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SUR UN PROCEDE ALTERNE,

Par E. GOURSAT.

Je m’occupe dans ce travail d’'un probléme relatif aux équations aux dérivées
partielles, que j'ai déja résolu au moyen d'une équation fonctionnelle dans deux
Mémoires de ce recueil (tomes V et VI de la 2° série; t. V, pp. 405-436; t. VI,
pp- 117-144). Je montre comment on peut aussi le résoudre au moyen d'un procédé
alterné, tout a fait analogue au procédé classique de M. Schwarz pour le probléme de
Dirichlet. M. Picard s’était aussi servi de méthodes analogues dans certaines ques-
tions relatives aux équations différentielles. L’application de ce procédé alterné donne
immédiatement la solution de 1’équation fonctionnelle simple dont dépend le pro-
bléme, et on voit sans peine que I'on peut étendre la méme méthode & d’autres
équations fonctionnelles; mais je réserve 1'étude de ces généralisations pour une
autre occasion (1).

[4] Soit f(a, y) une fonction continue dans le rectangle R défini par les inégalités
oL xrKa, oLy<aq,

r ro. 1 r . . I3
a étant un nombre supérieur a un; proposons-nous de déterminer une intégrale de
I'équation

)

>z

drdy

S, y),

continue dans le rectangle R, et se réduisant & zéro le long des deux segments de
droites y—=u, y=ax, situés dans ce rectangle. Nous avons vu comment ce probléme
se ramenait a la résolution d’une équation fonctionnelle (Fac. T., tome VI, 2° série,
p.- 123). On peut aussi résoudre ce probléme par une suite d’approximations succes-
sives de la fagon suivante. Déterminons d’abord lintégrale de I'équation (1) se

(1) Le principe de cette méthode a été résumé dans une note présentée & I’Académie des
Sciences (Comptes rendus, t. CXLVIIL, p. 762; 22 mars 19og).

Fac. de T., 3¢ S, 1. 17



130 E. GOURSAT.

réduisant & zéro pour y —ax, et prenant pour y =o une suite continue de valeurs
données. L’intégrale générale de I'équation (1) a pour expression

(2) d=F(@, 9+ @) +40),

ot l'on a posé
x y
F(2, y)= f dr / S(@, y)dy,

o (x) et &(y) étant deux fonctions arbitraires, que I'on peut supposer nulles pour
x =0 ou y—=o. Comme on a évidemment F(x, 0)= F(o, y) = o, si I'on veut que
z se réduise, pour y =o, & une fonction g (x), continue de o a a, et telle que ¢ ,(0)=o,
on doit prendre ¢(x) = ¢ (). De plus, pour que l'intégrale soit nulle le long du
segment (y = ax), il faut que I'on ait ’

F(x, 2) + 0,(%) + J(xx) =0,
d’ott 'on tire

Y (ax) =— g,(x) — F(x, ax),

o=—e(2)-(22)

et I'intégrale particuliére cherchée de I'équation (2) est

3) g, =F(x, y)+<?o(ac)—=p.,<g>—l"(§, y>~

Pour & = o, cette intégrale se réduit & une fonction J,(y) :

b () =— w<£> — F<~y°; y>,

continue dans lintervalle (o, a«). L’équation (1) admet de méme une intégrale
u,(, y), continue dans le rectangle R, s’annulant pour y = x, et se réduisant a J,(y)

pour & = o. Cette intégrale a pour expression
u, (2, ) =F(@, y) +4,) — @) —F(z, z).
Pour y = o, cette intégrale se réduit & une fonction o, () :
9.(x) =—14(@) — F(x, x),

continue de o & a. On peut ensuite former une intégrale z,, s’annulant pour y = ax,
et sc réduisant & o, (x) pour y = o. En continuant ainsi, on voit que I'on peut former
deux suites de fonctions :
W @@, 0@ oo (@), .
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s’annulant pour x = o0, ou y = o, dont les premiéres sont continues dans l'inter-
valle (o, a) ct les secondes dans lintervalle (o, a«), et deux suites d’intégrales de
I'équation (1)

2 Ty eees Zny oaees

U, Uy, oony Uny nes

conlinues dans le rectangle R, et satisfaisant aux conditions suivantes :

—=2X;

1> Toutes les intégrales

2° Toutes les intégrales u, sont nulles pour y = «x;

3> Pour y =o, on a z, = 9,(x), et, pour n > 1, zx(x, 0) = Un—1(x, 0) = gn—1 ()

4" Pour x = o0, on a U (0, y) = zn(0, y) = Yu(y).

En partant d’une fonction continue quelconque g, (x), on peut ainsi former les
suites indéfinies qui précédent.

Toutes les fonctions ¢, Ya peuvent se déduire de ¢ (x) par voie de récurrence.

I’intégrale z,(x, ¥), qui est nulle pour y = «x, et se réduit a ¢,—1(x) pour y =o, a

pour expression

u (@ y) = F (2, y) + en1(2) — on <:>~1«< >

De méme, I'intégrale u.(a, y), qui est nulle pour y = x et se réduit a Y (y) pour

a pour expression

Un (%, y) = F(, ) + $n(y) — a(®) — F(z, ).

On déduit de 1a les relations

§+n<y>——«>n—a( )-r(y).

®)
L gn (%) = — a(x) — F(z, ),

et par suite
x
) n(@) =gns (2 ) +7(@)

en posant

(X)) = F<§, oc) —F(x, x).
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De la relation (6) on tire successivement

et par suite

gn(w):%@) +ﬂ(x)+z<§>+ +7c<%>

. ‘o &
La série dont le terme général est = <—n> est absolument convergente ; en effet, en
3

désignant par M une limite supérieure du module de f(x, y) dans R, on a |F(x, y)|

< Mxy, et par suite |=(x)| << M a—iH——a) Lorsque n augmente indéfiniment,
a

o, (;) tend vers zéro, et par conséquent la fonction ¢, () tend vers une limite & (x),

égale 4 la somme de la série

(7) @(x):z(m)+:<§>+...+x<£>+....

,ln
Des relations (5) on tire de méme
() = ( L)+ =
Ya() = tdnaa( )+ =)
en posant
w.<y)=F(Z, Z) —F<Z, y>,
oqL o o
et on en déduit que Y,(y) a une limite W (y) lorsque n augmente indéfiniment

on

®) 11"<y>:n,<y>+n.<§>+...+:,(y>+....

Les fonctions z,(ax. ¥), u.(x, y) tendent donc vers une limite Z(x, y) lorsque n
augmente indéfiniment :

(9) Z(x, y)="F(x, y) + D(x) + ¥(y),
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et on vérifie aisément que cette fonction est nulle pour y =2 et pour y = «x; car on
déduit des expressions des fonctions = (), %,(y), ¢(x), 4 (y) les deux relations

bx)+ W(@)=—F(x, 2), D)+ V(aar)=— F(z, az).

ReMARQUE. — 11 est essentiel d’associer la droite y = ax & la caractéristique y=o,
et la droite y = x 4 la caractéristique & = o. Si on associait ces droites dans un autre
ordre, les expressions de z, et de u, seraient respectivement

2 =F(,y) + 9n1(®) = F (7, ) — 9n—1(y),
un="F (2, y) + $n(y) — $n(ax) — F(, 22),

et les relations de récurrence (5) seraient remplacées par les suivantes :

()= — g1 () —F(y, ),
on () = — {a(22) — F(x, ax),

On en déduirait
on (%) = gn—1 (22) + F (a2, ax) — F (2, ax) = on—t(ax) 4+ 7o (),
et par conséquent
on (@) = o (@) + 7o () + 7o (ax) + ... + o (an—1a).

Si la fonction g, est quelconque, le second membre ne tend vers aucune limite
lorsque n augmente indéfiniment. Si I'on a par exemple f= 1, la formule précé-
dente devient

n(2) =g, (172) +a(z — Dt 1+ @'+ @'+ ... 4 atn—2|

=qn)+ D _ZE D g,
I—a I—a

¢n(2) ne tend vers aucune limite, & moins que la différence
AT A |
o) — XD oy
I—a
ne tende vers une limite lorsque n augmente indéfiniment.

[2] Considérons maintenant I'équation

(10) bez: _D_Z }__BZ
@y S@y.zp @, p=—,
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dont le second membre est une fonction continue dans le domaine D défini par les
inégalilés

(11) oz ae, oyar, |27, |pI<P, [9]<Q

« étant un nombre positif supérieur & un, et a, Z, P, Q des nombres positifs ; soit M
une limite supérieure de la valeur absolue de f dans ce domaine. Pour obtenir l'inté-
-grale de cette équation qui se réduit & zéro pour y = x et pour y = xx, et qui est
continue dans le rectangle R, de cotés r et ar, r étant un nombre positif suffisam-
ment petit et au plus égal & a, on peut employer un procédé alterné tout a fait
analogue & celui du paragraphe précédent.

Nous présenterons tout d’abord quelques lemmes préliminaires. Soient N et N’
deux nombres positifs vérifiant les deux inégalités

Novsom, v M

2 ’

: 4

pour trouver deux nombres satisfaisant & ces conditions, on peut prendre & volonté
o s - . N . - .
un nombre positif N, puis un nombre N’ compris entre — et N, et multiplier ensuite
o®
ces deux nombres par un méme facteur, de facon que les différences N — N’ et

0N ent o : . ‘ . oM
N’ — = soient respectivement supérieures a 2M et a —.
G,g [*4

Cela posé¢, nous dirons quune fonction z(x, y), réguliére dans le rectangle R,
satisfait aux conditions (A) dans ce domaine si I'on a, en tout point de R et du
périmétre,

A 2I<Z, IpI<P, {¢1<Q @@ o[ K e, [zy(0 [Ny

Soit f(x, y) une fonction continue dans le domaine (o < z a, oLy < ax). et
dont la valeur absolue ne dépasse pas M. L'intégrale de I'équation auxiliaire

>z

dxdy

=/f( ),

qui est nulle pour y = a., et qui se réduit pour y = o & une fonction continue ¢ ().
s’annulant pour & — o, a pour expression

(12) Z=F(w,y)+?(m)—?<%>—1"<1,y>,

%

ou l'on a posé

P 9= [ " dw / ' f(@, y)dy.
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La fonction F(«, y) est continue dans le rectangle R, s’annule pour x =o et pour
y=o, et 'on a en tout point du domaine

[F(x, y)| < Mxy.

Les dérivées partielles
-

; ¥ \ F
F@n=5 k@)=

sont elles-mémes continues, et I'on a

lFl(w’ y)l<1\1y’ IF?‘(.%', y)l<NIw'

Les dérivées partielles de la fonction z(a, y) ont pour expressions
p=F,(x,7) +¢'(x),
A L ! I y Al y
q=F,(x, y)——¢ (y>———F1<—, y) —142(—, y):
% % \ &

; 3
supposons que la fonction ¢ (x) satisfait elle-méme & la condition
[o'(a)| <N,
ce qui entraine, puisque ¢(0) = o, I'inégalité

Na?
ot

le(@)]| <<

On a donc, dans le domaine R,

IZI<Mw“+N%+N2r + Mar*=sMar* + Nr,
|p| <Mar+ Nr,
]q|§M1"+M+Ml'+hll~:3hlr+¥.

« o

D’autre part,

' — L (IN_Ip (Y _r (Y
zy(o, y)= a?(q) " ,<l-y> F¢,<m,y>,

et par suite

, N aM
e <+
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Pour que la fonction z(x, y) vérifie les conditions (A), il faudra que I'on ait

(13) Mart + NP <Z, Mar+Nr <P, 3Mr+2<Q,
x
Ny oMy
T oy,
[+ a

la derniére condition est satisfaite d’elle-méme, d’aprés la facon dont on a choisi les
nombres N et N'; il suffira donc que le nombre r vérifie les inégalités (13).

Soit de méme ¢ (y) une fonction continue de o & r, nulle pour y = o, et telle que
Lon ait [4'(y)] << N'y. L’intégrale de I'équation

yu

sz(w’ Y)s

qui est nulle pour y =, et se réduit & Y (y) pour & = o, a pour expression

ux, y)="F(x, y) + 4 — $(x) — F(z, x).

On en tire

=F,(z, y) =¥ (@) —F,(z, ) — F,(x, 2),

=F(x, 5) + ‘q:’(y),

~| e (o0 )

Uz (0, 0) =— /() — F, (&, ) — F, (, @),

ct par suite, dans le domaine R, on a

N'a N'r?
ful  KMar'+
| du ,
I K Mar+N'r+a2Mr,
u

=

r+Nar,

S
luz(ax, o) | < N'a + 2Mux.
La fonction u(a, y) vérifiera donc les conditions (A) pourvu que l'on ait

V[(I_l_ )r +j_(l_+_a)r2<Z,

(14) M(a+2)r+ Nr<P
Mr+ Nar<Q,
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car la condition
N'ax + aMx <Nz

est vérifiée d’elle-méme. Nous supposerons dans la suite que r est un nombre positif
satisfaisant & toutes les conditions (13) et (14).

[3] Revenons maintenant & la .question proposée. Nous formerons encore une
scrie de valeurs approchées de I'intégrale, en prenant pour premiére approximation
, = o. Soit d’autre part ¢, (x) une fonction continue de o & r, s’annulant pour x=o,
ct telle que I'on ait, dans lintervalle (o, r), l¢'(x)] << Na. Pour seconde valeur
approchée, nous prendrons la fonction z,(z, y), satisfaisant & I'équation

2
C

xa‘y =/f(x, y, 0, 0, 0),

[

se réduisant & ¢, () pour y = o, et & zéro pour y = xx. Celle intégrale est réguliére
dans le rectangle R et, d’aprés la fagon dont le nombre r a été choisi, elle satisfait
aux conditions (A). Pour x = o, elle se réduit donc & une fonction 4,(y), dont la
dérivée est inférieure en valeur absolue & N'y. Soit de méme u,(x, y) Uintégrale de

I'équation
2
ru, =f x,y’zlyb_z‘,ﬁ>
QX dy X dy

qui se réduit & §,(y) pour = o, et & zéro pour y = x. Le second membre de cette
¢quation est une fonction continue dans le rectangle R et sa valeur absolue reste
inférieure & M. La fonction u,(x, y) est donc elle-méme régulicre dans R et satisfait
aux conditions (A). Pour y = o, elle se réduit & une fonction 2,(x), dont la dérivée
est inférieure & N en valeur absolue. On forme ensuite une nouvelle fonction z,(x,y),
satisfaisant a I'équation

¥z du, bul>
. PEAR) ’

2 f— —_— —
—f<x, Yo Uy 55 Y

se réduisant a g, (x) pour y = o, et & zéro pour y = a, ct ainsi de suite. 11 est clair
que ce procédé peut étre continué indéfiniment ; on obtiendra donc une suite illimitée
de fonctions

Zio Uys 29, Ugy ooiy Zpy, Uny e

qui sont toutes réguliéres dans le rectangle R, et satisfont aux conditions (A) dans ce
domaine. Pour y = o, ces fonctions se réduisent & des fonctions de x :

61 ()5 92(X), -, galx), ...

dont la premiére peut étre choisie arbitrairement, sous les restrictions énoncées.
Fac. de 7., 3¢ S., 1, 18
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Pour & = o, ces fonctions se réduisent de méme & des fonctions de y :

Y1 (). b2 () oovs Ia(y)s -

La liaison cnire toutes ces fonctions peut étre résumée dans le schéma suivant :
(@), S, e )y (), .
Zy T u‘\ T 29 Zn T un\ T Zn4t
o (@),  ea(®), ooy ga(X),  enpa(X),

D’une fagon générale, z,(x, y) est l'intégrale de 'équation

2

Zn Mp—t U1
E ‘ - Xy Yy Un—, —/—»
(En) dxdy A d dy )’

qui satisfait aux conditions
Za(x, ax)=o0, Zn (2, 0) = Un—1 (2, 0) =9n (),

tandis que u,(x, y) est Uintégrale de I’équation

2

» n D \ n
(Ea) - =f<w, Y, Zns w2 iz—>

xdy de’ dy

[ 2]

délerminée par les conditions initiales

un(@, x)=0, (0, Y)=2a(0, ¥) =1u(y).

Posons, pour abréger,

x ¥ WMp—1 Mn—
Pn(w,y)zf dac_/ f<ac,y,un_l,%"7—’, = '>dy,
x y © dZn AZn
Q"(x’ y):/ d'r/ f(xy Y Zn, -‘()_./1?’ "D—y—>dy

on a les formules suivantes de récurrence permettant de définir de proche en proche
les fonctions u;, v; :

(19)

o | 20 1) = P2, )+ ga(@) — 5 ( Z) —r, (Z y) L on(@) =t (@ 0),
16) .
T @ )= Qn@ 1)+ 8 0) — @) — Qs 3, )= 2a(0, D).
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D’apres ce qui a été expliqué plus haut, on a, en tout point du rectangle R, les

inégalités

& Nyt oy
/ [zn (@, )| < Maxy + N '2—+E+ M;.
Iz, ;
% <My + Nz,
A2 _
Yy < Mx + N'y,
ay.
- ¢ NI 2 '\'I 2

7 [ e (x, y)| << Mxy + gy +- f + Ma?,
ﬁf <My + 2Ma + N < My + Na,
Mt M N
ay < Mx + Y.

[4] Pour démontrer que les fonctions 3,(x), 9,(x), ... ga(ax), ... tendent vers une

limite lorsque n augmente indéfiniment, on ne peut plus raisonner comme dans le
cas simple du n° 1, car les fonctions P, (x, y), Qa(x, y) dépendent de n. Posons

zZn (2, y) — Zn—1(x, y) =2u(, ¥), un(x, y) — tn—1(x, y) =En(x, ¥);
on aura

ta (@, 22)=0, La(, 0)=¢n(Z) — a1 (2), n(w, £)==0, Ea(0, Y)=¢n(y) — Yn—1(y)-

r
Des équations (E,), (E.) et des équations analogues, on tire

e (2, Mn—t Un—y Mn_2 Ma_s
‘M:f(ac, Y, tny, ——, =2 >—f<ac, ¥, Un—g, ——2, =2 Q>,

(17) dxdy Py dy Ny dy
17
Bgzn(w) y)__ o bzn DZn BZn_[ bz,;_l
(W_f(x’ Ys Zn, %a W>—f<w, Y, le——ivv"y dy >

Posons encore, pour abréger :

o8 R, )= Pa(, y) — Pas(a, ),
Qa(x, y)=Qn(x, y) — Qu—ia(x, y);

d’aprés les conditions initiales, nous aurons les formules analogues aux formules (16):

- on @) — gnct @ — 2 (1) + 2nct (L) — 90 (L, 5)
o gcn@,y)—%n(ac,y)ﬂn(x) 1@ — (L) + oas (T) = (L),
b 1) = Ba(@. ) + 4 0) = bt (1) — (@) + s (@) — S (@, ).
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Pour achever la démonstration, une nouvelle hypothése est indispensable ; nous
supposcrons que la fonction f(x, y, z, p, ¢) satisfait 4 la condition de Lipschitz,
c'est-d-dire qu’il existe trois nombres positifs A, B, C, tels que I'on ait, dans le
domaine D :

(20) Sy, np ) =Sy, 2 H)<Alz—2|+Blp—p'|+Clg—q|.

Supposons que I'on ait, dans le rectangle R, les inégalités

>
p—t

oy

v
1

dx

(1) |E—a(x, PI<<TI (X + )% <aTir(x+y),

l<2TX"(w+y),

. - . I
) étant un nombre positif compris entre ~ et 1, et T un nombre positif. On peut tou-
&

jours satisfaire & ces conditions, d’aprés les inégalités (17), pour une valeur donnée
de n, en choisissant pour T un nombre positif convenable. La relation (20) montre

que l'on aura aussi

Mp—1 dUn—t Mn—2 dp—_o
Sfle y, un, —, —— | —fl x, ¥, Un—2, )

o dy X dy

<TijA@+y?+ 2B+ 0 +y)},

et ar suite

@l <Ti [T [CA@ 4y 2B+ O+ )]y,

aspn N y ]

| < U A@ 4y 2B+ O+ )]
Bq’" Te z A 2 B C )
| < \f{ @47+ 2B+ C)(@+7)] dy,

ce (qu’on peut encore écrire

[ B (e, Y] <TWU,(, y) + U, (. y)],

Wa| o [, U,

‘ dx <h I:bx ,+ bx]’
P O - bU‘ U,
dy <Un[W+ Dy]’

U, et U, étant des polynomes homogénes d’'un degré marqué par leur indice, s’annu-
lant pour x = o et pour y = o, et dont les coefficients positifs ne dépendent que de
A, B, C. Les inégalités (21) entrainent les suivantes :

[ 90(2) — gat ()| <TWE,  [on(@) — gna(@)| <2 Th0a,
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et par suite on a, d’apreés la premiére des formules (19) :

a9 TR 9+ U 9]+ Dot Tl wmia UL y) 40, y) |,

o
3n
: < Tin DU
dx
A . U An s
% < T + ]+1 Y Ton(Hy + Ky,

H et K étant des coefficients positifs, dont il serait facile d’avoir I'expression. Cela

étant, choisissons un nombre positif k< r, assez petit pour que les inégalités
oLz h oLy<ha entrainent les suivantes :

U, U, U, AU,
U@+ G )<y, 4+, | D_y +yy o

%+U3(Z,y> (Z,y
o % x

A

= -I— Hy + Ky' < 2 o
On aura donc aussi dans ce nouveau domaine

’ 2 b ]
(1) @ <T@ +y), waty), |p|<see+y,

et de plus

[&n (0, Pl =]4n(¥) — a1 (NI <T

>

anty2 (o, 9T An+1
ay in (o, ¥) < y

dy o

La seconde des formules (19) donne ensuite

[a (e, Y)| <<TX[U, (2, y)+U,(, y)]+T)\"+‘y + TX"+’ +T)\"[U (x, )+U,(x, x)],

) 20, 0,7 | st

% <Town| 0+ 52 [+ 5w D 4 K 2,
¥, U, W, 2Tt

Bl —pan| ey 2,

dy < [ dy + dy + PR
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H, et K, étant deux autres coefficients positifs. Supposons le nombre % assez petit’
pour que Yon ait dans le rectangle de cOtés h et ha :

U, (x, x) + U, (z, x)

U,(x, y) 4+ U, (x, y) < 27 xy, — + - <,
W, AU, ax  H,a*+ K, o’
w e < I S
U, U,
Yy + " <2x;
on aura aussi dans ce nouveau rectangle R’
1% P2
[ DI<Trdi @ + 97 \_;l <2Tant(x 4 ), \—y" <aTwnH (x4 y),

et on peut continuer indéfiniment la méme suite de raisonnements. Les séries

Zl(x’ y>+cz(x’ y)+ca(w’ y)+‘ +Cn($, y)+""

i, u, L wX, n

T Tt gt e +o e

dz, L, hi<

g Ce S L=

dy dy Yy dy

L@ y)+6@y) 4+ i + (@ y)+...,

%, P

il SERPRRRRRPRRRS S o ,
DI I

Y + 5 o e + I +

sont donc uniformément convergentes dans R'. En d’autres termes, lorsque n aug-
mente indéfiniment, les fonctions z,(x, y) et u.(x, y) tendent uniformément vers deux
0Zp 0Zn dn U,

limites Z(x, y), U(a, y), tandis que les dérivées partielles PP —37, e —37 tendent
0 M U U

respectivement vers —, —, —, —
P e’ dy T dx’ dy

, et les équations (E,) et (E},) deviennent a la

limite

(22) ;

(23) bUy:f(w. y.Z,K 3Z>,
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La fonction Z(x, y) est nulle pour y = ax, et la fonction U(x, y) est nulle pour
y = . Il reste & démontrer que l'on a Z(x, y) = U (x, y). Remarquons pour cela que
ces deux fonctions deviennent identiques pour y =— o et pour x = o :

Z(x, 0)=U (2, 0) =1im n=co 91 () = P (),
Z(o, y) =U(0, y) =liMn=co bu (y) =T (y).

(24)

Les deux fonctions Z(x, y), U(x, y) sont complétement déterminées par les équa-
tions aux dérivées partielles (22) et (23), jointes aux conditions initiales (24). On
pourrait le démontrer sans peine par la- méthode habituelle des approximations
successives. Ces deux fonctions Z(x, y), U(x, y) se réduisent donc I'une et I'autre &
Iintégrale de 1'équation

o

>z iz iz
: :f<x,yy Z)L_y ‘—>

X dy X dx

qui est égale & ®(x) pour y == o et & W(y) pour x =o.
On pourrait aussi le démontrer directement en appliquant les raisonnements qui
précédent aux deux équations

P2 — U D 3 An
—EZ_‘L'ln_):f<wyy9U U’ U>_f<x9yyzn’ﬁvcz)9

dxdy T’ dy dr” dy
3*(U — za) < M L ( dMin—1 Dun_.1>
— N <. = T, Y, Z; N~ | X, Y, Un—a, ——, ’
oy I\ Py ) S &y s == =

et en observant que, d’aprés ce qui vient d’étre démontré, on a, pour y = o,

|Z(x, 0) — un(x, 0)| < T, A2x?, | U, 0) — za(, 0)| < T, An 2,
M. (x, 0) dun(x, 0) T in dU(x, 0) . za(a, 0) .,
Y < aT rx, Y S v <aT, i\,

T, étant un nombre positif indépendant de n, avec des inégalités analogues pour les
différences Z (o, y) — ua(0, y), U(o, y) — za(0, ¥).



