par suite au corps c(~). Prenons pour lt) = Q~

l’expression donnée au théorème 1 35. Si alors s-aV, a étant un des nombres o, 1,2,
... , , 1 - 2, est celui des l - 1 idéaux premiers conjugués facteurs de p dans c() qui
n’entre qu’à la première puissance dans (~~_ ~~1, on a évidemment, d’après le théo-
rème 1 35,

et il en résulte que l’idéal premier ;p entre dans ~ exactement à la puissance r_~. Le

quotient 2014 peut donc se mettre sous la forme d’une fraction dont le numérateur
(D

contient l’idéal premier ~ à la puissance (r_~ 2014 rj, tandis que le dénominateur est

premier à ~. Comme, vu 2014=e~ l’exposant r_~2014 /~ doit être divisible par /, il en
o



résulte Par suite, c~~ et w contiennent les mêmes puis-
sances d’idéaux premiers et s est donc une unité.

Le reste du théorème I37 ressort immédiatement des théorèmes I33 et I34.
Des résolvantes relatives à t, on déduit aisément, par la formule (4I), toutes les

bases normales v, ..., tl-1v du corps abélien c.

§ I I I. - LA BASE NORMALE ET LA RÉSOLVANTE DE LAGRANGE.

~ir,

Soit encore un nombre premier impair, 03B6=el, et p un nombre premier de la

forme ln2 + i ; ; soit et soit R une racine primitive mod p. Enfin, soit c le

corps abélien de degré 1 et de discriminant pl-’l.
Les p - i nombres Z, Z2, ..., forment une base normale du corps c(Z); il

résulte alors de la démonstration du lemme 20 que les nombres ,

forment une base normale du corps c. On en déduit la résolvante suivante du même

corps

Cette base normale particulière ~,~, B, ..., )~l-~ s’appellera base nor°male de Lagrange
et la résolvante particulière ^ la résolvante cle Lagrange.

§ 112. - PROPRIÉTÉS CARACTÉRISTIQUES DE LA RÉSOLVANTE DE LAGRANGE.

La résolvante de Lagrange A du corps c se distingue des autres résolvantes de c

par les propriétés suivantes : .

THÉORÈME 138. - Si l’on représente la l’’"’~’ puissance Al de la résolvante de La-

grange, d’après le théorème 135, par la formule -

V est l’idéal premier défini par la formule



les lettres ayant, du reste, le même sens qu’au théorème 135. La résolvante de La-

grange A est ~ - i mod ( et de plus sa valeur absolue est égale à Réciproque-
ment, si une résolvante 03A9 a les propriétés précédentes et que de plus 03A9l contienne

l’idéal premier ~ exactement à la première puissance, on est une

racine de l’unité.

Démonstration. - En posant r - Z, D), on voit, à l’aide de ( 
et (p, ~a-’) _ ~ , que

il est alors visible que est idéal premier dans le corps défini par § et Z et que le
nombre 1- ~ ne contient cet idéal premier qu’à la première puissance.

Posons Z = 1 + II et tenons compte de la congruence § - mod D, et de

l’égalité ( i + t ; on a

où les sommes respectives doivent être étendues aux valeurs x = o, 1 , 2...., p - 2 ;

X = 1 , 2, ..., p - I ~n = o, 1, 2, ..., X. De la dernière formule on déduit, en chan-

geant l’ordre des sommations :

La résolvante de Lagrange A contient donc exactement la n1ème puissance de ~ en
facteur, et par suite Al n’est divisible que par la première puissance de V.

Désignons par A le nombre imaginaire conjugué de A; on a

et en groupant ensemble dans le produit ^^ les p - i termes multipliés par une
même puissance de §

La première partie du théorème est ainsi démontrée.



La seconde partie en est précisément la réciproque. Son exactitude découle aisé-
ment des théorèmes 135 et avec l’aide du théorème 48; on doit pour cela remar-

quer que, si un nombre d’un corps abélien a la valeur absolue i, il en est de même

de ses conjugués.
Nous pouvons obtenir, d’une façon analogue à (43), les congruences suivantes

[Jacobi ~~ :

pour i = o, r, 2, ..., l - 2. En nous rappelant que A - - 1 mod { et que _ ~p,
nous tirons de ces congruences (44) une autre démonstration des théorèmes 135 et
z36. 

,

Tous les théorèmes de ce chapitre XXIV s’appliquent aussi au cas de 1 = 2, sauf
. 

p-i

que le discriminant du corps abélien c prend la valeur d=(-1) ~ p.
La racine de Lagrange A du corps c est un entier du corps composé de c(~) et c,

caractérisé au facteur §* près par les propriétés énumérées par les théorèmes 133 et
I 38. Pour fixer enfin même ce facteur ~~, on devrait de façon que
o  c~  i, et ensuite voir dans lequel des l intervalles

le nombre 03C6 est placé. Cette question soulève dans le cas particulier de l = 2 le

célèbre problème de la détermination du signe des sommes de Gauss (voir§ 124).
Pour /=3, nous sommes conduits à un problème traité par Kummer. [Kummer 2, ~.]

Les nombres de la base normale de Lagrange sont ordinairement appelés périodes.
La bibliographie indique une série de travaux relatifs à ces périodes, ainsi qu’à
des nombres entiers analogues de corps circulaires. [Kummer 3, 17, Fuchs 1, 2,

Schwering1, 3, 4, Kronecker 17, Smith 1.] On y trouve aussi des recherches sur des corps
circulaires particuliers. [Berkenbusch 1, Eisenstein 10, Schwering 2, Weber 1, 2, 4, Wolf-

skehl 1.] Mentionnons aussi que, si le nombre premier 1 est  100 et =1= 2g ou de 41,
le corps circulaire c(03B6) contient toujours une classe d’idéaux dont les puissances
fournissent toutes les classes du corps. 



CHAPITRE XXV. . 

Loi de réciprocité pour les résidus de jièmes puissances entre un nombre
, rationnel et un nombre du corps des racines lièmes de l’unité.

. § II3. - CARACTÈRE DE PUISSANCE D’UN NOMBRE ET SYMBOLE {03B1 D}.

Soit 1 un nombre premier impair, ~=~ , , et c(~) le corps circulaire engendre
étant ensuite un nombre premier, autre que l, et D un des idéaux premiers

facteurs de p dans c(~), f étant son degré, on a, d’après le théorème 24, , pour tout
entier 1 du corps non divisible par V, la congruence

Comme I est divisible par 1 d’après le théorème 119, le premier membre de
cette congruence s’écrit

où le produit est étendu aux valeurs k=o, 1,2,..., l - T . Il en résulte que la

congruence

est vérifiée pour une valeur de k et une seule.

La racine de l’unité qui y figure, ~~, s’appelle le caractère de puissance du
nombre 03B1 par rapport à l’idéal premier D dans le corps c(03B6), et on représente cette
racine de l’unité k par le symbole

de sorte qu’on a la congruence

[Kummer ’". ]



~ et 3 étant deux entiers de c(~) non divisibles par ~, on a, on le voit facilement,
l’égalité

Si le nombre entier est en particulier congru mod D à la puissance d’un
nombre entier de c(03B6), on dit que x est résidu de puissance de l’idéal premier D.
On a la proposition :

THÉORÈME i3(). 2014 D étant un idéal premier différent de I = (r 2014 03B6) et x un entier

de c() premier à ~, la condition nécessaire et suffisante pour soit résidu de

puissance est ~-~ == i.
Démonstration. - Si a - mod D, 03B2 étant un nombre de c(03B6), on a

x
03B1pf-1 l ~ 03B2pf-1 ~ i, c’est-à-dire {03B1 D} = i. Pour démontrer la réciproque, désignons par

p un nombre primitif mod D et posons 03B1 ~ 03C1h, n10d V. Si nous supposons que

03B1pf-1 l ~ 03C1h(pf-1) l - I, il en résulte 
l 

I 
- o, mod pf - I, c’est-à-d ire que h est

divisible par l, et, par suite, x est un résidu de puissance mod ~, ce qu’il fallait
démontrer.

Le caractère de puissance -~- d’un nombre primitif, mod ~, est certainement dif-

férent de 1. Car dans la série des puissances ~, ~ ~, etc., est la première qui
.

soit - i, mod ~, et, par suite, ,/ -;= i, mod ~1.

Soit ~ ~ _ ~‘’; déterminons un entier rationnel g~ premier à I, et tel q ue

e I, mod 1 alors p* = est un nombre primitif, mod ~, pour lequel ! ~’ == ~ .1_ ~~.
Si alors u est un entier de c(~) non divisible par ~, et si l’on a x- ~ ~‘i, mod ~, on a

~_Î 
.

On conclut aisément de là que le système complet des pf - I nombres incongrus
1110d V i I, ~~, N~~, ... , ~ ~~~w, se décompose en l systèmes partiels, dont chacun ren-

ferme nombres ayant le même caractère de puissance. En particulier, il y a

exactement p f - l 1 résidus de puissance incongrus mod D.

Si b est un idéal quelconque de c(~) premier à { et x un entier de ce corps premier
à b, si l’on ... iv, ’p, q, etc., étant des idéaux premiers, on définira le

symbole x , par l’égalité



§ II4. - LEMME SUR LE CARACTÈRE DE PUISSANCE DE LA lième PUISSANCE DE LA RÉSOLVANTE

DE LAGRANGE.

Eisenstein est parvenu à découvrir et à démontrer cette loi de réciprocité qui
existe entre un nombre entier rationnel et un nombre quelconque du corps c(~)

(~ = e l , l premier impair). Cette loi de réciprocité est en même temps un auxiliaire,
jusqu’ici indispensable, pour la démonstration de la loi de réciprocité plus générale
de Kummer. [Voir chap. xxx!.] Pour démontrer la loi de réciprocité d’Eisenstein, il

faut d’abord le lemme suivant :

~in

LEMME 21. - Soit 03B6 = el ; soit p un nombre premier de la forme ml + r, ft un

nombre primitif mod p, et D l’idéal premier du premier degré de c(T) : :

~ir

posons Z = la résolvante de Lagrange A i

et - _-_- ~‘ . Soit enfin q un nombre premier quelconque différent de l et p , q un idéal

premier facteur de q dans c(~) et de degré g; alors le caractère de puissance du
nombre - = ~‘ par rapport à q s’expri me par la formule

Démonstralion. - En élevant g fois à la puissance, on a la congruence

En remarquant que qg -1, mod l, d’après le théorème 119, et en posant Rh,
mod p, le second membre de (46) devient

D’où résulte, ~ étant premier à q, vu le théorème 138, la congruence

et on a donc certainement

c’est-à-dire que



D’autre part, on tire des congruences qg - Rh, mod p, et R‘~ - ~-’, mod ~, les
relations

c’est-à-dire

§ 115. 2014 DÉMONSTRATION DE LA LOI DE RÉCIPROCITÉ ENTRE UN NOMBRE RATIONNEL

ET UN NOMBRE QUELCONQUE DE 

Soit {== ( I - ~) l’idéal premier de l dans le corps c(~). Appelons semi-primaire un

entier « de c(~), premier à 1 et congru mod I~ à un entier rationnel. Un entier

rationnel, non divisible par l, est, par suite, toujours semi-primaire. Tout entier «

de c(03B6), non divisible par I, peut toujours être changé en un nombre semi-primaire

lorsqu’on le multiplie par une puissance conyenable de ~. Si, en effet, on a

a et b étant des entiers rationnels, on a

si l’on détermine b* par la congruence (1) b, mod l. Le nombre est par

suite semi-primaire.
Cette remarque préliminaire faite, voici l’expression de la loi de réciprocité

d’Eisenstein.

THÉORÈME I40. - a étant un nombre entier rationnel, non divisible par le nombre

premier impair 1, et u un entier semi-primaire quelconque premier à a du corps c(~)
des racines de l’unité, on a dans ce corps

[Eisenstein 2.]

(1) N. T. - a b* _--_ b mod 1 et, par suite, mod I2. On a en effet alors



Démonstration. - Soit r une racine primitive mod l et s = (~ ; ~’’). Supposons
d’abord que a soit un nombre premier q et que x ne contienne que des idéaux premiers
du premier degré. Soit q un facteur idéal premier quelconque, de degré g, de q dans
c(5), soit p un facteur premier de la norme n(a), et donnons à V et le même sens

que dans le lemme étant alors une puissance quelconque de s, l’application
du lemme 21 aux idéaux premiers s-uq et D donne

Soumettons cette égalité à la substitution su, on a

Soient p= m,l -~--1, p~ = m~l ~ 1, etc., les différents facteurs prem iers de r~(x~ ; .

R, R*, ..., etc., des racines primitives mod p, p~, ... ; enfin, posons

et soit

la décomposition du nombre les exposants F(s), F*(s) ... étant des polynômes
de degré l - 2 à coefficients entiers ~ o .

A, ~~, ... désignant les résolvantes de Lagrange relatives aux facteurs premiers
p, p*, ... et à leurs racines primitives R, R*, ..., en posant T=/~l, ~~=~~1, .., on a,

d’après le théorème 138, les décompositions

où r_~ représente le plus petit entier positif congru à r-lt mod L (r racine primitive
mod 1).

Le quotient

est par suite, évidemment, une unité du corps c(~).
Nous allons démontrer que e==± i. Pour cela, formons 



l- ~
11 cause de l’égalité, valable pour h = o, 1, 2, ... , ‘ ,

a

le numérateur de la fraction du second membre est égal à

Tenons compte de ce que (théorème 138) on a ~ ~ ~ ° ~ pi, ~ ~~~ ~ - , ..., alors

~ r ~ ~ = + 1. D’après le théorème 48, e est donc à un facteur -~-1 i près une puissance
de ~. Comme d’autre part on a, d’après le théorème 138,

et que, par suite, ?:, ^~’, ... sont tous des nombres semi-primaires, il en est de même
de e; donc ~ _+ l et il en résulte ’

Cette égalité donne, vu la formule (49)’ la relation de réciprocité

En tenant compte de ce que l’on a

puisque ces symboles représentent des puissances de ( , il résulte de (5o) l’égalité

ce qui démontre le théorème dans le cas particulier où x ne contient que des
idéaux du premier deréet où a est un nombre premier.

Pour supprimer la première restriction, supposons maintenant que ce soit un

nombre semi-primaire quelconque, premier à q, de c(~), pouvant contenir des idéaux

premiers de degré supérieur au premier. Formons alors le nombre

le produit II étant étendu à tous les diviseurs de l - I différents de l - r, et posons

j et t étant des idéaux premiers entre eux ; ces derniers ne peuvent contenir, on le



voit aisément, que des idéaux premiers du premier degré et, de plus, ne sont pas
divisibles par î. Si h est le nombre des classes d’idéaux du corps c(~), on a, d’après le
théorème 5 1 , t’t = (~), v. étant un entier de c(~) ; si nous posons ; _ ,l est aussi

un entier de c(~) n’ayant que des idéaux premiers du premier degré, et, de plus,
y est, de même que ~x, semi-primaire et premier à q. De ce qui précède résulte
donc

Dans un but de simplification, nous écrirons d’une manière générale, p et c étant
deux entiers de c(~) premiers à q,

ce qui est compatible avec les conventions déjà faites; alors, , on tire

de (51) : -

En tenant compte des égalités

on déduit de (52) que

Si nous remarquons que l’exposant commun aux deux membres n’est pas divisible
par l, nous en tirons , 

-

Admettons enfin que a premier à l et à x soit quelconque, et que a = ... ,

q, q*, ... ; étant des nombres premiers, la multiplication des égalités

achève la démonstration du théorème yo.



CHAPITRE XXVI.

Détermination du nombre des classes d’idéaux.

§ II6. - LE SYMBOLE 

Pour appliquer au cas du corps circulaire étant quelconque, la mé-

thode transcendante du paragraphe 26 pour la détermination du nombre des classes,
définissons d’abord les symboles suivants :

Soit lh une puissance d’exposant positif du nombre premier impair l, et r une

racine primitive mod lh, a étant alors un entier rationnel non divisible par l, et a’ un
exposant tel que

nous poserons

Nous poserons en outre

quand a sera divisible par 1 ; a et b étant deux entiers rationnels quelconques, on a
dès lors :

Nous poserons encore, a étant impair,

et pour A ~> 2, a’ étant un entier tel que

Enfin, a étan~t pair, nous posons



a et b étant deux nombres rationnels quelconques, on a donc

Ces conventions fixent complètement le sens du symbole lorsque a est un

entier quelconque et L soit une puissance de 2 supérieure à la seconde, soit une

puissance de nombre premier impair, une racine primitive r pour le module L étant
alors choisie une fois pour toutes.

11~, ... étant des puissances déterminées de divers nombres premiers impairs
et Zh’ une puissance de 2 supérieure à 22, nous poserons pour abréger :

a étant un nombre entier quelconque et les exposants u, u~; ui, u2, ... des entiers

non négatifs. Enfin, nous conviendrons que sera égal à i, même si L =o.

§ - EXPRESSION DU NOMBRE DES CLASSES DANS LE CORPS CIRCULAIRE DES

RACINES DE L’UNITÉ.

On a le théorème suivant, qui sera démontré au paragraphe 118.

THÉORÈME i4i. - Soit p2 un entier positif de la forme .

où h, lz, ... sont des nombres premiers impairs distincts. Soient de plus ri, ..., ,

des racines primitives mod , l’2~, ..., avec les symboles qu’elles définissent. Le
nombre de classes H du corps c des racines mièrnes de l’unité peut alors s’exprimer
de deux façons : :

La expression de H est . 
’



ou par la même formule où l’on substitue à u2’ ..., u ; u2’ ..., ou u, u~; u~,
, u~~, ... ; (selon l’expression de m). Le produit extérieur doit être étendu aux nombres

à l’e.rceplion de la combinaison u~ = u~ _ ... = o; ; ou u = u.i = u~ _ ... = o; ; ou

c~ = u~ = u1= ... = o . Il comprend donc un nombre limité de facteurs. Chaque
produit intérieur II doit être étendu à tous les nombres premiers p, , c’est donc un

(p)

produit infini; 1. est le nombre du corps c défini au théorème 56.

La deuxième expression de H est un produit de deux facteurs de forrne frac-
tionnaire :

(pour les autres expressions de ni , on remplace u, , ... par u ; u~ , ... ; ou par

M, u~; u,, ... suivant le cas). Le produit II au numérateur de la première fraction
doit être étendu à toutes les valeurs données dans (53), pour lesquelles ui + u~ + ... ,
dans le premier cas, et dans les deux autres cas u ~ us -~-- ~~ -E- ..., est un nombre

impair; le produit Il au numérateur de la deuxième fraction est étendu à toutes les
valeurs (53) pour lesquelles ut + u2 + ..., , dans le premier cas, u + u$ + ..., ,

dans les deux autres, est un nombre pair, à l’exception de la seule combinaison
ou ou u == u* == ut == u2 == ...’== o. Chaque

somme ~ de la première fraction est étendue à tous les entiers positifs /~==ï, ..., m - i;
(n) 

’

chaque somme 03A3 de la seconde fraction seulement à ceux de ces nombres qui
(n)

sont m 2. Enfin, log An représente la partie réelle du logarithme du nombre du

corps circulaire

et R est le régulateur du corps circulaire. [Kummer 22, 23.]
Kummer a appelé les deux fractions qui composent la seconde expression de H le

pren1.ier et le second facteur du nombre des classes. Le double du premier facteur et le

second sont toujours des nombres entiers. (Kronecker 9 .] . 

,



Weber a démontré, en partant de la seconde expression de H, que le nombre de

classes du corps circulaire des 2h*ièmes racines de l’unité est toujours un nombre

impair. [Weber 1~ ~.~ ]
Cette deuxième expression de Il peut encore être transformée. Dans le cas où

est un nombre premier impair, un petit calcul(’) conduit au théorème suivant :

THÉORÈME 142. - Si l est premier impair, le nombre de classes h du corps circu-
laire des racines de l’unité est donné par

Le produit II est étendu aux nombres impairs 1, 3, ... 1 - 2 , et chaque somme E
(1l‘ ~ti)

aux nombres n == i, 2, ... /2014 i ; de plus, étant donnée une racine primitive r, mod l,
n’ désigne un nombre tel que mod l; à désigne le déterminant

où log êg représente la partie réelle du logarithme de l’unité

Zf~’

03B6 étant égal à eT . . [Kummer 7, 11, Dedekind 1.]
Les deux fractions de cette expression de h proviennent des deux fractions de la

forme générale et sont par suite le premier et le second facteur du nombre de classes,
dans le sens primitif; dans le cas actuel, ces deux facteurs sont tous les deux entiers.

Le second facteur représente le nombre de classes du sous-corps réel de degré 
2

contenu dans c(~). Kummer a encore établi d’autres théorèmes concernant la divisi-
bilité par 2 de ces facteurs. [Kummer 25.] La tentative de Kronecker pour démontrer
ces théorèmes par une voie purement arithmétique contient une erreur, et la généra-
lisation donnée par Kronecker n’est pas exacte. [Kronecker ".] En outre, Kummer a
fait des recherches d’un autre ordre sur la signification et les propriétés de ces deux
facteurs [Kummer 13.] (Voir chap. xxxvi.) Enfin, Kummer a énoncé le théorème que
le nombre de classes de tout sous-corps de c(~) divise le nombre de classes h de c(~).
La démonstration qu’il a essayée d’en donner n’est cependant pas inattaquable.

j

(1 ) Voir la note 1 à la fin du Mémoire.



Zir

S II8, - DÉMONSTRATION DES FORMULES DU NOMBRE DES CLASSES DE 

Pour démontrer le théorème i4i, prenons le cas le plus compliqué, où m est divi-
sible par 8, et établissons le lemme suivant :

LEMME 22. - p étant un nombre premier quelconque et in un entier divisible

par 8, on a, avec les notations du théorème pour les valeurs réelles de ~~> I, la

formule

où le produit du premier membre est étendu à tous les idéaux premiers facteurs dep
2tT:

dans le corps c(~ = e m ), et où le produit du second membre est étendu à toutes les
valeurs (53) [y compris la combinaison u = u* = u1 = u2 _ ... = o).

Démonstration. - Soit d’abord p un nombre premier ne divisant pas m ; soit l un
des nombres premiers impairs Ii, 12, ..., et l’l la puissance de l qui figure dans m; ;
soit r~ une racine primitive mod mod lh. Si e désigne le plus grand
commun diviseur des nombres p’ et l’‘-1(l - I) et si l’on pose 1) = ef, , le

symbole ~ l est évidemment exactement une racine de l’unité et non une

inférieure.

Si nous prenons d’abord l = 1, et, par sui te, h = hi , e = - r) = ’

on a la formule

où le produit est étendu à toutes les valeurs de u1 indiquées dans (53) (1). Si nous

(1) N. - t~i = o, i, ..., ll~~-1! - i) 2014 i .
On a, en effet:

donc, en posant pour 

on a :



prenons ensuite l = l~ et h == h2, , e = e~ , h~-’(h - ) = e~ f~, on a, f1~ désignant le plus
petit commun multiple de f1 et f2,

et ainsi de suite, 2014~ désignant le plus petit commun multiple des nombres

/../..-.

où le produit est étendu à toutes les valeurs (53) de u, , u2 ....
Soit de plus p--+--5p’, mod 2h*; soit e* le plus grand commun diviseur des

nombresp’ et 2h*-2, et soit t 2h*-2 = e*f*; alors est évidemmen t exactement2 /z.~
égal à une racine de l’uni té et non à une infurieure. Par suite, si f*12... ... désigne
le plus petit commun multiple de f ~, f~ , f~ , ... :

Enfin, soit é le plus grand commun diviseur de p 2 
I 

et de 2, et posons

2 = e f ; il résulte alors de la dernière formule, si F désigne le plus petit commun
multiple des nombres/, , f ~, fJ’ , f~ , ... et si l’on pose pour abréger

où le produit est étendu à toutes les combinaisons (53) de u, u2, .... On voit

de suite que F est le plus petit exposant positif tel que pF -:::::::.. r, mod n1. Comme de
plus F E = on déduit de (5l~), en ayant égard au théorème 1 25, la formule du
lemme 22 (1). En s’appuyant sur la deuxième partie du théorème 125, on reconnaît
l’exactitude de cette formule même dans le cas où p divise ni .

(1) N. T. - On a, en effet:



L’on voit alors immédiatement l’exactitude de la première expression de H donnée
au théorème 14I, en s’appuyant sur le théorème 56, la deuxième expression de ~(s)
donnée au paragraphe 2 ~ et le lemme 22 qu’on vient de démontrer.

Pour obtenir la deuxième expression de nous transformons d’abord de la

façon suivante le produit précédé du signe Lim de la première expression :

La transformation de la somme du second membre s’opère ensuite de la façon la

plus simple, si l’on pose

et que l’on procède comme au paragraphe 86 (l).

§ 1 [9. 2014 EXISTENCE D’UNE INFINITÉ DE NOMBRES PREMIERS QUI ONT POUR UN NOMBRE

DONNÉ UN RESTE DONNÉ PREMIER A CE DERNIER.

Chacune des deux expressions (théorème du nombre de classes H du corps

circulaire des racines conduit à une conséquence importante. La première sert en effet
à démontrer le théorème suivant : :

THÉORÈME étant deux entiers premiers entre eux, il existe toujours
une infinité de nombres premiers p vérifiant la congruence p - n. mod m. [Dirichlet 5, 6,
Dedekind ’1 .]

Démonstration. - Considérons encore seulement le cas le plus compliqué, où m
est divisible par 8, et posons, comme au paragraphe m - .... Chacun

des produits considérés

à l’exception de celui qui correspond à la combinaison zL = u~ = uj = rzs = ... = o,
a pour ~==1 I une limite déterminée; de la première expression du nombre de
classes H, donnée au paragraphe résulte que ces limites sont toutes différentes

(1) N. T. - Nous donnons dans la note V, à la fin du Mémoire, le détail de ces calculs pour
le cas simple où nt est un nombre premier impair.



de o ; nous pouvons donc prendre les logarithmes de ces produits, et on est alors

conduit par des considérations simples, analogues à celles du paragraphe 80, à ce
résultat, que pour tout système de valeurs u, tz"": tzl, u2, ... (o partout exclus), la

somme

où p parcourt toute la série des nombres premiers a une limite finie pour ~:= t.
Comme n est supposé premier à rn , tous les symboles

sont difl’érents de o. Nous multiplions l’expression (55) par

nous donnons à Il, U2, ... toutes les valeurs (53), la,combinaison o partout t
étant exclue, et nous ajoutons toutes les expressions ainsi formées à la série (26)
(voir § 80). On obtient ainsi l’expression ,

où l’on a posé pour abréger

Si nous faisons abstraction dans cette série des termes, en nombre limité, corres-

pondant aux facteurs premiers de in 2, l1, h, ... , le reste est égal à 03A6m 03A3I ps, où p
représente les nombres premiers, tels que tous les symboles P, P*, Pi, P~, ... soient

égaux à t, c’est-à-dire les nombres premiers vérifiant la congruence du théorème ~!~3.
Comme la série (26) est infinie pour s = i, tandis que les séries (55) restent toutes

finies pour s=I, il en résulte que la série (56) est aussi infinie pour s=1, c’cst-à-
dire qu’il y a une infinité de nombres premiers vérifiant la congruence.



§ 120. - REPRÉSENTATIO:N DE TOUTES LES UNITÉS DU CORPS CIRCULAIRE AU MOYEN

D’UNITÉS CIRCULAIRES.

La deuxième expression du paragraphe I I ~ peut servir à démontrer le théorème
suivant : :

THÉORÈME i44. - Toute unité d’un corps abélien est une puissance fractionnaire
d’un produit d’unités circulaires.

Démonstration. - Prenons d’abord le cas où ni _-__ l est premier impair. D’après
la formule du théorème I!~~, le second facteur du nombre de classes contient au

numérateur un certain déterminant A. Ce dernier est donc nécessairement -~= o,
d’où il suit, vu les considérations des paragraphes 20 et 21, que les l ~ unités

2

E, , ~2, ,.., e du théorème I42 forment un système d’unités indépendantes du corps

circulaire c(e j ). Ceci montre l’exactitude du théorème I44 pour le cas particulier
2i03C0

du corps circulaire c( e 1) et, par suite, pour tous les sous-corps qu’il contient.

] .

On peut transformer le second facteur du nombre de classes, comme au théo-

rème 142, même dans le cas où ni est composé ; l’expression obtenue conduit alors,
avec le théorème I3I, à la démonstration générale du théorème 144.

Les tables de nombres premiers complexes calculées par Reuschle constituent
une mine abondante de valeurs numériques, de la plus grande utilité pour des re-
cherches plus approfondies sur les corps circulaires. [Reuschle1, Kummer24, Kro-

] 

CHAPITRE 

Applications aux corps quadratiques.

S I 2 I . - EXPRESSION DES CORPS QUADRATIQUE RÉEL AU MOYEN D’UNITÉS

CIRCULAIRES.

En utilisant quelques-unes des propriétés du corps circulaire des racines r)i’~"~es de
l’unité relatives à un de ses sous-corps quadratiques, nous arrivons à de nouveaux
résultats relatifs aux corps quadra’ iques. La fécondité de cette méthode s’accroît en-

core, si on la combine avec les propriétés du corps quadratique déjà démontrées
directement, dans la troisième partie.



D’après le théorème général i44, toute unité d’un corps quadratique réel 
est puissance fractionnaire d’un produit d’unités circulaires; on obtient simplement
une unité particulière du corps au moyen de l’expression

où d est le discriminant du corps et oÙ les produits II, II sont étendus à tous
l~l fbl

les nombres a ou b de la suite r, 2, ..., d, qui vérifient les conditions

§ I22. - LOI DE RÉCIPROCITÉ DES RÉSIDUS QUADRATIQUES.

Soit l un nombre premier impair, r une racine primitive, Inod 1; §=eT, ,

s = (03B6 : 03B6r). Au sous-groupe des - substitutions I, s2, s4, , ..., de c(03B6), corres-

pond un certain sous-corps quadratique c* de c(03B6). Le discriminant du corps c(03B6)
/-1

étant (théorème 118) (- ll-~, le discriminant du corps c* ne contient pas (théo-
rème 3()) d’autre facteur premier que l et a par suite, d’après le théorème 95, la

° ’ 

l-4

valeur cl = (- ) ~’ 1 .

Soit h le nombre premier 2 ou un nombre premier impair quelconque autre que l.
En décomposant p d’une part dans le corps c(~) des racines de l’unité, d’autre

part directement d’après le théorème 97 dans le sous-corps quadratique c*, et en

comparant les résultats, on arrive à une nouvelle démonstration de la loi de récipro-
cité des résidus quadratiques. Nous procéderons comme suit :

/* étant le plus petit exposant positif, pour lequel i, mod l, en posant

, p se décompose dans c(03B6) (théorème I g ) en e idéaux premiers 
.

s ~.’~, ..., et le corps de décomposition commun Cd de ces idéaux premiers
est de degré e (théorème 129)’ Le nombre premier p est ensuite évidemment décom-

posable ou non dans le corps quadratique c*, selon que c* est contenu ou non

dans cd. En remarquant que le corps c(03B6) ne contient pas d’au tre sous-corps qua-
- dratique que c* et que de plus, pour qu’un corps abélien possède précisément un

sous-corps quadratique, il faut et il suffit que son degré soit pair, on voit que pour



que c* soit contenu dans c~ il faut et il suffit que e soit pair. D’autre part, d’après le
théorème 97, p est ou non décomposable dans c~, selon que l’on a

()r, si e est pair, on a

, 

’d’ (P) .

c’est-à-dire ( p l = + 1; sinon

c’est-à-dire = - 1 . On a donc toujours

Nous supposons d’abord p impair; de (5~) résulte

et, en échangeant p et l,

Cette dernière égalité donne en prenant l= 3 :

La réunion des égalités (58 et (59) donne

’ 

Si nous posons dans (5 ~) p = 2, on a

Les formules (60), (59) et (61) expriment la loi de réciprocité des résidus quadra-
tiques, ainsi que les lois complémentaires.



§ 123. - LES CORPS QUADRATIQUES IMAGINAIRES DE DISCRIMINAIT PREMIER.

THÉORÈME 145. - Z étant un nombre premier - 3 mod 4 et p un nombre premier
de la forme ml + i, on a pour tout idéal premier p facteur de p dans le corps quadra-
tique imaginaire c~~- Z) l’équivalence ,

où ~~a désigne la somme des plus petits résidus quadratiques positifs mod l, et ~,b la
somme des plus petits non-résidus.

En posant de plus p = et

où (x) est un entier du corps imaginaire c(~- l), on a la congruence

où le produit du dénominateur est étendu à tous les plus petits résidus quadratiques
positifs a, mod 1. [Jacobi 1, 2, 3, 4, Cauchy1, Eisenstein 4.]

Démonstration. - D’après le théorème 136, on peut,  étant un idéal premier du
premier degré de c(~), poser, avec les notations y indiquées,

A étant un entier de c(03B6). Si alors p = ml + 1 est le nombre premier divisible par 
et p = la décomposition de ce nombre premier dans le sous corps quadra-
tique c(~- l) de c(~), ces deux idéaux premiers ~, ~’ de c lV - l J sont

En élevant l’égalité (62) à la puissance symbolique (I + s~ + ... + s~-’), on

obtient

où a est un nombre de c~~- l~. A cause de

on a, vu l’équivalence - i,



D’autre part, on peut poser (théorème 13~)

B étant un nombre de c(~). En élevant cette égalité à la (1 ~ s~ + ... puissance
symbolique, on en dédu i t t

Comme r-{- i n’est pas divisible par l, si nous mettons de côté le cas de l = 3,

suffisamment clair par lui-même, il résulte des deux équivalences (63) et (64) celle
du théorème 145.

La deuxième partie du théorème est une conséquence des propriétés (43) et (44)
de la résolvante de Lagrange A démontrées au paragraphe 112.

On a une démonstration tout à fait différente de la première partie du théorème I45
en s’appuyant sur une remarque faite vers la fin du paragraphe 86, au sujet de

l’expression du nombre de classes du corps c(~- l) dans le cas de l - 3, mod 4.
On arrive même, par une modification remarquable de la méthode de Jacobi, à

étendre l’énoncé du théorème i45 au cas où le nombre premier p n’est pas de la
forme n2l + I. [Eisenstein s1, Stickelberger1.]

§ 124. - DÉTERMINATION DU SIGNE DE LA SOMME DE GAUSS.

Soit p un nombre premier impair, on peut obtenir, selon les définitions du para-
graphe ni. étendues dans le paragraphe 1 r 2, la base normale de Lagrange et la résol-

vante de Lagrange, dans le cas de 1 == 2, pour le corps quadratique (- I)p-1 2p).

Soit Z = e p . La base de Lagrange se compose pour ce corps des deux nombres

et la résolvante de Lagrange est

a et b étant les résidus et non-résidus quadratiques de p compris dans 1,2, ..., p -1.
Le problème indiqué à la fin du paragraphe 112, de la détermination complète

de A, une fois A~ trouvé, revient ici, dans le cas du corps quadratique, à la détermi-

nation d’un signe +, et la solution est la suivante :

THÉORÈME 146. - La résolvante de Lagrange A du corps quadratique de discriminant
p-i 

.

premier est un nombre positif réel ou purement imaginaire positif.

[Gauss 2, Kronecker 4.] ]



Démonstration. - Le carré de la racine de Lagrange en question A est toujours
p-i .

égal à (- , parce que A est un nombre du corps quadratique et que, d’après
le théorème 138,

On a donc

Les idéaux du paragraphe 112 sont remplacés dans le cas actuel de l= ~

par (p) et (i 1- ~ ) ; la congruence (43) donne alors

c’est-à-dire

Considérons d’autre part l’expression

Comme cette dernière change seulement de signe lorsqu’on remplace Z par 
p-j

R étant une racine primitive, mod p, et que l’idéal (0394) coïncide avec l’idéal (1- z )T,
on a nécessairement .

Pour déterminer le signe, remarquons que l’on a

p-I
et qu’on obtient par suite pour ~ une valeur de la forme (- i) T P, où P est positif.

B/ p- t

Donc, en entendant par (- I) 2 p celle des racines carrées qui est réelle positive
ou positivement imaginaire, on a



Enfin, la relation

montre que l’on a

et par suite, ;u (66),

Comme l’on a

on obtient à cause de (6 ~),

et par suite, à cause de (65),

ce qui démontre le théorème 146.
On n’a pas encore publié beaucoup de travaux sur des corps abéliens de degré

supérieur au second ; mentionnons le travail d’Eisenstein sur les formes cubiques,
provenant de la division du cercle, qui est une introduction à la théorie des corps
abéliens cubiques [Eisenstein10], le travail de Bachmann1 sur les nombres complexes
composés de deux racines carrées, et enfin les recherches de Weber sur les corps

abéliens cubiques et biquadratiques. [Weber2, 4.]



CINQUIÈME PARTIE.

LES CORPS KUMMERIENS.

Décomposition des nombres d’un corps circulaire dans un corps kummerien.

§ 125. - DÉFINITION D’UN CORPS KUMMERIEN. ,

Soit 1 un nombre premier impair et c(03B6) le corps circulaire défini par § = e l .

y, étant alors un entier de c(~), qui ne soit pas en même temps la puissance d’un
nombre de c(~), l’équation du degré .

est irréductible dans le domaine de rationalité c(~). M = étant une racine déter-

minée choisie arbitrairement de cette équation, les autres sont ~M , ~~ ~ , , .. , ~‘-1 M . .

J’appellerai corps kummerien le corps déterminé par M et § . Un tel corps kummerien

c(M, 0 est de degré l(l- ~) il contient c(~) comme sous-corps, et c’est, par rapport
à ce dernier, un corps abélien relatif de degré l.

Le changement de M en ~M dans un nombre ou un idéal du corps kummerien
donne le nombre ou l’idéal conjugués relatifs. Nous représenterons ce changement
par la substitution S.

On démontre facilement les propositions :

THÉORÈME 147. - Pour que le corps kummerien engendré par M = l  et ‘ soit t
un corps de Galois dans le domaine des nombres rationnels, il faut et il suffit que

l’une des puissances symboliques u , s-1 , ..., soit la puissance d’un
nombre de c(~). (s = (~ ; ~’’), n racine primitive, mod l. j

La condition nécessaire et suffisante pour qu’il soit abélien est que : soit la

puissance d’un nombre de c(~).
Lorsque le corps kummerien (M, 0 est un corps de Galois, ou un corps abélien,

il résulte, comme le montrent les considérations du paragraphe 38, de la composi-
tion du corps c(~) et d’un certain corps de degré l.



~ 126. - DISCRIMINANT RELATIF D’UN CORPS KUMMERIEN.

Notre premier problème est celui de la détermination du discriminant relatif de

c(M, 0 par rapport à c(~). Nous démontrerons d’abord la proposition suivante :

LEMME 23. - Si un idéal premier ~ du corps circulaire c(~) est la lième puissance
d’un idéal premier du corps kummerien c(M, 0 et que A soit un entier de c(M, 0
divisible par mais non par ~3~, le discriminant relatif du nombre A et celui du

corps kummerien c(M, 0 par rapport au corps c(~) contiennent le facteur idéal ,~ à la
même puissance.

Démonstration. - Tout entier du corps 03B6) peut être mis sous la forme

où a, r1, ..., 03B1l-1, 03B2 sont des entiers de c(03B6). Si 03B2 est divisible par , il en résulte que
le numérateur de la fraction doit aussi être = o, mod .

A cause de A = o, mod on en conclut mod  et, comme a est dans

c(03B6), également 03B1~0, mod . Cette dernière congruence donne

et comme A =~~ o, A~ - o, A3 _--_ o, ..., _--. o, mod ~, on a «1 ~ o, mod P, et par
suite aussi, on a donc aussi

(,omme A2 ~ o, p - o, ... , o, mod 3, on a o. mod , et par sui te

aussi, mod ~.
En continuant ainsi, nous voyons que tous les coefficients «, x!, ..., doivent.

être divisibles ar . Si maintenant ~’ est un entier de divisible mais nonp ~ ~ ’ p
par a, les nombres x~ ~’, ... , xl_1 ~’ sont tous divisibles par ~. En posant

nous obtenons

où le nombre f~’ du dénominateur contient maintenant un facteur idéal ~ de moins

que p. En appliquant à (bc~) la même méthode qu’à (68) et ainsi de suite, nous arri-



vons finalement au résultat que tout entier Q du corps c(M. 0 peut être mis sous la
forme

où x, a~, , ... , sont des entiers de c(~), ~ étant en outre premier à ’P. Supposons
exprimes sous la forme (~o) les /(/2014 i) nombres d’une base du corps kummericn

c(M, ~), et formons avec ces nombres et leurs conjugués relatifs la matrice à / lignes ;
il est alors visible que le discriminant relatif du corps kummerien c(M. 0 multiplié
par certains entiers (5 premiers à ~ de c(~) doit être divisible par le discriminant
relatif du nombre A, ce qui démontre le lemme 23.

THÉORÈME I48. - Soi t ), = 1 -03B6 et { = (1,). Si un idéal premier  autre que { de

c(~) entre exactement à la puissance e dans le nombre N., le discriminant relatif du

corps kummerien déterminé par M = ~u, et § par rapport à c(~) contient en facteur
exactement la puissance ~1-1 de ~, si e et 1 sont premiers entre eux. Si, au contraire,
c est un multiple de l, le discriminant relatif est. premier à 1’.

Quant à l’idéal premier t, nous pouvons d’abord exclure le cas où 1J. est divisible
par  et contient cet idéal à une puissance dont l’exposant est un multiple de 1; car
alors le pourrait être remplacé par un nombre  premier à {, le

corps ~) restant le même que le corps 5~. En dehors de ce cas, y, peut
contenir une puissance de { dont l’exposant est premier à l, ou bien peut ne pas
être divisible par I. Dans le premier cas, le discriminant relatif de ~), par
rapport à c(~), est exactement divisible par h’-’ . Dans le second cas, soit m le plus
grand exposant ~ l pour lequel il existe dans c(~) un nombre ex, tel que m. mod 

Le discriminant relatif est alors premier à I, dans le cas de ni = l, et si n1  l il est

divisible par la puissance {.

Démonstration. Première partie. - Soit 7: un nombre entier de c(03B6) divisible

par ~, rnais non par ~~, et soit v un nombre entier de c(~) divisible par ~‘, mais prc-
n~ier à ~. 

Si l’exposant de la puissance de  contenue dans 11. n’est pas un multiple de l, on
a bl

peut déterminer deux entiers a et b, tels que 1= ae - bl; ’ . alors ,~~= EJ~ ~~ est un

entier de c(~) divisible par ~, mais non par ~~; et si l’on pose M~=~~y, on a
c(M*, 0 = c(M, ~) ; et si l’on désigne par $% le plus grand commun diviseur idéal de ~
et M~ dans c(M, ~), on a (’)

(1) N. T. - Car S~==~), == et le plus grand commun diviseur de V et de ;,~~
est le même que celui de  et de M*, car 03B6 est une unité.



L’idéal  est donc un idéal premier invariant du corps kummerien c(M. :) par
rapport au sous-corps c(;); d’après le théorème 93, il entre donc comme facteur
dans le discriminant relatif de C(M, Q par rapport à Comme de plus M* est divi-
sible par mais non par et que le discriminant relatif de M*. par rapport à 

est égal à (- l’idéal  est donc, d’après le lemme 23, contenu dans le
discriminant relatif du corps c(M, 0 exactement à la /2014 Iième puissance.

Si, au contraire, l’exposant e est un multiple de /, ~=~- est un entier de c(Q
non divisible par p ; comme le discriminant relatif du nombre M* = l * par rapport

il est premier à . Il en est de même du discriminant
relatif du corps c(M, ~) par rapport à c(Q.

Deuxième partie. 2014 Dans le cas où pL contient 1 avec un exposant e, non multiple
de /, procédons comme dans la première partie et prenons à la place de u. un
nombre *, divisible par Ï et non par F. Comme le discriminant relatif du

nombre M" = l * a la valeur (- I)2 l-1 ll *l-1, le discriminant relatif du corps c(M, 0
par rapport à c(~) est exactement divisible par F-B d’après la nature du nombre ~
et la lemme 23.

Nous avons en second lieu à examiner le cas n’est pas divisible par Ï. Soit

d’abord m==/; il y a donc dans un entier, tel que mod ~.~-_~ est’ 

’ ~ ’ ° 

y
donc un entier de c(Q, et, par suite, l’équation de degré 1 en x

a tous ses coefficients entiers. Comme en posant M = l , x= y ), 
M 

est une racine

de cette équation, 03A9 = x M est un entier du corps c ‘ . Le cliscriminant relatif de
ce nombre S~ est égal à ~~,1-1, ~ étant une unité, et, par suite, le discriminant relatif
du corps c(M, ~) par rapport à c(~) est aussi premier à I.

Soit ensuite m [ l, de sorte que N, ne soit pas congru à une puissance f""e, mod Il;
posons  ~ xl + ai,"’, mod In‘-r1, a étant un eniier de c(03B6), ni. l’exposant défini dans
l’énoncé et a un entier rationnel non divisible par l. Considérons alors l’idéal

Le nombre 03B1 - M 03BB n’est certainement pas entier, car sa norme relative par rapport. 

.
à c(Q, est fractionnaire, à cause de donc, le nombre « - M



n’est pas divisible par r; par suite, est différent de 1 . D’autre part, ~ n’est

égal à i, car la norme relative du nombre a - M est, à cause de

divisible par rn. Comme on a un idéal invariant et comme ce doit

être un facteur de I, ce dernier appartient à la première des trois catégories d’idéaux

premiers du sous-corps distinguées (s 5 ~) dans la démonstration du théorème 93,
c’est-à-dire 1= ~L, ~ étant un idéal premier, évidemment du premier degré de

c(M, ~). La congruence (ji) donne alors ~ _ ~nt . .
Déterminons maintenant deux entiers positifs a et b, tels que am. - bl= r, et

posons

De SM = ~M , on déduit

et nous concluons de cette expression que Q - SQ contient en 
Comme il en est de même de toute différence entre Q et un de ses conjugués, le dis-
criminant relatif de Q par rapport à c(~) contient en facteur exactement la

(l -1)(l - m + I)ième puissance de l’idéal 1 . Il en résulte, Q n’étant divisible que par
la première puissance de S, que le discriminant relatif du corps c(M, ~) par rapport
à c(~) est aussi divisible par la même puissance (lemme 23).

Le discriminant relatif du corps kummerien c(M, 0 par rapport au corps c() est
ainsi complètement défini, et l’on peut immédiatement en déduire le discriminant
du corps c(M, 0 (théorème 3c~). 

’

Il est nécessaire pour la suite de généraliser le symbole {  } / introduit au para-
graphe r 13, pour le cas est divisible par ? et pour celui où  = I .

Soit ? un idéal premier quelconque de c(~) un entier quelconque de c(~), qui
ne soit pas égal à la lième puissance d’un entier de c(~). Quand le discriminant relatif
du corps kummerien engendré par et § sera divisible par iv, le sym-

bole {  } aura la valeur o. ..

Si, au contraire, le discriminant relatif de ce corps c(M, 0 n’est pas divisible
par tu, on peut, d’après le théorème I48, toujours trouver dans c(03B6) un nombre a, tel
que ~.’~= soit un entier de c(~) non divisible par !v . Si y est lui-même premier



à tu, x = ~ remplit déjà cette condition. Nous définissons alors, si 1v == I, le syn2bole
en question par la formule

Mais si iv = r , on peut, le discriminant relatif de c(M, 0 devant être premier à 1 ,
choisir en outre le nombre 03B1 (théorème i48), de façon que l’on ait *~ 1, mod Il.

On a dès lors une congruence de la forme

est un des nombres o, T, 2, ... /2014i. Je définis alors le 2014 Î par

l’égalité

Si  est la puissance d’un nombre de c(03B6) et in un idéal premier de c(03B6), on

prendra {  }=I.

La valeur du symbole {  } est ainsi fixée pour tout entier u, et tout idéal pre-

mier tv de c(~); elle est d’ailleurs égale à o ou à une racine l’è"’e de l’unité.

Enfin n étant un idéal quelconque du corps c(~), si .l’on a ... tv, ~), q, etc.

étant des idéaux premiers de c ~ , on définira le symbole , ’~~ ? par l’égalitép ( "*’ )

a, h étant des idéaux quelconques de c(~), on a donc

§ 128. - IDÉAUX PREMIERS D’UN CORPS KUMMERIEN.

Soit u un entier de c(~), M =~u. un nombre en dehors de c(~). La question de la
décomposition des idéaux premiers du corps circulaire c0 en idéaux premiers du

corps kummerien c(M, ~) est résolue par le théorème suivant :

THÉORÈME I49. - Un idéal premier quelconque V de c(03B6) est, dans le corps

kummerien c(M, ~), soit égal à la puissance d’un idéal premier, soit décompo-
sable en un produit de l idéaux premiers distincts, soit premier lui-même, selon

que {  } = o, = ou = une racine de l’unité différente de i.



Démonstration. - La première partie de ce théorème se rapporte aux idéaux pre-
miers qui divisent le discriminant relatif du corps kummerien : ils sont donc inva-

riants, d’après le théorème 93. Ce fait ou le théorème y8 montrent donc pour ces
idéaux l’exactitude du théorème. ,

Si  est un idéal premier qui ne divise pas le discriminant relatif du corps c(M, 03B6),

soit * un entier non divisible par , tel que le quotient ’ soit égal à la puis-
U.

sance d’un nombre de c(~). Le corps c(M, ~) est alors engendré également par
M~ = et § .

Examinons d’abord le cas de _ - I . Si alors { * } =1, le nombre y est, d’après
le théorème 3g, résidu de puissance, mod . Déterminons, ce qui est toujours
possible, un entier 03B1 de c(03B6), tel que l’on ait - (mod ), et ~ 03B1l, (mod 2).
En formant alors les idéaux conjugués relatifs

nous obtenons facilement

Comme

S~ est différent de ~, et, par suite, les l facteurs premiers S~, ... de

l’idéal  sont distincts. L’idéal premier  de c(03B6) appartient donc à la deuxième caté-
gorie des idéaux premiers du sous-corps (théorème 93), il se décompose donc dans
c(M, 0 en l idéaux premiers distincts. Inversement, si un idéal premier ~ du
corps c(03B6), différent ou non de l’idéal , se décompose en l idéaux premiers dis-
tincts S~, ... du corps c(M, ~), on a, p étant le nombre premier divisible
par ~, I~(~) =pf et 1~r(~) _ B(~) ... et, par suite, la norme d~ ~,
prise dans le corps c(~), n(v) est aussi égale à pf . L’égalité des normes N() et n(v)
montre, comme au paragraphe 5~, que tout entier du corps c(M, 0 est congru,
mod à un entier du corps c(~); en posant en particulier M~- x, mod ~;, ~ étant
dans c(03B6), on a M*l = * - 03B1l, mod , et comme u* - est un nombre de c(03B6), on

doit avoir aussi y,~- mod ~, que ‘J~ ~ _ ~ ’~ =1. La dernière Partie
du théorème 149 est donc complètement démontrée pour le cas d’un idéal pre-

Enfin, relativement à l’idéal premier I, si le discriminant relatif du corps c(M 03B6)



par rapport à c(~) n’est pas divisible par 1 , on a, pour le nombre u~, d’après le

théorème i48, une congruence de la forme

a étant un entier rationnel. Si maintenant l’on a ’~~ ~ ~= i. c’est-à-dire si a est divi-

sible par l, il en résulte une congruence de la forme

où a~ est encore un entier rationnel. Si a* n’est pas divisible par I, nous posons

~~.~~ = ;~~ ; si, au contraire, a* est divisible par l, nous posons

il en résulte

D’après cela, le nombre ,u~~ vérifie toujours une congruence

où a** est un entier rationnel non divisible par l, et, par suite, en posant

~~~ ~ ~~~~ et

on a la décomposition

Comme

Se est différent de S, et, par suite, les l idéaux premiers S, ... sont

distincts.

Inversement, si { se décompose ainsi dans le corps kummerien, les normes de 

dans c(M, 0 et de { dans c(~) sont égales, d’après une remarque antérieure, appli-

cable, on l’a indiqué, même au cas et, par suite, tout entier de c(M, ~) est

congru à un entier de c(~). Comme ensuite, d’après le théorème 93, t ne

divise certainement pas le discriminant relatif du corps c(M, 0 par rapport à c(1),

nous pouvons, d’après le théorème i48, poser *~ u, mod I’, 
M 

est donc un

entier. Comme S est un idéal premier du prernier degré dans c(M, ~), nous pouvons
trouver un entier rationnel a congru à cet entier mod ~; alors on a, Ne désignant la

norme relative par rapport à c(-),



c’ est-à-d ire

on a donc ’ ’~~ ~ _ ~ ‘J~ ~ = I, ce qui achève la démonstration du théorème I4g.~r~ J
Le théorème I4g nous fournit un moyen simple de distinguer, dans le cas parti-

culier des corps c(M, ~) et c(~), les trois sortes d’idéaux premiers indiquées au
théorème 93 pour un corps supérieur cyclique relatif de degré relatif premier.

CHAPITRE

Résidus et non résidus de normes d’un corps kummerien.

§ I2g. - DÉFINITION DES RÉSIDUS DE NORMES ET DES NON RÉSIDUS.

Soit, comme au paragraphe 125, u un nombre de c(~), tel que M =~u, ne soit
pas dans c(03B6) et soit c(M, 03B6) le corps kummerien déterminé par M et 03B6; soit Nc(A) la
norme relative d’un nombre A de c(M, ~) par rapport à c(~). Soit ~v un idéal premier
quelconque du corps circulaire et v un entier quelconque de ce corps. Si alors v
est congru mod ~v à la norme relative d’un entier de c(M, ~) et si, en outre, on peut
trouver, pour une puissance de iv aussi élevée qu’on le veut, un entier A du corps
c(M, 03B6), tel que l’on ait v suivant cette puissance de , j’appellerai v un résidu
de normes du corps kummerien mod iv . Dans tout autre cas, v sera non résidu de

normes du corps kummerien mod .

. § I 30. - THÉORÈME SUR LE NOMBRE DES RÉSIDUS DE NORMES. - IDÉAUX DE RAMIFICATION.

On a l’important théorème suivant : :

THÉORÈME I50. - Si iv est un idéal premier du corps circulaire c(ç), ne divisant

pas le discriminant relatif du corps kummerien c(M, r), tout entier de premier à, tv
est résidu de normes du corps kummerien mod .

Si, au contraire, iv est un idéal prernier du corps circulaire c(03B6), diviseur du 
m.inant relatif du corps kummerien c(M, 03B6), et qu’on désigne par e, dans le cas de tv=-I,
un exposant positif quelconque, et, dans le cas de = I, un exposant quelconque> l, ,
il Y a exactement un de tous les nombres de c(03B6) premiers à iv et incongrus mod e,
qui sonl résidus de normes mocl w .



Démonstration. - Soit d’abord un idéal premier de c(03B6) différent de 1 et ne
divisant pas le discriminant relatif du corps c(M. §) ; il y a deux cas à distinguer,
suivant que iv est décomposable ou non dans c(M, 03B6). Dans le premier cas, soit un

idéal premier facteur de ? dans c(M, 0. En nous reportant à la démonstration du
théorème i48, nous pouvons, sans diminuer la généralité pour cela, admettre que u.,

et par suite aussi le discriminant relatif du nombre par rapport à c(~), ne
sont pas divisibles par ~ ; il y a dès lors certainement dans c(M, ~) un système de l
entiers ..., A~ vérifiant les congruences

Or, tout entier du corps c(M, 03B6) est évidemment congru mod  à un entier de c(03B6);
en posant

ai, x~, ..., al étant entiers dans c(~) et

on en déduit

et en multipliant, on a v= Nc(A), mod , et par suite aussi, mod . Ceci démontre
dans le cas présent la première partie du théorème pour le cas de ~= i. Pour passer
aux cas de e > r, supposons que l’on ait v E~ IBc(A). mod et posons alors

~o étant un entier de c(~) divisible par iV, rnais non par L’entier B==A(i + l~c~),
où 1* est un entier rationnel vérifiant la congruence ll* - 1, mod ? remplit alors la
condition v mod En continuant d’employer ce procédé, nous arrivons
finalement, pour toute puissance tue, à un entier de c(M, ~), dont la norme relative

par rapport à c(~) est congrue à v mod ive.

Soit, d’autre part, tu indécomposable dans c(M, ~.); nous pouvons encore supposer
N. non divisible par iv, et alors, d’après le théorème n’est pas résidu de

puissance mod w. D’après les conséquences du théorème 139, il y a dans e(~)

exactement r=n()-I 
l, 

- I l 
résidus de lièmes puissances mod iv premiers à w; en les

représentant par ..., 03C1r, les n(tv) - I nombres



sont tous incongrus, mod car ;~. n’est pas résidu de puissance, mod iv, et, par
suite, tout nombre de c(03B6) premier à  est congru, mod iv, à l’un de ces nombres. En

posant ~ ~ - x1, ... , , p~, = , mod tv, x1, ..., étant des nombres de c(~), on en
déduit

et, par suite, tout entier de premier à  est congru mod  à la norme relative
d’un certain nombre de c(M, ~); on en conclut, comme dans le cas précédent, que
pour tout nombre v entier de c(() premier à tu, on peut trouver un entier de c(M, ~)
dont la norme relative soit congrue mod ive.

Si nous voulons maintenant démontrer la première partie du théorème 15o pour
le cas de nous pouvons supposer [1. premier à I; désignons par la plus
haute puissance de ). contenue dans - I, in étant dans tous les cas ) 1, et

posons

a étant un entier rationnel premier à 1; a* étant alors un entier rationnel, tel que

J, mod /, en posant IL~ _ ~.~’~~~-’, on a

D’autre part, on a les congruences suivantes, où g est un entier positif quelconque
et h un entier positif quelconque premier à L : :

Comme le discriminant relatif du corps c(M, ~) par rapport à c(~) ne peut, dans le
cas actuel, contenir le facteur r, on a nécessairement, d’après le théorème r48,

»i > l (~).

(1) N. T. - En effet, d’après le théorème on doit avoir

d’où

ruaiS

donc

ainsi, dans

on a



Soit d’abord m. ~ l. On déduit alors facilement (1) des congruences ( ~ 2) et ( ~3)
que pour tout entier positif g on peut trouver dans c(03B6) un entier 03B1g vérifiant la
congruence

En posant alors M* = l/jJ,* et 03A9g = I -03B1gM* 03BB , est toujours un entier de c(M, t) "
et on a

De là résulte immédiatement (2) que tout entier v de c(~) vérifiant la congruence
v - 1, mod l, est résidu de normes du corps c(M, Q, mod i. On lève facilement cette

(1) N. T. - On a

’ 

Mais en multipliant u* par une série de puissances lièmes convenables (i on peut
avoir

Soit, en effet,

en multipliant membre à membre cette égalité et la congruence

on obtient la congruence

d’où en posant et ~/=2014x~ , (t)

Posant alors

on aura de même

et ainsi de suite, jusqu’à avoir

Mais alors en multipliant membre à membre cette congruence et

on aura

(~) N. T. - On a successivement

en posant

et ainsi de suite.



restriction de v = i, mod I . En effet. v étant un entier quelconque prernier congru

mod { à l’entier rationnel a, posons a* étant un entier tel que aa*~ r,

inod I; alors on a évidemment ~ == i, mod I, et, d’autre part, v et v~° sont en même

temps résidus ou non résidus de normes du corps c(M , ~), mod r.

Soit ensuite dans la formule ( ~ 2) et, ’ par suite, l - ~ = I ; nous pouvons
alors, g étant un entier positif quelconque, trouver deux entiers et de c(~), tels

que l’on ait 
.

Nous posons, conformément au théorème I- ~~’ ... ~~‘-’~, ~, ~’, ... étant t

des idéaux premiers distincts du corps c(M, r). Les deux nombres

ou M" = l * sont des entiers, et comme l’on a Nc(Ag)~-03BB, mod F, Ag est divisible
par un des idéaux premiers facteurs de Ï, S par exemple, et contient ce facteur au

premier degré et aucun des autres. Des formules (~4~ résulte

et nous pouvons alors supposer que soit choisi dans la série des nombres ,

~x~, ..., de façon que l’on ait mod F. et, par suite. ~==A,-~
mod 1 . D’après la dernière de ces congruences, est aussi divisible par S, mais
non par S’, .... ~"~; et comme on a aussi B.(/~,)==2014X, mod ÏB A ~ n’est divi-
sible que par la première puissance de S. :Nous pouvons, d’après ce qui a été

déjà démontré, mettre le nombre fractionnaire 2014~- sous forme d’une fraction dont’ 

les deux termes seront premiers à 1 . En posant mod de façon que Q~
soit un entier de c(M , 0~ on a 

Ag-1, 

Une telle formule étant possible pour tout exposant positif g, on montre comme
plus haut que tout entier premier à { est résidu de normes du corps c(M, 03B6).

Nous passons maintenant à la deuxième partie du théorème r5o. Soit d’abord tu
un idéal premier de c(~) différent de I, divisant, le discriminant relatif de c(M, ~) ;
nous avons alors, d’après le théorème 149, où est un idéal premier de
c(M. 0. Tout entier de c(M, 0 doit alors être congru à un entier de c(~), mod ~i’ . Si
alors un nombre donné v de c(03B6) premier à  doit être congru à la norme relative N ,/A)
d’un entier A de c(~, ~), et si nous posons A - a, mod il en résulte nécessai-



remcn v - mod ~, et par suite, mod 1v, c’est-à-dire que v est résidu de puis-
sance, mod tv . Inversement, si un nombre v de c(~) est résidu de l’ème puissance,
mod est aussi évidemment congru à une norme relative Nc(A), mod ?. Nous en
concluons que les résidus de puissances, mod in, donnent aussi tous les résidus
de normes, mod ? du corps c(M, ~).

Il reste enfin à traiter le cas, où iv = r et où t divise le discriminant relatif de
c(M, 0. On a dans ce cas 1 = 21, 2 étant idéal premier dans c(M, ~), et nous pouvons
(vu le théorème 1 ~ 8) supposer que le nombre [1. vérifie, soit la congruence

soit l’une des suivantes

m étant égal à 1 , 2, ..., l- 1 (1). Nous chercherons ensuite dans ces deux cas quels
sont les nombres de c(~) qui sont congrus à la norme relative d’un nombre de c(M, ~),
mod ou nlod {l respectivement, et nous tirerons de là facilement le nombre des
résidus de normes incongrus pour n’importe quelle puissance plus élevée de 1 .

Dans le cas de y, - ),, mod r~, M est divisible par ~, et non par ~Q, et l’on a les
congruences

où ~i. ~ ~, ... , sont des entiers de c(~).

(1) N. T. - On a, en effet :

soit premier à l, ~~.’ premier à À ;
soit :1. premier à À et (i~e), m  l .

Dans le premier cas, on déterminera deux entiers a, b, tels que

et on prendra

puis on déterminera de façon que y’’~~ == i, (1), et on prendra

Dans le deuxième cas, on déterminera 03B2 de façon i, (),

et enfin on prendra ~.’_(; ~~~.)~’, a‘ vérifiant la congruence



Enfin, l’on a

pour t= 1 , 2, 3, ... ; ~== 1 , 2, ..., l- r. Or, tout entier A du corps c(M, ~) premier
â ~ vérifie évidemment une congruence de la forme

où a est l’un des nombres 1, 2, ..., , 1- 1 et les (1 + 1) (1- ~ ) exposants ai,

at.’ ..., sont des entiers déterminés de la suite o, 1, 2, ..., l- r. Des con-

gruences (; ~) et (; 6) résulte

L’expression du second membre représente, lorsque a prend les valeurs

1, 2, ..., l - 1 et a~, ..., séparément, toutes les valeurs o, I , 2, ..., l -1,

(l- nombres, visiblement incongrus mod I‘t’. Alors tout nombre de c(03B6)

premier à {, congru mod à la norme relative d’un nombre A de c(M, 0 est

nécessairement congru mod à une expression de cette forme et inversement, on

conclut de (j5) que toute expression de cette forme est congrue mod à la norme

relative d’un nombre de c(M, ~). A l’aide des congruences (~3) on reconnaît que deux

nombres de c(~) premiers à {, congrus mod I‘~’-’, sont en même temps résidus ou non
résidus de normes mod I . Le nombre des résidus de normes mod {, premiers à { et

incongrus mod {l+1 est donc exactement égal à (l-1)l’-’, c’est-à-dire au lième des

nombres de c(~) premiers à { et incongrus mod r‘~’, et ce résultat peut s’étendre

immédiatement aux puissances Ie d’exposant e ~> l + 1 .
Pour abréger, nous ne traiterons ici que le cas le plus simple de ceux qui sont

encore possibles relativement à ;~; c’est celui de ;u -1 ~ ),, mod r~. En posant alors

Q= M - i, Q est un entier de c(M, ~) divisible par ~, mais non par ~~, et en

remarquant que - ),, mod IQ, on trouve, par un calcul facile (1), les

(1) N. T. +Qi) est égal à -fi(-I), si l’on représente parfi(x)==O l’équation,
de premier coefficient égal à i, dont les racines sont + Qi , + (sQ)i, etc. Or, cette équation est
la transformée de l’équation fi(~) = o par la substitution ~c== -p ~ . On a f1(~) = (~ + i)~- ~,
et on en déduit que



congruences

où ~,~, .,., ~ l_~ sont des entiers de e(~). On a de plus

en posant pour abréger

On a de suite J,~ ~ l. Chacun des termes à additionner dans ~;3, ..., est
divisible par ~l, on peut de plus les grouper en l séries, se déduisant l’une de l’autre
par les substitutions 1, S, S~, ..., Sl-1; en mettant alors un terme quelconque sous
la forme i,~~, ~~ est un entier de c(M, ~), et peut, par suite (démonstration du
lemme 23), se mettre sous la forme d’un polynôme entier en Q et par suite aussi
en M , dont les coefficients sont des entiers ou des fractions de c(~) ~ dénominateurs
toujours premiers à I. En posant donc ~~~-r(M), l’ensemble des l sommes peut
s’écrire

la parenthèse est, on le voit aisément, toujours congrue à o, mod l; les nombres

X,, ..., 03A3l-1 sont donc tous congrus à o, mod l, et l’on a

On obtient enfin facilement les congruences

pour t= i, 2, ..., 1 - 1 ; . g-1, 2, ..., l - i .

Maintenant tout entier de c( M , 03B6) premier vérifie évidemment une congruence
de la forme



où a est un des nombres i, 2, ..., l-I et où les l(l - 1 ) exposants a1, a2, ..., sont

des nombres déterminés de la suite o, 1, 2, ..., 1- 1 . On en déduit, vu les con-

gruences (77), (78), (79),

Le second membre représente alors pour les 1 - 1 valeurs 1, 2, ..., 1 - 1 de a et

les l valeurs o, 1, 2, ..., l - i des exposants ai, ..., , al_~, (l - r) h-~ nombres, qui i

sont premiers à {et incongrus mod Il. A l’aide de la congruence 
mod et des congruences (j3), nous en concluons que le de tous les nombres

premiers à { et incongrus mod IL donne tous les résidus de normes de c(M, ~), et

nous étendons ensuite ce résultat au cas des puissances le à exposant ?==/-}-i 1

ou >l~ i.

On obtient le même résultat par des calculs analogues lorsque ~, est - i, mod I~,

et le théorème I50 est ainsi complètement démontré. Remarquons pourtant que nous

nous arrangerons dans ce qui suit pour n’employer ce théorème que dans le cas

N, _-1 i + i,, mod F, dont nous avons fait la démonstration en détail.

Le théorème I50 conduit à une propriété nouvelle et essentielle des idéaux pre-
miers facteurs du discriminant relatif de c(M, ~) par rapport à c(~). Cette propriété

correspond dans une certaine mesure au théorème sur les points de ramification

d’une surface de Riemann, d’après lequel une fonction algébrique a dans le voisinage
d’un point de ramification du ordre une représentation conforme de l’angle total

sur le de ce dernier. Pour cette raison, j’appelle les facteurs idéaux premiers 
du discriminant relatif de c(M , ~) par rapport à c(~) des idéaux de ramification pour
le corps de c(M , ~); cc facteur premier du discriminant relatif)), « idéal invariant »,
« idéal de ramification sont donc ici synonymes.

Le théorème no nous fait voir la possibilité de répartir les nombres du corps
c(03B6) incongrus mod fve (e > l dans le cas de m = 1) en l sections, contenant toutes le

même nombre de nombres et dont l’une comprend les résidus des normes mod .

Pour mettre en lumière cette répartition, j’introduis un nouveau symbole v, ‘ rl.,~ ~ 1
faisant correspondre comme suit une racine déterminée de l’unité à deux entiers

distincts v et ,l de c(~) et à un idéal premier iv quelconque de ce corps.
Soit d’abord in ~ {..Alors si v est divisible exactement par tvb et  par on

formera le nombre f, = vb et on mettra A sous forme d’une fraction £ dont les deux
tJ. G



ternies seront premiers à w. Le symbole {1 / / sera alors défini par la formule

On obtient immédiatement les règles simples

v~ , ~, ~u ~ , ,~,~, sont des entiers quelconques =1= 0 de c (Q.
Pour définir le nouveau symbole dans le cas de faisons les remarques

suivantes :

Etant donné un entier w de c(~) vérifiant la congruence c~ - r, mod r, et si l’on
pose

de façon que c, c , ..., soient des entiers rationnels, ces derniers vérifient la
congruence

En posant alors

w(~) représente un polynôme à coefficients entieis de degré l-1 1 et l’on a

Ce polynôme s’appellera le polynôme adjoint à l’entier w. Nous écrirons encore

expressions introduites avantageusement par Kummer pour abréger certains calculs.

Si le nombre c,~ - i, mod 1 , est mis d’une façon quelconque sous la forme

où a, al, ..., at sont des entiers rationnels,

est un polynôme de degré t, ne vérifiant pas en général l’égalité cn(1)_-__ I, mais véri-



fiant toujours la congruence (~(i)= i, mod /, et qui est par suite premier à 1 pour
,r== i. On a les congruences suivantes :

Leur exactitude ressort de ce que l’on a

Dans la première égalité, O(x) désigne un certain polynôme entier en r, et la se-
conde signifie que, dans les développements des deux membres de cette congruence
suivant les puissances de v, les coefficients de i, ~ ~, .,., sont congrus entre eux

mod /(’).
03BD,  étant deux entiers quelconques de c(03B6), tels que 03BD~ i, ~ i, mod 1, nous

définissons le symbole {03BD,  } comme suit : .

(1) N. T. - Soit, plus généralement, un entier de c() non divisible par t, de sorte que
w( 1) ne soit pas divisible par l, et soit c~‘(.~) le même nombre exprimé d’une autre façon ; on
aura encore

En effet, soit

la forme réduite de et de u~‘(4), de sorte que l’on ait

i + x’ + ... + et ses 1 - 2 premières dérivées sont divisibles par 1 pour x = i (à cause
de la congruence i + x -~- ... + ,x’r-~1= [i -,.~~1-1, mod l ).

c~’(e2’ ), «(e?’ ) sont donc congrus entre eux, mod l ainsi que leurs 1 - 2 premières
dérivées, et il en est par suite de même des dérivées logarithmiques.

Si deux nombres x(~), j::(~) sont congrus, mod l, on a évidemment aussi pour toute valeur
de r~



De cette définition découlent immédiatement les règles

où v, ;~ , u.,l, u.~ désignent des entiers quelconques de c(~) - I, mod 1 . Si r est
une racine primitive, mod l, et s = (~ ; ~r) la substitution correspondante du corps
circulaire c(~), on trouve aisément la formule

Si 03BD et pL sont des entiers quelconques premiers à Ï du corps je définirai le-

symbole {03BD,  } par la formule

Dans le cas où l’un des nombres 03BD,  ou tous les deux sont divisibles par r, voir
les remarques à la fin du paragraphe 133. 

§ I32. - LEMMES SUR LE SYMBOLE 20142014’ ET LES RÉSIDUS DE NORMES MOD t.

LEMME 24. - ~ étant un entier de c() congru à i, mod r, la norme de c~ 
,

dans c(1) vérifie la congruence 
’

Démonstration. - Soit le polynôme adjoint à u, et soit

le produit étant étendu ..., l - T. F(x) est un polynôme en x
à coefficients entiers et les coefficients de tous les termes divisibles par xl sont évi-



demment divisibles par ?,’, et par suite aussi, à cause de la rationalité des coefficients,

par En développant suivant les puissances de x, on obtient ensuite

En posant successivement dans ce développement ~== 1 , ~, ~y, ",, ~c-’ et ajou-
tant, on obtient, vu

l’égalité

où xIG représente l’ensemble des termes du développement divisibles par xl.
En posant, en second lieu, dans le développement .(85), ~ = e’’ et prenant la

(l - I dérivée par rapport à v, celle-ci est égale, pour v = o, à

En comparant les formules (86) et (8;), on obtient

c’est-à-dire que les coefficients de x, x~, ..., xl-1 dans le premier membre sont con-
grus mod F aux coefficients correspondants du second membre, et si nous passons



aux puissances de e nous obtenons, d’abord dans le même sens, puis, vu la remarque .

faite au début de cette démonstration, sans restriction, la congruence des deux poly-
nômes à coefficients entiers

et par suite, pour x == 1,

ce qui démontre le lemme 2~.

LEMME 25 . - Si les entiers ~, ~ de c(~) vérifient les congruences ~~ i, mod L et
T + )., mod t, et si de plus ~ est congru mod F à la norme relative d’un entier A

du corps kummerien c(M, 0 défini par il existe un polynôme f(x) de

degré /2014 1 à coefficients entiers, tel que l’on a

Démonstration. - Vu la démonstration du lemme 23, tout entier A de c(M, 03B6)
peut être mis sous la forme

et par suite aussi sous la forme

’f ~ ~ ~ ~ ~ Y~-~ ~ ô ~ ~~~ ~j~ ~ ~ ~ ~ ~ étant des entiers de c(~), ô premier à I . Ce dernier

fait entraîne

a, ..., étant des entiers de c(~).
Soient alors

a*, ..., étant des entiers positifs; posons

Comme on a, dans c(M, ~), et M == 1, rnod ~, il en résulte



Si maintenant on a, selon l’hypothèse de l’énoncé, mod Il, on a de plus

et par suite

Par suite, f ~(~) est un nombre de c(~) congru à l, mod r. On trouve alors aisé-

ment un entier positif b, tel que la norme du nombre f(~) = f ~(r) ~- lb dans c(~)

vérifie la congruence

le polynôme entier

remplit alors les conditions du lemme 25. Car on a évidemment A = f (M) + ~~ B,

B étant un entier de c(M, 3. On en tire facilement (comme paragraphe r3o)

D’autre part, à cause des congruences

on a identiquement en x une égalité

où F(x’) est un polynôme en x’ à coefficients entiers.
On en tire pour x = i, à cause de (89), la congruence

En faisant x = M dans (g r ), on obtient

et, par suite, comme on a ~’(u.) = h’(1) -o, mod r,

c’est-à-dire, à cause de (90),

Ceci joint à (89) démontre complètement le lemme 25.

LEMME 26. - N~ et v étant deux entiers de c(~) tels que l’on ait v - i, mod {, et

-~- î,, mod F, et v étant de plus résidu de norme, mod I, du corps c(M, Q
défini par M = j~;~, on a toujours



Démonstration. - La formule connue de Lagrange pour l’inversion d’une série
de puissances donne immédiatement l’identité suivante :

dans laquelle F(v) est une série quelconque de puissances de v, 9(v) une série de
puissances de v dont le terme constant est =1= o, et V une variable liée à v par

l’équation V (v) - v = o.
Soient alors et u,(x) les polynômes adjoints aux nombres v et p.. Comme v

doit être résidu de normes, mod t, du corps c(M , ~), il existe (lemme 25) un poly-
nôme f(x) de degré 1 - 1 à coefficients entiers, tel que l’on ai t

Posons alors

Ces fonctions ne seront envisagées que et les logarithmes seront déter-
mines de manière à être réels pour 

Si nous remplaçons 03C9, (x) et v dans la deuxième formule (81)’, paragraphe 13r,
par f (~), f (x), ~ respectivement, on en tire

Le lemme ~!~ donne, vu (g3), la congruence

et l’on a, par suite,

D’autre part, on a, ;u (~!~), la congruence (1)

(1) N. T. - On l’obtient en partant de la deuxième formule (8~ j", paragraphe 1 3 1, en remar-

quant que, à cause de 1 + a., ~i?), on a : ~.( i ) == 1. "



qu’il faut entendre en ce que dans le développement par rapport aux puissances de v
les coefficients de i, v, ... , v’-1 sont congrus, mod l, de part et d’autre, et on en

déduit le développement

congruence qu’il faut entendre comme exprimant la congruence des coefficients de

i,~~...,t~.
Considérons enfin la fonction Comme on a i + À, mod Ï~, est une

série de puissances dont le terme constant est =2014 i, mod /. Puis on trouve facile-

ment

en ce sens que les coefficients de i, v, ..., ~ ~ sont congrus, mod /, de part et d’autre ;

puis toujours dans le même sens

et enfin, toujours dans ce même sens, le développement

La réunion de la congruence (95) et des deux développements (96), (97) avec (92)
donne, comme l ~~~ (,~.) - - 1 et que (l -.g) (g - I) ! - (- mod l, pour

g =1, 2, ..., l -1, la congruence suivante : 1

c’est-à-dire d’après la définition (82) du symbole {03BD,  } § I3I,

ce qui démontre le lemme 26.

s 1 33. - DISTINCTION DES RÉSIDUS ET xox RÉSIDUS DE NORMES AVEC LE SYMBOLE / 1 .
THÉORÈME 15I . - V, y. étant deux entiers quelconques de C(1), mais é/[J. n’étant

pas dans c(§), et in étant un idéal premier quelconque du corps circulaire c(§), v est
résidu ou non résidu de normes, mod in, du corps kummerien c(M, §) défini par
M = l/jJ. , suivant que l’on a



Démonstration. - Soit d’abord iv ~ 1 et ne divisant pas le discriminant relatif

du corps c(M, ;). Si * est un entier de c(03B6), tel que uy soit la puissance d’un

nombre de c(O, on a toujours = ) {03BD,  }. On peut donc, vu le théorème i48,
admettre ici que  n’est pas divisible par iv. Distinguons deux cas, suivant que tu
est égal dans c(M, , 03B6) à un produit de l idéaux premiers ..., l ou que m est
lui-même idéal premier dans c(M, 0. D’après le théorème i4~ on a, dans le premier
cas {  } = I dans le second , ‘J’ = I et == o .

Dans le premier cas déterminons un entier A de c(M, 0 divisible par mais

non par .~1 ni par aucun des idéaux 2~~, ..., alors la norme relative 3: = Nc(A)
contient  exactement au premier degré. Si alors iv° est la puissance de M) contenue

dans v, peut se mettre sous forme d’une fraction dont les deux termes

sont premiers â tv et sont, par suite (théorème résidus de normes du corps

c(M, ~), mod tv. Il en est donc de même de v. Comme, d’après la définition du para-
graphe 131,

le théorème ~51 est exact dans ce premier cas.
Dans le second cas, la norme relative d’un entier A de c(M, 0 est toujours divi-

sible exactement par une puissance de iu dont l’exposant est un multiple de l. Soit

encore i~b la puissance de iv contenue dans v ; si b n’est pas multiple de l, v ne peut
donc être résidu de normes, mod dans ce cas, on a d’ailleurs

Si au contraire b est un multiple de l, et que x désigne un entier de c(~) divisible

par in, non par nous posons A = b et nous voyons que v est résidu de normes,
TL

rnod iv, comme dans le premier cas ; d’autre part, on a maintenant

Le théorème 151 est ainsi démontré dans ce second cas.

Supposons maintenant que le discriminant relatif du corps c()VL ~~) soit divisible

par l’idéal premier tv ; rv doit être =~= I . Supposons que v soit divisible par tvG et

~, par alors 2 n’est en tout cas jamais multiple de l. Le nombre .r==-~ peut se

mettre sous forme d’une fraction ~, dont les deux termes sont premiers à tv. Le



nombre ç~‘-‘ est un entier non divisible par d’après la démonstration du théo-
rème I50, pour qu’un tel nombre soit résidu de normes, mod iv, il faut et il suffit

qu’il soit résidu de puissance, mod tu, c’est-à-dire ici, que ’ = 1 et par
suite que {03BD, }=I; le théorème 151 est encore exact dans ce cas.

Soi t enfin tu envisagerons seulement le cas où l’on a ~ i + À , mod 2

(le seul dont nous aurons besoin dans la suite; les autres se traiteraient d’une ma-
nière analogue). Pour la démonstration, nous ferons encore la restriction (non essen-

tielle) u _--_ I, mod I . Comme on a -~- ),, mod I~, on peut, d’après le théo-

rème 150. former exactement zt-l résidus de normes 03BD* du corps mod I, résidus

congrus à i, mod {, et incongrus entre eux mod Iz+’. D’autre part, tout résidu de
normes ~~~ de c(M, 4), mod I, pour lequel on a ~~’~-1, mod I, remplit (lemme 26)

~ , (~. la condition 20142014 ~ -1. °
A cause de

on obtient, vu (82) :

Soit maintenant x un entier quelconque de c(~) congru à i , mod t, et posons

est un nombre de la suite o, 1 , 2, ..., l- 1 ; alors on a évidemment

au contraire, on a toujours

lorsque x est un nombre de la suite o, 1 , 2, ..., l -1, -~= a . Si nous choisissons

ensuite un entier 1,.’ de c(~), encore congru à i, mod r, mais non congru, mod î, à

aucun des l nombres x, x(i I - l)~ x( i - l)J, ..., x( les l nombres u’, 1- l),
- 

..., 
- sont aussi tous incongrus entre eux, mod 11+’, et de plus

non congrus à aucun des l premiers nombres; parmi ces l derniers nombres, il y en

a évidemment, à cause de (98), un et un seul - soit, par exemple, - tel



que {03B1’(I - l)a’,   == i. En continuant ainsi, nous voyons que le nombre des nom-
bres v incongrus, mod rl+’, congrus à i, mod I, et vérifiant la condition {03BD,  } == I,
est précisément et comme ce nombre coïncide avec le nombre trouvé antérieure-

ment pour les résidus des normes v*, on voit qu’inversement tout nombre v possé-
dant ces deux propriétés est résidu de normes du corps c(M , ~), mod I .

Le théorème 151 I est ainsi démontré complètement; à part que pour le cas de
w = I on s’est borné aux nombres v, ;~, v - i, mod r, et y. -1 t -}- ~, mod t~. La res-

triction relative est évidemment facile à lever. -

Du théorème r51 résulte, à l’aide des premières formules (80) et (83), la formule

où >n est un idéal premier quelconque de c(§) et ,>* un résidu de normes du corps

c(M, 03B6), mod w.

, fi" 1 b l j v, ,j, j 
d l ,Pour définir maintenant le symbole { % j dans le cas ou l’un des deux nombres...

v, y. ou tous les deux sont divisibles par 1 , .il suffit de convenir qu’on a toujours les
formules

est un résidu de normes quelconque du corps ~), mod t. On en déduit,
en particulier (1),

Nous pourrions uniquement baser la définition du symbole {03BD,  } sur les for-
mules

v est ici divisible par 1 et u donc



est un entier de c(~) premier à I, un résidu de normes de c( l ~,~., ~), mod I,
et ,J, des entiers quelconques de c(~) (voir § 166). J’ai pourtant choisi pour le
moment la définition (82), qui se rattache immédiatement aux développements de
Kummer.

Remarquons enfin que nous avons maintenant atteint le but fixé au début du

paragraphe 131 ; si, en effet, e est une puissance quelconque de l’idéal premier ?
(avec dans le cas oii w -= r), on peut évidemment diviser un système complet
de nombres de c(5) premiers à  et incongrus, mod ive, en ayant égard aux valeurs

du symbole 1~’ ~ en 1 sections contenant toutes autant de nombres, l’une d’elles

contenant tous les résidus de normes mod  du corps c(M, 0 se trouvant dans le

système. 
’

CHAPITRE XXX.

Existence d’une infinité d’idéaux premiers ayant des caractères
. de puissances donnés dans un corps kummerien.

§ I34. - VALEUR LIMITE D’UN PRODUIT INFINI. 

Après avoir, au paragraphe 128, obtenu tous les idéaux premiers d’un corps kum-
merien, nous sommes en mesure de faire pour ce corps les mêmes recherches qu’aux
paragraphes 79 et 80 pour le corps quadratique. Nous commencerons par l’impor-
tante proposition suivante :

LEMME 2 ~. - l désignant un nombre premier impair et x un entier quelconque
, 

du corps circulaire défini non égal à la lième puissance d’un nombre de

c(~), le produit

a toujours une limite finie et différente de o pour s= i ; le produit II étant étendu à
~~)

tous les idéaux premiers de c~~) et le produit I~ à tous les exposants m = i, 2, ...,’ 

(m)
l -1. [Kummer 2°.] ]



Démonstration. - En envisageant le corps kummerien C = c(l03B1, 03B6) et désignant
ici la fonction ~(s) du théorème 56 par ~~;(s), on a, d’après le paragraphe 2 ~,

le produit étant étendu à tous les idéaux premiers de C et étant la norme

de ~ prise dans C. Si l’on ordonne ce produit par rapport aux idéaux premiers V du
corps c(~), dont proviennent les idéaux premiers , à chaque idéal ~ correspond
dans le produit (théorème 1 ~ 9) le terme

, 
x

suivant que l’on a 2014 == r ou == o, ou ~ I et ~ o.

Ecrivons ces trois expressions sous une forme commune :

nous obtenons ainsi

II représentant le produit étendu à m = r, 2, ..., l -1 et les deux produits II s’éten-

dant à tous les idéaux premiers ~ de c(~). Or, chacune des expressions

est finie et =~= o, comme on le voit en appliquant le théorème 56 au corps circulaire

c(~), puis au corps kummerien C = ~). En multipliant par s - I l’équation (99)
et passant à la limite pour ~== i, on voit que l’expression donnée dans le lemme 2 y
a une limite finie et =1= o.

S 1 35. - IDÉAUX PREMIERS DE C(~) AYANT DES CARACTÈRES DE PUISSANCES DONNÉS.

THÉORÈME 1 52 . - Soient ..., xt, t entiers quelconques du corps circulaire c(~),
tels que le produit

ne soit jamais la puissance d’un nombre de c(~) lorsque mt, m$, .... m~ pren-
nent les valeurs o, i, ..., l -1, la combinaison n~1= m~ = ... exclue; soient



de plus ~~$,... , ~~t des racines l’èmes de l’unité données arbitrairement. Il y a toujours
dans le corps circulaire c(~) une infinité d’idéaux premiers tels que l’on ait pour
un certain exposant m premier à l .

[Kummer ~°.]

Démonstration. - On a, tant que s est > 1,

où E et E sont étendus respectivement à tous les idéaux et à tous les idéaux premiers
(i) (f)

de c(~). Comme l’expression S reste finie pour s= i (voir § 50), il résulte de (100)

que, le premier membre devenant infini pour s =1, la somme S20142014 s croît égale-
(~) n(~)

ment au delà de toute limite lorsque s tend vers I. Ensuite, x étant un nombre entier

quelconque de c(~), on a de même pour s ~ 1

et S(a) reste ici encore finie pour s = I. Soit maintenant m un des nombres

1 , 2, ..., , l - 1. Posons dans ( I OI ) ~, = = x2 u2 , , . et multiplions encore

l’égalité obtenue par le facteur ,r1 ~"l2 u’ ... donnons ensuite à chacun des

t exposants u~, us, ..., ut les 1 valeurs o, J, 2.... , 1- J (à l’exclusion de la combi-
naison us = uQ = ... = ut = o). En additionnant les lt - I égalités ainsi obtenues

à (100), on obtient la relation



où l’on a posé pour un instant

Faisons abstraction, dans la première somme du second membre de 102, des
termes en nombre limité (dont Gm désignera l’ensemble), correspondant aux facteurs
idéaux premiers de a1, ... , x~, ~ . Le reste infini de cette somme est alors 

demment où q parcourt seulement tous les idéaux premiers de rem-

plissant les l conditions

Ecrivons alors les égalités (102) les unes après les autres pour m = 1 , 2 , ..., l-1
et ajoutons ; nous obtenons

r parcourt tous les idéaux premiers ~ de c(~) satisfaisant à l’un quelconque des 1 - T
systèmes de conditions (ro3) obtenus en faisant m = 1 , 2, ..., l- 1 : pour y1= i, ...,

= r, ces 1 - 1 systèmes sont identiques et les idéaux premiers correspondants
doivent être pris 1- 1 fois. En passant alors à la limite pour s= r, la première
somme S du premier membre de io4 augmente indéfiniment, tandis que la deuxième
somme E du premier membre reste finie d’après le lemme (2 ~). S et S(x~) restant
aussi finies, l’expression E croît donc indéfiniment lorsque s tend vers r, et par
suite, il y a une infinité d’idéaux x; or, ils satisfont au théorème 152.



CHAPITRE XXXI.

Corps circulaires réguliers. 

§ 136. - DÉFINITION DES CORPS CIRCULAIRES RÉGULIERS, DES NOMBRES PREMIERS

RÉGULIERS ET DES CORPS KUMMERIENS RÉGULIERS.

2tT:

Soit l premier impair, ~ = e ~ ; le corps circulaire c(~) et le nombre premier 1

seront réguliers, lorsque le nombre h des classes d’idéaux du corps c(03B6) ne sera pas
divisible par l. Les chapitres suivants ne traiteront que des corps circulaires réguliers
et des corps kummeriens qui en résultent, corps que j’appellerai corps kummeriens
réguliers; on peut démontrer de suite pour ces derniers la proposition simple
ci après.

THÉORÈME i53. - Soit c(~) un corps circulaire régulier et C un corps kummerien
déduit de c(~) : tout idéal j de c(.~) qui est idéal principal de C est aussi principal
dans c.

Démonstration. - Posons i = (A). A étant un entier de C, on a en formant la
norme relative ( Nc(A) ) , c’est-à-dire qu’on a dans c(03B6) l’équivalence jl ~ I . D’un
autre côté, on a aussi i, h étant le nombre de classes de c(~). En déterminant
deux entiers positifs a et b, tels que al - bh = I, on a donc ,~ I ~ c’est-à-dire .

que j est idéal principal dans c(~).
La question se pose de trouver un critérium pour reconnaître simplement si un

nombre premier l est régulier. Les deux lemmes ci-après vont nous conduire à ce
critérium.

§ 137- - LEMME SUR LA DIVISIBILITÉ PAR l DU PREMIER FACTEUR DU NOMBRE

DE CLASSES DE .

LEMME 28. - l étant premier impair, la condition nécessaire et suffisante pour

que le premier facteur du nombre de classes du corps c(03B6 = e2i03C0 l) soit divisible par l

est que 1 divise le numérateur de l’un des l* = l - 3 2 P remiers nombres de BernoulH- ’

[Kummer8, KroneckerB] ]



Démonstration. - On a mis, au théorème y2 , le nombre de classes h du

corps c(~) sous forme d’un produit de deux facteurs ; considérons l’expression donnée
2ir~

au premier. Posons pour abréger Supposons de plus r racine primitive
i-~

mod l, choisie de façon que 1 ne soit divisible que par la première puissance
de l(1). Soit enfin, comme aux paragraphes J08 et I09, ri le plus petit reste positif

mod l et qi = 
’ 
~ 

- l r z ~.~ . ’ .
Le premier facteur du nombre de classes h est mis dans le théorème I42 sous la

forme d’une fraction dont le dénominateur est (2 L)l~, et dont le numérateur est

f (x) désignant pour abréger le polynôme à coefficients entiers

En posant ensuite

on trouve aisément

et comme, vu le choix de r, le produit

est exactement divisible par la première puissance de l, il en résulte que le numé-
r-1

rateur (io5) du premier facteur de h n’est divisible par que si le nombre

est divisible par 1. Maintenant £ = (l, Z - r°) est un idéal premier diviseur de l dans
le corps c(Z), et comme on a évidemment Z - r, mod ~, on a

par suite, le premier facteur du nombre de classes h n’est divisible par l que si l’une

au moins des - congruences
2~

est vérifiée.

1-1

(1) N. T. - Si l’on avait r2 + (l’’j, il suffirait de prendre une racine (1)
et ~j_ r, (l~). °



Soit t alors 1 un des nombres 1, 2, 3, ... , 

l - I. En élevant à la puissance at
2

l’identité

dans laquelle est divisible par /, on obtient la congruence

et comme on a évidemment

on en tire

En ajoutant ces congruences pour i = o, 1, 2, .... l - 2, on obtient t

Comme d’ailleurs on a

il en résulte que la condition nécessaire et suffisante pour que le nombre soit

divisible par 1 est que le nombre

soit divisible par /’. Vu l’hypothèse faite pour la racine primitive r, l’expression (106)

n’est certainement pas divisible par l2 pour t = 201420142014 . Pour 1 = i, 2, ..., 201420142014 on a
toujours, d’après la formule sommatoire de Bernoulli(1), la congruence

(1) N. T. - Rappelons qu’on appelle nombres de Bernoulli les coefficients B2, ..., du

développement

Valeurs des premiers :

On appelle polynômes de Bernoulli les polynômes s’annulant pour x == 0 et vérifiant



où Bt représente le tième nom,bre de Bernoulli, et, par sui te, la divisibilité par l2 de

l’un au moins des nombres (I06) pour t= I, 2, ... 

l- 3 
revient à la divisibilité par

1 d’au moins un des numérateurs des 
l 3 

premiers nombres de Bernoulli. Le

Icmme 28 est ainsi démontré.

§ 138. - LEMME SUR LES LNITÉS DU CORPS CIRCULAIRE DANS LE CAS OU 1 ~E

, , 
L-3 3 

DIVISE LE NUMÉRATEUR D’AUCUN DES 2014201420142014 PREMIERS NOMBRES DE BERNOULLI.
2

LEMME 29. - l étant un nombre premier impair ne divisant le numérateur

d’aucun des 201420142014==f premiers nombres de Bernoulli, on peut toujours former, au

l’équation fonctionnelle

On démontre l’expression ci-après de ce polynôme :

On trouve en effet, à l’aide du développement (I), en chassant le dénominateur ex - i, divi-
sant par x les deux membres et égalant les coefficients de .r2n, la formule de récurrence

Or, on est conduit a la même formule en égalant les coefficients de dans les deux membres

de l’équation fonctionnelle (2) : - i) == .rP . .

Des propriétés ci-dessus résulte l’égalité

d’où la congruence Indiquée.



moyen de produits et quotients d’unités du corps circulaire c(~), un système de l*

unités ..., El- vérifiant les l* congruences

où ai, a~, ... , sont des entiers rationnels non divisibles par l, et où on a posé
a - i - ~, I - (n). [Kummer’’.] ]

Démonstration. - l’artons de l’unité circulaire (v. § 98)

où r est une racine primitive mod l. Posons ensuite = r~ et

pour t= I, 2, 3...., l~, où s est dans l’exposant symbolique la substitution s=(~ ; ~r).
L’unité (L- I)’eme puissance d’un entier de c(~), est nécessairement- I, mod l,

et il en est alors de même de chacune des unités ~t .

Supposons formés conformément au paragraphe ~31 les polynômes adjoints 
pour chaque unité on a pour les nombres rationnels

c’est-à-dire, pour les valeurs des 1 - 2 premières dérivées du logarithme de pour

v = o, les congruences

Pour le démontrer, observons que d’après la première formule (81)’, para-

graphe I3I, on peut, dans le calcul des 1 - 2 premières dérivées

relatives au nombre prendre directement, au lieu du polynôme adjoint à r,, le

polynôme suivant : .



Puis on a le développement connu

où B~, B~, B3, ... sont les nombres de Bernoulli.

De ce développement, résulte

Les fonctions ~~(er’’), r(e’’00FFt~), ... jouent le même rôle par rapport aux nombres

que r(e~’) par rapport à En remplaçant alors dans l’expression (log) de

~t, r, ... par ~(e’"), on obtient une fonction qui peut tenir
lieu de la fonction ~l(e~’) pour le calcul de l~’~(~t), l~~?(:~), ..., l~‘-~~(~~). De (III) on
tire(1) .

où C, Cl-i, Cl--d’ ..., désignent certaines constantes. Le produit écrit en détail dans
le coefficient de v2t est

l-4

et le polynôme à dériver ci-dessus est = x ’ - t, mod 1 . Le développement ci-dessus
entraîne immédiatement les congruences (110).

Comme par hypothèse les numérateurs des l~ premiers nombres .de Bernoulli

I3’, ..., B~* ne sont pas divisibles par l, les 1* dérivées l~‘t~(~~) pour t = 1 , 2, ... , 1* sont

(1) N. T. - En représentante en effet, l’exposant de ~ dans Et ... +
on ay(~)==o pour M== i~ 2, ... , t - i~ ~ + i, ..., /B De sorte que, vu

on a pour coefficient de v2n

c’est-à-dire o pour les valeurs de ri de i à r, à l’excepiion t.



toutes mod l, d’après (110). Nous en concluons qu’aucune des unités

e, , ..., ~~. n’est - i, mod l. En posant alors

avec des exposants e,, ..., , eL, tels que ai, ... , al- soient des entiers non divisibles

par l, ces exposants et, ..., sont tous [ l -1. Puis on tire des congruences (112),
le développement d’une expression ( - suivant les puissances de v comnlençan t

par le terme (-1)gvg, les congruences suivantes pour : 
’

et comme a.t ne doit pas être divisible par l, on tire des congruences (110), vu la

remarque faite plus haut, e~ _ ~t, ce qui démontre le lemme 29.

§ 139. - CRITÉRIUM POUR LES NOMBRES PREMIERS RÉGIJLIERS.

Voici un critérium simple pour les nombres premiers réguliers l.

THÉORÈME I54. - Pour qu’un nombre premier [ soit régulier, il faut et il sufllt

qu’il ne divise le numérateur d’aucun des - 
l - 3 

p remiers nombres de Bernoulli.

Démonstration. - Le lemme 28 montre que, si [divise le numérateur d’un des

l* premiers nombres de Bernoulli, l divise aussi le nombre de classes h du corps c(~).
Dans le cas contraire, l est, toujours d’après ce lemme, premier au premier facteur
du nombre de classes. Il y a donc encore seulement à démontrer que le second fac-

teur du nombre de classes h n’est pas non plus divisible par / lorsque l’un des l~

premiers nombres de Bernoulli ne l’est pas.
Soit ,11.... , ;1* un système de t* unités réelles de c(~), système qui existe toujours

d’après le théorème I 2 j ; nous pouvons alors poser 
’

pour t= o, 1 , 2 , ..., l*- I, les exposants ... , ml*t étant des entiers ration-

nels et e l’unité circulaire définie formule (108). On tire de (113)



pour ~===0, 1, 2, ..., l~ - 1, log représentant la partie réelle du logarithme. D’autre
part, les égalités (lOg) définissant les unités ..., ~l* entraînent un système de la
forme

Nous en tirons les égalités

et ensuite, à cause de (I y),

Mit’ , , ... , , sont les combinaisons bilinéaires connues des entiers ,

»-~, , ... , ; mio’ r~~o, ... , . Les systèmes ( I I3) et (I I5) en donnent encore
chacun l~ - 1 , si l’on effectue sur les.unités qui y figurent les substitutions s, s$, ...,

eSlr-1. En prenant les logarithmes, nous passons de même aux systèmes correspondant
~i (1 16) et 

En posant alors

on trouve, par la règle de multiplication des déterminants,



Le déterminant du second membre est un entier rationnel et il n’est pas divisible

par 1. Car, dans le cas contraire, on pourrait trouver l* entiers ..., non tous

divisibles par 1 et rendant divisibles par 1 toutes les sommes

On obtiendrait alors, vu (I I;), une égalité de la forme

où E serait une certaine unité positive de c(~). D’où

Mais une telle égalité est impossible. Car on en tirerait d’abord E - El -1, mod {;
en considérant le polynôme adjoint E(x) et les valeurs pour v = o des l - 2 pre-
mières dérivées de log E(e2’), on déduirait de (t!()), en appliquant (I10) les con-

gruences 
.

Mais tous les nombres de Bernoulli Bl, ... , B~, doivent être premiers à l, tandis que
les nombres ..., ne sont pas tous divisibles par 1 ; il y a donc contradiction.

Ainsi le déterminant du second membre de (I I8) n’est pas divisible par 1. Comme,

d’autre part, les facteurs 0394 0394 
et 
R 

sont toujours entiers et que R représente 
le se-

cond facteur du nombre de classes h, le second facteur du nombre de classes n’est

donc pas non plus divisible par l. Le théorème i54 est ainsi complètement dé-
montré.

En s’appuyant sur ce théorème, on voit, d’après les valeurs des 4~ premiers nom-
bres de Bernoulli, qu’en dehors de 37, 59 et 67 tous les nombres premiers inférieurs
à 100 sont réguliers. Le calcul montre, d’ailleurs, que les nombres de classes h rela-

tifs aux corps c el pour l = 37, 59 et 67 ne sont divisibles que par l et non par l2.
~6.~ ]

§ - SYSTÈME PARTICULIER D’U1ITÉS INDÉPENDANTES D’UN CORPS CIRCL LAIRE

RÉGCLIER.

Le paragraphe 139 nous fournit le moyen de déterminer dans un corps circulaire

régulier un système d’unités qui nous sera utile dans la suite.

THÉORÈME 155. - l étant un nombre premier régulier, il existe toujours dans le



corps circulaire un système de l*=l-3 2 unités indépendantes, 7,, ...,

~l* vérifiant les congruences

Démonstration. - c(03B6) étant régulier, les numérateurs des l* premiers nornbres
de Bernoulli sont tous premiers à l, et il existe par suite (lemme 29) 1* unités :1, ...,

vérifiant les congruences Comme a~, ..., at: sont premiers à l, nous pou-
vons déterminer l* entiers bt, , ..., b~.;: tels que l’on ait

En posant alors

les unités ..., vérifient les congruences du théorème 155.

De plus, elles forment un système d’unités indépendantes, parce que les unités
..., Si’:’ du paragraphe 138 en forment un. Pour montrer ce dernier point, suppo-

sons au contraire qu’il existe une égalité

les exposants étant des entiers non tous nuls ; on peut supposer ensuite que ces

exposants ne sont pas tous divisibles par l, car, dans le cas contraire, on aurait

Ces exposants n’étant pas tous divisibles par l, l’équation 120 serait de la même
forme que (119) qui a été déjà reconnue impossible au paragraphe r39’

S I4I. - PROPRIÉTÉ CARACTÉRISTIQUE DES UNITÉS D’UN CORPS CIRCULAIRE RÉGULIER.

I56. - 1 étant r un nombre premier régulier, s’il existe dans le

corps une unité E congrue mod t a un entier rationnel, elle est nécessairement

égale à la puissance d’une unité de ce corps. ]

Démonstration. - Supposons déterminé un système d’unités :1, ..., l* confor-

mément au théorème 155; comme elles sont indépendantes, on a



e, et, .... , e~.~: étant des entiers rationnels non tous nuls, et l’on voit de suite qu’ils peu-
vent aussi être supposés non tous mod 1(1). Alors si e était divisible par 1. ,

l’égalité (121) serait de la forme (1 19), qui est impossible. Si, au contraire, e n’était t

pas divisible par l, on aurait Ee~ i, mod t, et, par suite, = i, mod 1; prenons alors

la dérivée logarithmique des polynômes adjoints des deux membres de (121). Comme
Ee étant = i, mod l, les nombres sont tous - o, mod l il en

résulte, en prenant g = ~, f~, ..., 2 l~, et tenant compte des valeurs des nombres

l ~~~ (~~), ... , , l ~~~ (~~":), et de ( r I o), que l’on a successivement ..., mod l ;

on a donc H~. H étant une certaine unité du corps, e n’étant pas divisible par 1 .

En déterminant alors deux nombres a et b, tels que ae + bl = r, on a

ce qui démontre le théorème 156. 
’

On est conduit par les considérations suivantes à une démonstration tout à fait

différente de ce théorème.

Si E n’était pas égale à la puissance d’une unité de c(~), H = E‘-’~ ne pourrait
l’être non plus ; car i - s et i +s+... + sont deux polynômes à coeflicients

entiers en s sans diviseur commun mod l. Mais si E est congru mod l à un entier

rationnel, on a H - I, mod I‘, ce qui, vu la deuxième partie du théorème i48, exi-

gerait que le corps kummerien ~) ait le discriminant relatif i par rapport
à c(~). Mais comme ce corps kummerien est abélien relatif de degré relatif l par
rapport à c(~), le théorème gl~ exigerait que le nombre des classes d’idéaux du corps
ci rculaire c(~) fût divisible par l, contrairement à l’hypothèse qu’il est régulier.

~ 

§ - NOMBRES PRIMAIRES D’UN CORPS CIRCULAIRE RÉGULIER.

Un entier x du corps circulaire régulier c(03B6) est dit primaire : : I° s’il est semi-pri-
maire (voir § ii5) et 2° si le carré de son module, c’est-à-dire son produit par le

/2014i

nombre imaginaire conjugué s ~ ~ , est congru à un entier rationnel mod = l.

Un nombre primaire est donc toujours premier à { et vérifie les congruences .

a et b étant des entiers rationnels. [Kummer 12.]

(1) N. T. - En effet, dans le cas contraire, en extrayant la racine on aurait
... et Ee’ étant congrue, mod l., à un entier rationnel, et les unités Eu étant

réelles, on aurait, la congruence devant subsister quand on change ~ en ~-~, 

c’est-à-dire 1~ - o, (mod l), et en continuant ainsi, tant que les exposants sont tous divisibles
par l, on arrive bien finalement à une égalité (J 21).



THÉORÈME I57. - Dans un corps circulaire régulier c(03B6), on obtient un nombre
primaire en multipliant un entier quelconque premier à 1 par une unité convenable.

]
1-1

Démonstration. - Le nombre 03B2 - x . est évidemment un nombre du sous-

corps de degré du corps c(03B6) et vérifie par suite une congruence § ~ a 

a étant un entier rationnel non divisible par 1. Soient ~1, ~2, ... , ~l* les l* unités du

paragraphe i4o. Si on a, par mod 4, a1 étant un entier
rationnel, on déterminera un entier rationnel tel que l’on ait 2au1 + a1~o, mod l;
alors on a nécessairement

Si l’on a ensuite, par mod (F), a2 étant un entier

rationnel, on déterminera un entier tel que l’on ait 2all2 + rc2 ~ o, mod l; on a

dès lors

On arrive finalement à

Si, d’autre part, 03B6* est une puissance telle que 03B6*03B1 soit semi-primaire,
sera évidemment primaire.

Un nombre primaire réel est toujours congru, mod l= Ij-~, à un entier rationnel.
D’après le théorème I56, toute unité primaire de c(03B6) est la l’ème puissance d’une unité
de c(~).

Voici encore un lemme sur les nombres primaires qui sera utile dans la suite.

LEMME 30. - 03BD, ;J, étant deux nombres primaires du corps circulaire régulier c(03B6),
on a toujours {03BD,  }= I. 

.

Démonstration. - Nous pouvons supposer les deux nombres v, ;J, - I, mod r, car
autrement leurs (l-- puissances rempliraient sûrement cette condition, et à

cause 
. 

de l {03BD,  j = {03BDl-1 , l-1 } / 
) 

(,;oir § 131 ), nn. pourrait les suhstituer à v et iJ.. ’

D’après (83), on a

/-1

et comme par hypothèse on a ,l..s ~’ u, ~ r, mod et que v - i, mod r", on tire



immédiatement de la définition générale (82) du symbole 20142014 : ’ 1 
’’ 

{03BD, , sl-1 2  } === i,
et,parsuite,

On démontre de même que

Puis de la formule (84) on tire

Les trois dernières égalités donnent

CHAPITRE XXXII.

Classes d’idéaux invariantes (’) et genres d’un corps kummerien régulier.

§ I43. - FAMILLES D’l’NITÉS D’UN CORPS CIRCULAIRE RÉGULIER.

Soit l un nombre premier impair régulier, et considérons dans le corps circulaire

régulier c(03B6 = e2i03C0 l) un ensemble E d’unités contenant les puissances de toutes
les unités du corps et tel, de plus, que le produit et le quotient de deux unités quel-
conques de l’ensemble en fasse encore partie. On appellera un tel ensemble une

famille d’urtit,és du corps circulaire c(ç).
Dans toute famille, on peut déterminer m unités ..., telles que toute unité

de la famille est représentée une fois et une seule par l’expression

lorsqu’on donne à chacun des exposants ... , les valeurs o, 1, ..., l - et où
1 est une unité quelconque de c(~). J’appellerai un tel système _~ , ..., base cle la

famille. Il est clair qu’on ne peut avoir

(1) Ou ambiges.



.... étant des entiers rationnels non tous divisibles par l et s une unité de c(03B6).
On voit aisément que toute autre base de la famille E comprend le même nombre ni

d’unités; ce nombre m s’appellera le degré de la famille d’unités.
Si, en particulier, une famille d’unités ne contient que les puissances d’unités

de c(~), elle contient le plus petit nombre possible d’unités et son degré est o. La
totalité des unités de c(~) est aussi une famille d’unités; toute unité de c(~) est (théo-
rème 1 2j) le produit d’une racine de l’unité et d’une unité réelle : on conclut

de là et des développements de la démonstration du théorème I57 que les unités ~1,
..., du paragraphe 140 forment avec § une base de cette famille d’unités, qui est

la plus étendue. Son degré est donc 
l r I ; c’est évidemment la seule famille de

degré l - I et il n’y en a pas de degré plus élevé.
2

On voit facilement que les normes relatives de toutes les unités d’un corps kum-

merien c(~y., ~~ déduit de c(~) forment une famille d’unités de c(~); enfin, la totalité
des unités égales à des normes relatives, soit d’unités, soit de fractions du corps

kummerien ~), forment une famille d’unités de c(~).

§ - IDÉAUX INVARIANTS (1), CLASSES D’IDÉAUX INVARIANTES (1) D’UN CORPS
KUMMERIEN RÉGULIER.

Soit c(03B6) un corps circulaire régulier,  un entier de c(03B6), qui ne soit pas puissance
d’un nombre de c(~); soit C le corps kummerien régulier c(M, ~) engendré par

~ ~ ~N, et ( . Cherchons maintenant à développer la théorie de ce corps par des

méthodes correspondant à celles qu’on a employées pour le corps quadratique
dans les chapitres XVII et 

Le groupe relatif de C par rapport à c(~) est formé de puissances de la substitu-

tion S~=(~j, ~M); on appellera, d’après le paragraphe 5~, un idéal ~ de C idéal

quand la substitution S le laissera invariant, S2~=~, et que, de plus,
~ ne contiendra en facteurs aucun idéal de c(~) différant de i.

D’après le théorème 93, les idéaux premiers qui divisent le discriminant relatif

de G sont tous invariants, et il n’y a pas d’autres idéaux invariants. ~ étant donc un

(1) L’expression de M. Hilbert est ambig. Selon. une remarque de M. E. Cahen , l’origine de
ce mot remonte à la traduction, par Poulet-Delisle, des Disquisitiones arithmeticae : il lraduit

par ambigu le mot anceps, employé par Gauss dans sa théorie des formes quadratiques.
M. Lévy, vu l’acception habituelle différente du mot a employé le mot ambige dans ses
traductions de l’ouvrage de Sommer et des trois premières parties de l’ouvrage actuel.

M, de la Vallée-Poussin emploie le mot bilatère. Je propose qui a l’avantage de rap-
peler la définition des classes dont il s’agit.



idéal invariant quelconque de C, nous déduisons facilement de (voir S ~3)
que tout idéal premier de C qui divise ~ doit aussi être invariant, et il en résulte que
le nombre de tous les idéaux invariants est Il .

S2 étant un idéal d’une classe K du corps de Kummer C, la classe d’idéaux déter-

minée par l’idéal conjugué relatif S~ sera représentée par SK. Les classes SK, S~K,
..., s’appelleront les classes conjuguées relatives de K. F(S) étant un polynôme
quelconque de degré l --1 en S à coefficients a, a1, ... entiers rationnels :

la classe déterminée par l’expression

s’appellera la puissance symbolique F(S) de la classe K et se représentera par

Enfin, une classe d’idéaux A. du corps kummerien sera dite classe ambige ou 
~°~ante lorsqu’on aura ~~=S_~, ~’-~-1. La puissance d’une classe

ambige quelconque contient toujours parmi ses idéaux des idéaux de c(~). Cela
~ résulte immédiatement de ce que l’on a

à cause de A == SA et que, d’autre part, la norme relative d’un idéal quelconque de C
est un idéal de c(~).

§ - FAMILLE DE CLASSES DANS UN CORPS KUMMERIEN RÉGULIER. 

Considérons dans le corps kummerien régulier C un ensemble de classes, tel que
la zïème puissance de chacune d’elles contienne des idéaux de c(~) et que, de plus, il

contienne toutes les classes contenant des idéaux de c(~); tel, de plus, que le produit
et le quotient de deux classes de l’ensemble en fassent encore partie. J’appellerai un
tel ensemble une famille de classes du corps kummerien. Dans toute famille de

classes, on peut toujours déterminer n classes K1, ..., Kn’ telles que tou te classe de
la famille est représentée une fois, et une seule, par le produit

lorsque u1, u~, ..., u,z prennent séparément les valeurs o, r, ..., l -1, et l~ désignant
. 

une quelconque des classes renfermant parmi ses idéaux des idéaux de c(~~. On appel-
lera K,, ... une base de la famille de classes. On montre facilement que le nombre
de classes de toute autre base de la famille est encore égal à n . Ce nombre rz sera le

degré de la famille de classes.



Si toutes les classes d’une famille contiennent des idéaux de c(~), elle est de

degré o. Une autre famille de classes est encore formée par la totalité des classes
de C contenant soit des idéaux invariants de C, soit des produits de tels idéaux par
des idéaux de c(~). Enfin, la totalité des classes invariantes du corps kummerien

forme une famille.

’S - DEUX LEMMES GÉNÉRAUX SUR LES UNITÉS FONDAMENTALES RELATIVES

D’UN CORPS CYCLIQUE RELATIF DE DEGRÉ PREMIER IMPAIR.

Avant de poursuivre les recherches du précédent paragraphe, établissons deux
lemmes se rattachant au théorème 91 du paragraphe 55.. .

LEMME 3T. - Soit l premier impair le degré relatif d’un corps C cyclique relatif
par rapport à un sous-corps c, soit S une substitution autre que la substitution

identique du groupe relatif de C par rapport à c, et soit H,, ... , un système
d’unités fondamentales relatives du corps C par rapport à c; on a dès lors pour
toute unité E de C une relation de la forme

f étant un exposant entier rationnel non divisible par 1, Fi(S), ..., F~,~_i(S) des poly-
nômes entiers en S de degré (t- a) à coefficients entiers et [~] une unité de C dont
la puissance appartient à c.

Démonstration. - De la démonstration du théorème gr 1 résulte que les unités

jointes à r unités fondamentales du corps c sont indépendantes, et comme il y en a
en tout [(r + 1) 2014 i, il existe pour toute unité E de C des relations de la forme

où G(S), Gi(S), ..., sont des polynômes entiers en S de degré l - 2 à coef-
ficients entiers, dont le premier n’est pas identiquement nul, et où [~] est une unité
de C telle que est dans c. Parmi les relations (122) en nombre infini, prenons-en
une où G(~) soit divisible par une puissance de 1- ~~’aussi petite que possible.
Admettons que ce soit précisément la relation (122); supposons, de plus, d’abord

que G(~) soit au moins divisible par 1- ~ . D’après la définition des unités fonda-
mentales, paragraphe 55, il faut que ,



soient aussi divisibles par I - ~. En élevant (r22) à la puissance symbolique

(I _ S~) ( - S3) ... (1- Sl-’) et en posant

on trouve facilement, la ( + S + S2 + ... + puissance symbolique de toute

unité de C étant dans c : 
.

où [~] est encore une unité de c ou la racine d’une unité de c.

A cause de l’égalité (128), une racine l’ème de ce nombre [~] est certainement un

nombre de C, et par suite aussi une unité de C dont la puissance appartient à c,

et qu’on désignera encore par [~] ; on tire alors de ( r ~3)

[~] étant encore une unité de C dont la lième puissance est dans c. Cette égalité 
est de

la même forme que (122), sauf que G~(~) serait divisible par une puissance de 1 - ~

inférieure à celle qui divise G(~), ce qui est contradictoire à notre hypothèse sur le

choix de (1 22). Donc G(~) ne peut être divisible par 1- ~ .

En posant f = G(~)G(5$) ... G(~l-’), f est un entier rationnel non divisible par l,

et il existe évidemment deux polynômes entiers H(S), à coefficients entiers,

vérifiant identiquement en S l’égalité

En élevant (122) à la puissance symbolique on obtient la formule

annoncée dans le lemme 3 1 .

LEMME 32. - Conservons les mêmes notations que dans le lemme 3i, prenons les

normes relatives des r + unités fondamentales relatives du corps relatif cyclique C :

toute unité  de c égale à la norme relative d’une unité E de C est alors de la forme

..., lll’-;{ étant des entiers rationnels et [ une unité de C.

Démonstration. - D’après le lemme 31, nous avons pour E une égalité



avec les notations de ce lemme. En prenant la norme relative par rapport à c, on
obtient (~)

En déterminant ensuite deux entiers rationnels a et à, tels que l’on ait i = y + ôl,
et en élevant ( i ?à) à la puissance a , on obtient une formule conforme au lemme 32.

§ l 47. - LES CLASSES D’IDÉAUX DÉTERMINÉES PAR LES IDÉAUX INVARIANTS.
Soit C = c((/), i) un corps kummerien régulier, prenons dans son groupe relatif

la substitution S = (é"y. 1 § l ). Comme tout idéal invariant  de C détermine une
classe invariante, vu SH = H , nous devons d’abord, pour arriver à la connaissance
des classes invariantes, étudier la famille de classes engendrée par les idéaux inva-
riants. On a l’importante proposition: :

THÉORÈME 1 58 . - Soit t lc nombre des idéaux premiers distincts qui divisent le «is-
criminant relatif du corps kummerien régulier C = c(é/"y., () de degré relatif 1; les
normes relatives de toules les unités de C forment pour c une famille d’unités de
degre m; si nous considérons alors loutes les classes contenant soit des idéaux inva-
riants de C , soit des produits de tels idéaux par des idéau:c de c(§), elles forment une
famille de classes de degré

Démonstration. 2014 Supposons d’abord que le nombre N, ne soit pas de la forme
~ 03B1l, où ~ et 03B1 sont une unité et un nombre de toute unité [~] du corps
C = 

’ 03B6) dont la puissance est dans est nécessairement elle-même dans
c(03B6); de plus, H1, ..., désigneront un système d’uni tés fondamentales relatives’ 

2 

"

du corps C par rapport à c(~) et

leurs normes relatives.

, ous prenons, en premier lieu, le cas extrême où l’on a m=l-I 2. Nous con-
cluons du lemme 32 que les ..., ~l-1 forment une base de la famille

2

(1) N. T. - Si l’on a en effet

on en déduit



d’unités formée des normes relatives de toutes les unités de C. Considérons, d’autre

part, les t idéaux premiers invariants 1, ..., t du corps C ; ils déterminent t classes

invariantes, que nous désignerons par L~, ..., Lt’ Pour déterminer le degré de la

famille de classes qu’elles définissent, posons

où ..., ar sont des exposants entiers et j un idéal de c(03B6). Vu l’hypothèse laite
l’un au moins des exposants a,, ..., at n’est pas divisible par 1; soit, par

exemple, a~. Nous déduisons de (I25) que

est une classe contenant des idéaux du corps c(~) ; comme L~‘ est aussi une classe de .

cette espèce, il en résulte que Lt est le produit de puissances des classes L~, ..., 

et d’une classe contenant des idéaux de c(~).
Démontrons maintenant que les classes L~, ..., ne peuvent à elles seules

composer aucune classe

contenant des idéaux de c(~), à moins que tous les exposants ..., soient divi-

sibles par 1 . En effet, de la relation (126) on tirerait une égalité

où j’ serait un idéal de c(~) et entier de C ; on en concluerait alors. que

E= devrait être une unité de C. Appliquons à E le lemme 3r; on a aussi

une égalité de la forme

où f est un entier rationnel non divisible par l, ..., FI_,1(S) des polynômes
2

entiers en S à coefficients entiers et s une unité de c(~). Comme on a évidemment

N~.(E) = i, on a, en prenant la norme relative des deux membres de (128),

r,,, ... , r,l_~ devant former la base d’une famille d’unités, les entiers ... ,

Fl-1(I) doivent être tous divisibles par /, et par suite F1(03B6), ..., Fl-1(03B6) par I201403B6. En

posant t



et t

on a

~# étant encore une unité de c(~). Puis, en prenant la norme relative, on a r = ~~~,

que ~* est une racine lième de l’unité, par exemple = 03B6g. Comme M1-S=03B6-1,
on a

c’est-à-dire que l’expression est un nombre de c(~). Comme M’ (vu 12-~)
ne contient pas l’idéal ~~ ou le contient à une puissance d’exposant divisible par l,
que M contient, au contraire, t à une puissance d’exposant at non divisible par 1 , la

décomposition de ce nombre en idéaux premiers du corps c(~) montre d’abord que g
doit être divisible par l; puis elle montre, f étant premier a l, que les exposants

a1’, ... , devraient être tous divisibles par l, contrairernent à l’hypothèse. Par

conséquent il ne peut y avoir entre les classes ..., une relation comme (126), 
’

c’est-à-dire que les classes L1, ..., forment, si ni = 
l I une base de la famille

de classes engendrée par la totalité des idéaux invariants ; le degré de cette famille

est donc 1 - 1 = 1 + ni 2014 201420142014. .

Supposons, en second lieu, nz,=l 2 3. Il doit alors exister entre les unités 
el_1

..., r,l_, une relation de la forme ~r,11, ..., 
= °r,l, les exposants ei,, ..., n’étant

T* ~ ~* ’T’

pas tous divisibles par l, r, étant une unité de c(~). Si par exemple, n’est pas
2

divisible par l, r,, ..., forment une base de la famille des normes relatives de

toutes les unités de C : cela résulte du lemme 82. Formons alors l’unité

Comme elle a pour norme relative r, il existe dans C un entier A tel que l’on ait

A’-s == E (théorème go). Déterminons 2014 ce qui est toujours possible - un entier

positif r tel que dans le produit l’idéal ~t-er~ tre avec un exposant divisible

par l. Les autres facteurs ~~, ..., ne pourront avoir tous dans M’ des exposants
divisibles par l, car autrement on aurait, d’après le théorème 153, 0 étant

une unité de C et x un entier de c(~); et on aurait par suite Q’-~=ES ’~, contraire-

ment à la définition (S 55) des unités fondamentales relatives Hi , ..., H~_~ , puisque,
2

dans l’expression ( r 2g) de E, est premier a 1. Alors l’idéal invariant ~t_.~ , par



exemple, entre dans M’ avec un exposant non divisible par 1. On en conclut que la
classe est le produit de puissances des classes L~, ..., L~_~ et d’une classe con-
tenant des idéaux de c(~). , 

’

Démontrons maintenant que les classes L~ , ..., ne peuvent former aucune

classe

contenant des idéaux de c(~), à moins que les exposants a1, ..., , a~ ~ soient tous divi-
sibles par l.

En effet, une relation (130) entraînerait une égalité

M" étant un entier de C et j" un idéal de c(~) ; alors E’ = devrait être une unité

de C. En lui appliquant le lemme 3i, on obtient une égalité

f’ étant un entier rationnel non divisible par l, les polynômes étant à coefficients

entiers et s une unité de c(~). Déterminons alors un exposant entier rationnel u tel

que l’entier F’l_, ( 1 ) + soit divisible par l ; on obtient, par rapport à c(~) ,
2 h9

comme Nc(E’) = 1 ,

~’ étant encore une unité de c(03B6). Les unités r,, , ..., étant une base d’une famille
2

d’unités, il résulte de (133) que les exposants F~’(~) + uel, ..., , + sont
2 2

tous divisibles par l, c’est-à-dire que tous les nombres

sont divisibles par i - ~. En posant

il résulte de (132)

où E est l’unité de C définie par (J 29) et ~’~ encore une unité de c(~); en prenant la



norme relative, on a 1- ~’~’, c’est-à-dire que ~’~ est une racine de l’unité, égal: par
exemple à ~g‘. On a alors, en tenant compte des égalités :

c’est-à-dire que l’expression entre crochets est un nombre de c(~).
En remarquant que ~tl_~, ..., ~i sont idéaux premiers dans c(~), ncus

voyons d’abord que g’ - ur doit être divisible par l; alors, ~’ contenant par hypo-
thèse l’idéal à une puissance d’exposant non multiple de l, tandis qu’au con-
traire M" contient, d’après (131), à une puissance d’exposant multiple de l, on
voit que u devrait aussi être divisible par l, et enfin, f’ étant premier à l, que les

exposants a"1, ..., devraient être tous divisibles par l, contrairement à l’hypo-
thèse faite à leur sujet. iiinsi il est démontré qu’une relation (130) ne peut exister

entre les ..., c’est-à-dire que ces classes forment dans le cas de m= 
l - 3

une base de la famille de classes engendrée par tous les idéaux invariants; son degré
est donc t - 2, conformément à la formule du théorème I58.

Supposons, en troisième lr’eu; m = l 5 . Alors il existe entre les unités r , ... , r i _I-1
non seulement une relation de la forme ... ~r,l ~ -~~I, Y, étant une unité de c(~) et

W

l’un au moins des exposants, par exemple n’étant pas divisible par 1; mais il y

en a encore une de la forme ~e’11 ... ~ I-3  _ ~, r’ étant encore une unité de c(03B6) et

l’un des exposants ei’, par exemple e’I-3 n’étant pas divisible par 1. Formons les
~ , 

’ 

z
unités

La norme relative de E et E’ étant égale à i, on peut (théorème go) poser
E = et E’ _ et A’ étant des entiers de C . Si l’on détermine alors, comme
dans le cas précédent, un entier positif n, tel que contienne ~r à une puis-
sance d’exposant multiple de l, l’un au moins des facteurs ~~ , ..., entre dans M’
à une puissance d’exposant non multiple de l, soit par exemple ~t-~. Déterminons
alors deux entiers positifs n‘ et n" tels que jB/j~==A~M~ M’ contienne les deux fac-
teurs ~t et à des puissances d’exposants multiples de 1. Alors les facteurs

~1, ...,  ~t_~ ne peuvent tous avoir dans ce nombre M " des exposants divisibles par 1 .



Car autrement on pourrait poser, d’après le théorème i53. M" = Q’ étant une

unité de C un entier de c(~). En considérant alors les égalités _ ~-’ ,
- E, = E’ on aurait, .

d’où on déduirait, à cause de (t34),

ê étant une unité de c(~); mais cette relation est incompatible avec la définition des ,

unités fondamentales relatives Cs 55); car chacun des nombres el_,, e’L_3 étant pre-
. 2 2

mier à l, les exposants de H ~-3. dans (135) ne sont certainement pas tous deux
2 2

divisibles par 1. Si donc, par exemple, ~t-~ figure dans M" avec un exposant non

divisible par l, on en conclut que la classe est un produit de puissances des

classes Li, ..., Lt_3 et d’une classe contenant des idéaux de c(03B6).

Les mêmes considérations q ue dans le cas de m = 
l- 3 2 

montrent encore, dans le

cas actuel de m = 
l _r a, que les classes d’idéaux L , ... , L _3 ne peuvent former

2

aucune classe

contenant des idéaux de c(~), si les exposants sont des entiers rationnels non tous

divisibles par 1. Ll, ..., Lt-3 forment donc une base de la famille de classes composée
de tous les idéaux invariants; son degré est par suite t - 3, ce qui est conforme au
théorème ~ 58.

En continuant par le même procédé, on arrive à démontrer complètement le
théorème 158.

Nous avions exclu le cas où le corps kummerien C serait défini par un nombre

~/e, e étant une unité de c(~); il nous reste donc à traiter ce cas à part.
Le discriminant relatif du corps C = c( j~:, ~) ne peut alors, d’après le théo-

rème I48, contenir d’autre facteur premier que 1. On a dans C la décompo-
sition est le seul idéal premier invariant de C. Soient encore r~~, , ..., ,

les normes relatives des 
~ ~ 

unités fondamentales relatives H , ... , H _, . Comme
2 

/2014 
-

le degré d’une famille d’unités de est toujours  
l I nn a certainement une

relation de la forme



où et, ..., el.-Li sont des entiers rationnels non tous divisibles par 1 et ~ une
- -

unité de c(~). En posant

on a N~(H) == i, et par suite (théorème go) H --. étant un entier de C ; on peut
alors posera) étant un idéal de c(~). L’exposant a n’est pas divisible par l,
car autrement, comme ~t ,-- I = I - ~, on aurait, vu le théorème 1 53, 

o étant une unité de C et x un nombre de c(~) ; mais on aurait alors H = et

par suite, à cause de ( 13 ~), une contradiction avec la définition des unités fondamen-
tales relatives (§ 55). De l’égalité A == nous tirons ~ r ; donc i ~ 1, ~ ~~ i, et
comme ~ est premier à l, ~ ~ 1 , c’est-à-dire que le seul idéal invariant du cas actuel
est un idéal principal. Le degré de la famille de classes de tous les idéaux invariants
est par suite égal à o dans le cas actuel.

Supposons maintenant que parmi les exposants ... , el_1, par exemple,

soit premier à 1 et démontrons qu’il ne peut exister aucune relation

où e/, ..., , e’r_3, e’~~ ~ soient des entiers rationnels non tous divisibles par l et ri’ une
2 2

unité de c(~). En effet, on en déduirait que

est une unité de norme relative égale à 1. Posons, d’après le théorème go, H’ 
A’ étant un entier de C, et déterminons un exposant entier positif r~ tel que £ ait

dans un exposant divisible par 1. On peut alors, vu le théorème 153, poser

Q’ étant une unité de C et ~’ un entier de c(~); alors on a Q’’-~ --_ H’H’~ ,
c’est-à-dire que l’unité

serait la (t 2014 S)ième puissance symbolique d’une unité de C, ce qui est incompatible
avec la définition des unités fondamentales relatives. Une relation telle que {138) est
donc impossible; vu (i36), et comme est premier à l, r~, ..., forment

- 2 2

donc une base de la famille d’unités formée des normes relatives de toutes les unités

(i) N. T. - Parce que  est le seul idéal invariant de G.



de C . Le degré de cette famille est donc 
l ^ I et, par suite, toute unité de c(03B6) est la

2 
~)

norme relative d’une unité de C . On a donc

et le théorème I58 est encore établi dans ce cas.

S - LA TOTALITÉ DES CLASSES D’IDÉAUX INVARIANTES.

Le théorème 158 a mis en lumière une relation remarquable qui existe entre la
famille de classes formée de tous les idéaux invariants et la famille d’unités formée

par les normes relatives de toutes les unités de C. Il y a une relation aussi impor-
tante entre la famille de classes formée de toutes les classes invariantes et une cer-
taine famille d’unités de c(~). ,

THÉORÈME 159. - Soit t le nombre des idéaux premiers qui divisent le discriminant

relatif dcL corps kummerien régulier C de degré relatif l; toutes les unités de c(03B6) égales
à la norme relative soit d’une unité de C , soit d’une fraction de C , forment une famille
d’unités: si n est son degré, la famille de classes formée de toutes les classes invariantes

est de degré 1 + n - - . .
2 .

Démonstration. - Donnons à m le même sens que dans le théorème 158. Si, en

premier lieu, n _--_ m, la famille d’unités en question coïncide avec celle du théo-
rème 158, c’est-à-dire qu’une unité de c(~) égale à la norme relative d’une fraction
de C est en même temps toujours égale à la norme relative d’une unité de C. Dé-
montrons alors que, dans ce cas, la famille de classes des idéaux invariants est la

famille de toutes les classes invariantes. En effet, A étant une classe invariante de (:

et ~ un idéal de A, nous pouvons poser ~2~I1-S = a , a étant un. certain nombre entier
ou fractionnaire de C, et la norme relative Nc(a) est alors évidemment égale à une
imité ~ de c(~). Comme ensuite, dans le cas actuel, n _--_ ni , on peut aussi trouver
dans C une unité H telle que i’~(H) = ~, on a H) = I, et par suite (théorème go)
a-1 H = b~-~ ou a b~-~ = H, b étant un nombre convenable de C . A cause de

a = 2~I~-‘, on a (2~ b)~~-~ = H, c’est-à-dire que x b est le produit d’un idéal invariant
et d’un idéal de c(~), et par suite on obtient la classe A en multipliant une classe
contenant un idéal invariant par une classe contenant des idéaux de c(~). Notre

assertion est donc justifiée et le degré de la famille de classes formée de toutes les

classes invariantes est alors (vu le théorème ï58) égal à t + m - 
l + I 

, co ui est

conforme au théorème 159, si n = m .



Soit, en second lieu, n = n~ + 1; il existe alors dans une unité ~, qui n’est pas
égale à la norme relative d’une unité de C, mais est la norme relative d’une fraction
a de C, et toute autre unité ~’ de même nature sera égale à ,~~ _ , a étant un

exposant entier et ~ la norme relative d’une unité de C. Posons

r~,l, ..., ~3r étant des idéaux premiers distincts de C, dont aucun n’est conjugué
relatif d’un autre et où G~(S), ..., Gr(S) sont des polynômes à coefficients entiers de

degré l - ~ 1 en S. Comme ~i~(a) _ ~, on a .

l’on déduit aisément que tous les polynômes G sont divisibles par t 2014S. Posons

~ étant un idéal de C et x un entier ou une fraction de c(G) ; on a, dès lors, a = ~’-~.
Il en résulte d’abord que  détermine une classe invariante. Cette classe invariante A
ne contient pas d’idéal égal au produit d’un idéal invariant par un idéal de c{~); en

effet, on pourrait dans.ce cas c étant un entier ou une traction

de C, ~ un idéal invariant de C et j un idéal de c(~) ; on aurait alors = 

c’est-à-dire a = Hc’-~, Hélant une unité de C. Il en résulterait _ ! _ ~,

contrairement à l’hypothèse sur .j.
Nous allons montrer maintenant que, dans le cas actuel n = m + r, toute classe

invariante donnée A’ est de la forme où A" est une puissance de la
classe A qui vient d’être déterminée, L une classe avec un idéal invariant et l~~ une

classe contenant des idéaux de c(4). Pour cela, prenons dans A’ un idéal quelconque
~‘; nous pouvons poser ensuite ~’w~ = a’, a’ étant un nombre convenable de C.

Alors ~i~(a’) --- ~’ est une unité de c(~) ; posons, conformément à notre hypothèse,
_ ~"y , ,~, c~, r, ayant le sens de tout à l’heure. Soit a le nombre déjà considéré

pour lequel ,~ =1‘.(n) ; soit, de plus, ~r, =1~(H), H étant une unité de C. On tire de

cette équation = r, et alors (théorème go) = c1-S, c étant un

nombre convenable de C, on en tire (~‘-’~i~c ’)1-~= r. Cette égalité montre que
~‘-’ ~"~-~’ devient, après multiplication par un entier convenable de c{~), le produit t
d’un idéal invariant S par un idéal 1 de c(~) ; on a donc ~i’ ~. ~" ~ j . Par conséquent,
à cause de n = an + I, le degré de la famille de toutes les classes invariantes est

t + m + I - l+I 2. valeur conforme au théorème i5().



Soit, en troisième lieu, n= m + 2 ; il existe alors dans c(03B6), outre , encore une

unité ~’ égale à la norme relative d’une fraction a’ de C, et cependant elle ne peut
se mettre sous la forme ~’ _ ~ur, ri étant la norme relative d’une unité de C. Posons

(les et les G’ satisfaisant aux mêmes conditions que les ~ et les G plus haut).
Co.mme = s’, on a

les G’ doivent alors être divisibles par i 2014 S. Posons

étant un idéal de C et t/ un nombre de c(03B6), on a a’=’1-S. L’idéal ’ définit .

donc une classe invariante A’. Cette classe ne peut se représenter par 
AU étant une puissance de la classe A, L une classe à idéal invariant et lé une classe

contenant des idéaux de c(~). En effet, il en résulterait, pour ~’, ~ï’ = c étant

un nombre de C, L un idéal invariant et j un idéal de c(G); mais alors on aurait

~’’-s = c’-~ 2~~~’w~ = c’est-à-dire a’ = H étant une unité de C. En

prenant la norme relative, on aurait _ ~~_ ce qui est impossible.
Dans le cas actuel n = m + 2, toute unité .?/’ de c(~) égale à la norme relative d’un

nombre de C est de la forme "=’a’ a~, a’, a étant des exposants entiers et ~ la

norme relative d’une unité de C. Alors, par les mêmes considérations que plus haut,
on montre que toute classe invariante A" peut se représenter par A’, A étant

les classes précédemment définies, L une classe à idéal invariant, k une classe con-
tenant des idéaux de c(~). Le degré de la famille de classes formée de toutes les classes

invariantes alors t + /7? + 2 - l + I ce qui est la formule du théorème 1 g pour2

En continuant ainsi, on démontre complètement le théorème i5g.

S - CARACTÈRES D’UN NOMBRE ET D’UN IDÉAL DANS UN CORPS KUMMERIEN RÉGULIER.

Il s’agit maintenant d’étudier la répartition des classes d’idéaux d’un corps kum-

merien régulier C = c~~N,, ~Î, au même point de vue que la répartition en genres
des classes d’un corps quadratique. Nous désignons par ... , I~ les t idéaux 



miers distincts de c(~) qui divisent le discriminant relatif de C. A tout nombre entier
v(=)= o) de c(~) répondent des valeurs déterminées des t symboles :

ces symboles représentent (§ 131) des racines de l’unité. Ces t racines de

l’unité (13g) s’appellent les caractères du nombre v dans le corps kummerien C.

Pour un idéal 3 du corps kummerien, prenons la norme relative _ ~ . Soit h
le nombre de classes de c(~) et h* un entier positif, tel que l’on ait I, mod 1 .

Alors est un idéal principal de c(~). Soit étant un entier de c(~). Soit

’encore 1, une unité de si pour toute unité §, les t symboles 
’

ont la valeur 1, nous poserons r=t et nous appellerons les r racines de l’unité

les caractères de l’idéal ; ils sont parfaitement définis par cet idéal.
. S’il existe, d’autre part, une unité Si dans c(~), telle que l’un au moins des

t symboles

soit différent de t, nous pouvous, sans diminuer la généralité, supposer que, par

exemple, {} =03B6.

Considérons alors toutes les unités 03BE2 de c(03B6) pour lesquelles {03BE2,  It}=I. Soit,

parmi elles, ~2 une unité pour laquelle l’un au moins des symboles .

soit digèrent de T ; nous pouvons admettre que, par exemple, == 03B6. Considé-

rons toutes les unités 03BE3 pour lesquelles les deux derniers caractères relatifs à It et
sont égaux à i, et voyons si elles en comprennent une e~, pour laquelle l’un au

moins des t - 2 symboles

soit =~= I. En continuant ainsi, nous obtenons finalement un certain nombre r*



d’unités ~1, ~~, ... , e,: de c(~), telles que l’on a, en rangeant convenablement les

idéaux, I, , ... I~ ,

et que de plus, pour toute unité; qui vérifie les r~ conditions,

les r = 1 - r* caractères

sont aussi tous égaux â 1..

Multiplions alors le nombre v de c(03B6) déduit plus haut de l’idéal  par des puis-
sances des unités ..., ~,,.,:, de façon que le produit obtenu v vérifie les conditions

j’appelle alors les r = 1 - r* unités :

les caractères de l’idéal . Dans le paragraphe I5I, nous verrons que l’on a toujours
et, par suite, r ] 1.

§ I50. - CARACTÈRES D’UNE CLASSE ET NOTION DE GENRE.

Le théorème 151 et les remarques additionnelles, paragraphe 33, conduisent à
la proposition :

THÉORÈME I60. - Les idéaux d’une seule et même classe d’un corps kummerien

régulier ont tous les mêmes caractères
Il est ainsi possible de faire correspondre à toute classe d’idéaux un système

déterminé de caractères. Nous rangerons, comme au paragraphe 66 pour le corps
quadratique, toutes les classes ayant les mêmes caractères, dans un genre, et nous



appellerons en particulier genre principal celui dont tous les caractères sont égaux
a i. Comme c’est le cas de la classe principale, celle-ci appartient donc toujours au

genre principal. Les premières formules (80) et (83) conduisent facilement aux pro-
positions suivantes : G et G-’ étant deux genres quelconques, si l’on rnultiplie chaque
classe de G par chaque classe de G’, les produits forment encore un genre : on l’ap-
pellera le produit des genres G et G’. Les caractères en seront les produits des carac-
tères correspondants de G et G’.

De la définition résulte que les classes conjuguées relatives SK, ..., S’-’K d’une
classe K font partie du même genre que K, et, par suite, la (i - puissance sym-
bolique d’une classe K quelconque appartient au genre principal. Enfin, il est évident

.que tous les genres d’un corps kummerien contiennent le même nombre de classes.

§ 151. - LIMITES SUPÉRIEURES DU DEGRÉ DE LA FAMILLE ISSUE DE TOUTES

LES CLASSES INVARIANTES.

Comme pour le corps quadratique, se pose la question importante de savoir si
un système arbitraire de r racines de l’unité peut former les caractères d’un

genre du corps kummerien. Cette question ne sera complètement éclaircie qu’au
chapitre Dans ce paragraphe et le suivant nous placerons seulement quelques
lemmes nécessaires pour la suite.

LEMME 33. - t et n ayant le même sens qu’au théorème 159 et T~ étant le nombre

des caractères distinctifs du genre d’une classe, on a toujours

Démonstration. - Soient ~1, ..., ~r*, les r* unités particulières de c(03B6) introduites

paragraphe I49. Alors on a r=t-r*. Soient 1, ..., n une base de la famille

d’unités de c(~), normes relatives de nombres de C. Supposons qu’il existe entre les

r’*’ + n unités e, , ..., ~?,..: , ~, , ..., une relation

les exposants a~, ..., a~,,n, ..., b~l étant des entiers rationnels non tous divisibles

par l et E étant une unité convenable de c(~); on devrait alors toujours avoir pour
M==I,2,...,~ t

et si l’on remarque que les unités ~ sont normes relatives de nombres de C et que,



par suite, on a toujours {} = i pour u = 1 , 2, ..., t et v= i, 2, ..., n, on aurait t

aussi

Ceci n’est possible, vu les formules (i4o) pour les unités ~~, ..., ~y,..,a, que si les

exposants ..., a~,..,4 sont divisibles par l, et la relation (i4ï) prendrait alors la
forme

~~ étant encore une unité de c(~). Mais comme les ,~ forment une base d’une famille

d’unités de c(~), une telle relation n’est possible que si tous les b sont divisibles par 1.
Il résulte de là que la relation supposée (I4I) ne peut exister, c’est-à-dire que les
unités ~1, ..., ~~r,.", ~~, ..., ~ forment une base de famille d’unités; le degré de cette

famille est r’ + n, et comme le degré d’une famille d’unités est au plus on a

r’ + n l - I , ce qu’il fallait démontrer. Comme on a t + n - l+I  o, il en
w ~ q 

2 
i

résulte qu’on a toujours r~~  t, donc n > I .

§ 1 52. - COMPLEXES D’UN CORPS KUMMERIEN RÉGl’LIER.

Soit h le nombre des classes d’idéaux du corps circulaire régulier c(); il existe

alors dans le corps kummerien C = ~~ exactement h classes d’idéaux dis-
tinctes, contenant des idéaux de c(~). En effet, toute classe de c(1) donne évidemment

~ 

une classe de K de cette espèce, et si deux classes distinctes de c(s) contenaient

des idéaux équivalents dans C, un idéal ) de c(Q dans la classe tti devrait toujoursq ( ) 
12 

J

devenir principal dans C. Mais alors, d’après le théorème i53, ) serait aussi principal
dans c~~), contrairement à l’hypothèse k~ =1= 

K étant alors une classe quelconque de C et ... , kh les h classes de C contenant
des idéaux de c(~), j’appellerai l’ensemble des h classes ... , , un complexe.
Le complexe kt’ ... , , l~h sera le complexe principal et se représentera par I . Les

h classes d’un complexe quelconque P font évidemment partie du même genre; ce

genre s’appellera le genre du complexe P.
Si une classe d’un complexe P est invariante, il en est de même des autres; le

complexe sera dit invariant.
P et P’ étant deux complexes quelconques, les produits d’une classe quelconque

de l’un par une classe quelconque de l’autre forment encore un complexe : ce sera le

produit’ P P’ des coniplexes P et P’. ,



K étant une classe du complexe P, le complexe auquel appartient SK sera SP ;
, j’appellerai le complexe Q, dont le produit par SP donne le complexe P, la

(i - puissance symbolique du complexe P, Q = P’w.
Si = I (complexe principal), P est un complexe invariant. En effet, K étant

une classe de P, = I entraîne évidemment _ 1~ étant une des classes

, ..., , . En prenant la norme relative, on obtient I = l~‘, et cornme d’ailleurs
= I, il en résulte l~~ = I, c’est-à-dire = I : K est une classe invariante et P un

complexe invariant.

S - LIMITES St PÉRIEURES DU NOMBRE DES GENRES D’UN CORPS KUMMERIEN RÉGULIER.

LEMME 34. - 1 et n ayant le sens du théorème étant le nombre des genres

du corps kummerien régulier C, on a toujours

Démonstration. - g étant le nombre des genres du corps kummerien, les com-

plexes se répartissent aussi en g genres. Si l’on désigne par f le nombre des com-

plexes du genre principal, on a donc pour le nombre total M des complexes, M=fg.
Cherchons maintenant le nombre a des complexes invariants. Pour cela, obser-

vons que. d’après le théorème 159, le degré de la famille issue de toutes les classes

invariantes est égal à 1 + n-l+I 2. Soit A , ..., une base de cette famille:

l’expression

représente alors, lorsque les exposants prennent séparément toutes les valeurs o,
1, ..., l -1, des classes toutes invariantes, faisant partie de complexes distincts, et

par suite ces classes forment complexes. Toute classe invariante A est de la
forrne

les a étant des entiers rationnels et l~ une classe de c(~). En nous rappelant alors que
les puissances des classes invariantes ..., , sont des classes conte-

nant des idéaux de c(03B6), il en résulte que A appartient nécessairement à l’un des

lt+n-l+1 2 complexes précédemment déterminés; le nombre cherché a=lt+n-l+1.
Les définitions des paragraphes 1 50 et 15? montrent de suite que la ( - S)îème puis_

sance symbolique d’un complexe quelconque est un complexe du genre principal,,



Envisageons les complexes du genre principal qui sont des (I - puissances
symboliques de complexes ; soit leur nombre et soient Pi = G; ~, ..., Pf, = 
ces complexes. P étant alors un complexe quelconque, est nécessairement l’un

des f’ complexes ... , Pi, ; soi t P1-s = PL,. Alors on a = G;, ~, c’est-à-dire

. i~ et par suite PGl est un complexe invariant A ; on a et par

suite l’expression AG~, embrasse tous les complexes, si l’on prend pour A tous les

complexes invariants et pour G~, les f’ complexes G1, ..., Gr. Il est aussi évident que
cette représentation est unique ; le nombre de tous les complexes est donc NI = a f’.
On a donc af’=gf, et comme on a f’ il en résulte g  a, 

" 

c’est-à-d ire

glt+n-l+1 2.

ce qui démontre le lemme 34.

LEMME 35. - Les lemmes 33 et 34 conduisent de suite au suivant; r étant le

nombre des caractères distinctifs du genre d’une classe, le nombre des genres g est

 l’,_’ ... ’ 
’ .

CHAPITRE XXXIII.

Loi de réciprocité des résidus de lièmes puissances dans un corps circulaire
régulier.

S - LA LOI DE RÉCIPROCITÉ DES RÉSIDUS DE PUISSANCES ET LES LOIS

COMPLÉMENTAIRES.

Les théories développées jusqu’ici nous permettent de démontrer certaines lois
fondamentales sur les résidus de puissances dans un corps circulaire régulier;
elles correspondent aux lois de réciprocité des restes quadratiques dans le domaine
des nombres rationnels, et la loi de réciprocité d’Eisenstein (théorème i4o, § II5)
entre un nombre quelconque de c(~) et un nombre rationnel en est un cas particu-
lier. Pour donner à ces lois leur expression la plus simple, généralisons le sym-

bole {  m} défini aux paragraphes I 3 et I27.
Soit h le nombre des classes d’idéaux de c((); déterminons un entier positif h~ tel

que l’on ait I, mod l. ~ désignant alors un idéal premier quelconque de c(),
différent de r, est toujours un idéal principal de c(~) ; posons _ (,~), ~ étant
un entier de c(~), et supposons, ce qui est possible d’après le théorème que -
soit primaire. Un tel nombre - s’appellera un nombre primaire de ~. l’oute unité



primaire de c(~) étant la puissance d’une unité de c(s) (remarque du § 142),
r possède vis-à-vis de tout idéal premier autre que V un caractère de puissance com-
plètement déterminé. q étant alors un idéal premier quelconque de c(s) autre que {

et ~, on définira le symbole ~ ~ ~ par la formule 
’

Ce symbole est donc une racine déterminée de l’unité, définie par les deux

idéaux premiers ~ et q. En utilisant ce symbole, nous énoncerons le théorème

THÉORÈME I61. - p et q étant deux idéaux premiers distincts, autres que I corps

circulaire régulier c(ç), on a

relation appelée loi de r°écipr~ocité des restes de puissances. De plus, si ~ est une
unité quelconque de c(03B6) et x un nombre primaire de p , on a

relations appelées lois complémentaires de la loi de réciprocité. [Kummer10, 12, 18, 19, 20, 21 ]
Nous démontrerons progressivement ce théorème fondamental dans les para-

graphes suivants (SS 155-161), en appliquant à des corps kummeriens réguliers parti-
culiers les théorèmes et lemmes du précédent chapitre.

§ l55. - IDÉAUX PREMIERS DE PREMIÈRE ET DE SECONDE ESPÈCE DANS UN CORPS

CIRCULAIRE RÉGULIER.

Il est nécessaire de distinguer pour la suite deux espèces d’idéaux premiers
dans c(03B6); un idéal premier p autre que ( de c(03B6) sera de première espèce lorsque toute
unité de c(~) ne sera pas reste de puissance 1110cl V; dans le cas contraire, il sera

de seconde espèce. ]

LEMME 36. - g et  étant des unités quelconques du corps circulaire c(~), ~,= 1 - r,
{ = (~,), on a les égalités

Démonstration. - Si ~ est la puissance d’une unité de c(03B6), les formules

ci-dessus sont évidentes. Dans le cas contraire, j~~ définit t un corps kummerien ~~,~



et les considérations du paragraphe i~y s’appliquent à ce corps. Toutes les

unités de c(~) et, de plus, le nombre ~, sont alors normes relatives de nombres

de ~), d’où, vu le théorème i5i, les égalités à démontrer.
Si l’on veut n’appliquer ici le théorème I5I pour m == t que dans le cas traité en

détail paragraphes 133, où ~= t + )., mod F, on achèvera en prenant d’abord,

pour e, ~~* ; ensuite on aura ~2014 ’ = 1 , ’ 20142014 ( == 10). On déterminera ensuite, dans

le cas de e unité quelconque de c(~), une racine de l’unité ~. telle que l’on ai t

~~~~i -i-A, mod F. En prenant alors dans la démonstration précédente 
au lieu de ~, on a, vu la deuxième formule (83), paragraphe J 31,

LEMME 37. 2014 p étant un idéal premier de première espèce et 03C0 un nombre pri-
maire de ~, il existe dans c(~) au moins une unité  , pour laquelle on a

Si, au contraire, q est un idéal premier de seconde espèce et y. un nombre pri-
maire de q, on a pour toute unité 1 de c(~)

Démonstration. - Pour démontrer la première partie, supposons qu’on ait, au
contraire, pour toute unité § de c(~),

Posons r ~ a + mod re~’, a et b étant des entiers rationnels et e le plus
grand exposant  l- I, pour lequel une telle relation est possible; x étant un

1-1 
.

nombre primaire, on doit avoir nécessairement e > I et 03C0.s 03C0 doit être congru

mod 1 à un entier rationnel (s ’ représente la substitution (03B6 ; 03B6-1) du corps circu-

laire c(03B6)). Comme on a s 03BB~-03BB, mod IJ, on a

et il en résulte que, dans le cas de e [ l - 1. e doit être nécessairement impair.

(1) N. T. - Voir la fin du § 131, et remarquer que ~"’- = ( i - ~,)~-~ 1 i - ‘ ~  + ).,



Nous avons trouvé, en démontrant le lemme 2 , ue les l* = 
l r 3 

unités ~1, ..., ~ l*

du corps c(03B6) vérifiaient les conditions

S! l’on porte, dans l’égali té {03BE, 03C0 I} = I, successivement les unités ~1, ..., ~l* a la

place de 03BE, on déduit de la défini tion (82) du symbole {03BD,  I} et de son extension (§ I3I)
les congruences

~~(~)~o. ~(~)==o. ~-~(~-’)=o, .... ~(~-’)=o, (mod/);

elles montrent que dans la congruence ~=~ -{- 6)~, mod I~’B f ne peut prendre
aucune des valeurs /20142, /20144. ~20146, .... 3. Ceci joint aux conditions d éjà trouvées

pour 6 montre que e == / 2014 i. Comme d’ailleurs 03BBl-1 = 2014 /, mod Il, on a 03C0~ « 2014 bl,
mod Il, et, par suite, la norme de 03C0 vérifie la congruence

D’autre part, on tire de la définition du syrnbole CS 13I) et du lemme 24 (§ i32)

et comme le symbole du premier membre doit être égal à i, il en résulte i,

mod l~, c’est-à-dire ~r-’ - I , mod I‘, -t, mod rr. D’après le théorème I le

corps kummerien déterminé par y?: possède, ;u la dernière congruence, un discri-
minant relatif premier à I, et, par suite, !)) est le seul idéal premier figurant dans

le discriminant relatif de ~). 
~~ 

Posons ~ = ~31;  est le seul idéal invariant de ce corps. 
résulte que p est équivalent à un idéal de c(03B6). La famille de tous les idéaux inva-

riants est donc de degré o pour le corps kummerien ~~. Comme le nombre t
des idéaux invariants de ce corps est i, il résulte du théorème 1 58 : 1 ’ + m - 

t + = o,

. Par suite, toute unité de c(03B6) est norme relative d’unc unité

03B6), et on a donc toujours (théorème 1J1) l = I, et, par conséquent

aussi, comme {03BE, 03C0 p}={ 03BEhh* p}= {03BE p},{ 03BE p} = I, contrairement à l’hypothèse que

l’idéal p est de première espèce.
Pour démontrer la seconde partie, considérons, comme dans le lemme 36, le

corps kummerien c(03BE, 03B6), 03BE étant une unité quelconque de c(03B6), différente cepen-



dant de la puissance d’une unité de c(~). Comme on l’a démontré à la fin du

paragraphe toute unité de c(1) est norme relative d’une unité de c(B/E, ~) et les
deux familles d’unités des théorèmes 158 et 1 59 ont, par suite, toutes deux le degré

Comme, de plus, ~=1, le lemme 34 donne Donc /=i. toutes les classes

d’idéaux du corps c(B/~, ~ appartiennent au genre principal. q étant idéal pre-
mier de deuxième espèce, on a À- = i, et, d’après le théorème 149, Il se décompose

en 1 idéaux premiers distincts du corps 03B6). Soit d’eux. Un nombre 

du corps a dans ~) le caractère unique ~2014~ ce dernier est toujours égal
à i (lemme 36) si 03B1 est une unité de c(03B6). Le caractère de l’idéal premier Q

dans 03B6) est, par suite, {, 03BE I}, et ce dernier doit être égal à i d’après la propo-

sition antérieure. Le lemme 37 est donc complètement démontré.
Si l’on voulait encore ne considérer le théorème t5i comme démontré dans le cas

de )~==Ï que si ~.=1 -}- À, mod F, la répartition des genres, et en particulier le
lemme 34, ne seraient aussi valables que dans ce cas. Nous devrions alors, pour
démontrer la deuxième partie du lemme 37 , prendre puis ~==~e~
e étant une unité quelconque de c(() et (* une racine de l’unité, telle que l’on

ait +~ mod F. .

§ l56. - LEMMES SUR LES IDÉAUX PREMIERS DE PREMIÈRE ESPÈCE.

LEMME 38. - Soit p un idéal premier de première espèce du corps circulaire

régulier c(Q et 03C0 un nombre primaire de p. S’il existe alors dans c(03B6) une unité:. telle
Que l’on ait

on a pour toute unité 1 de c(~) l’égalité

Démonstration. - Le corps kummerien c( j~~, ~~ contient, p étant un idéal pre-
mier de première espèce, deux idéaux premiers invariants S et , à savoir ceux dont
les puissances sont { et p (voir démonstration du lemme 37). L’idéal premier
invariant ~ étant évidemment idéal principal dans ~), la famille de classes des



idéaux invariants de ce corps est de degré o ou 1, suivant que  est ou non idéal

principal. D’après le théorème 158, le nombre z + ni - 
l + I 2 

est donc égal à o ou

à 1, c’est-à-dire que l’on a m = l 2 3 ou ni = l 2 I . Comme l’unité ~, vu l’h yp o-

thèse ~, 03C0 I} =|= I, n’est certainement pas (théorème I5I) norme relative d’une unité

de c(l03C0, 03B6), on a nécessairement m = , et, par suite, toute unité § de c(03B6) peut
2

se mettre sous la forme ; _ ~a~, a étant un entier rationnel une unité égale à la
norme relative d’une unité de 03B6). Pour ce motif, on a donc (théorème I5I)

et par suite aussi {03C0, 03B8 I}={03B8 p}; il en résulte, d’après la deuxième formule (83), que

l’on a aussi {03C0, 03BE I}={03BE p}. C. q. f. d.

Si le théorème 151 n’est admis pour w == I que ~ I + î,, mod I2, on détermi-

nera une racine de l’unité ~~, telle que ~~~z-i = r -}- ),, mod F, et l’on considérera

le corps c~ j~~~~~‘-1, ~) au lieu de c~ j~~, ~). Puis on appliquera le lemme 36.

LEMME 3g. - ~ , ~~ étant deux idéaux premiers de première espèce de c(~) et 7t, Tr*
deux nombres primaires de .~, ~~, si l’on a, pour toute unité; de c(~),

Démonstration. 2014 p* étant idéal premier de première espèce, nous pouvons déter-

miner une unité e de c(03B6), telle que {~03C0 p} == t. Considérons alors le corps kumme-
__ 

j
rien c(B/eT?, ~). Son discriminant relatif ne contenant que les deux facteurs premiers
Ï et ~, un nombre a(=~o) de c(Q ne possède que les deux caractères

Comme on a ~ ‘~y i I, ~~ est décomposable dans c~~~^, ~}, soit ~3 l’un de ses fac-
teurs premiers dans ce corps.

Pour former les caractères de p*, observons que p est un idéal premier de pre-

mière espèce; on peut donc déterminer une unité ~* de p our laquelle {
~*03C0* p }=1



et p possède le caractère Nous concluons alors, du lemme 35,

i pour le corps c(l~03C0, 03B6), c’est-à dire que dans ce corps toute classe d’idéaux
appartient au genre principal, et le caractère ci-dessus a donc la valeur i. Or, nous
avons {~03C0} = i, c’est-à-dire, à cause de la formule (§ 113),~ )

. ~ ê* ~* } f 1

ensuite 
{}= I, c est-a-dire

et enfin {~*03C0*, ~03C0}

= I, ou, avec les formules (83),

Comme (lemme 36) : {~*, ~ I} = 1, et (lemme 30) : 201420142014 = I, la dernière formule

devient

Comme, vu notre hypothèse, on a

on tire de (i44)

égalité qui, jointe aux formules ( i fi2) , ( i fi3), conduit à celle du lemme.
Si l’on veut encore n’appliquer le théorème isi pour w = 1 que si jJ, « i + À ,

mod lJ, on prendra dans la démonstration ci-dessus une unité s telle que l’on ait,

outre ) Él / = i , « i + 1, , mod V, pour un ex posant a premier à 1. C’est toujou rs
, P ) , , 

possible si { 03B6 p*}/ = i , Mais si { 03B6 p* / =[= i et que / £ / =[.= i , cette condition peut être vé-
riflée encore si l’on prend pour s une puissance convenable de i . Il n’y, a encore

doute que si {03B6 p* } =[= i et {03C0 p*} = I , Dans ce cas, renversons les rôles de p, z et p*, x*
dans la démonstration: alors il ne reste plus que le cas où l’on aurait en même

temps {I S 1 -’ 1 , 1 -i 1 1- 1 , et {1 S 1 - , , 1 1 1 - 1 . Mais dans Ce cas les deux der-

nières conditions montrent sans plus l’exactitude du lemme.



LEMME 4o. 2014 p étant un idéal premier de première espèce de c(03B6) et 03C0 un nombre
primaire de_v, si l’on a pour toute unité; de c(~)

si, en outre, ~~ est un idéal premier =~_ ~ de prernière espèce tel que l’on ait

il existe toujours dans c(~) une unité ~ telle que

7:* étant un nombre primaire de ~.

Démonslration. - Nous procédons exactement comme dans le lemme précédent
et nous arrivons, en introduisant certaines unités e et ~, aux trois formules (142),

(i43), (i44). Mais, vu l’hypothèse {~* p}== {03C0, ~* I}, ceci et {p p*}= {p* p} =|= i, ainsi que
les trois formules indiquées, conduisent à la démonstration du lemme 4o.

Si le théorème i5i n’est admis que dans le cas de i + A, mod F, il suffit de

déterminer e de manière à vérifier, outre {~03C0 p*} ==i, encore la congruence (~03C0)a ~ I + 03BB,
mod F, avec a premier à /, détermination toujours possible ici.

§ l5y. - CAS PARTICULIER DE LA LOI DE RÉCIPROCITÉ POUR DEUX IDÉAUX PREMIERS.

THÉORÈME 162. 2014 p et q étant deux idéaux premiers quelconques d’un corps cir-

culaire régulier pour lesquels B £ == i, on a aussi - == i .
Démonstration. - Soient des nombres primaires de p et q. Considérons lc

corps kummerien , 03B6) et distinguons deux cas, suivant que p est de première
ou de seconde espèce.

Dans le premier cas, le discriminant relatif de c(BA:, ~) contient les deux idéaux
premiers 1 et p et il existe, d’après le lemme 3y, une unité s de telle que ~, 03C0 I}=|= j.

Un idéal de c(B/Tc, ~) n’a, par suite, qu’un seul caractère, que r=i et

(lemme 35) g = i. Comme ’ = i, q est décomposable dans ~); soit ~ un

de ses facteurs premiers. T: et y. étant primaires, on a (lemme 3o) ,201420142014~ ==: 1 , et S~

appartenant au genre principal, on a aussi 20142014 ==: = i. C. q. f. d.



Si V est de seconde espèce, on a (lemme 3y) pour toute unité § de c(~) : : ‘’’ ~‘ ~_ t,
et par suite (démonstration du lemme 3~) le discriminant relatif de ~) ne
contient que l’idéal premier ~. Par suite, on a encore r= i, g = ~ . = i, donc

q est décomposable dans ~). Soit ~ un de ses facteurs premiers. ~ étant du

genre principal et comme on a {03BE, 03C0 I }= i, on a aussi {, 03C0 p}={q p}=1. C. q. f. d.

Dans le cas où le théorème 151, et par suite aussi le lemme 35, ne seraient admis

pour w = { que dans le cas de ;, == 1 + À, mod F, il faut ajouter ce qui suit dans le

cas où p est de première espèce. ,

V étant un idéal premier quelconque et 03C0 un de ses nombres primaires, on déduit

de la définition du symbole {03BD,  I} (§ 131) et du lemme 24 (§ 1 32) l’égalité

Or, si l’idéal premier q est tel que l’on ait ~ ~ == i, déterminons une racine de

l’unité (* telle que l’on ait ~~~1-’ -1 + ~, mod h, et envisageons au lieu de ~~
le corps c~~~~~‘-‘, ~~. Nous employons alors la méthode indiquée plus haut. Comme
on a

et qu’on a, comme plus haut, , 03C0 I}= i ; que d’autre part, vu(ï45), 20142014==-== ï,
il en résulte É 

0 "’ 2014 ’ 
== I, 

et nous en tirons {, 03B6*03C0l-1 p}== I, c’est-à-dire {q p} = ï.

Soit, d’autre part, 2014 =|= I ; p étant de première espèce, il existe sûrement une

unité ~~ telle ~ i. et de plus (lemme 3~) une unité ~ telle que ~_’- ~)~ i.~ ~ ~ ~ ~ ~ ’
On peut, de plus, choisir ces unités ~ i + )., mod . F. Nous en déduisons l’existence d’une

unité e, pour laquelle 2014~ ~ i et ~2014~~ ~= i. et telle que e= i -}- ~, mod F. En

enet, si ces conditions ne sont remplies ni par ~1 ni par ~2, on a simultanément

! "’ ’ ==i, ~f == i, et alors e==(e s )"~ serait une unité vérifiant ces conditions.; ~ ~ p~ 
Déterminons alors une puissance ~==e~ de e telle que l’on ait ~-L-’ :=i. Si l’on avait
2014 ’ nL I, a serait sûrement premier à / et on aurait {~, 03C0 I}=|= I.

De plus, 7. étant primaire, il est visible qu’une certaine puissance de d’expo-



sant premier à / est congrue à i + 03BB, mod F. De (i45) et du lemme 36 résulte encore

{03B6, ~ I }=|= i. Le corps kummerien c(l~, 03B6) ne possède donc qu’un genre. Comme

{~ p }= I, p est décomposable dans ce corps; p étant un de ses facteurs premiers,
son caractère est égal au symbole

~ 

r étant une racine de l’unité telle que l’on ait 
~ ~‘’ 

1 
. , r ~’ 

= 
I . Vu la dernière

égalité et comme on a {03B6, ~ I 1 = I, il en 1 - I, â cause de

{03C0, ~ I} =|= I, { 03B6*,  I} est aussi =|= I , vu (I45), { 03B6* q} =|= I ; on a d onc 03B6* = = I .
Mais comme l’un des caractères de l’idéal premier doit être égal à ijl résulte de

{p q} = 
ï nécessairement 

2014 
= i, contrairement à ce qui précède.

S 1 58. - EXISTENCE D’IDÉAUX PREMIERS AUXILIAIRES POUR LESQUELS LA LOI
DE RÉCIPROCITÉ SE VÉRIFIE.

LEMME l~ I . - ~ étant un idéal premier quelconque du corps circulaire régulier
c(~), il existe toujours dans c() un idéal premier r vérifiant les conditions

Démonstration. - Soit h le nombre de classes de c(~) et, comme aux paragra-
phes 149 et i54, h* un entier positif tel que l’on ait hh~_--_ ~, mod 1. Soit p le nombre
premier divisible par p et 03C0=phh* un nombre primaire de V; soient, de plus, p’,
p", ... les idéaux premiers distincts conjugués de p dans c(03B6) et 03C0’=p’hh*, 03C0"=p"hh*, etc.,
les conjugués de 03C0 dans c(03B6) : ils sont primaires pour V’, p", .... On a ensuite

p - .... , Comme, de plus, phh* 03C003C0’03C0" ... doit être une unité de c(03B6) et que c’est un
nombre primaire, il résulte du théorème i56 (voir aussi § que ce quotient
représente la puissance d’une unité s ,t.e ’(~) : :

Appliquons alors le théorème 152, en prenant



~ n’étant pas la puissance d’une unité de c() et ~, T’, ~", ... étant des puissances
d’idéaux premiers dont les exposants sont premiers à l, les conditions du théo-

rème 152 sont remplies, et il existe par suite dans c(~) un idéal premier r et un cer-
tain exposant m premier à 1 tel que l’on ait

c’est-à-dire

est une racine de l’unité autre que i. ..

De (i46), on tire -2014 == 2014-2014 == 2014201420142014 
° 

}=03B6*, et par suite on a aussi, vu
le théorème ’~" ==~~ p étant un nombre primaire de t. Comme maintenant,
vu (i46) et le théorème 162, on doit avoir ~-’~ = i, 2014~=t,...et que~) ~) ,

nous obtenons

LEMME 42. - ~ étant un idéal premier quelconque du corps circulaire régulier
c(03B6) et 03C0 un de ses nombres primaires, s étant une unité quelconque de c(03B6) non égale
toutefois à la puissance d’une unité de c(~), il existe toujours dans c(~~ ’un idéal

premier T vérifiant les conditions

Démonstration. - Soient 03C0, ^’, r", ... les mêmes nombres que dans la démons-

tration précédente; prenons pour le théorème 15z

les nombres ... vérifiant encore les conditions du théorème 152. Une démons-

tration semblable à la précédente conduit à un idéal premier r remplissant les c.ondi-
tions de l’énoncé.



, 4 - DÉMONSTRATION DE LA PREMIÈRE LOI COMPLÉMENTAIRE.

Pour démontrer la première loi complémentaire dans le cas d’un idéal premier p
de première espèce, appliquons le lemme 4I ; on peut déterminer un idéal premier r
tel que l’on ait

et que, par suite, il soit de la première espèce. D’après on a pour l’idéal r

l’égalité 
"

p étant un nombre primaire de r. Comme on a ~ ~ =1= j, on a pour toute autre unité
~ de c(~) (lemme 38)

et par conséquent les conditions du lemme t~o sont remplies par les idéaux ~ et ’p.

D’après ce lemme, il existe donc dans c(~) une unité s telle que l’on ait

r étant un nombre primaire de p. Par suite, on a (lemme 38) pour toute autre unité

03BE de c(03B6) l’égalité {03BE p} ={ 03C0, 03BE I}, ce qui démontre la première loi complémentaire de
la loi de réciprocité est de première espèce.

Soit maintenant q idéal premier de deuxième espèce de Alors on a, pour toute

unité!: de c’~ , ~ ~ ! ==i, et 7. étant un nombre primaire de q, on a toujours aussi. ~ ~) 
q Î

(lemme 3^ ~) ~ (y -2014~ ~) = r . On a donc encore la première loi complémentaire
’. i~ ’

S - DÉMONSTRATION DE LA LOI DE RÉCIPROCITÉ ENTRE DEUX IDÉAUX PREMIERS

QUELCONQUES.

La première loi complémentaire ayant été démontrée, on en conclut, avec le
lemme 39, la loi de réciprocité pour deux idéaux premiers quelconques de première
espèce.



Soient, en second lieu, p un idéal premier de deuxième espèce, 7: et v~ des nom-

bres primaires de p et q. Dans le cas où l’on a {q p} == i, il résulte du théorème 162

{p q} = ï, et par suite l’exactitude de la loi de réciprocité pour p et q. Supposons main-

tenant {q p}={ p}=|=I. p étant de première espèce, il existe une unité s telle que {~  p}=I,
et on peut de plus toujours supposer qu’une certaine puissance de d’exposant

premier à l, est - ~ ~ )~, mod I~ (cela ressort d’une considération à la fin de la dé-

monstration du lemme 39). Considérons le corps kummerien , ~). D’après le
théorème i 48, le discriminant relatif de ce corps par rapport à c(~) contient les deux
facteurs premiers { et q ; q étant de deuxième espèce, on a, vu les lemmes 36 et 37,
pour toute unité 1 de c(r)

et, d’après cela, le nombre des caractères distinctifs du genre d’un idéal de ~)
est égal à 2. D’après le lemme 35 le nombre des genres de ce corps est donc g - l.
Déterminons alors, d’après le lemme 42, un idéal premier r de c(~) tel que l’on ait

A cause de la première égalité, r est encore décomposable dans 03B6). Soit R un
de ses facteurs premiers dans ce corps et p un de ses nombres primaires. L’idéal 9~ a

dès lors dans c~ l ~x, ~~ les deux caractères

Comme le second caractère est =1= 1, les idéaux ~, ~Q, ..., l déterminent des genres
tous différents, et il n’y en a pas d’autres, vu la limite supérieure trouvée pour g.
En appliquant la première loi complémentaire (§ 15g), on obtient

C’est-à-dire que le produit des deux caractères (147) est égal à i. Comme tout idéal

de ~) appartient à l’un des 1 genres, il en résulte que tout idéal de c~~~x, ~)
a deux caractères de produit égal à i. A cause de 1 =1, ~ est encore décompo-
sable dans ~); soit ~ un de ses facteurs premiers dans ce corps; les deux
caractères de cet idéal sont les symboles



et on en conclut, d’après la première loi complémentaire,

ce qui démontre la loi de réciprocité pour les idéaux ~ et q. .
Soient, en troisième lieu, q et q* deux idéaux premiers de deuxième espèce, x, x*

des nombres primaires de q, q*. Considérons le corps kummerien 5) Y Les
nombres y. et y.’ sont, on l’a vu dans la démonstration du lemme 3 ~, congrus mod ra
à des puissances de nombres de c(~); il en est donc de même de et par
suite, 

. 

d’après le théorème i/,8, le discriminant relatif du corps n’est pasdivisible par t. Ce discriminant relatif ne contient, par suite, que les deux facteurs
premiers q et q*. Or, on a pour toute unité ~ de c(~)

et par suite le nombre des caractères distinctifs des genres de c~ j~~x~, ~) est r=2.
D’après le lemme 35, on a alors Ensuite, d’après le théorème i52, on peut
toujours déterminer un idéal premier r de c(~) tel que l’on ait

r est encore décomposable dans c(~). Soit ~ un de ses facteurs premiers, p un de ses
nombres primaires. Les caractères de l’idéal 9t dans le corps kummerien sont les
deux symboles

Comme le premier caractère est, d’après le théorème 162, nécessairement =~t,
puisque 

. -~ =b 1, les idéaux ~, 9T, , ~ déterminent / genres distincts et il n’y
en a pas d’autres. Comme on a ~ ~ i~ i est un idéal de première espèce; par
suite, d’après ce qui précède, la loi de réciprocité s’applique d’une part à r, q ;
d’autre part (~, et le produit des deux caractères (i48) est donc



Comme tout idéal de ~~ appartient à un des 1 genres, il résulte de (~ 
que tout idéal a deux caractères dont le produit est égal à 1 . Or, l’idéal q est égal à

la lième puissance d’un idéal premier Q de 03B6). Les deux caractères de Q dans
ce corps sont alors 

.

et leur produit devant être égal à i, on obtient

La loi de réciprocité est ainsi démontrée pour deux idéaux premiers quelconques.

§ 1 6 I - DÉMONSTRATION DE LA DEUXIÈME LOI COMPLÉMENTAIRE.

Soit d’abord p un idéal premier de première espèce et 03C0 un nombre primaire

de p . Déterminons une unité  de c(Q, telle que l’on ait c ~ = i, et considérons le() , 
~ P ~

corps kummerien c(l~03BB, 03B6). Comme ‘ =I, p est encore décomposable dans ce
corps ; soit p un de ses facteurs premiers. Nous voyons que l’idéal p a un seul

caractère,  ~2014 ~ ; et comme il n’y a aussi qu’un genre ( lemme 35), le genre p rin-

cipal, ce caractère doit être égal à i. Par suite, comme (§ ~2014{ = ~ ~~2014~, on a de
suite l’égalité

Soit, en second lieu, q un idéal premier de seconde espèce, et x un nombre pri-
maire de q ; il y a deux cas à distinguer, suivant que l’on a {03BB q} = 1 ou =|= i. Dans

le premier cas, la considération du corps kummerien 03B6) montre que l’on a
aussi {x, 03BB I} =1. Dans le second cas, on déterminera, d’après le théorème i52, un
idéal premier ~, pour lequel on ait 2014~ ==2014 ~ i. Alors ~ est nécessairement de~ !P ) ~ P ~
première espèce, et il résulte du théorème 162, 7: étant un nombre primaire
de ~, ~ 2014 =~ i ; on peut donc déterminer un entier rationnel a de façon que }20142014~ = i.! ~ 

~ , , 
~ )

En considérant le corps c(l03BB03C0a, 03B6). comme on a {03B6, 03BB03C0a p} == =|= i, un idéal n’a

encore dans ce corps qu’un seul caractère, toujours égal à i. Appliquant ceci à un



facteur premier ~ de dans ce corps, on a V ~ ~~ ^~ ~ - I, et en

tenant compte de on a {03BB q 2 - y’ 
03BB I

}.
C’est Kummer qui a démontré le premier la loi de réciprocité des résidus de

puissances Notre démonstration nouvelle diffère de celle de Kummer, surtout

en ce que Kummer obtient d’abord la première loi complémentaire, au moyen de
calculs considérables, par une généralisation très habile des formules de la division
du cercle, et que c’est seulement alors en s’appuyant sur ces calculs, qu’il en déduit
la loi de réciprocité entre deux idéaux premiers; au contraire, dans les développe-
ments qui précèdent, les démonstrations de la loi de réciprocité et des deux lois

complémentaires découlent d’une source commune.
Parmi les lois de réciprocité particulière que l’on traite à l’aide des formules de

la division du cercle, citons la loi de réciprocité des résidus biquadratiques [Gaussa
Eisenstein ~> 9~ , celle des résidus cubiques [Eisenstein e ’, Jacobi 1~, puis les recher-
ches de Gmeiner1, 2, 3 pour les résidus bicubiques et celles de Jacobi 4 pour les restes
de puissances 5e, 8e et I2e.

Mentionnons aussi que Eisenstein a donné sans démonstration une loi de récipro-
cité pour les restes de puissances et a même envisagé le cas où le nombre

des classes du corps circulaire des racines de l’unité est divisible par 1.

[Eisenstein1, 12.]

CHAPITRE XXXIV.

Nombre des genres d’un corps kummerien régulier.

§ 162. SUR LE SYMBOLE {03BD,  m}.

THÉORÈME 163. 2014 03BD et  étant deux entiers quelconques =|= o d’un corps circulaire

régulier c(~), on a toujours

le produit étant étendu à tous les idéaux premiers ? de c(~).

Démonstration. - Soit h le nombre des classes d’idéaux de c(03B6) et h* un entier

positif tel que hh~ - I, mod l . Posons v ~ ... et iJ. = ... , aI et b étant
des exposants entiers et ~~...., q1, q~, ... des idéaux premiers déterminés de



c(~), ~;1, ~~, ... , ,il, ... étant des nombres primaires des idéaux premiers ~,, ~
~~, .... qi, q~, ... et tels que l’on ait

on a, en posant ). = 1 - ~,

~ et * étant des unités de c(~). ~v étant un idéal premier quelconque, on a toujours

Soient alors p, q deux idéaux premiers distincts autres que t de c(03B6) et 7:, x deux
nombres primaires correspondants; soient, de plus, des unités quelconques de

c(~). On tire facilement du lemme 36 et du théorème 161 les formules

1v étant un idéal premier autre que r, non diviseur de [J., le discriminant relatif du

corps kummerien ~) est (théorème premier à tU; si ~v est aussi premier
à v, v est résidu de normes du corps kummerien ~) (théorème i5o) et on a,
par suite (théorème I5I , ) v’ ~v ~’ I ~ = I . Par suite (vu 152) le théorème est vrai si l’un

des deux nombres v, iz est soit une unité, soit une puissance quelconque de 03BB, soit

un nombre primaire d’un idéal premier =~= r ; à cause de (I50) et (ici) et des

règles (80) et (,83), le théorème 163 est donc général.

§ 163. - THÉORÈME FONDAMENTAL SUR LES GENRES D’UN CORPS RUMMERIEN RÉGULIER.

THÉORÈME 164. - Soit r le nombre des caractères distinctifs d’un genre du corps
kummerien régulier C = 03B6) ; pour qu’un système donné de r racines lièmes âe
l’unité caractérise un genre de C, , il faut et il suffit que le produit de ces J’ caractères

soit égal à I . Le nombre des genres de C est par suite l’’-1.

Démonstration. - Soit h le nombre de classes du corps circulaire régulier c(03B6),
h* un entier positif, tel que l’on ait mod 1 ; ; soient I1, ..., Il’ les r facteurs
premiers du discriminant relatif de C choisis conformément au paragraphe 
Soit A une classe d’idéaux quelconque de C, ~ un de ses idéaux premier à I = ( ~ - ~)



et au discriminant relatif de C ; soit v = l’entier de c(~), formé selon le

paragraphe 149 et pourvu d’un certain facteur unité de telle sorte que

soient les r caractères distinctifs du genre de 3. Soit ~ un idéal de c~~), dans le cas
où il en existe un, figurant dans 5 avec un exposant divisible par l; p est alors sûre-
ment différent de { et premier au discriminant relatif de C. N~(3) étant la norme
relative d’un idéal, ~ doit être décomposable dans C. On a donc (théorème pour

un tel =1, et par suite aussi ~r’ ‘~ =1. Vu le théorème 163, il en

résulte

le produit é~ant étendu à tous les facteurs idéaux premiers iv distincts de t du discri-
minant relatif de C et, en outre, à l’idéal premier t. Ensuite on a, ..., 1 étant
les autres facteurs premiers du discriminant relatif, vu le paragraphe 

Si alors le discriminant relatif du corps C contient l’idéal premier t, (io3) montre

déjà que le produit des r caractères est égal à r. Dans le cas contraire, le nombre v

est (théorème I50) résidu de normes du corps C, mod 1 , et par suite (théorème i5i)

~ v, 1‘ u~ == i ; ’ on voit encore dans ce cas, d’après (153) et (i54), l’exactitude de une ’
des parties du théorème 164.

Pour abréger, nous ne démontrerons la seconde partie que dans le cas où le dis-
criminant relatif de C ne contient pas 1 . Soient alors encore r,, ..., lt ses facteurs

premiers dans c(~) et À1, ..., î,t des nombres primaires correspondants; soit et l’expo-
san t de 1; dans ~. et et un entier tel que mod /. . Enfin, soient ~~i , ... , ~ ~,,

r racines de l’unité quelconques dont le produit 11 ... y~ == i ; d’après le théo-
rème I52, il existe alors toujours dans c(~) un idéal premier ~ non diviseur et

remplissant les conditions

pour un exposant m, de la série 1, 2, ..., l-1. ~ étant un nombre primaire de ~, on
a, vu ( 1 55) , d’après le théorème 161,



On obtient de même, vu (156),

Com me Y1Y~ ~ ~ ~ ~’r = I , on a, vu ( 15 ~) et ( 158),

le produit étant étendu à tous les idéaux premiers ..., It. Si alors ? est un idéal

premier de c(~) autre que ~, ..., le nombre ̂  (théorème est reste de normes

du corps kummerien, mod in, et par suite (théorème on a toujours 03C0,  m}= I.

On tire de là et de (i5g) et du théorème 163 que l’on a aussi {03C0,  p}=1, c’est-à-di re

’~~ ~ =1. D’après cette dernière égalité, ~ se décompose dans C en l idéaux premiers
(théorème 149). ~ étant l’un d’eux, l’idéal a évidemment, vu (I5~) et (i58), pour
caractères distinctifs les racines lièmes de l’unité données ’Yi’ ..., et le théo-

rème 164 est ainsi complètement démontré dans le cas considéré. Si 1 figure dans le
discriminant relatif du corps C, il faut apporter à la démonstration une modification

facile à déduire par analogie de ce qui a été dit dans le cas du corps quadratique
(voir § 81). 

’

Kummer a basé ses recherches sur un certain anneau de nombres du corps

C = ~) et non sur la totalité des entiers de ce corps. La notion du genre subit
alors un changement. Kummer a eu le grand mérite de découvrir et de démontrer

pour cet anneau le théorème qui répond au théorème 164. En dehors

de l’anneau étudié par Kummer, il y en a encore dans C une infinité dont la théorie

pourrait se développer avec autant de succès.

§ l64. - LES CLASSES DU GENRE PRINCIPAL DANS UN CORPS KUMMERIEN RÉGULIER.

Nous plaçons dans ce paragraphe et le suivant quelques conséquences impor-
tantes du théorème fondamental 164 analogues aux théorèmes développés pour le

corps quadratique dans les paragraphes 71, 72 et 82.

THÉORÈME 1 65. - Le nombre des genres g d’un corps kummerien régulier est égal
au nombre de ses complexes invariants.

Démonstration. - t et n ayant le même sens qu’au théorème 159. si l’on considère

que g = lr-1 (théorème I64), il résulte du lemme 34 : r- 1  t + n - l+I 2 , et



comme, d’après le lemme 33, on doit avoir t + rt _ l + I  r 2014 I, il en résulte

Le nombre cc des complexes invariants (déterminé dans la démonstration du
lemme 34) est, par suite, on a donc a = g.

THÉORÈME 166. - Tout complexe du genre principal dans un corps kummerien

régulier est la ( - puissance symbolique d’un complexe de C , c’est-à-dire que

toute classe du genre principal est le produit de la (i - puissance symbolique
d’une classe et d’une classe contenant des idéaux de c(03B6).

Démonstration. - On a obtenu, dans la démonstration du lemme 34, l’égalité
« f’ = gf; ; a est le nombre des complexes invariants, f’ celui des complexes égaux à
des (I - puissances symboliques de complexes, g est le nombre des genres,
f celui des complexes du genre principal. Comme, d’après le théorème 165, a = g,
on a f’ = f, ce qui démontre que tout complexe du genre principal est la

( I - S)’ème puissance symbolique d’un complexe.

§ I65. - SUR LES NORMES RELATIVES DES NOMBRES D’UN CORPS KUMMERIEN RÉGULIER.

THÉORÈME I67. - v, U étant deux entiers du corps circulaire régulier c(03B6), N. non

égal à la l’t-’’pe puissance nombre de c(03B6). et vérifiant, pour tout idéal premier 1v
cle c(~), la condition

le ~r est toujours la norme entier ou cl’une fraelion A du

corps kummerien C=c(l , 03B6).
Démonstnation. -- Démontrons d’abord ce théorème dans le cas est une unité

de c(~). Donnons encore à / et à n le même sens qu’au théorème 15g ; dans la démons-

tration du théorème 16~. on a montré que r°- i ==/ -}- n - l + 2 I , c’est a-dire que

l2 = l - I - t + r. Considérons, d’autre part, les r*=t-r unités ~1, ..., ~r* définies

au paragraphe Vu les égalités (i4o), un produit de puissances de ces r* unités
ne peut être la puissance d’une unité de c(~) que si tous les exposants sont divi-
sibles par /. On peut donc, la totalité des unités de c(~) formant une famille de

degré autres unités : ~ :.:~ ~, ~,...~u, .... , ~~_, de c(~), telles22 2 " 

-~-



que toute unité 1 de r(~) puisse se représenter par

xi, ..., étant des exposants entiers rationnels et ~ une unité appropriée de c(03B6).
2

En posant alors 
B

les r* égalités

donnent les r* congruences linéaires en x1, x~, ..., 
. 

L

A cause de ( ~ 40), nous avons

et par suite les r* congruences linéaires (161) sont indépendantes ; il en résulte que

toutes les unités § remplissant les conditions (160) forment une famille d’unités de

degré - - r*=l-I-t + r.
2 2

Nous avons établi, au début de cette démonstration, que le degré n de la famille
de toutes les unités de c(~), normes relatives d’unités ou de fractions de C, a la même
valeur. Comme, de plus, toute unité de c(~), norme relative d’une unité ou d’une
fraction de C, est évidemment résidu de normes de C, mod { et doit par suite (théo-
rème vérifier aussi les égalités (160), toute unité de la première famille appar-
tient aussi à la seconde ; ces deux familles ayant même degré sont donc identiques.
Or, l’unité donnée 03BD satisfait par hypothèse aux conditions (160) et appartient, par
suite, à la seconde famille ; v est donc aussi contenue dans la première, c’est-à-dire

que v est norme relative d’une unité ou d’une fraction de C.

Soit maintenant v un entier quelconque de c(~), vérifiant les conditions du théo-
rème 167 ; considérons les facteurs idéaux premiers de v dans c(~). 



et I = ~~,). Si l’idéal premier 1 entre dans v, mais avec un exposant b non divisible

par l, et qu’il n’entre pas dans le discriminant relatif du corps C, on a, d’après la fin
du paragraphe j33,

et, vu l’égalité qu’on en tire, {  I} É 
, 

(théorème décomposable dans C

en l facteurs premiers. Si £ est l’un d’eux, on a : 
Soit ensuite ~ un idéal premier de c(~) autre que t, et entrant dans v avec un

exposant b non divisible par / ; au contraire, supposons son exposant a dans ~. divi-
sible par 1 ; on a alors par définition

et il en résulte, vu l’hypothèse du théorème I67, {  p} == i ; donc (théorème est

aussi dans C le produit de 1 idéaux premiers. ~ étant l’un d’eux, on a 

Enfin, les idéaux premiers de c(Q facteurs du discriminant relatif de C sont tou-

jours des puissances d’idéaux premiers de C et sont par suite aussi normes

relatives d’idéaux de C. De tout cela résulte que v doit être norme relative d’un idéal

~deC : v=Nc(~). 
,

De plus, vu l’hypothèse du théorème 167, appartient au genre principal de C
et nous pouvons par suite poser, d’après le théorème 166,

i étant un idéal de c(~) et 3 un idéal de C. Si h est le nombre des classes d’idéaux

de c(Q, on a ~~~ 1, et par suite A= doit être un nombre entier ou fraction-
naire de C ; sa norme relative Ne (A) est évidemment égale à wh, ~ étant une unité
de c(~). De la dernière égalité résulte, d’après le théorème 151. que l’on a, pour tout

idéal premier ? de c ~ ( ~~’ ~ = i, et par suite aussi = 1 . Or, on a montré,

dans la première partie de la démonstration, que dans ces conditions e doit être
norme relative d’un nombre de C ; H étant un nombre de C.

b et e étant alors des entiers rationnels tels que l’on ait bh + el == l, on a

et la démonstration du théorème 167 est ainsi complète.
Dans cette démonstration nous pouvons, dans les deux cas, restreindre l’applica-

tion du théorème I5I au cas de tv =~= I, car d’après le théorème 163 les conclusions

subsistent, même pour 
On est ainsi parvenu à étendre aux corps kummeriens réguliers toutes les propriétés

déjà établies et démontrées par Gauss pour les corps quadratiques.



CHAPITRE XXXV.

Nouvelle méthode pour la théorie d’un corps kummerien régulier.

§ 1 66. - PROPRIÉTÉS ESSENTIELLES DES UNITÉS D’UN CORPS CIRCULAIRE RÉGULIER.

Nous avons vu quel rôle important joue le symbole ~y, 1 (J. dans la théorie des corps
kummeriens. Pour la définition de ce symbole (paragraphe 1.31) et la recherche de
ses propriétés, du paragraphe I3I au paragraphe I33 nous avons, comme Kummer,
introduit les dérivées de logarithmes des polynômes adjoints à un nombre

c~ ~ I mod 1. Les calculs des paragraphes I3I bis à I33 pour le symbole 20142014/ dans
les corps kummeriens correspondent d’ailleurs aux considérations du paragraphe 64

pour le symbole du corps quadratique. Quoique nous soyons déjà parvenus

à réduire à de moindres proportions les calculs employés par Kummer, il me paraît
cependant nécessaire, surtout en vue du développement futur de la théorie, de cher-
cher s’il n’est pas possible d’édifier la théorie des corps kummeriens sans ces calculs.

J’indique brièvement dans ce chapitre la marche à suivre.
D’abord on peut établir aisément sans calcul et sans les nombres de Bernoulli

les propriétés essentielles ci-après des unités du corps circulaire régulier c(~). Rappe-
lons-nous, pour le théorème i56, la dernière démonstration indiquée au para-
graphe 

Nous pouvons alors déduire, du théorème 156, le théorème 155 de la manière

suivante. Nous entendons par ~1, ..., cl.;: un système quelconque unités réelles

de c(~) ; nous déterminons alors des exposants positifs e1, ... , elm et des entiers

rationnels ... , , al.,:, b’, ... vérifiant les congruences

Nous supposons que e1 ait la valeur minima parmi les exposants e. Nous pouvons
alors, on le voit aisément, multiplier les ~~ - unités ~2, ..., ~~__ par des puissances
de E1.’ telles que ces 1* - 1 produits ~2, ..., ~1.,: vérifient les congruences



les a’ et les b’ étant des entiers rationnels premiers à l, et les exposants e2, ..., e~,,;
étant tous plus grands que e1. Les unités é1, ~2, ~3, ... , ci:,- forment encore un sys-
tème d’unités fondamentales dans c(~). Soit e2 le moindre des e’; il est encore pos-
sible de multiplier les unités c3, ..., ~’*l par des puissances de ~’2, de manière que
les l~- 2 produits obtenus ~3, ..., ~1.,: vérifient les congruences

les a" et b" premiers à r et les e" tous plus grands que e? .
Les unités ~1, ~2, ~3, 24, ..., e~ forment encore un système d’unités fondamen-

tales de c(~). En poursuivant ainsi, nous arrivons à un système d’unités fondamen-
tales de c(~), ~1, : 2 , ... , vérifiant les congruences

les a et les b étant premiers à 1 et les exposants e1, ..., e~’;"~’~ vérifiant les inégalités

Comme les unités considérées sont toutes réelles, tous les exposants et, e2, ... sont
pairs., Or, si on avait

E~’;’w’~ serait, d’après le théorème 156, la puissance d’une unité ~ de c(~). En

exprimant alors au moyen des unités ~, s~, .... ~~~,~~~~a sous la forme

les u étant des exposants entiers rationnels, et en élevant cette égalité à la lième puis-
sance, nous obtenons une relation entre les l* unités ~2, ..., ~~’,"~-’> avec des expo-
sants non tous nuls ; ceci est contraire au fait que S1’ ~; , ... , ~j~,~~-’~ forment un sys-
tème d’unités fondamentales de c(~). Par suite, on a

Il en résulte, vu les inégalités (162), que l’on a nécessairement

et on en conclut immédiatement l’existence d’unités E1, ..., c~:;: ayant les propriétés
indiquées au théorème 155.

Le théorème 157 résulte, comme au paragraphe 142, du théorème 155.



§ - DÉMONSTRATION D’UNE PROPRIÉTÉ DES NOMBRES PRIMAIRES

D’IDÉAUX PREMIERS DE SECONDE ESPÈCE.

Nous nous basons sur la définition du symbole v’ ~~~~ donnée paragraphe I3I,? tu ,
mais nous nous passons provisoirement du symbole 1~’ ~~ ; nous n’utilisons par
suite les théorèmes i5o, 151 que pour iv =(= I . Les théorèmes 158 et 1 59 s’établissent

alors immédiatement comme on l’a montré, si l’on fait l’hypothèse restrictive que le

discriminant relatif de c~~u., ~) par rapport à c(~) est premier à 1 . Avec cette res-

triction, nous arrivons, sans employer le symbole {03BD,  I} à la notion de caractère

d’un idéal de 03B6), à la division des classes d’idéaux d’un corps kummerien en
genres, ainsi qu’aux lemmes 33, 34, 35, et nous démontrons ensuite le lemme

suivant : . 

LEMME 43. - Tout nombre primaire x d’un idéal premier q de seconde espèce est

congru mod Il à la lièm’3 puissance d’un entier de c(03B6).

Démonstration. - Soient ~4, ..., ~l*, les l* = 
l-3. 

unités fondamentales du
2

corps c(~) définies au paragraphe 166 et désignées alors par Si’ ..., 2~~; ; soient

ensuite 1’, ~~, ..., ~‘-,. des idéaux premiers de c() autres que l, tels que l’on ait

03B6*, 03B61, ..., 03B6l* étant des racines lièmes de l’unité quelconque autres que 1. L’existence

de tels idéaux résulte du théorème 152 ; en nous reportant à la démonstration de ce
théorème, nous voyons que non seulement le nombre, mais encore la somme des

inverses des normes de tous les idéaux premiers t y étaient infinies, et ceci nous

permet, comme le montrent les considérations faites en démontrant le théorème 83.

de supposer du premier degré dans le cas actuel tous les idéaux premiers ’?, ..., ~1,~.
Nous pouvons aussi supposer tous différents les nombres premiers rationnels divi-
sibles par ~, ..., ~l":. Soient 7:, T1, ... , r~:;. des nombres primaires de ces idéaux.

Occupons-nous maintenant du cas où il existerait l~ + 1 exposants entiers



n , ..., i~l.,: , non tous divisibles par l, tels que l’expression x = ~u ... ~ïw soit
congrue mod It à la lième puissance d’un entier de c(03B6). D’après le théorème le

discriminant relatif du corps kummerien ~) renferme alors comme facteurs
un certain nombre l des idéaux premiers ~, ..., ~1.;:, mais non l’idéal 1 . D’autre part,
il résulte de (163) et du théorème i5i que le degré m de la famille des unités de c(03B6),
normes relatives d’unités de c(l03B1, 03B6), est au plus = t; on aurait alors pour le

corps kummerien 03B6)

ce qui est impossible d’après le théorème 158. Le cas envisagé est donc impossible.
f Soit ; un nombre primaire de l’idéal premier q. Nous déduisons de la démons-

tration du théorème qu’il existe exactement ( l - lj,, I ) tc-3 , nombres primaires
de c(03B6) incongrus, mod It-1, et, par suite, (l-I)ll*+1 incongrus, mod I‘; d’autre

part, la lième puissance de tout entier de c(03B6) premier à { est congrue mod Il à l’un

des l - ~ nombres 1, 2, .... l - r . De ce qui précède résulte alors qu’il est toujours
possible de déterminer les exposants u, u, , ..., de manière à ce que l’expression
Eu- ... 03C0ul*l*, x soit congrue, mod 1, à la l puissance d’un entier de c(03B6),
n, ..., étant ainsi déterminés, posons 0~=7~ ... x~B de sorte que ~~o~, et t
occupons-nous maintenant du cas où un certain nombre a des exposants u,

il , ..., u .,: sont premiers à l, les l-I 2 a autres étant divisibles par 1. On aurait

alors, vu (163), pour le corps kummerien 03B6), avec les notations du para- 
’

graphe 149, r*==a, r==~2014/~==i, et, par suite, d’après le lemme 35,
toutes les classes d’idéaux de ce corps sont du genre principal. D’où le résultat sui-

vant : r étant un idéal premier quelconque de c(~), tel que l’on ait ~’-, ? = i, et p

désignant un nombre primaire de r, le nombre ~p aura, avec un choix convenable
de l’unité ç, tous ses caractères égaux il T dans le corps ~~; on a donc en
particulier

et comme q est idéal de deuxième espèce, on a aussi {r q}= I .

Désignons maintenant les idéaux premiers conjugués de q et autres que q par
q’, ..., et les substitutions du groupe de c(~) changeant q en q’, q", ... par s’,

s",~ ... ; h et h* ayant alors la signification du paragraphe 1~9 et q étant le nombre

premier divisible par q, on a, vu la remarque à la fin du théorème 



~ étant une unité de c(~). Vu notre hypothèse sur les exposants u, ..., u~~~, les

idéaux ~, ..., étant du premier degré et les nombres.premiers qu’ils contiennent -

étant distincts, nous pouvons conclure du théorème 152 qu’il existe dans c(~) un

idéal premier r tel que l’on ait

~~" étant une racine de l’unité autre que i. Ces égalités (164) donnent de suite

La première égalité (i65) donne, d’après ce qui précède, {r q}=I, etles suivantes
donnent de même 2014== i, 2014 == i, ... ; d’où, en faisant le produit, 2014 == 1 ’ ce

~1 ~) ~~
qui est incompatible avec (166), vu le théorème i4o.

Notre point de départ est donc faux et tous les exposants M, M~, .... doivent

être divisibles par /; x est donc la puissance d’un nombre de c(~); on en déduit

que y. est congru à la puissance d’un entier de c(~), mod I~, ce qui démontre le
lemme 43.

§ l68. 2014 DÉMONSTRATION DE LA LOI DE RÉCIPROCITÉ POUR LES CAS OU L’UN DES DEUX

IDÉAUX PREMIERS EST DE SECONDE ESPÈCE.

LEMME 44. 2014 Soit q un idéal premier de seconde espèce et t un idéal premier de

première ou de seconde espèce de alors si { q r}=== i, on a aussi 2014 = i.
Démonstration. 2014 Soient y., ? des nombres primaires de q, t. D’après le lemme 43.

le discriminant relatif du corps c(Y/x, ~) ne possède (théorème i48) qu’un seul fac-
teur premier q et tous les idéaux de ce corps (lemme 35) appartiennent alors au

genre principal. Comme on a {q r}= i, r est dans le corps c(l, 03B6) le produit de



l idéaux premiers ; nous avons pour le caractère d’un de ces 1 idéaux premiers la
valeur 

,

ce qui démontre le lemme.

LEMME 45. - q, q étant deux idéaux premiers quelconques de seconde espèce de

c(~), on a toujours ’ {= ’ . °
Démonstration. 2014 - est=j=i (le cas contraire venant d’être démontré). Soient

x, x des nombres primaires de q, q; qB q", ... les idéaux premiers conjugués de q et
distincts de ce dernier; x’, ... les nombres primaires correspondants conjugués
de x. Mêmes notations avec - pour il et x. Soit enfin q le nombre premier divisible
par q; on a alors xT/x"... = e étant une unité de c(03B6). D’après le théorème 1 52 ,

. il existe un idéal 1 pour lequelon a

~~ étant une racine de l’unité autre que 1 de c(~) et où ..., ~~~ désignent les
l* unités désignées par ~~ , ..., au paragraphe 166. De ( I 6 ~ ) on tire

et par suite aussi, p étant un nombre primaire de r (voir théorème 

D’autre part, on a, vu (16~) et le lemme 

.. 

d ( ) 
~ F ~~~ B x Î~4~et par suite on tire de (1 ~o) : : r 
- 

B 
 -- -- ~ ,

(Jn a donc



On tire de même de (168) la relation

Déterminons maintenant la puissance pe de p de façon que l’on ait v =1, et
considérons le corps kummerien ~). Comme q par hypothèse et r à cause de
(169) sont idéaux de seconde espèce, il résulte du lemme 43 que le discriminant

relatif de ce corps ne contient que les deux idéaux premiers q et r. Le corps ~)
contient alors au plus 1 genres (lemme 35). L’idéal premier r est la l’ème puissance
d’un idéal premier ~ de ~~ . Les deux caractères de % dans ce corps sont

et on en déduit les caractères de ~~, ~3, ..., ~tl.

Les 1 idéaux 9t, ~~, ..., , ~l déterminent, vu (171), 1 genres différents et le produit
des deux caractères de chacun d’eux est égal à 1 d’après la même formule. Ce dernier

résultat est par suite vrai pour tout idéal de ~). Comme on a ? q 1
q est décomposable dans ~~ ; les caractères d’un facteur premier de q sont :

et par suite on a

Comme on doit avoir, d’autre part,

on en déduit, d’après I ~ 2,

LEMME 46. 2014 Soit p un idéal premier de première espèce et q un idéal premier de

seconde espèce de c(03B6); si l’on a 2014{ = i, on a aussi {q p}=I.

~) ~) ,

2014 Soient des nombres primaires de ~, ~. Supposons que l’on

ait {p q} =|= r. Il existe (théorème I52) un idéal premier t, différent de p et de q, pour



lequel on a

e,, .... ~ étant les unîtes s,, s/, ... du paragraphe 166.
A cause de (i’y4), 1 est idéal premier de seconde espèce ; p étant un nombre pri-

maire de r, on a -~- =)=i, car on déduirait de -~ =j ~ cause du lemme 44,~ ’ ( ~ )

- === i, contrairement à (t~3). Nous pouvons alors déterminer une puissance p~ de p
telle que l’on ait {x03C103B1 p} === i. r, q étant idéaux premiers de seconde espèce, il résulte

du lemme 43 et du théorème i48 que le discriminant relatif du corps 03B6) ne
contient que les deux idéaux premiers q, t. Or, on a d’après (iy3) - ~ i, et d’après
le lemme 45

et il en résulte, comme dans la démonstration du lemme 4~, que le produit des deux

caractères de tout idéal de 03B6) est égal à i. Vu {x03C1e p} = I, p est décomposable

dans 03B6); tout facteur premier de p a les deux caractères

Le premier étant par hypothèse égal à r, il faudrait que {03C0 r} fût égal à i, con-
trairement à (1 ~3). 

~ ~ )
Notre hypothèse q ? =|= i est ’ 

donc fausse.

LEMME 47. - q étant un idéal premier de deuxième espèce et $ un idéal premier
de première espèce, on a toujours

Démonstration. - Nous procédons, comme dans la démonstration du lemme 45,
en introduisant ~ au lieu de q et utilisant, dans le cours de la démonstration, le
lemme 46 au lieu de 44 pour établir la relation correspondante à (172).



s 2014 LEMME SUR LE PRODUIT FF 20142014 ÉTENDU A TOUS LES IDÉAUX PREMIERS W ) Ï. 
_

LEMME 48. 2014 03BD,  étant deux entiers de c(03B6) premiers à I,  étant de plus congru,
mod Ï~ à la puissance d’un entier de on a toujours

le produit étant étendu à tous les idéaux premiers ? de c(~) =1= I .

Démonstration. - Vu les hypothèses, ~, peut être mis sous la forme d’un produit
de nombres primaires d’idéaux premiers divisé par la [ième puissance d’un nombre

de c(~). Si v est en particulier égal à un nombre primaire x d’un idéal premier q de
deuxième espèce, le lemme résulte immédiatement des lemmes 46 et 47, c’est-à-dire

qu’on a, avec l’hypothèse faite sur ~,, .

Considérons maintenant le corps kummerien c(BI;, ~). r étant le nombre des

caractères distinctifs d’un genre de ce corps, il existe, d’après le lemme 35, au plus
["-1 genres dans ce corps. Y~, ..., Yr étant alors r racines lièmesde l’unité dont le produit
soit égal à i, nous pouvons démontrer, exactement comme dans la démonstration

du théorème 164, qu’il existe toujours dans c~~u , :) des idéaux dont les caractères
sont ..., Yr’ Il n’y a qu’à ajouter aux conditions (155), (156), auxquelles doit
satisfaire l’idéal désigné par ~, les conditions supplémentaires

~~ , ..., désignant les unités ..., du paragraphe 166. De cette façon, on
trouve de même que p doit être un idéal de deuxième espèce et nous avons alors le
droit, d’après les lemmes 45 et 47, d’appliquer la loi de réciprocité de la même ma-
nière qu’on l’a fait dans la démonstration du théorème 164. Au lieu du théorème i 63

qu’on y a employé, nous utilisons ici la formule Il en résulte en même temps

qu’il y a effectivement genres dans ~) et, par suite, que le produit des
r caractères doit être égal à 1 pour chacun d’eux. Appliquons maintenant ces résul-
tats à la démonstration du lemme 48 dans le cas où v est unité, puis dans celui où v
est nombre primaire d’un idéal premier de première espèce.

Soient encore Et’ ..., les unités dont il vient d’être question; If, ..., Il les

t idéaux premiers distincts qui entrent dans le discriminant relatif de ~), et



choisissons, comme au paragraphe 149, rt, ..., rr+~ ; soient ),t, ..., des

nombres primaires correspondants et 03BE une unité quelconque de c(03BE). D’après le
théorème 152, il existe un idéal premier q et un exposant m premier à l, tels que

l’on ait l

Soit x un nombre primaire de q. Vu l’égalité {  q} 1 -1, q se décompose dans

03B6), et, d’après les autres conditions (i i6), q est idéal premier de deuxième

espèce. Les r caractères d’un facteur premier de q ont, comme on voit d’après 
et les lemmes 45 et 47 que l’on a :

les valeurs suivantes :

Or, d’après ce qui précède, leur produit doit être égal à i ; ceci, joint à (178) et à la

dernière égalité (176), donne

le produit s’étendant à tous les idéaux premiers ? différents de t; on en tire, grâce
à (175),

le lemme 48 est donc démontré quand v est une unité quelconque de c(~).

Soit ensuite un idéal premier de première espèce, vérifiant la condition {  p} == 1
et, par suite, décomposable dans c~~N,, ~~. Les r caractères d’un facteur premier
quelconque de p sont :

03C0 désignant un nombre primaire de p et ; une unité convenable de c(03B6).



Leur produit devant être égal à 1, il en résulte encore

et on en tire, vu ( r ~ g),

Enfin, si p est un entier premier de première espèce premier à , tel que Fon

=|=I, on déterminera un idéal premier q de seconde espèce tel que l’on ait

{p q} =)-: i. Alors, d’après le lemme 44, on aura aussi - =|= i. x désignant un nombre
primaire de q et xe une puissance de A telle que l’on ait 20142014 =1. on a, d’après ce
qui précède,

et comme on a aussi, d’après le lemme 47,

on a encore

le lemme 48 est donc aussi démontré lorsque v est un nombre primaire d’un idéal de

première espèce. Des égalités (i~S). (179), ( 180) résulte sa complète généralité.

§ I 70. - LE SYMBOLE !v, ET LA LOI DE RÉCIPROCITÉ ENTRE DEUX IDÉAUX PREMIERS

QUELCONQUES.

Nous arrivons maintenant d’une manière très simple à la nouvelle base de la

théorie des corps kummeriens réguliers annoncée au début de ce chapitre. Posons,
v et ~, étant deux entiers de 

le produit II étant encore étendu à tous les idéaux premiers de c(~) différents de Ï :
(W)



le symbole {03BD, } représente ainsi une racine l’è"’e de l’unité complètement déter-
minée par les nombres v, y., et on tire de (80) les formules

v, v~, ~r~, tJ, ~,~ étant des entiers quelconques de c(~). r désignant ensuite une
racine primitive mod l et s = {~ ; ~r) la substitution correspondante du groupe de

c(~), on a

On a ensuite la proposition

LEMME 49. - Si sont deux nombres primaires de c(~), le symbole a ton-

jours la valeur i.

Démonstration. - On a d’abord, a étant un entier rationnel quelconque premier
et à v (théorème i4o), l’égalité

l-t

y, devant être primaire,  s2  est congru mod à un entier rationnel. On peut,

par suite, déterminer un entier rationnel a tel que l’on ait la congruence

et que de plus a soit premier à v. On obtient alors, en appliquant le lemme 1~8,

et par suite aussi, vu (t84). 1

On démontre de même

Puis on tire de ( ~ 83)

Les trois dernières égalités réunies donnent

Si l’on choisit, en particulier pour v, ;~., des nombres primaires de deux idéaux

premiers quelconques de c(~), l’énoncé du lemme 4g est équivalent à la loi

générale de réciprocité 161 pour ces idéaux premiers.



§ I7I. - COÏNCIDENCE DES SYMBOLES {03BD, } ET {03BD,  I}.
Nous déduisons du théorème JSI , dont le cas MI est seul utilisé, que iv, }

a toujours la valeur i si v est norme relative d’un entier du corps c(~/~., ~); et nous
arrivons enfin maintenant à montrer que x, N, ~ a aussi la valeur i si x est reste de

normes du corps c~~y., ~). En effet, supposons pour abréger que les deux nombres
soient premiers à t et posons mod Il. A étant un entier de ~~,

le nombre x . est évidemment congru à la puissance d’un entier mod r‘;

par suite on a, en utilisant les formules (182), les remarques faites et le lemme 48,

comme nous l’avions annoncé. Si l’un des nombres (l, p. ou tous les deux sont divi-

sibles par {, la démonstration se fait aussi sans difficulté au moyen des mêmes

procédés.
Si y, est un entier de premier à r, on tire aisément de (181)

par suite, l’expression v, y. ~ remplit toutes les conditions que remplit le sym-

bole 03BD,  I (fin du § 133) ;’ on a donc. en prenant la définition du symbole / # Î
donnée paragraphe 133,

on retrouve dans cette égalité le théorème 163.
Si les deux nombres v, p sont premiers à 1 et que v, û, désignent des entiers de

c(~) vérifiant les congruences

on obtient facilement, à l’aide du lemme 48.

De là et de la considération des formules (182) nous tirons le résultat suivant :

Si les deux nombres 03BD,  sont premiers à t et si l’on pose



~, b et les exposants n et m étant des entiers rationnels, on a une égalité de la forme

L étant ici une fonction bilinéaire homogène des deux séries de variables nt’ ...,

mi, ..., et les coefficients de L sont des entiers rationnels ne dépendant
que du nombre premier 1 et faciles à calculer pour une valeur donnée de 1 en pre-
nant des valeurs particulières pour ’1 et ~, .

Après avoir défini le symbole {03BD,  I } et établi ses propriétés les plus Importantes,
nous pouvons laisser de côté la restriction maintenue jusqu’à présent dans ce cha-

pitre pour les corps kummeriens d’avoir leur discriminant relatif premier à 1 ; c’est

ce qu’on parvient à démontrer, comme plus haut, en s’appuyant sur les théo-
rèmes 164, 165, 166 et surtout sur le théorème fondamental ~f;. Ce dernier et le
théorème 1 52 permettent de montrer ensuite étant deux entiers quelconques

de c(~), tels que l’on ait v’ N~ == i, et que u. ne soit pas égal a la puissance d’un

nombre de c(~), le nombre v est toujours résidu de normes, mod t, du corps kum-
merien c(~u , ~). Par suite le théorème I5I est vérifié par surcroît pour tv = r, ainsi
par conséquent que le théorème I50 pour lv = r . Avec cette nouvelle manière d’édi-
fier la théorie des corps kummeriens réguliers, ces théorèmes I50 et 151 pour iv - I

paraissent les clés de voûte de toute la construction, contrairement à la première
méthode.

CHAPITRE XXXVI.

L’équation diophantine ’1.m + + = o.

S - IMPOSSIBILITÉ DE + 03B2l + 03B3l=o POUR LES EXPOSANTS PREMIERS
RÉGULIERS 1.

Fermât a émis l’assertion que l’équation

est impossible en nombres entiers a, b, c différents de o pour tout exposant entier

m> i. Bien que déjà avant Kummer on ait obtenu des résultats isolés remarquables
sur cette équation de Fermât t Dirichlet1, 2, 3, Lamé1, 2, 3, Lebes-

c’est pourtant Kummer qui est parvenu le premier, en s’appuyant sur la

théorie des idéaux des corps circulaires réguliers, à démontrer le théorème de Fermat

pour des classes très étendues d’exposants Le plus important des résultats de
Kummer est le suivant :



THÉORÈME 168. - 1 étant un nombre premier régulier et y., 03B2, 03B3 des entiers quel-

conques du corps circulaire des racines lièmes de l’unité, dont 
aucun n’est nul, on n’a

jamais l’égalité

‘~1I:

Démonstration. - Soit 03B6=el, 03BB = I - 03B6, r = (À). Supposons que l’équation (I85)
ait une solution en nombres entiers 03B1, 03B2, y du corps et distinguons les deux cas

où aucun des trois entiers .&#x26;, y n’est divisible par t et celui où l’un au moins des

trois est divisible par (.

Dans le premier cas, on doit en tout cas exclure les valeurs 3 et 5 pou r l’expo-

sant 1 . En effet, pour /=3 chacun des trois nombres x, ;~, y serait ==~t i, mod Ï, et

par suite chacune des trois puissances «3, ~;3, ,j3-+ i, mod I3; la somme + (j3 +,~3
serait donc congrue à + i ou à + 3, mod ta, ce qui est incompatible avec l’équa-

tion (185). On arrive à une contradiction semblable avec 1== 5, si l’on considère que

dans ce cas chacun des trois nombres x, ~, ,t est congru, mod I, à + 1 on + 2, et

par suite chacune des trois puissances «~, (~~, Y~ devrait être congrue à + 1, + 3~2,

mod I~ (1)..
Soit donc l ] ~ . Si l’équation ( 185) est vérifiée par les trois nombres x, 3, 03B3 , on a

évidemment aussi + ~~~ + ~~~1= o, en désignant par x~, (i~, ,t~ les produi ts de a., (j, ;

par des racines quelconques de l’unité. Cela étant, nous pouvons dorénavant

admettre que les trois nombres a, p, y vérifiant l’équation (185) sont semi-primaires.
Mettons alors l’équation (185) sous la forme .

. Si deux facteurs du premier membre, par exemple a, + et x + ~ut~(~, avaient

un facteur commun, celui-ci devrait aussi diviser (~~ - I)x et (1 - ~~)~, et comme

J _ ‘‘ yg est une unité et que 1 ne divise pas y, ce facteur commun devrait nécessaire-

(1) N. T. - Pour L= ~, la contradiction relevée dans le premier cas pour l = 3, l = 5
n’existe pas. En prenant, en effet,

on a

et

ou

congruence qui est vérifiée.



ment appartenir aux nombres a. et (3. Tout facteur premier ne figurant que dans un
seul des 1 facteurs du premier membre de (186) doit évidemment, d’après cette
équation même, avoir un exposant multiple de 1; les 1 facteurs du premier membre
de (186) se décomposent donc comme suit : -

a désignant le plus grand commun diviseur idéal des nombres x et (~, et i, ~~, ...,

des idéaux de c(~). Comme a + ~l-’ ~, en particulier, est premier à I, on peut
déterminer une racine lième de l’unité 03B6*, telle que 03B6*(03B1 + 03B6l-103B2) soit semi-primaire.
Posons

On ohtient alors

c’est-à-dire que l’on a

etonadeplus

h désignant le nombre des classes d’idéaux de c(~), on a, d’autre part,

et, comme h est premier à l, on en déduit

Par conséquent, on peut (voir théorème I27, § 98) mettre les relations 
sous la orme .



les eu désignant des exposants entiers rationnels, les Eu des unités réelles du corps
circulaire c{~) et les des nombres de c(~) entiers ou fractionnaires à numérateurs
et dénominateurs premiers à I. La lième puissance du nombre ou étant toujours con-

grue à un certain entier rationnel mod Iz (1), on tire des égalités (189) les con-

gruences _

Effectuons dans ces congruenccs la substitution (~ ; ~ ’) et désignons par ;~.’ et ,’
les transformés et ? par cette substitution ; il vient

De ( 1 go) et ( 1 g I ) résulte

En posant ,o = r~, mod r00FF, m et r étant des entiers rationnels (~), il résulte

(1) N. T. - La puissance de tout nombre a de c(03B6) est congrue mod Il à un certain entier
rationnel a.

En effet, a peut être mis sous la forme

ao et 60 étant premiers à 1 ; on a donc :

On peut toujours déterminer un entier b tel que l’on ait

alors on a

c’est-à-dire

et par suite

a étant entier rationnel.

(2) N. T. - En 

car p est le quotient de deux nombres semi-primaires.

revientdoncà

or bo et ao étant premiers à l, la congruence

a toujours une solution in =[= o, et par suite l’on a aussi



et, à cause de la relation générale ~g -1- g), , mod r, (ig3) donne la congruence

D’autre part, il résulte de l’égalité (188) : tn ~ n-1, mod l, et par suite nous

avons

Prenons alors, en tenant compte de cette relation, les congruences (192) pour
n-o, j, 2, 3; on en tire, en éliminant y,, ~,, y,‘, p’,

c’est-à-dire

Aucun des facteurs du premier membre n’est égal à o, car autrernent on aurait soit
soit r::::::. 1. soit n~ 2, mod l. Si l’on avait mod l, il en résulterait

(3 ~ o, mod I; si l’on avait r- I, mod l, il en résulterait F-1, mod I, c’est-à-

mod t. Dans les deux cas c’est impossible, vu notre hypo-
thèse sur les nombres a, ~, v. Si l’on avait r-~, mod 1 , on aurait ~=2, mod I,

2 mod 1. Mais comme x, (3, y entrent symétrique-
ment dans l’équation (185), on aurait aussi mod I, et par suite

- o, mud I, contrairement encore à l’hypothèse. Chaque facteur du

premier membre de la congruence (I94) est par suite divisible par I, mais non par F;
cette congruence est donc impossible, puisqu’on a l> ~.

Supposons maintenant, en second que dans l’équation (185) l’un des trois
nombres 1 , ;~. y, par exemple y, soit divisible par t et contienne ce facteur à la

puissance. Si l’on remplace alors y par â étant un entier de premier
à I, l’équation (185) prend la forme

~ étant ici égal à - r. On va montrer qu’une équation de cette forme (t()5) est même

impossible, 0’, p, c étant des entiers quelconques de c(~) premiers à { et s une unité

quelconque du corps circulaire c(~). Pour cela, supposons encore les nombres 



semi-primaires et observons d’abord que ~i‘ sont congrus à des entiers rationnels,
mod I~~’, et que, vu (195), êÀmlal doit aussi être congru à un entier rationnel,
mod I‘~~’ ; m. doit donc être > i. On trouve ensuite, par des considérations analogues
à celles du cas précédent et en tenant compte de ce que t1. -+- ;~ est semi-primaire, les

égalités

..., ~l_~ , a sont des idéaux premiers à I de c(~). Si l~ 3, le nombre de

classes h du corps c(~) est égal à i et, par suite, tout idéal de c(~) est un idéal prin-
cipal. En posant dans ce cas a = (x), x étant un entier de c(~), et ensuite

les égalités (196) deviennent

Dans le cas de l ~ 3, formons les nombres

on peut aussi les mettre sous forme de fractions dont le numérateur et le dénomi-
nateur soient premiers à r . Les trois premières et la dernière des égalités (196) nous
donnent

Nous en concluons encore



et par suite nous pouvons mettre les égalités (Ig8) sous la forme

v, x~, ,~~, ~~ étant des entiers de c(~) premiers à ~ et e et ê* des unités de ce corps.
A cause de (197), on a également, si /==3, un système comme (199). En éliminant 
et p, on obtient, aussi bien pour r= 3 que pour l~ 3, une équation de la forme

et égales à - 
1 

et à - ‘’ ( I ~r ’~ _~ sont des unités de c ~ . ~c~’, étant
B I - s v~ I - Y~ 5 / 

( 1

congrus mod rl à des entiers rationnels et m, étant ~> I, comme on l’a démontré, il

résulte de cette équation (200) que r, aussi doit être congru à un entier rationnel

mod Il, et par suite (théorème 1 56, § est la puissance d’une unité de c(03B6).
En mettant alors (~~ r~- ï à la place de ~~ dans (200) cette équation prend la forme de
(195), sauf que l’exposant in a diminué d’une unité. En continuant ce procédé, on
finirait par arriver à une équation de la forme (ic)5) avec m = I, et par suite par

arriver à une contradiction. Le théorème 168 est donc complètement démontré.

S I73. - AUTRES RECHERCHES SUR L’IMPOSSIBILITÉ DE + + 03B3m -’- 0.

Kummer a encore donné la démonstration de l’impossibilité de l’équation

en nombres entiers a,, f~, y du corps circulaire des racines l«mes de l’unité, dans le

cas où l est un nombre premier divisant le nombre de classes h du corps circu-

laire h n’étant d’ailleurs pas divisible par l2(1). [Kummer16.] D’âpres la rc-

marque paragraphe 139, le théorème de Fermat est donc reconnu exact pour tous
les exposants na  I00. La démonstration de la proposition de Fermat dans toute sa

généralité est encore à trouver.
Il reste encore à traiter le cas où l’exposant m est une puissance de 2. L’équa-

tion a~ + b~=c~ a, comme on sait, une infinité de solutions en nombres entiers

rationnels a, b, c. Cependan t, on a ensuite le 
°

(1) N. T. - Voir, pour cette démonstration, la note VI.



THÉORÈME 169. - 03B1, p, y étant des entiers o du corps quadratique déterminé

par i = B/2014 i, on n’a jamais l’équation

Démonstration. - Admettons qu’il existe, au contraire, trois entiers «, 03B2, 03B3 véri-

liant cette équation. Posons 03BB =1 i + i et I = (î,), Nous voyons d’abord facilement

que l’un des deux nombres x, [1 doit être divisible par À. En effet, admettons que x
et (~ soient premiers à À et observons qu’un entier de c(i) premier à À est toujours
=1 1 ou i, mod F; son carré est par suite =~h i, mod ~~, et sa quatrième puissance
est = t mod r~. Il en résulte ~4 ~ ;~4~ z, mod IG. Par suite, ,t devrait être divisible

par { et non par 12. Mais si nous posons en conséquence y =)-{- ),j,~’, ,; étant encore
un entier de c ( i), nous trouvons ,~~ _--_ 2 i, mod r~, et par suite toujours ,rz -_ x~ + fi4,
mod F, contrairement à l’hypothèse. Le cas où les deux nombres a, et  seraient divi-
sibles par { peut évidemment être exclu de suite, car alors y serait divisible par Ij et
on pourrait supprimer la puissance ),’ dans les deux membres de l’équation (201).

Il ne reste donc que le cas où un des nombres x, (3, par exemple x, est divisible

par I , ;~ et ,; étant au contraire premiers à I . Nous posons (/.:== où . est un

nombre premier à ~, et nous considérons l’équation plus générale

~ désignant une unité de c(i). Nous déduisons de cette équation (202), en changeant
au besoin y en - ,/, deux équations de la forme

où r~, ~ sont des unités de c(~), x’ et ~’ des entiers de c( i) premiers à r. En addition-
nant les deux équations (203) et divisant le résultat par ~ i,~, on obtient une équation

où ~’, r,’ sont des unités de c(i). Si m était égal à i, cette équation serait sûrement
impossible, car a’, .Sr’, f~, r/. o~’ sont tous - i mod 1 . Donc on a m > i. Mais alors on

déduit de cette équation (20à) la congruence ,~’ - ~ 1 mod t ; par suite, on a ~’ _ + ~ .
En posant a = y’ ou 03B2 = iy, suivant que 03B8 =+I ou -1, l’équation prend la
forme (202), à part que n1 a diminué de 1. En continuant ainsi, on arrive à une
contradiction. .

On déduit immédiatement du théorème de Fermat pour l= 3 qu’il n’existe au



456

cune équation du troisième degré à coefficients rationnels et de discriminant 1 en

dehors des deux suivantes :

et de celles qui s’en déduisent par la substitution x= x’ + a (a étant rationnel).
[Kronecker ~.~ ]

On peut, comme Hurwitz, exprimer le théorème de Fermat en disant que

l’expression V représente toujours un nombre incommensurable pour n~

entier > 2 et x fractionnaire positif.


