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RECHERCHE DES INTEGRALES ALGEBRIQUES

DANS LE MOUVEMENT D’'UN SOLIDE PESANT AUTOUR D’'UN POINT FIXE,

Par M. Epouaro HUSSON,

Ancien Eléve de I'Ecole Normale supérieure,
Professeur au Lycée de Lille.

INTRODUCTION.

1. Le systéme des six équations différentielles définissant le mouvement d’un
solide pesant autour d’un_point fixe admet trois intégrales premiéres algébriques
et un dernier multiplicatear égal a 'unité.

Le probleme de I'intégration formelle ou réduction aux quadratures est, par
suite, ramené a la recherche d’une quatriéme intégrale premicre, non fonction
des intégrales connues.

Cette quatriéme intégrale existe et est algébrique dans les deux cas particuliers,
devenus classiques, d’Euler et de Lagrange.

Dans un Mémoire remarquable (Acta mathematica, t. X11) M™ Kovalevsky a
mis en évidence un nouveau cas d’intégrabilité, et a obtenu la quatriéme intégrale
algébrique correspondante par la formation de deux équations intégrales.

Dés la publication du Mémoire de M™¢ Kovalevsky, le probléme de la recherche
de tous les cas dans lesquels il existe une quatri¢me intégrale algébrique a été
posé.

2. M. Poincaré (') a démontré 'impossibilité de I'existence d’une nouvelle in-
tégrale algébrique si ellipsoide d’inertie relatif au point de suspension n’est pas
de révolution. En méme temps, l'illustre géométre a signalé dans une Note I'exis-
tence de résultats importants obtenus par M™¢ Kovalevsky.

« Je crois savoir, écrivait M. Poincaré, que M™¢ Kovalesky a découvert de

(1) Méthodes nouvelles de la Mécanique céleste, t. 1.
Fac. de T., 2* S., VIII. 10
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nouveaux cas d’intégrabilité. Les notes qu'on a retrouvées aprés sa mort sont,
malheureusement, insuffisantes pour permettre de reconstituer ses démenstrations
et ses calculs. »

L’étude des problémes de Mécanique admettant des intégrales algébriques a été
mise au concours pour le prix Bordin de 1894, et dans 'Jntermédiaire des Ma-
thématiciens (mars 1894) MM. Appell et Poincaré ont donné une indication d’ou
il résulte que la méthode employée par M™® Kovalevsky était vraisemblablement
celle des équations intégrales.

Le Mémoire présenté par M. Painlevé et couronné par I’Académie des Sciences
contient les résultats les plus importants sur les propriétés générales des inté-
grales premiéres des équations de la Dynamique.

L’on peut préjuger que les recherches de I'éminent analyste premettront de
décider, non seulement de 'existence d’une intégrale algébrique ou de nature dé-

terminée, mais encore de la nature méme de toutes les solutions possibles.

3. Un Mémoire intéressant, présenté au concours par M. Roger Liouville et
inséré dans le Tome XX des Acta mathematica, contient des résultats dignes
d’attention, relativement au mouvement du solide pesant autour d’un point fixe.
M. R. Liouville s’est proposé d’établir les conditions nécessaires et suffisantes
pour qu’il existe une quatriéme intégrale algébrique; depuis 1896 les conditions
qu’il a indiquées ont été reproduites dans la plupart des Traités classiques et dans
les journaux scientifiques

Les paragraphes L ¢t III du Mémoire, consacrés a la recherche des conditions né-
cessaires, paraissent d’abord satisfaisants; mais une étude plus attentive permet
de conslater que les démonstrations sont au moins insuffisantes, et qu’il est
impossible, d’accepter les conclusions.

En fait, quoique les conditions trouvées par M. R. Liouville soient nécessaires,
on ne peut les déduire des calculs indiqués, et, de plus, ces conditions ne sont
pas suffisantes.

4. Yai da reprendre complétement, en admettant le résultat de M. Poincaré, la
recherche des conditions d’existence d’une nouvelle intégrale algébrique.

On peut résumer les méthodes employées avec succés pour résoudre des ques-
tions du méme genre, en disant qu’elles consistent a exprimer I'existence pour
une solution particuliére, et ensuite pour toutes les solutions infiniment voi-
sines.

On peut opérer directement comme dans la méthode de Bruns ('), dont I'esprit

(1) Probléme des trois corps (Acta mathematica, t. XI).
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consiste a exprimer que l'intégrale algébrique convient pour les grandes vitesses,
c¢’est-a-dire pour le mouvement rectiligne ou sensiblement rectiligne.

On peat introduire un paramétre dans les termes des équations différentielles,
qui semblent avoir un role essentiel, et exprimer que I'intégrale convient pour la
valeur nulle du paramétre et ensuite pour les valeurs infiniment petites. C’est sous
cet aspect qu’apparaissent les recherches célébres de M. Poincaré, sur le probléme
des trois corps, et de M. Painlevé (), sur la généralisation du théoréme de Bruns.

La méthode revient aussi a ordonner U'intégrale par rapport a certaines variables
et Uon obtient ainsi une vérification et une interprétation précieuse des équations

aux dérivées partielles qui se présentent.

5. Le Chapitre I a é1é dirigé, en se bornant aux cas de la Mécanique, vers la
recherche explicite d’une intégrale possible.

Jétablis d’abord, en perfectionnant une méthode employée par M. R. Liou-
ville, que toute intégrale premiére algébrique est une combinaison algébrique
d’intégrales premiéres rationnelles entiéres.

Pour la recherche des intégrales rationnelles enti¢res j’ai utilisé les variables
complexes, qui sont indiquées dans I'étade du cas de M™¢ Kovalevsky.

Il semble que la symétrie du systéme différentiel exige que I’on ordonne l'inté-
grale par rapport aux composantes p, ¢, r de la rotation instantanée, mais, si 'on
opére ainsi, on constate que les systémes d’équations aux dérivées partielles qui
se présentent admettent toujours des polynomes comme solutions. On construit
une série algébrique, dont les premiers termes peuvent étre des polynomes, sa-
uisfaisant formellement au systéme différentiel. Pour obtenir des conditions d’exis-
tence d’une intégrale algébrique, il est nécessaire de calculer le n'" terme et
d’acréter le développement a ce n®™¢ terme. Il n’y a exception, peut-étre, que
dans quelques cas particuliers.

C’est sans doute cette singularité qui ajoute a la difficulté du probléme et qui
contribue & infirmer les raisonnements de M. Liouville.

En ordonnant I'intégrale par rapport a yy = p—+ qi, 5y =y + ¢y, ¥’ j’ai repris
les solutions particuliéres indiquées par M. R. Liouville (§ II).

Jai essayé en général d’éviter la recherche, parfois délicate, de relations algé-
briques entre transcendantes, et d’utiliser le plus possible la forme rationnelle
entiére de l'intégrale.

En appliquant sous ses divers aspects la méthode esquissée pour le calcul des
termes successifs de I'intégrale ordonnée j’ai obtenu, en supposant les conditions

initiales arbitraires, le résultat suivant :

(1) Bulletin astronomique, 1898.
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Toute intégrale algébrique est une combinaison algébrique des intégrales
classiques, sauf dans les cas d’Euler, de Lagrange et de M™e Kovalevsky.

6. Dansle Chapitre Il, j’ai repris ’étude du probléme en employant une seconde
méthode ayant méme point de départ, mais dont les développements sont assez
différents.

Jai cherché a démontrer I'impossibilité de I'existence d’une intégrale algé-
brique nouvelle, cette intégrale étant présentée sous une forme quelconque, les
lettres A, B, C désignant les moments d’inertie de la Mécanique ou des nombres
positifs arbitraires.

En remplagant yy, z,,y" par hyy, %3z, Ay" on déduit du systéme différentiel
définissant le mouvement un systéme différentiel dépendant d’'un paramétre A ; ce
nouveau systéme doit admetire, quel que soit A, une intégrale premiére algébrique
non [onction des intégrales classiques.

On obtient des conditions nécessaires d’existence en écrivant la propriété pré-
cédente pour A = o, et ensuile pour A infiniment petit.

Pour cela, on développe I'intégrale générale du systéme différentiel suivant les

puissances de ), el en substituant dans le développement de 'intégrale premiére
1
suivant les puissances de A ou de A’ on écril que celte intégrale premiére prend

une valeur constante.

Dans ce Chapitre 11, il est nécessaire d’exprimer constamment que des trans-
cendantes dépendant de paramétres arbitraires sont liées par une relation algé-
brique. J’ai pu arriver aux résullats sans considérer ces transcendantes dans toule
leur généralité, soit a 'aide de lemmes abéliens préliminaires, soit en étudiant la
nature de I'une de ces transcendantes.

On obticnt finalement les conclusions du Chapiwre 11, quelle que soit la gran-

~

deur du rapport %

Les méthodes d’intégration utilisées au Chapitre 11 peuvent s’appliquer pour
achever les calculs dans le Chapitve L. Il suffit de ne laisser subsister qu'une va-
riable, de facon a calculer les termes successifs de l'intégrale entiére par qua-
dratures.

J’ai tenu cependant a conserver les deux méthodes, car il m’a semblé qu’il
pouvait étre intéressant de juger de leurs avantages respectifs. La premiere, plus
élémentlaire, exige plus de calculs, mais elle donne des indications sur P'existence
des intégrales premiéres particularisées, intégrales dont le résultat final fait res-
sortir Pimportance. La seconde, plus délicate, mais plus concise, se rapproche,
avec les modifications nécessaires, de la méthode appliquée systématiquement
par M. Painlevé a la recherche des équations du second ordre, dont l'intégrale

générale est uniforme.
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En terminant ce travail, je suis heureux d’exprimer toute ma reconnaissance
a MM. Appell et Painlevé pour leurs bienveillants conseils et affectueux intérét

qu’ils ont bien voulu prendre & mes recherches.

CHAPITRE 1.

§ I. — Toute intégrale algébrique est une combinaison d’intégrales
rationnelles entiéres.

7. Les équations différentielles du mouvement d’un solide pesant autour d’un
q p

point fixe O peuvent toujours étre ramenées & la forme

q, . a v
AEIZ—: Aygr —y'sing, c_i% =ry—aqy’,
!
) ’ A(—(Zl:—Alrp—l—ysine—y”cosa, ‘;—}; =py'—ry,
L dr , dy"
C o 7 cose }3/7 =qy —pvy,
A, =A—C.

Les axes Oz, Oy, Oz, liés au solide, sont (rois axes de symétrie de Pellip-
soide d’inertie (supposé de révolution) relatif au point fixe, O z 'axe de révo-
lution, le plan £Oz passant par le centre de gravité G, ¢ I'angle de OG avec le
plan zOy.

En adoptant la forme précédente des équations différentielles on suppose

MmE — 1, ce qui revient a adopter des unités convenables ou a imaginer quey, ¥/, y"
0G ) P : g quey, v Y

sont les produits des cosinus directeurs des axes liés au solide avec la direction

me

oG

On peut, pour les mémes raisons, donner a A et C des valeurs numériques n’alté-

de la pesanteur par la constante

C
rant pas le rapport 1

Les équations (1) ne sont pas altérées si I'on remplace p, ¢, 2, v, Y, Y, ¢ par

Ap, hg, Ay Ry, K2y, K2y, A he.
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Nous dirons qu’elles sont homogénes dans les dimensions, p, ¢, r étant de
dimension 1; v, v/, 7" de dimension a.

Tutorime 1. — Toute intégrale premiére algébrique en p, q, r, v, Y, Y", et
indépendante du temps, est une combinaison algébrique d’intégrales pre-
micres rationnelles et homogénes dans les dimensions.

Ce théoréme est bien connu. Je ne considérerai donc, dans ce qui suit, que des

intégrales premiéres rationnelles en p, ¢, 7, v, 7', ¥', que jappellerai simplement

intégrales rationnelles. Si une telle intégrale est mise sous la forme I = g’ e

supposerai essentiellement que R et S sont deux polynomes en p, ¢, r, v, ¥, 7',

ces polynomes étant premiers entre euzx, cest-a-dire le quotient < étant irré-

S
ductible. Yappellerai intégrale entiére toute intégrale I qui est un polynome en
pp 4 8 q poly

Pyds s Y,7 '}'”-

Tutorime II. — Toute intégrale rationnelle est une combinaison algé-
brique d’intégrales rationnelles a coefficients réels.

Soit en effet 'intégrale
[— R+ iR,
T8, 4+ @S,

Les coefficients du systéme différentiel étant réels, I'expression

I'= [ﬁ_—_‘_R_Z
S, — 8,
est encore intégrale; il en est de méme par suite des combinaisons réelles I + I
et II'. De plus, ces deux combinaisons ne sont pas fonctions des intégrales con-
nues, sinon il en serait de méme de I.

Nous pourrons donc nous limiter aux intégrales rationnelles a coefficients
réels ().

Tutorime IIl. — Toute intégrale rationnelle, irréductible et homogéne
dans les dimensions, est le quotient de deux équations intégrales entiéres, les
Jacteurs linéaires attachés a ces deux équations intégrales étant identiques.

v e dl e -

L’égalité =0 s’écrit
dR dS

S Rz =

(1) Ces propriétés sont plus générales, ainsi que I'a montré M. Painlevé (Bulletin astro-
nomique, 1898, p. 3-4).
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. d C .
Les polynomes R et S étant premiers entre eux, le polynome d_[t{ est divisible

par R, et I’'on a
dR das
= = — =1AS.
dit AR, dt
Nous désignerons les polynomes R et 3, satisfaisant aux identités précédentes,

sous le nom d’équations intégrales.
;o g dR ., .
Le degré d’homogénéité du polynome 7 surpasse d’une unité celui du poly-
nome R. On a donc
A=Mp+hyqg+Ar,

A1, Ay, A élant des constantes numériques.
Nous donnerons au polynome quotient A le nom généralement adopté de fac-
teur linéaire attaché a l'équation intégrale.

Tutorkme IV. — Toute équation intégrale entiére, a coefficients réels, est
nécessairement une intégrale. '

Soit R une équation intégrale entiére, solution de I'équation

dR
(2) —d—t:}R:()\,p—i—-)qq—i—)\;ﬂ')R.

Ordonnons le polynome R suivant les puissances décroissantes de p, g, 7. Soit
R=R,+ Ry 1+...+ Ry

Le polynome R, est homogéne dans les dimensions et dépend en général de
Prg YY" Egalons dans I'identité (2) les termes de plas haut degré en p,
¢, r, nous obtenons I’équation

. A, . oR, JoR,' IR, ./ "
(3) K'(Q EF—P'J—(]')—*’-(V("/—QY)

oR,, ” ! oR,, ,
-+ ’5);/' (py'—ry)+ 0}/” (97 —pPY ) =AR,.

Donce, logR, = © satisfait a I’équation

Al ()(P 0(9 ()CP ! [ dq’ [ de y —
(4) Kr(@E—p@>+ﬁvv—qWH7WUWL¢w+5WWY—m0Mk

Jobtiens une solution particuliére de I’équation (4) en cherchant une fonc-
tion @,, ne dépendant que de p, ¢, r et satisfaisant a ’équation
A [ de 0o,

(9) A7, —°P

op M):LP+Mq+M"
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Si 'on remarque que toute fonction de r et de (p*+¢?) annule le premier membre
de ’équation (5), on est amené a substituer a la variable ¢ la variable w =p2+-¢2.

On a alors
(PO(Pv q,")E%(P,‘”, r),
Ay 0d, P
LI =) —— 4 M ——— 4+ Ay;
A dp 1 ’—w_ 3 \/(,_)—- 2
d’o

A —_— . \ j———
Kl rdo=+hp—MhVo —p’—|—)\3u']0g(p+ z\/w——p2)+f(c.), ry.
On obtient donc la solution particuliére

A A, .
<P0~H(MP—NQ)—F‘XI—[O%(P—'—”I)-

Et Pon en conclut

R,= CPieCP",

¢4 étant un polynome en v, y', " dont les coefficients dépendent de p, ¢, r d’une
fagon rationnelle ou non; ce polynome o, satisfaisant a équation (3) débarrassée
de son second membre. Celle condition exprime que la fonction ¢, est une inté-
grale premiére du systéme différentiel

d, d dr
‘ d[t)-—A,ql Ad—?_—_—A,rp, 7=
(6) ) 7 dv' dy"
O = e =

Ce systeme différentiel correspond au mouvement d’un solide pesant, fixé par
son centre de gravité, ellipsoide d’inertie étant de révolution. On en connait les

intégrales premiéres

r —=const., I,= p*+ ¢*= const.= a?,
L=Apy+Aqy +Cry'=const.= A, I;=y*+ y"*+ y"*= const. = b*

Lintégration du systéme (6) est classique. Posons, en introduisant les angles

d’Euler,
p=asina, q —=acosa,

= bsinfsino, '— bsinf coso, "— b cosH.
v ¢ 7 ¢ 7
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Le systéme (6) devient

a—aoz%rt, Z—f:asin(cx—go),

Aasinfcos(a — @) + Crcosf = I—lz

L’angle § est, par suite, donné par I'équation

4y = Adt,
VA2a2(b* —y™) — (h—Cry’)?
et, en intégrant, ¥” est donné par I'équation
2 2 2.2\ (Vo 2 /A2 L (2,2
(7) (Aa’+ Cr)y"— Crh :cos<k+A—————~—\/Aa L arccos‘l>,
AaVKa+ Cr)b — AT a

k étant une constante arbitraire.

Si le systéme (6) admettait une intégrale premiére telle que ¢, en associant
cette intégrale a I, et Iy, on en déduirait y,¥, Y’ comme fonctions algébriquesde 4,
b et d’une constante arbitraire, ces fonctions dépendant de p, ¢, r d’une fagon
quelconque. Or, ceci est impossible d’aprés I'équation (7) qui montre que la
constante arbitraire entre nécessairement d’une fagon transcendante. Donc ¢, ne
peut contenir v, ¥/, ¥’ que sous la forme de fonctions de I, et 1,. Comme les inté-
grales premiéres du systéme (6) indépendantes de v, 7/, v’ ou fonctions de I, et 15
se réduisent évidemment a des fonctions de r et de (p2—+ ¢*), on a

1= qu(IQ’ 137P2+ 72, r),
et, par conséquent,

Rn: e '*Pl (12, 13,}72—‘— 729 ’.)9

¢, étant un polynome en I, et I3,

ANy A

S22 (Map—
e%: (P + (]l.)l AL eAi"( 2P 4']).

Un terme quelconque de R, supposé ordonné en I, et I doit étre algébrique,
le coefficient d’un tel terme est de la forme

e f(p+ g2 1),

donc les facteurs transcendants de e® doivent porter sur des fonctions de p? + ¢*
et de r, ce qui exige que les deux facteurs dont e® est le produit soienl séparé-
ment algébriques.

Fac. de T., 2* S., VIIL II
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On a donc
A,

M=o A=o0 ) —a
’ 2 ’ ’
A

« étant un nombre réel rationnel, et, par suite,

A
A—=—ialtr,
A
Or, Péquation intéerale R est supposée a coefficient réels, donc A est réel et
) Heq 8 PP ) s

par conséquent, on a
dR o
dt —

a=o, A=o,

En rapprochant ce résultat de ceux déja obtenus, on peut énoncer le théoréme
final suivant :

Tutorime V. — Toute intégrale algébrique est une combinaison algébrique
d’intégrales entiéres homogénes dans les dimensions (*).

La démonstration du théoréme IV suppose que I’équation intégrale R dépend
de p, ¢, r. Si R ne dépend que de v, ¥/, ¥, on a, en égalant les coefficients de p,
¢, r dans Péquation différentielle (3),

JOR OR
Toy T oy =i
IR ,0R
Yoy Ty T
JR O dR
}'()—?—/3‘}7—7\3“-

D’ou par combinaison

o=R(Ay+dy' +Asy").
On en déduit
h=o, ly=o, )‘3:0’
et, par suilte,

R=/(7+y"+7")

(1) La premiére partie de la démonstration du théoréme IV est empruntée au Mémoire
de M. Liouville. Dans ce Mémoire, 'auteur suppose que R, dépend seulement de p, g, r, ce
qui est une restriction inadmissible. De plus, on peut opposer des objections au raisonne-
ment employé.

Les résultats obtenus relativement aux équations intégrales ne sont établis que lorsque
lellipsoide d’inertie est de révolution. S’il n’en est pas ainsi, il peut exister des équations
intégrales réelles, non intégrales. M. Hess (Mathematische Annalen, t. XXXVII) en a
signalé un exemple. Le cas de M. Hess a fait I'objet d’études nombreuses. On peut consulter
notamment les Mémoires de MM. Nekrassoff, Joukovsky, Tchapliguin, Appelroth (Annales
de Moscou, 1892, 1893, 1394 et Mathematische Annalen, t. XLVII).



RECHERCHE DES INTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. 83

Remarque sur les équations intégrales. — Si R est une équation intégrale &
coefficients imaginaires, soit R =R, + {R,, le polynome R'= R, — iR, est aussi
une équation intégrale. D’aprés les calculs relatifs au théoréeme IV les facteurs
linéaires correspondant 3 R et R’ sont égaux et de signes contraires, donc le pro-
duit RR’ est une intégrale.

On voit que la notion d’équation intégrale ne permet pas, du moins dans le cas
du corps solide pesant fixé par un point, d’obtenir les intégrales premiéres par-
ticularisées que 'on en pouvait espérer. Cependant, pour trouver des intégrales
premiéres particularisées, on peut généraliser la notion d’équation intégrale en

d e e . .
cherchant les polynomes R tels que El:—‘ soit divisible par une fonction des inté-

grales classiques, assujettie a étre nulle a I'origine du mouvement. Un exemple a
é1é signalé il y a quelques années par un géométre russe, M. Goriatchov.

§ II. — Détermination d’une solution particuliére et des solutions infiniment
voisines.

8. Prenons comme nouvelles variables
yi=p -+ qi, s =y +iy,
Y= p — qi, Sy=y—1iy'.

¥ N e . ; .
Le systéme différentiel (1) devient, en changeant ¢ en — it,

’ A% =-—A,ry,+ s sine — y" cose, % =y"y,—rz,
d . ds

(8) A—%z- = A, ry,+ y" cose — 3z,sing, (d—: =1z —y"y,
‘dl' dv"

M‘E = cos&(3;— 3y), 2-}[ = Y95 — V152

Soit y3, ry, 33 la solution du systéme (8) correspondant a

y,:zl:}/”zo.

Ce systéme se réduit a

i d 0
A % = A,r,vy— %5sing,
dr
0) 2C=2=3%cose,
dt 2
dz?
-2 :roz‘z’.

\ de
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Les solutions infiniment voisines des précédentes sont obtenues en faisant le
changement de variables

Yi=n +ny, 2y =& + &),
(9) aye:y% iy, S =)+ E+ £,
| r=r,+ N3+, ')’”:E:{‘FE;,

N1y Tay T3y B1y &2, By élant du premier ordre infinitésimal;
Ny Ny, My, &1y £, £y, d’ordre infinitésimal supérieur.

Les quantités du premier ordre infinitésimal définissent la solution infiniment
voisine du premier ordre par le systéme

dn,

5 = A, rony+ & sine —&; cose,
(1) 1,
Z%Z; =y58i— 330,
A% = A (rony+ y3ns) + & cose — &, sine,
() %:’052‘*‘53“3—3’253,
2(}(2%3 = (£, —¢&;) cose.

Le systeme (1) admet les intégrales premiéres classiques

hy=A(p*+ ¢?) + Cr?— 2(y cose + y"sine) = const.,
hy=2Apy+2Aqy'+ 2Cry”"=const.,

hs=y*+ 7"+ y"*= const.,
qui deviennent pour le sysiéme (3)

hi=Ay,ys+ Cr*— (5,+ 5,) cose — 23" sine = consl.,
ho=A(y25,+ 33y,) + 2Cry”"= const.,

hs= 3,2, y"*= const.

En faisant le changement de variables défini par les équations (9) on en déduit



- - ~
RECHERCHE DES INTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. 85

que les systemes (O) et (1) admettent les intégrales
H,= Cr? — 3} cose = Ca*=const.,
H2: A(ygEl -+ Zgnl) -+ 20"02’3: const.,
H; =53¢, = const.,
ce que I'on vérifie d’une fagon immédiate.
Poiir éviter de nombreuses exceptions nous écarterons le cas de Lagrange.
L’intégrale premiére H, donne z} en fonction algébrique de r,.

Dans la suite nous exprimerons fréquemment y3 en fonction de Zy ou ry.

Pour déterminer cetle expression on a I’équation différentielle

Celte équation s’écrit, en intégrant,
A : ¢ 1
-3 sine Tt -1
¥3(29) A = const.— l/‘(zg)A (23 cose + H,) *ds),
AC?

ou bien
A,

c
_A i A ¢_
y3(39) * =const.— zs;\ne (Ef?s?) f(rg— a*)A ldro.

Nous calculerons aussi, en général, &, 1, & 'aide des inlégrales premiéres H,

et H;, ce qui nous permettra d’écrire I'équation différentielle donnant E; sous la

forme
1

d C vy
53__ ]-0£3+H3‘.z_23-—2—XH2,

dt — A

H,, H,, H; étant, dans ces équations, des constantes arbitraires.

. G . .
§ III. — Il est nécessaire que le rapport x soit rationnel.
9. Soit I une intégrale entiére homogéne dans les dimensions. En ordonnant le
polynome I suivant les puissances croissantes de ¥, z,, 7', on a
l :fo(yz, 33y I‘) +f1(}’1, Sy }’”9,"2’ Zay ’.) +.. '+f/t(y1’ zla }'”, ,Y2’ Zay ") = const.

L’intégrale I convient pour toutes les solutions du systéme (8). On a donc, en

particulier
So(y3, 53, 1) = const.
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Le premier terme de l'intégrale I ordonnée est une intégrale premiére algébrique
du systéme (O).

Si fy dépend de 3, on en conclut que y3 s’exprime algébriquement a I’aide
de z3 ou r,.

Or, en revenant a 'expression de y9 en fonction de z3 ou ry, on voit que y3, esl
une fonction linéaire d’une constante arbitraire; il en résulte que les deux ex-
pressions '

(_;_.1 -C-—l
GO* ) sine f (ri—aph ' dr,

sont des fonctions algébriques de ry ou z3.

; - . . C,.
En considérant la premiére de ces deux expressions on en conclut que - doit

A

étre un nombre rationnel.

Donc, si 3 est irrationnel, £, est indépendant de y et 'on a, par suite,

Jo=F,(H,).

Pour exprimer en fOI]CliOﬂ de H ll ﬁOUS Sllfﬁt d’éliminer 59 dOﬂC F, est un
0 1 29 (1]
p0|ynome en H,.

En retranchant a l'intégrale I I'intégrale connue Fy(%,) nous ferons disparaitre

le premicr terme de P'intégrale I; donc si < est irrationnel on peut toujours amener

A

I'intégrale I ordonnée a la forme
l :fl()’lﬁ S1y )/”,.}’z, By I‘) +f’2()’1’ zi) }’”, }’29 :'2’ ") +.. R

Jfi dépendant de yy, 5,, y" et étant par rapport a ces lettres d’un degré quelconque
d’homogénéité.

10. Si, dans Dintégrale I, on effectue le changement de variables défini par
les équations (g), les termes d’ordre infinitésimal minimum se réduisent a

f| (“’ln En Ea,y.‘j, Zg, /'0)° Donc
Ji(ny, &y sy 3,35, 1) = const.
est intégrale premiére des systemes (O), (I).
On obtient aussi ce résultat en égalant & zéro I'ensemble des termes de degré
minimum, en 3y, ¥', du polynome tﬂ
’ Yis By Y o7

A Vaide des intégrales connues H, et H; nous calculons £/, 1. et, en transpor-

tant dans f, on a
flE F, (H,, H;, &3y }’g, 59, o),
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F, étant un polynome en Hy, Hy, &, 32, ry, les coefficients étant rationnels en z3.

F, est homogéne en H,, H;, £;. Nous pouvons toujours négliger les puissances
de Hj qui se trouvent en facteur dans F, puisque H; est intégrale; donc, en faisant
H; = o et en supprimant les indices zéro, le systéme '

d . dr
A—%:A,ryg——z?sme, ZC(-E-IZZCOSE,

(n d de, €
Sy ~ ey __ M Lt
a e a — A e ol

doit admettre une intégrale de la forme

I, = [E;n (P(}"n Ggy I') + E’snﬂ H, @4 (Yas 8oy 7))+ ..+ H'g" P (Yay 525 r)] = const.,

2]

m-:l =

o4 étant un polynome en ya, 35, r.

Puisque H, est intégrale premiére on peut toujours négliger les puissances
de H, quise trouvent en facteur dans I;, c’est-a-dire supposer ¢ non identique-
ment nul.

Le systéme (Il bis) déduit du systéme (II) en faisant H, = o admet, par suite,
I'intégrale premiére algébrique

1
(a) J,:?g;"go(y?, 3y, 1') = const.
2

Calculons les solutions du systeme (11 bis) en fonction de z; ou 7. On a
c

ES - kz§9

et en se reportant & P’expression de y, on voit que 'égalité (a) exprime, si ¢ est
différent de zéro, que I'intégrale

£y
f(r’— ar)f " dr
1

¢
est liée algébriquement aux expressions r el (72— a?)* .

Au lieu de démontrer directement, lorsque 5 ot irrationnel, l'impossibilité

d’une telle liaison, nous chercherons a utiliser la forme algébrique simple de J, en
substituant, a 'équation (a), I'équation différentielle équivalente

dl d C
(b) :1—;-:0 ou d—f:(p——mx>rgo.
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Soit
0 =)%Y (20,7) +y5 1 (50, 7) o A+ Ya (22, 7).

L’égalité des coefficients de y% dans équation (b) donne

d: C A
d_kll :(p—mx—~af)rq)
ou bien, en exprimant ¢ en z, a I'aide de I'intégrale H,,

W (p—m b gAY
dz2—P A aA>z2’

et, en intégrant,
Ay

C
b=y'd "R,

{/ étant une fonction de H,.

. ‘ C A .
¢ étant un polynome en r et z,, 'exposant (p——m 1 —af) doit étre un
\

nombre entier positif. Ce qui exige, si — est irrationnel
p I 7 A I,

L’intégrale entiére étant supposée homogéne dans les dimensions, on a donc
Y =A(Cr*— z,cose)* 367",

)\ étant une constante numérique.

L’égalité des coefficients de y4~" dans I'équation (b) donne, pour déterminer ¢y,

d C Am sine
(10) 742—‘ = (p —m+1— K) rg, + _A_(C,.2___z2 cose)? zEmH,

L'intégrale générale de cette équation (10) est visiblement transcendante; pour
chercher s’il existe un polynome solution particuliére nous I’écrirons

(11) Al rz, + Oy cose (p

C
o%, 9y o n=(p—m+i—z rg, + ¥ (Cr*— 3z, coseg)” 8=+,

A

,__ Amsine
V=—"%—

Sous cette forme, on voit que ¢, est nécessairement divisible par z57"*'. On a,
en posant 4, =z ",

(12) %z—l"zz‘k%%%Ezz:—%"&P’,+7\’(Cr2+z,cose)".
2
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Le polynome ¢}, homogéne dans les dimensions, est nécessairement de degré

]

2n — 1 d’homogénéilé. Soit
Y, =B,2l ' r + Byal trt 4. Bt
et '
C —
AP
L’équation (12) donne pour déterminer By, B,, ..., B, les égalités

PBn — )‘,C"’

(|+p)B,,_,+czi(s‘—s(2n—1)B,L =-- ¥ cose n G,
cose , Y o n(n—u) o,
(2+0)Buy + SC (2n—3) B,y = ¥ cos?’e -5 v
. cose - n—17/ n -1 ?M_Q )
(n—1+p)B+ e 3By = (—1)"""} cos" ¢ 2. (n—1) G,
cos & Nt anen R —1) 2
WIBI_( 1)* A cos E——I#

Les n premiéres égalités donnent successivement B,, B,_,, ..., B,, B, par la

formule générale

(2n—1)(2n—3)...(2n—2p +1) 1

, Cn——p
B,_,=(—1)PX cosre v [

1.2, .p 0
_|_l(211—3)(211——5)...(271—2p—|—1) 1
1 1.2...(p—1) p+1

2_3 (2n—5)...(2n—a2p+1) 1
1.2 1.2...(p—2) p+2
+1.3.5...(2p—1) [ ]
1.2...p o+p

La (n + 1)ime égalité supposée divisée par (o + n) donne la condition de pos-
sibilité sous la forme

, [1.3...(211—1) I 1 1.3...(2n—3) 1
o=MNcos?e | — " 7 _ 4 _
I.2...n p I 1.2...(n—1) p—+1
+ 1.3 1.3...(2an—5) 1 1.3.5 1.3...(2n—7) 1 e

1.2 1.2...(n—2) p+2+1.2.3 1.2...(n—3) o+ 3
- 1.3.5...(2n—1) 1
1.2...n p+n

Fac.deT., 2 S., VIII. I2
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En appliquant la formule d’interpolation de Newlon cette condition s'écrit :
(13) Ncose(2p+1)(2p+3)(2p+5)...(2p+2n—1) =0,

En écartant le cas de Lagrange on peut supposer cose différent de zéro et, comme

Al

P=1

est irrationnel et positif, on a nécessairement
N —=o, c’est-a-dire Am sine —o.

A= o équivaut a une impossibilité.

Si m=o, I, se réduit & une fonction de yy, 5, r; or si Ii esl irrationnel, il
résulte du n°9 que I, est un polynome en H, et H; qui ne peut dépendre que
de H,. Donc I, est un polynome en H;, Hy, Hj; par suite, en retranchant a I'in-
tégrale I une fonction convenable des intégrales connues /oy, hy, /i3 on fera dis-
paraitre le premier terme de f; et, en répétant la méme opération, Pexpression f,

elle-méme. On fera de méme disparaitre fi, f3, . .., ce qui équivaut a dire que la
seule intégrale possible est une fonction des intégrales classiques. Donc si 1 est

irrationnel il est nécessaire que 'on ait
sine = o.

Le premier terme de I, se réduit alors &

,-/))( — )n 5 Plz)—m <§i%\) )‘(Cr2_52)”'

3

Nous pouvons remarquer que nous rencontrons un systeme différentiel déduit
Ea}’e

S

sans qu’il existe une intégrale entiére équivalente. Ce fait indique que les résul-

rationnelle

du systéme eénéral admettant une nouvelle intégrale algébrique
Y 8 8

tats du paragraphe I doivent étre établis avec la plus grande rigueur.

11. Le premier terme de I, étant déterminé, exprimons que I, est intégrale du
systéme (1I) en introduisant I’hypothése sine = o.
Nous oblenons I’équation aux dérivées partielles

[%"Ea—z—l— J['n”" Yo 4+ (m—n)E Hyoy+ .o+ HY oy ]

d
_‘_Em do_l__£m 1[19 (P1 .‘_‘_} 12'1,.737"1

—pPr [Em ¢+ E;n_l H2<Pl o H'zHCPm] — O.
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Le coefficient de " est nul d’aprés la détermination de o.
Le coefflicient de ;"' égalé a zéro donne, pour déterminer ¢, I'équation
Am
ro, — —— C,.z — 3, )y gPm,
1= 5K ( )"y A

S dq)-l l:(”z - l)j;_‘_ _p]

1 !
— ,‘ —_—
A 70y,
L’opération indiquée par le premier membre n’altére pas le degré en y,, donc

les termes de o, de degré différent de m en y, satisfont a I’équation sans second
T o 2

membre. Soient
}"gn'\l)l (r 52)

les termes de o, de degré m en y,. Le polynome ¢, satisfait & I’équation

%l (Cr2— zy)n s,

dq}l :(p—-ln—|— 9\ 7'li1+
. A

C’est une ¢quation différentielle du type de I’équation (11) dans laquelle on rem-
placerait p par p — 1, A par — A.
Donc le nombre irrationnel :AE doit étre racine de I'équation (13) en p, a
moins que 'on ait
Am =o.
La premiére condition exige que le nombre % soit entier el est inadmissible.

La seconde équivaut également a une impossibilité ainsi que nous I'avons dé-

montré précédemment.
Nous arrivons donc a la conclusion suivante :

Pour qu'il existe une intégrale algébrique non fonction des intégrales
< soit rationnel.

classiques, il faut que le rapport i

§ IV. — Conditions d’existence du premier terme de l’intégrale ordonnée.

C ..
12. Nous supposons  rationnel.

A
L’intégrale enti¢re & obtenir étant ordonnée en y, z,, ¥/ se présente sous la

forme
I:fo()’rx B9y T) = J1(Yis 315 V' Yoy 5oy T) + .. -+f/c(}’n 31y 7”, Sa, I)e

Si le terme f0(3,2v 59, ,.) existe, l’expression
Jo(y3, 59, ro) = const.

est intégrale premiére algébrique du systeme (O).
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Si f, est indépendant de y3, nous avons vu (n° 9) que I'on peut toujours faire

disparaitre le premier terme f.

o b A . , . " .
Si f, dépend de y}, comme z) s’exprime algébriquement en r,, la fonction y?

s’exprime algébriquement a 'aide de 7 ou z9.

Or, en supprimant les indices zéro, on a

Ay : c 1
-2 sine <=1 -
Y23, A = const. — ,/:‘; (35cose + Hy) ?%ds,

AC?

C
Ay . hs c
- asine / C \A <=1
Y25, A= const. — A <co_ss> /(,.2___ a)d dr.

Pour que y, soit une fonction algébrique de z, ou r, il faut et il suffit :

ou

ou bien que I'on ait e =o,
ou bien que I'intégrale figurant au second membre des équations précédentes soit
algébrique.

Cette intégrale, exprimée en z,, est une intégrale binome portant sur une dif-
férentielle algébrique. Si cette intégrale binome est algébrique, elle s’exprime, en
particulier, a 'aide des fonctions élémentaires, ce qui exige, d’aprés un résultat

“connu ('), que I’'un des deux nombres

¢
A

-1,

[ RS

C
A

. . . 2CG .
soit entier. Donc, en nous bornant aux cas de la Mécanique, le nombre N doit
prendre 'une des valeurs 1, 2, 3, 4.

Pour les valeurs 1, 3, 'intégrale considérée, exprimée. 4 I'aide de r, devient, a
b b e} ) 7

_‘fz”“’" b) \/\/"2— al dro .

\/rﬁ—a2

une conslante pres,

Ces deux intégrales sont connues, elles sont transcendantes. .
Pour les valeurs 2, 4, l'intégrale considérée se réduit & un polynome entier
en r.

Nous arrivons aux conclusions suivantes :

S’il existe une intégrale enti¢re nouvelle :

ou bien elle sannule pour y, =3z, =v"=o,

(1) Goursar, Cours d’Analyse, t. L.
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ou bien y) est une fonction algébrique de r, ou s, et lon a soit ¢ = o, soit

C entier
i .

Dans le second cas, le systéme (O) admet une nouvelle intégrale premiére algé-
brique qui est

. C

=< -1
H,=y,s4 —const. pour ¢ = o,
tange 2 C
H,= y,3,+ r( s, cose — 5 Cr?) = const. our — = 2.
A cose 2 3 pourx

Le systéme (O) ne peut admeltre aucune intégrale premiére indépendante du
temps, distincte de H, et H,, sinon »Y, 5, r seraient des constantes. On a donc

nécessairement
Jo(yes 52 1) =Fo(Hy, Hy),

F, étant algébrique en H, et H,.

Pour former F, il suffit d’exprimer z, et y, en fonction de r a I'aide des inté-
grales H, et H, et de substituer dans f;. Le seul dénominateur possible est une
puissance de (7* — a?), il disparait nécessairement, et, par suite, Iy est un poly-

nome en H, et H,.

13. Pour obtenir des conditions nécessaires d’existence d’une intégrale algé-
brique nouvelle, il nous reste & examiner le cas ou I'intégrale s’annule pour

—_—— —— oyl —
yi=s=y"=o.

On a
I:fi(.yh ;17 71/) ,}’-z, “"2) r)+f2+"-+,/k-

Comme nous l'avons vu (u° 10), I'expression f, (7, &, &, ¥3, 2%, ry) garde
nécessairement une valeur constante. Donc le systéeme (O), (I) admet P'intégrale
premiére entiére

(14) fi(nl’ ‘gla ‘537 .)’3, Zg, ro):conSt'

Nous connaissons, pour le systéme (O), (I), les trois intégrales premiéres
entieres H,, H,, H;. Pour trouver I'intégrale premiére algébrique la plus générale,
et, par suite, pour trouver fi, exprimons 7,, & et z2 a I'aide des intégrales con-
nues en fonction de &, 9, r, et de H,, H,, H; considérées comme constantes
arbitraires. En substituant dans I’égalité (14), nous obtenons

(13) Ji(ny, &4y & 0, 3%, ro) =N, (il,, H,, H,, & ¥3, ro) = const.
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Les calculs n’introduisent aucune irrationalité, le seul dénominateur est une
puissance de (Crj — H,), donc F, est le quotient d’un polynome en H,, H,, Hj,
§3. ¥%, o par une puissance de (Cri; —H,).

Si F, est indépendante de £;. »!, r,, le dénominateur en particulier disparait,

et l'on a
Ji=F,(H,, H,, H,),

F, étant un polynome en H,, H,, H,.

On peut toujours supposer que ce cas ne se présente pas, car il suffit de retran-
cher & l'intégrale entiére 1 le polynome ¥, (%, ks, h3) fonction des intégrales
classiques pour faire disparaitre le premier lerme f.

La fonction F, ne peut étre indépendante de &, ct ¥4 sans étre indépendante
de ry, sinon r, serail une constante, ce qui est impossible, le cas de Lagrange
étant excepté.

Exprimons §; et y{ en fonction de 5! ou 7o. On a, en supprimant les indices
zéro,

C
ALY sine C \A
Y254 —=const. —2 E (r*— a?)A dr
(16) COSS

diy, _C _ar E_*_2H<,coss Vs _H
dr A rr—a G (r*—a®)? A rr—a

L’égalité (15) montre que les fonctions 53(/'),)/._,(/') d*finies par ces équations
et la variable r doivent étre liées par une relation algébrique dépendant de I'une
au moins des expressions &; el ..

Si y, est une fonction algébrique de r, cette relation (15) peut toujours exister
en étant indépendante de &;.

Je dis qu’il en est nécessairement ainsi.

14. Supposons y, non algébrique.

En considérant &, (r) et 5 (7r) comme définis par les équations (16), nous ne
pouvons déterminer la relation (15) qu’a un facteur constant prés en H,, Hy, Hy,
comme F, est un polynome en H, et H;, nous pouvons, par conséquent, admettre
que ce polynome ne s’évanouit ni pour H, = o ni pour Hy=o.

Si nous faisons H; = o, il en résulte que la fonction y,(r) et la fonction parti-
culiére £, (r) définie par I’équation

ou bien

c
£ = (rt—a*)*| const. — Eg —'L‘T
A 14 G

(r—a) 4



RECHERCHE DES [NTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. 95

doivent étre lides avec la variable r par une relation algébrique, cette relation
pouvant ne dépendre que de deux des trois lettres &, y, r.
Comme y,(r) est transcendant, il en résulte que les deux intégrales

C

dr (r?—aﬂ)*—‘”idr

R4
+ =

(1'2—a2)1 A

doivent étre liées par une relation de méme nature.

Posons = = 2, £ ¢iant une fraction irréductible, et considérons la courbe
m’ m

A

(17) ri=a*(1+ zm).

Les intégrales précédentes se réduisent, a des facleurs conslants prés, aux

intégrales hyperelliptiques,

: dx xPVdx
[§ St —_— wy = —_—
.I'[H_l \ / 1+ .17111. \/l + 'Elll

attachées a la courbe algébrique (17).
15. Lemme. — Sideuxr intégrales abéliennes transcendantes, J et J,, atta-
chées a une méme courbe algébrique
S(z, y)=o,

sont lides avec les variables x et y par une relation algébrique, cette relation
est nécessairement de la forme

kY 4k J =g (2, y),

k et k, étant des constantes numériques, o étant une fonction rationnelle
dex et y.

On peut toujours supposer J racine d’une équation irréductible, a coefficients
rationnels irréductibles en J,, z et y. Soit

(18) Je+ R J*-1 - RyJ* 24, . .+ Ry=o.

On en déduit, par dérivation,

< a1 +@1>J“"—i—[(a—1)l{1% —ﬁ—d[{Q:IJ“‘?—t—...:O.

“dz T dx de

Cette nouvelle équation est a coefficients rationnels en Ji, z et y; comme elle
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est de degré inférieur a a, elle se réduit & une identité. On a donc, en particulier,

PRI LR,
dx dx
et, en intégrant,
aJ + Ry = const.

o est différent de zéro car J, est transcendant; donc cette derniére équation ne
peut étre une identité et, par suite, I'équation (18) est nécessairement du premier

degré en J et en J,. Soit
- J R+ R,
T IR, + R,

R, R., R;, R, étant rationnels en z et . On en déduit

dR dl,  dR, AR, dl,  dR,
g OiRer Ro(5 T e TR (R B (1 T D)
dz — J R+ R, ) ’

Cette équation ne peut contenir J,, sinon J, serait algébrique, donc le second
membre est une fonction rationnelle de J, indépendante de J,.
Soit Ry différent de zéro; on aura, en particulier,

B, dR, R, df,  dR,|
[”Rlﬂ_g +R2] [_ rE TR i de =0

Si le premier facteur était nul, J serail algébrique; on a donc

dR, dR,
dy, R dx R, dx
de — R2 ’
d’ou
R, ]
Ji=— KK, -+ const.

J, serait algébrique, ce qui est impossible. On a, par suite,

R;=o et J=J, R, 4+ R..
1 en résulte

dy o dR, dJ, dR,
dz = ae "R T
ce qui exige
dR,
—— =0 ou R,=const.
dx

et le lemme est démontré.
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Lorsqu'une intégrale abélienne est algébrique, on sait qu’elle se réduit a une
fonction rationnelle. Le résultat précédent comprend le cas out une seule des inté-
grales abéliennes J et J, est algébrique.

16. Suppbsons la courbe (17) de genre n différent de zéro. On a

m=an-41 ou m==2n-+ 2,
car I'équation
1+xm™=—o0

a toutes ses racines distinctes.

Pour rechercher, d’aprés le lemme précédent, les combinaisons linéaires et a
coefficients constants des intégrales w et w, se réduisant & une fonction rationnelle,
nous exprimerons w et w, a 'aide de 2 intégrales de premiére et seconde espéce
formant un systéme fondamental.

M. Hermite a étudié la réduction des intégrales hyperelliptiques a un systéme
d’intégrales simples des trois espéces.

On peut, en particulier, par des opérations élémentaires, exprimer toute inté-

grale
*fl“ dx
oL — r

comme somme d’une fonction rationnelle de r et = et des intégrales J_,, J,,
J|, ey J2II'
Etudions la nature de Jg.

Les seuls poles aux points critiques logarithmiques possibles de J, sont les
points (z = o, r == a), (1+ 2™=o0, r=0) et les points a I'infini.
Soit £ = x, une racine de I’équation 1+ x™=o0, dans le domaine du point
0 Y
X =ux,, r=o0,0na
x* x* Y
— = =(r—a,) 'P(r—ug,),

r aq/l—i—x’”

P étant une série ordonnée suivant les puissances entiéres et positives de (z — z,).
L’intégrale J, est réguliére pour x = z,.
Dans le domaine des points = o, on a

— = Ay + X"+ Ay P+ ...
\/1 + ™
SiaZo, Jy est une fonction réguliére.
Si @ =— 1 — mult. de m, les points (z = o, r === a) sont des points critiques
logarithmiques. Pour les autres valeurs entiéres et négatives de «, les mémes
points sont des poles.

Fac. de T., 2 S., VIIL. 13
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Pour étudier la nature des points a infini, posons z = -; on a

AN

dsz

Ja:_

|3

R R
o z \/1+z”’

La fonction est réguliére pour z = o.
1+ 5™

Donc, s1 m est impair, J, admet le point a I’infini comme point régulier ou
) y Ja p

comme pdle.
Si m est pair, le point a I'infini ne sera point critique logarithmique que pour

a=n —+ multiple de m.
Nous arrivons aux résultats suivants :

w est une intégrale de seconde espéce avec les deux poles r ==+ a;
w, est une intégrale de premiére espéce ou une intégrale de seconde espéce avec

polesa l'infini.
St m=an-+2,J,, J,, » Ja_y sont de premiére espéce, J, de troisiéme

espéce, Jnyty Jups, - .., Jan de seconde espéce.
Si m=an-+1,Jy, Iy, ..., Jn_y sont de premitre espéce, Jn, Jnps, ...y Jon_y

sont de seconde espéce, J,, est algébrique.
Rappelons que, quelle que soit la parité de m, les 27 intégrales de premiére et
» Jm_s constituent un systéme

de seconde espéce comprises dans la suite J,, Jy,
fondamental d’intégrales abéliennes (*).

17. Pour exprimer w et w, a 'aide des intégrales Jo, Jy, ..., Jn_2, appliquons

la méthode classique de M. Hermite.

L’identité
1= (1+ &™) — x9+ gm—a-1

permet d’écrire

dz . Vi+ xmdz dx
erivan @ ) gremen /iy

et, en intégrant par parties le premier terme du second membre,

—2 ) d .
(19) d_x___ =2—29 Y . fonct. ration. de r et 2.
29+ \/1 <+ am 2q 29— m+1 \/I “+ xm

(1) AppELL et Goursst, Théorie des fonctions algébriques, n° 153.
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L’identité
d x5! qs—m—1
—[2x3“"’ Vi —|—x"‘] =(2s—m)—— +2(s— M) ————
dx \/[ 4 xm [+
donne, en intégrant,
x5V dx s—m x5~ dx . .
(20) — —— ———— + fonction rationnelle de r et x.
\/I—i— xm 28 —m \/I S am

Les formules (19) et (20) sont toujours applicables lorsqu’il ne s’introduit pas
de coefficient numérique infini ou bien encore lorsque les intégrales des pre-
miers membres ne sont pas de Lroisiéme espéce.

En utilisant ces lormules pour w, w, et ensuite successivement pour les inté-

grales rencontrées dans le calcul, on aura

zﬁnl—p—l d.Z'
Vi xm

ap—Bim-1 dy . .
wi =% [ =———" + fonction rationnelle de r et Z,

Viear

w = —+ fonction rationnelle de r et z,

2, Ay étant des constantes numériques, 3, B, des entiers indiquant le nombre des
opérations.

Les intégrales figurant aux seconds membres sont de premiére ou seconde
espéce, puisqu’il en est de méme des intégrales w et w,.

Les calculs indiqués pourront done toujours s’effectuer et w, o, seront exprimés
a l'aide des 27 intégrales de premiére et seconde espéce du systéme fondamental
signalé, lorsque les exposants

(Bm—p—1), (p—Bm—1)
appartiendront & la suite

o I, 2, ..., (m—2).

Comme aucune combinaison linéaire et a coefficients constants de deux inté-
grales distinctes du systéme fondamental ne se réduit a une fonction rationnelle,
pour que w, w, el 7 soient liées par une relation algébrique, il faut : ou bien
que w et w, s’expriment & l'aide de la méme intégrale du systéme fondamental ;
ou bien que I'une des intégrales w, w, soit algébrique.

Les conditions précédentes s'écrivent, en se reportant aux formules de récur-
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rence (19) et (20),

P __B+B
m_ 2
_}l_zﬁ—r
m~— a2
P _g.
= B13

on a donc nécessairement : soit m =1, soit m = 2.

En résumé, pour que les intégrales hyperelliptiques w, w, et la variable
indépendante r sotent lices par une relation algébrique, il faut que le genre

. 2 . .
de la courbe (17) soit nul, ou encore que le rapport XC soit entier.

18. Supposons la courbe (17) de genre nul.
Soit d’abord 1 entier et, par suite, égal & 1 ou 2.

L’intégrale v, est uo polynome entier en 7, y, est algébrique.
Les formules de réduction sont inapplicables a o, donc w est de troisiéme
espéce, les valeurs de w sont d’ailleurs

dr dr
2 g2’ (r*=a?)

et Uon a}():er(;oit les deux points singuliers logarithmiques r = =+ a.
Soit A egal a un entier impair et, par suite, a 1 ou 3.

by

Les formules de réduction sont applicables a w et elles montrent que cette
intégrale est algébrique; elles ne le sont pas & w,, donc w, est de troisiéme
espéce, ce que nous avons d’aillears constaté directement au n° 12.

L’étude du cas particulier Hy = o nous conduit aux conclusions suivantes :

Pour qu’il existe une intégrale algébrique nouvelle il faut : ou bien que
Y soit une fonction algébrique de ry et, par suite, que U’on ait, soit e = o,
d

sott A entier; ou bien que A soit un entier impair.

, . .. . 2C .. .
19. Examinons, en supposant H; arbitraire, le cas ol == est un entier impair,

A
¥ n’étant pas une fonction algébrique de ry.

La valeur la plus générale de &; est donnée par la formule

53:(,_2_01)‘% ___Hg/" dr ‘+2Hscose ? y,dr ’



RECHERCHE DES INTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. I01

ou bien
: ¢
(21) Es= (r2—a?)A(hw -+ Aywy —+ hywy),
en posant
dar w, dr
W= i, > W= | Ty
(rf—an)® (ri—an)*

iy Ay, A3 élant des constantes arbitraires.

Pour vérifier si £5(7) peut &tre une fonction algébrique de r et 9 ou w,, étu-
dions la nature des fonctions &;(r), w,(r) dans le domaine des points r == a.
2C

Soit 1

=o2n—1, n étant égal & 1 ou 2. On a

wy= [ (r*— a2y dr .
V,& —a

Dans le domaine du point r =«, on a

(1r?—a®), . 1

\/,.z_a;' -

P(r—a)

(S

(r—a)
et, par suite,

1
wy=(r—a)*P,(r —a)—+ const.,

P(r — a), P,(r — a) étant des séries ordonnées suivant les puissances entiéres et
positives de (r — a).

L’intégrale w, admet donc le point r = @ comme point algébrique. 11 en est de
méme des intégrales o et w;, la premiére comme étant algébrique, la seconde
d’apres le développement de w,.

L’intégrale &, admet évidemment les deux points singuliers logarithmiques
r=r1a, il en est donc de méme de &;.

Or toute fonction algébrique de w, et r ne peut admettre le point r = a que
comme point algébrique, donc & ne peut étre une fonction algébrique de w, ct r
ou de yJ et r.

Nous arrivons finalement aux conditions nécessaires et suffisantes d’exislence
du premier terme de I'intégrale ordonnée :

Tutorkme. — Pour qu’il existe une intégrale algébrique non fonction des
intégrales classiques il faut : ou bien que le centre de gravité du solide soit

~

situé dans le plan équatorial de Uellipsoide d’inertie, le rapport ji étant

. . c . .
rationnel; ou bien que le rapport R Sout entier.
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Dans tous les cas, )% est algébrique et le systeme (O) admet Uintégrale premiére
algébrique nouvelle H, (n° 12).

20. Lorsque les conditions nécessaires précédentes sont satisfaites, il nous
reste a calculer

fl(ﬂnzugﬁ )’3’ 53, ro) = F,(H,, Hy, H:;;a;; )"._3, ro)e

Si F, contient effectivement &;, en égalant F, & une constante arbilraire, on en
déduit que E5(r) est une fonction algébrique de 7, et cela quelles que soient les
constantes arbitraires H;, H,, H;.

Or &, est donné par I'équation (21) et dépend des trois intégrales w, w,, wy. Les
constantes Xy, ha, Ay sont arbitraires, sans liaisons et indépendantes de H, ; comme
w, wa, wy ne dépendent que de H,, ces trois expressions sont séparément algé-
briques.

Or nous avons monlré, aux n* 17 et 18, que w n’est algébrique que dans les
deux cas (')

»
(@)
o

e}

Mais, dans ces conditions, w, admet (n° 19) les deux points singuliers logarith-
miques 1 ==, donc £; ne peut, dans aucun cas, étre une fonction algébrique
de r et, par conséquent, I, est indépendante de E,.

F,(H,, Hy, Hy, 5, ro) est alors intégrale du systeme (O) et, par suite, se véduit
a une fonction de H,, H,, H;, H,.

Tutorime. — Lorsque les conditions nécessaires indiquées aw n° 19 sont
satisfaites, le systéeme (O) admet une intégrale algébrique H, distincte
de H,. Le premier terme de U'intégrale entiére L ordonnée est une fonction

de H,, Hy, Hg, H,,
fl'—_ Fl(Hh H,, H;, Ha)-

Ce résultat comprend celni obtenu lorsque le premier terme (*) de I'intégrale
ordonnée est indépendant de yy, z,, ¥'. Dans la suite, nous pourrons donc nous

placer immédiatement dans le cas le plus général.

On peut toujours supposer que ¥ contient effectivement H,.

(1) Cette propriété résulte aussi de la théorie des intégrales binomes.

(2) On peut montrer facilement, ¢n appliquant la méthode utilisée dans la suite, que, s'il
existe une intégrale nouvelle, on peut toujours admetire que cette intégrale s’annule
pour 3= &3 =7"=o. Mais ce fait est sans importance pour la démonstration du résultat
final.
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S’ n’en était pas ainsi, F, (H,, Ho, H;) serait, comme nous I’'avons montré, un
P I 19 9 3 I b

polynome en Hy, H,, H; et il suffirait de retrancher a I'intégrale entiére a calculer

la fonction F,(hy, hs, hy) des intégrales classiques pour faire disparaitre le

terme f, de moindre degré en y,, 5, 1

§ V. — Etude du cas %C = 4. Second terme de l'intégrale. Impossibilité.

21. Nous supposerons A =1, C= 2.

Pour atteindre le second terme de lintégrale enti¢re I on peut, en conti-
nuant la méthode des solutions infiniment voisines, déterminer le systéme diffé-
rentiel définissant les termes du second ordre infinitésimal du développement des
six variables y,, 5/, ¥/, 2, %2, 7 En poussantle développement de I jusqu’a la
méme approximation on obtiendra une intégrale entiére, dépendant de f3, de ce

systéme différentiel, soit
I, = const.

L’équation équivalente
a1,
dt

fournit un certain nombre d’équations aux dérivées partielles dans le sys—
téme (O) (1) seulement. Celles dépendant uniquement de f sont satisfaites d’elles-
mémes, une seule dépend de f, et détermine celte expression.

Nous obtiendrons plus facilement le méme résultat en égalant a zéro les termes
des divers degrés en yy, 54, ¥’ de I'équation

dl

=

Les termes de moindre degré définissent f,, leur somme est nulle.
Les termes de degré immédiatement supérieur donnent

/)
0{1 ¥y’ + 5 I y cose— -ﬁ yi/’———f-‘ ;o cose
. ofs /]
+ (ry1=+ 5 sms—y”coss)dy —rs 10{2
LI ofs afy 1 9fs ofy _
+2()’2~1—$2y1)d > —(ry, —l—msma)d +Z , COsE— —l-rzzd%_o..

Cette équation exprime, en considérant les fonctions f, (ny, &, &, ¥3, 33, ro),
JSa(na, &0y Ess Yy 595 7'0), que lasolution la plus générale du systeme (O) (1) satisfait
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a I'équation

ofy.

d 1)
ngz(m,iuis,yg»zg,ro)ﬂL i nxzs f1

de 0,
oy} 76—

£, cose — Sl —El COSE = o.

Cette équation donne f,.

Les intégrales premiéres connues dn systéme (O) (1) sont, en supprimant les
g p Yy ) PP
indices zéro,
H,=2r>— z,cose = 24a?,
H, = y:8+ 520+ 41k,
Ha-_—&i"z, .
tange hlange [ 2
H,=y,2+ ur(zgcose— %ﬂ) = ¥35y+ 4 : /'(— r2—H1>.

cos¢ cose 3

Nous tirons de ces intégrales 7, £,, ¥2, 3, en fonction enti¢re de H,, H,, H;,
H,, &,, rationnelle de r.

En portant ces valeurs dans f,, cette expression prend une valeur ralionnelle,
le seul dénominateur étant 272 — H,. Comme nous savons que f, s’exprime en
fonction de H,, Hy, Hy, H,; &; disparait ainsi que le dénominateur et f, devient

un polynome
Fl (HU H2y H3’ HL)'

L’équation différentielle donnant f5(n, £y, &3, ya, 3a, 1) s’écrit

d JF
(22) % -+ - _1 (.)’2‘23‘— r 51)00554“ H (711"2—21.)’2)23
dF . 2
+ d—th [5352 cose — yy&3(ya+ 4rtange) — & Slne<z2— (—i}%;)] =o0

Si I'on remarque que I'on a

id myz——iasme =— 3y, COS¢,
dt

o : _OF, JF,
on peul intégrer de suite les termes en oH, oH,

Posons

. , OF
Sfo= <P2+ oF, <711)’2 _Ea sine — £, COSS) + &} dH;.

L’équation (22) s'écrit

4 . 4r* \'| oF
(23) "C;PT? = [—5352 cose + ya 8 (2 -+ 47 tange) + & sme<z2—- cose)] 0H15.
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Exprimons ¢, en fonction de 5, r et des intégrales connues, Soit
Pa=— @, (&, r, Hy, H?a H,;, H,);

®,, rationnel par rapport aux six arguments dont il dépend, est un polynome
entier en &3, Hy, Hy, H,.

Au point de vue de l'intégration de I'équation (23), H,, Hy, H,, H; peuvent
éire considérés comme des counstantes indépendantes, sous la condition que, dans
cette équation, n,, &, 2, 2 soient supposés implicitement remplacés en fonction
de H,, H,, Hy, H,, &;, r. Notons que §,, ys, 2, ne dépendent que de r et que

I’on a

dES = Y2 !
W =2rz+ 1'13?; - 5 HQ,
dr 1

— = —(r*—a?).

dt 2( )

22. Soit
(1)2: “P‘E;n—'_ ‘PiEQnH Btk i s q’m’

{; étant une fonction rationnelle de r.

Si m est supérieur a 2, en égalant dans ’équation (23) les coefficients de £}’

et £'"', on obtient, pour déterminer ¢ et ¢,, les deux équations différentielles

g 1

ar 2(/'2—(;”)—1— amry=o,

dr 2y

d__% é(l"z—‘ a2)+2(nl—])rkpl+m4}<H3'y—2 ——éHg):O-

On en tire
A

V=
et en posant

b B

- (_,.2 — a2)2(m—l) ’

on obtient
(?._n
day,  amk |1 o, ' . ’<3’ ') )
-(‘1—;——-—(,:___—“—“2)3 —2—H2_[—;COS EH;;H;(-;__,—_—(—I?)TZ—H;SIHE (’.2_(12)2 5

Y devant étre une fonction rationnelle de r.

Les deux premiéres fractions rationnelles du second membre donnent séparé-
ment des résidus différents de zéro, la troisiéme s’intégre rationnellement en
posant 2= u; donc comme H,, H;, H, sont des constantes sans liaisons, on a
nécessairement A = o.

Fac. de T., »* S., VIIL 14
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23. La fonction @, est au plus du second degré en ;. Soit

D, = &3+ $i &+ e
On a

dd d
“872 == & —(24’53"‘4’1 <2"Es’+‘ Haﬂ - % ‘2>

()

A
T

En égalant dans 'équation (23) les coefficients de E; et 2, on obtient

(24) d_qjl_(, a?)+2]'¢1:2¢<;H2_H3¢>
39

+ [— cosezy+ ¥o( ¥+ 41 tange)] dIle ’
4

dy, 1 _ 1 ¥ sine frt
(25) o 5(zz_az)_q,,<;H2—H3:—2> H, — <z2 )dHh

Cose

En intégrant I'équation (24), sans second membre, on est amené & poser

__ %
4»1-(

rt—a?)?’
P ah g1 P — ine ——s——m | 45 (7 —
Y ("2_a2)3 - H2 i H3Hr, COS2~(,_2_“ a2)2 + H;sine (rz__az)z 40HL (12 a2)2
+ é gll;{ [H4 cose —Atangsr@ ,.2_[-11>] <H4 COoSe + ]?6,3 tallg8> "2 _a

Les fractions rationnelles du second membre, dont les numérateurs sont des
fonctions paires de r, ne sont pas altérées par le changement de 7 en — r, elles
donnent donc des fractions simples résiduelles de la forme

| I\
(aimras)
a—+r a—r

Les fractions dont les numérateurs sont des fonctions impaires de 7 sont

/2
o) i)

» 2sineH ——
(,.2_ a‘z)s & ()H/, r:— a2

En posant 72 — a*= u, on voit que la premiére est algébrique.
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l.a seconde donne comme fractions résiduelles

SinSth—F[{i<—2ga2+ H[) <a~vﬁ —_ a ! /.)'
. —

Donc, pour que {; soit algébrique, il faut que 'on ait a la fois

~

. . 01‘1 .
. 2k=o, Smed_H:_O'

Comme F, dowt dépendre effectivement de H,, on a nécessairement
)

g€—O0.

24. En introduisant la condition précédente, I’équation qui donne ¢ devient

v, AT [
(26) = m[zﬂz—ﬂaﬂam]
_I_ 2& L — dFi 2 ___ ,2)\2
o, e g, (M)

En intégrant par décomposition en fractions rationnelles simples ou bien par
parties on en déduit

/ i . y 4 = % -+ %
¢i=2 +’[(r2 a’)"+(r2 at) (rr*—a*) ,~2_a2]
dF‘ [(,.z__aa)s

rld_—_%J

_['dHL 5

+bi(r—at) b,
" bitrai by, b de
€tant une constante arbitraire, ao, @, @2, @3, b,, b, des constantes connues.

25. L’équation (25) donnant ¢, s’écrit
q

dy, VA ) 1 1
= Gy [ A G|

On en déduit

, dr I 1 2 JF ardr ,
b= [Hz— 5 ol (T:a—)] —5 g e [ g .
Eu intégrant

JF,

by=d N [log(r — a) — log(r + a)] — gﬂzm[log(r — a)+log(r + a)]+ Y, (r),

d; et ', étant des fonctions rationnelles de 7.
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Pour que ¢, soit une fonction algébrique de r, nulle ou non, il faut et il suffit
que les coefficients de log(r —a) et log(r + a) soient séparément nuls. On a

donc
oF,

[ g
N=o, ()Hh_o,

ce qui, comme nous I'avons expliqué, montre que I'on peut faire disparaitre, a
I'aide des intégrales classiques, le terme de moindre degré en yy, 5, ¥’ de I'in-
tégrale entiére I. Nous avons indiqué que ce fait équivaut a une impossibilité.
Pour le montrer de la facon la plus évidente, désignons par n le degré d’homo-
généité de 'intégrale I. En retranchant une fonction des intégrales classiques, de
facon a faire disparaitre le terme de moindre degré, on ne change pas le degré n
d’homogénéité. Le polynome le plus général de degré n d’homogénéilé n’a qu’un
nombre fini de termes; donc, en répélant I'opération de soustraction un nombre
sulfisant de fois, ce nombre étant fini, on aménera I'intégrale ou bien a ére iden-
tiquement nulle ou bien & ¢tre du degré maximum en yy, 5, y'. Dans ce dernier
cas, l'intégrale serait homogénc en y4, z,, 7 et indépendante de ys, 25, 7. Or, il
n’existe aucune combinaison de H,, H,, H; qui soit indépendante de y3, 33, ry;
donc ce dernier cas est impossible.
En résumé, nous avons obtenu le résultat suivant :

Lorsque
2C

A :[h

toute intégrale algébrique est une combinaison algébrique des trois intégrales
classiques, excepté dans le cas particulier o le centre de gravité du corps
solide se trouve sur Uaxe de (’ellipsoide d’inertie supposé de révolution.

§ VI. — Le centre de gravité du solide est dans le plan équatorial
de lellipsoide d’inertie.

26. Nous écarterons les cas déja étudiés,
2C 2C
x=» xk

Le syst¢tme (O) (I) prend la forme simple

dy,
Ag‘)t—z =Arys,
dr 1 1, ., .
(0) T :2—052-——;("—“'),
dz,

~

<2

de —
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et
d
%:—Al’"ﬂl_&,
déy
(I ( 7 =—rk,
d
7%2:;()’251'—52771)— ’5;+H35y—2"5% 2e

Ce systéme admet les quatre intégrales algébriques

Hl: C"g_ Z9— C(l2,
Ho=A( 8 + z,m1) + 2Cré,,

H;=¢, 2,
L
— A
H,= y,5y .

L’intégrale entiére a obtenir
I=/fi+/fo+ fi+

étant ordonnée suivant les puissances croissantes de yy, 3, y", supposons que le
premier terme f, soit de degré n par rapport a ces variables. Egalons a zéro en-
semble des termes de degré (n -+ 1) de I'équation

dl

7

nous oblenons, pour déterminer f,, 'équation aux dérivées partielles

1 n 9/ 0 ar.
_K(Alry1+7)d "”‘ld{ —()’ —52)’|)df”+j;’l dyz
—l—rz2£+—I o s v Ofs ofi 1 dfy

05, " 2C%or TV g5+ AVW V2 95 T a0 or T

Remplagons dans cette équation y,, z,, Y’ par u,, £, & et nous constatons
qu’elle exprime que la solution la plus générale du systéme (O) (I) satisfait i la
relation

dtfz(nngnga, Yas Bay ")+"11£3 df{ 1%53 gu{ 253 dfl 0fl =

E CE!

Résolvons les intégrales H,, H,, H,, H, par rapport & z,, My, &, )2, les valeurs
oblenues sont entiéres en &, H,, H,, H, algébriques en H, et r; le seul dénomi-
nateur est une puissance enti¢re ou fractionnaire de (Cr2— H,).
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Si nous portons ces valeurs dans Ji, les termes en &, et r disparaitront, puisque
J1 estune fonction de H,, H,, H,, H, ; en particulier, le numérateur de la fonction

obtenue sera divisible par la puissance de (Cr2— H,) qui constitue son dénomi-
nateur. On aura, par suile,

leFl(HH H:” Ho" H")r
F, étant un polynome.

27. L’équation différentielle en f, s’écrit alors

d oF
_d.}% -+ EH‘II (y28—r&y)

JoF oF €, C ¢_
+(ﬁ2(n'52-£1y2)£3+0_fl:[£52 +<"“K>)'§z2 2]74'3——_0'

Le terme correspondant 4 la dérivation par rapport & H, disparait de lui-méme.
En remarquant que 'on a

d
a‘t‘(A"h,}’z):‘-‘ _}’253,

C . oF, OJF, ) R
on intégre de suite les termes en =%, —L et I'on est amené & poser
oH,” oH,

JoF oF
Sa= s+ (—,F:(Amyz~£:)+iid—ﬁl-

Si 'on utilise pour ¢, la résolution adoptée précédemment pour f,, on a
92 = D, (&, r, Hy, H,, H;, H,),
®, étant un polynome en &3, H,, Hy, H, les coefficients de ce polynome étant

algébriques en r et H,.

L’expression ®, est donnée par 1’équation

ao 1 S /C 41 oF
(27) #:Es[—ng +<K“‘[>szz A]d—H:
Soit
Q=& + Y8+ Yy

¢; étant une fonction algébrique de r, dont les seules irrationalités proviennent

¢
.y . <=1
des puissances entiéres de (r? — a2)A

Comme la solution la plus générale du systéme (O) (I) satisfait a I'équa-
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tion (27), nous pouvons, au point de vue de la recherche de ®,, considérer H,,
H,, H;, H, comme des constantes indépendantes
On a

G -3 1
6%‘ =[m&yt+ (m—0) 8P+ b ] (K r&+H;H,z, A — A H2>

dq" I ‘-P: m—1 dd’m _I. 2 o2

+<5£3" SE T ) (1 —a?)
Si m est supérieur a 2, en égalant dans I'équation (27) les coefficients de £} et
£7=1) on obtient
;(/'2—— d—qj +mA ry =o,
2y 4

2,2 2
U= a)

d’ot 'on tire

m
et, en posant

i C
%:ﬂm( ' H,—HHK) .
d 2/ 14 1
( _az) A
En intégrant

C
. A
Y= m H, _d'_c_ ( >HH6 __ar
A gy a

2C
r’—a?)

1+ 22
(,.2_ a‘z) A
Comme H,, H,, H;, H, sont des constantes sans aucune liaison, la somme d’in-

tégrales entre crochets ne peut étre une fonction algébrique de r que si ces deux

intégrales sont séparément algébriques; il est visible, en effet que ces intégrales
ne dépendent que de r et H

La premiére intégrale est celle désignée par w, n° 18 et 19, et nous avons
démontré qu’elle ne peut étre algébrique que dans les deux cas

Comme, dans ces conditions, la seconde intégrale admet les deux points singu-
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liers logarithmiques r = == @, il est impossible que ¢, soit algébrique sans que I'on
alt

on a donc nécessairement

et, par suite,

Q=P8+ &+ s,
P

T ;:_c'
(r2—a2)A

28. L’équation (27) donne pour déterminer ¢, et §, les deux relations

, Lo oo dg, G
28) E(I_GQ)W_‘_KNP‘

¢ . ¢ ¢ ap
-3 i C -3 | OF
:2¢<ﬁH2—H3H552 A>+[——sz‘; 1+<K—1>I12z2 “] ;)W:;

L, o, I -
(29) 5(”'—42)7{7—— P:(Z—A‘Hz—H:;Hazg A)-

En posant

C’
(,2_a2)K
I'équation (28) devient
C
dy! H I 2%
() =i — () —
(r2_a2) A ()"2—a2 A
P ¢
JOF, | 1 /1 A 1 C I AH2 1
'_2(ﬁ; X (—] -—7)2_2—TC+<1—K><C> b g2
(,.2_a2

En intégrant on voit que ¢ est, a des constantes de multiplication prés, la
somme des transcendantes :

dr - dr
Y = — ] V= ¢!
1+K , 1+_A.

r?—a?) (r*—a?)

o= f———‘i—— b= [ = L log(r @) — log(r + @)].

jabsy ' —a

Les multiplicateurs de ¢, et ¢3 sont des constantes sans aucune liaison el ces
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intégrales ne dépendent que de r et H,. La partie correspondante de ) se pré-

sente sous la forme
JF
'd—[I: [kg(}g"- k3Hz V3],
k. et k3 étant des constantes numériques non nulles, abstraction faite du cas A=C.
H, étant fixé, on peut donner a H, une valeur complétement arbitraire, donc la
fonction entre crochets admettra toutes les singularités des intégrales ¢, et 0.

~

. aF, ... . .
On peut supposer ——* différent de zéro, car nous avons vu que I’hypothése

oH,
contraire équivaut a 'impossibilité. Il en résulte que la partie de I'intégrale ¢
coorrespondant & ¢, et v5 admet dans tous les cas possibles les deux points singu-
liers logarithmiques 7 = == @ de v;. Par suite, pour que | puisse étre une fonc-
tion algébrique de 7, il faut que I'une au moins des deux intégrales abéliennes ¢

et ¢, admette les deux points singuliers logarithmiques précédents.

29. Supposons d’abord % non entier.

Les deux expressions ¢ et ¢, sont des intégrales de la forme

dar
w —_— ——
72

(r—at)"

P ¢tant une fraction irréductible supérieure a 'unité, le dénominateur m ne se

3

réduisant pas a 'unité.
Etudions 'intégrale w dans le domaine du point 7 = a par exemple.
Dans ce domaine, la formule de Taylor doune le développement, en série con-

vergente, suivant :

7 =ay+a(r—a)+ay(r—a)—+...+au(r—a)*+....

(r+ay"

Par suite, on a le développement également convergent :

, _r P o P
- =a,(r—a) "+a(r—a) "+...+a(r—a) "+....
(,.2__(12);
. 2C . .
Donc. si le nombre == n’est pas entier, aucune des deux intégrales ¢ et ¢
) A P ) 3 1

n’admet les points r == a comme points singuliers logarithmiques et il y a
impossibilité.
Fac. de T., 2 S., VIII. 15
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2C .. ..
Lorsque le nombre — est entier, il ne peuat, en Mécanique, prendre que I'une

A
des valeurs 1, 2, 3, 4.
Nous obtenons par suite le résultat suivant :

Pouwr qu’il existe une intégrale algébrique ne se réduisant pas & une com-
binaison des intégrales classiques il faut, le cas de Lagrange étant ex-
cepté :

1° Que Uellipsoide d’inertie relatif au point de suspension du corps solide
soit de révolution ;

Y Que le centre de gravité soit situé dans le plan équatorial de cet ellip-
soide;

3° Que le rapport 2—15 prenne une des valeurs 1, 3.

§ VII. — Etude du cas %] = 3. Démonstration de I'impossibilité.

30. En supposant C=3, A=2, ona

X ’
S N
(rz_az)z

3
L (1\? I 2 1 5 I 5 1
L <§> MH;H, 7 [?»a2 (r*—a*y®  6a* (r—a')? * i@ rz——a2]

1
1\? oF, i 0y . AH, a? 2 ,
——<§> d—[_lbr[(rz—az)—za]—i-—%;r[——(r -+ :l+7\,

3 1
2__a2)7 (ra_az)z

avec la condition

oF
(3[) 5)\H3+ AaGH‘(—)ﬁi:o,
exprimant que lintégration de l'équation (30) n’introduit pas de transcen-
dantes.
L’équation (29) s’écrit :
dy i
e .o |1 1 A 1
W—‘Z‘Pl 4H2 _g_ <3> H3H6(r2_a~:)k

(,.2_a2)

Tous les termes du second membre s’intégrent algébriquement sauf le terme
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en N'; la constante A est nulle et ’'on a

1 11 5 1 JF, /2a® 1
%—“Hﬁﬂz(—zrz—ab;;*yaas:g)ﬂ“ﬂsﬂw—rﬁ(?g‘*zﬂ)
3 \H2 /a 1 I 3 1 11
['a‘? (z_g _;> ——-3)\H2H3H4<; ':T%— W —~—% +_a6 r§->
R 52 z

JF, /2a? 1
~imm ()
2
JoF,

fz—z ‘P+£3‘~P:+ %—-—&sdH + (2m ¥, — al)dH + Fy (Hy, Hy, Hy, Hy),

F, étant une constante d’intégration.

31. Calcul du troisiéme terme de l’intégrale. — En égalant & zéro I'en-

semble des termes de degré (n+ 2) du polynome 7 °on obtient pour déter-

miner f;3 ’équation différentielle

dfs

dtfs(ﬂnangs, Yay B2y T) + Ny &3 =5 d& -+ -

Es 0_/2 —Y 253 3{ El df2

Nous exprimons f; a 'aide de &;, r, H,, H,, H;, H, et en procédant comme
dans le calcul de f; les diverses équations jouiront des propriétés qui ont éLé
signalées.

Pour la recherche des conditions d’existence de f3, on peut négliger la con-
stante Fy; on sait, en effet, calculer les termes correspondants en remplagant dans
'expression de f, la fonction F; par F,.

En utilisant une remarque faite dans le calcul de f, on est amené & poser

¥ d*F,
oH?

0*F, 2., 0*F
+Een =8 GrTn + 38

Si= q’a(&s,r,HnHz,Hs’Hh)‘f‘ (9"11}’2 &

etl'on a
ao / -1 _ 0 d d

+g3(—3,-gg_2nsnkz;f+§H2><3 4» vr O, o)

oH;,
Lo N[ 0, 0b 0
+ 1 (-ma g e a gk +61%

9 1, -3 J'F,
8 o, —(oMra i+ )dHldH‘]

-3 d J Jd d
—Ha (gt gl s S =
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32. En comparan! I'équation (32) a I’équation analogue (27), on en conclut
que l'on peut poser

®3253G+ E;G1+£§G2+ E§G3+£5G5+ Gs,

G, Gy, ..., Gy étant des fonctions algébriques de r.
Ona

A, 4 ob, 1 A,
—?l[_ ( l£3+H3H42 H)d& -+ - ( a)d,

En égalant & zéro les coefficients des diverses puissances de £, dans I'équa-
tion (32), on obtient les relations :

t 15
-2-(1'2—612 +——rG—o,

)d

1 B

o G a’) ar +61G.+5G<H H,s, 2__H2)_3rﬂ___0,

4 oH,
dG 3
%(1-2_6”) c(l ~r(}"_*_h'G”(H H,.Z‘,'—;Hz>
o P_olg) v
+H,z,® ;)F_2<H3H‘z ——ZH2>T3
b0y o, Hop o
w2l Kam*m)‘ﬂ‘z’ o o, =

dG, 3 g p
Lrman) T +3r(13+3G2<H H,s ' — ZH) H,rot dli),

-1 -3 1 -3
+H,? 0;;" <H3H,,z22— %Hz 3:113 + 10— szzz)g—;!’i“
~1 oY, . . OF, o,
_ 2 . =1 {2578 L —
H,z, o5, 3H,r (5, 3 - )dH, o, 3r——dH3 o,

G/
G= 4 _ G=—"1——;
S G
Ly s
G\ 47 1\?* 1 ) e
= 100| =g = (5) T e | S

Pour que G soit algébrique il faut et il suffit que p soit nul.
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On a, par suite,

G=o, 6= (r—at o
3

33. Sil’on pose

G,= ’

G
2
(rz_az)z

on obtient

3
4G, Loy, \ 1\? L S ¢ TN
ar +8[-2- m;(’ —a?) +P'} <§> H;‘Hb(/'f——u')" [le(,.z_az)%

I -1/ 04 o 1/ 4 AV o0*F > o,

2 42)2 - 2 __f____ _l'l}_ - 2 __ 2 2 et IRl T T i LI [

+a(rt—al) [H’” (dH, 0z >+ 2(32 Hiz, ’(dﬂ,, + oM, om, ) T3 om, | =
En intégrant, la seule partie irrationnelle pouvant fournir des transcendantes

dans 'expression de G} est

1
Y H, oA f(ﬂ--a”)z [a*+2r2(2r— 3a?)]dr.

W= @ o,

Silon prend comme nouvelle variable

I
u—= = r2—a?,
on trouve de suite

H, 0\ 3
W= — —— r(2r2— 3a%) (r*— a®)?2.

5t o, ¢ ) ( )

- . r—a
La seule transcendante qui s’introduit dans le calcul de G} est log parapt L

écrivant qu’elle disparait on détermine la constante p, et I'on obtient

2 3
G;:ﬁHz% 7'[2(7'2—612)2 —a’(r'z_(ﬁ)?]

ol

(LY F
(3 Uﬂgde
by by b,

-+ r<biz;+bzzg+ bs“'— - -+ ‘,“2‘ -+

,.[(,.2 —ar—aa(rr— az)s]
S L9 Zg
Les quantités b étant des constantes connues, p, une constante arbitraire.

34. Pour déterminer G, nous sommes amenés & prendre

G

G3:
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La fonction algébrique G} est donnée par 'équation

3
daG}, <1>5 1 H 1 2 oy
+6G), ) Gy ——— — 22— | ZH .z, %
dr 2 3 3 k(r2_a2)4 4 (r2_a2)% gHsl‘ 20“1
2y 30U 4 Tl N\ (3 1oy,
+9H5620H1 §<H3H452—'ZH202>0—}E+§(42—H622)E
2, 20¢ 2 0%F 2 oy
—2H, z2 l___, o — H2 31 1 _ .2 T2
g, (e WIS Spon — 3 rs Gy, = o
Tous les termes de cette équation sont de la forme
P2 P2 2 5
_ - —>  k,r(r:—a?)?.
U e A
L’intégration introduit les transcendantes
logZ—% et log(r*— a?)
r4+a :
On a donc
pa=o0, 2k_,=o.
La seconde condition s’écrit
J /5AH, Jd /53H,H, 0*F 0’F , JdF
2 —a? [ 23R 2 2 1 3 1 ) oty
H dH1< G > @ dH4< fa ) “Hom +~Wogom, + <oy =0
ou bien, en utilisant la relation (31),
oF
3a’H, dHl =o,

ce qui équivaut & une impossibilité.
Nous pouvons donc énoncer finalement le résultat suivant :

Lorsque les conditions initiales sont arbitraires, toute intégrale algébrique
est une combinaison algébrique des intégrales classiques. Il y a seulement
exception dans les cas d’ Euler, de Lagrange et de M™ Kovalevsky.

On sait que M™ Kovalevsky s’est proposé de déterminer les conditions dans
lesquelles les paramétres qui définissent la position du corps solide pesant, mobile
autour d’un point fixe, sont des fonctigns méromorphes du temps ¢, pour toutes
les valeurs de ¢. La démonstration donnée par M™¢ Kovalevsky suppose que ces
fonctions admettent effectivement des poles, mais le résultat a été étendu par la

suite aux fonctions uniformes les plus générales.
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Nous pouvons donc énoncer la propriété suivante :

Lorsque les conditions initiales sont arbitraires, les seuls cas dans lesquels
il existe une intégrale algébrique non fonction des intégrales classiques sont
ceux pour lesquels les paramétres définissant la position du solide en fonction
du temps t sont des fonctions uniformes quel que soit t, et inversement.

CHAPITRE II.

SECONDE METHODE.

§ I. — Recherche d'une solution particuliére.

1. Nous avons montré (Chap. I, n° 8) que le mouvement d’'un solide pesant

autour d’un point fixe est défini par le systéme différentiel
d .
A%/Ei =—A,ry,+ 3 sine—y’ coseg,

dy,

ks Airy,+ y" cose — 3, sine,

dar
QCE = cose(2,— 3,),

(1)
d_z.,__ "yy— 13z
i =¥ 1
dsz
-d—; =1z, — "y,
dy"’

2o = YF1— V1%

Ce systéme admet les intégrales premiéres

Ayi1y:+ Cr®— (5, + 3,) cose — 29" sine = const.,
(2) ) A(y13:+ ¥25) + 2Cry”"=const.,

3,55+ y"* = const.

Si 'on remplace yy, 24, ¥ par Ayy, Az,, \y" sans changer ¥, 5, r, A désignant
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un paramétre arbitraire, les équations (1) deviennent

I d :
A% =—A,ry,+ 5 sine — ¥’ cosg,
dV-? H ’
A_c.lt__': A ry,— sysine + 2y" cose,
QC(/" —cose(5y— A3
. 7 = cose(5s— A3y),
1 Ots
) dzl "
== ra + Ay,
dZ ”
—?l;- - I'Sg— )\y y2’
dy//
2-% = Y25 Y172,

Le systéme différentiel (1 bis) admet les intégrales premiéres

(2 bis)

s Cr2— 3,088 + A(Ay ¥y — 21 cose — 27" sing) = Ny,
( A(y15:+ y251) + 2Cry" = hy,

513+ Ay =hs.

Nous supposerons essentiellement que /2, hy, hy sont des constantes arbitraires
indépendantes de \.

Nous n’introduirons pas le tlemps ¢; nous exprimerons les grandeurs ¥y, ¥, %1,
33, ¥’ en fonction de r. Ceci est toujours possible, sauf dans le cas ol r est une
constante, ¢’est-a-dire dans le cas de Lagrange.

Les relations (2 bis) donnent yy, 3y, 32 en fonction de y,, ¥”, r et 'on peut
remplacer le systéme différentiel (v bis) par le systéme des deux équations du pre-
mier ordre,

dy, _ 2C Ajry,—z,sine + Ay’ cose
dr — A cose Zy— A3y ’

(3
: ay’ _ C zs— 715
dr — cose zy— Az,

Les seconds membres sont supposés exprimés en fonction de Ay, ks, hs, X, y2,
', r et dépendent algébriquement de ces grandeurs.

2. Pour h=o, le systtme (1 bis) se décompose en les deux systémes
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séparés :

d
7“{—‘—2 = A,ry,— 3,sing,
dz
(4) d—;:rzg,
dr
QC% =3, COSE;

(5) dt —— I3y,

Le systéme (4), (5) admet les intégrales premiéres

Cr?—z,cose = h;— Ca?,
(6) A( 15+ yas) +2Cry’ =hy,

5y 29 = hs.

Dans la suite, y4, ¥, 3, 52, Y’ désigneront, jusqu’a I’étude progressive de I'in-
grale, les solutions des systémes (4), (5) exprimécs en fonction de r.
En adjoignant aux relations (6), résolues par rapport a y,, 3, 5», les deux

équations

dys Ay 2r 20

dr A mog T Ty ee
(7) v

d_’}’_ YR — Y15

dr —  r—a* ’

on obtient un systéme équivalent au systeme (4), (5).
Les équations (1) s’écrivent :

A i

(8) Yo={(r*—a*)4 | const.— 2Xctangs ..__d’_.__E ,
(r2___a2)A

(9) dy" G ar ,  2hscose Vs s 1

9 A r—a! C (rr—a)r A r—a’

ce sont les équations (3) dans le cas particulier A = o.

En posant
c

Y”: (r2— a‘z)K‘ I,

Fac. de T., 2 S., VIIL 16
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I'équation (g) s’écrit :

. dr"  oh,cose 2 h 1
(9 6is) T =G BRI v
(rz_az)1+ (r*—a )K"'

)

3. Soit, pour le systéme (1),
f(yh Z1y ]’”, Yas B2y r)=const.

une qualriéme intégrale premiére algébrique et indépendante du temps.
Le systeme (1 bis) admet, quel que soit A, 'intégrale premiére algébrique

Sy, Az, My", ¥, 35, 1) = const.

Si lon y substitue les expressions de y, 3, 5, tirées des relations (2 bis), on
en déduit que le systeme (3) admet une intégrale premiére de la forme

F(hy, sy Ry, 55, 9", 1) = const.,

F étant algébrique par rapport a toutes les lettres iy, ho, by, A, ya, ', 1.

I’expression F ne peut étre indépendante de y, et ¥” sinon, ou bien r serait
une constante et 'on se trouverait dans le cas de Lagrange, ou bien F serait indé-
pendante de y», " et r et par suite l'intégrale premiére f se réduirait & une fonc-
tion des intégrales classiques.

On peut toujours multiplier Pexpression F par une puissance de A choisie de
telle sorte que la fonction F de )\ n’admette le point A =o0 ni comme zéro, ni
comme pole. La fonction F est alors développable dans le d:)maine du pointA=o

suivanl les puissances croissantes et positives de A ou de W. Dans ce développe-
ment les coefficients des diverses puissances de A sont des fonctions algébriques
U
de hl; ]127 k37 Yo, Y T
Je puis toujours supposer que, pour A = o, F ne se réduit pas a une simple fonc-

tiOn de h|, hg; hg-

En effet, poussons le développement de F suivant les puissances de W jusqu’au

1

premier terme dont le coefficient ne se réduit pas a une fonction de Ay, A, hy. Soit

o+1

a ——
F =@ (hy, hoy hyy 8) - W By (Ryy hay by, Yoy ¥ 1)+ h P Fi(hyy hyy Ry, yoy ys 1) 4+

En remplagant F par la différence

F s (I)(hla h?? h39 )‘)
’

AP
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\

ce qui revient a retrancher a I'intégrale premiére f une fonction des intégrales

classiques, nous voyons que nous pouvons toujours supposer que 'on ait

1 2
F=Fo (A, hy, by, Yo y'sT) + W Fi( Ay, by by, ys, Y, )+ F+. ..,

F, n’étant pas indépendante de y», v etr.
En faisant A = o, nous en déduisons que le systéme (8), (9) admet I'intégrale
premiére algébrique

(10) Fo(hy,y hay b, Yes }’”’ r)—=const.,

F, ne peut étre indépendante de y, et ¥’ sinon r serait une constante.

L’égalité (10) montre que les fonctions y,(r), ¥/(r), solutions des équations (8),
(q) et la variable indépendante r sont liées par une relation algébrique. En expri-
mant cette propriété, nous obtiendrons des conditions nécessaires d’existence
d’une intégrale algébrique nouvelle pour le systéme différentiel (1).

§ II. — Lemmes abéliens auxiliaires.

4. Lemwe 1. — Soit P(x) un polynome entier en x, admettant au moins
deux racines distinctes, et

](x)_.f @)’ y(z)=P2,

St J(z) sexprime algébriguement a Uaide de x et y, a est un nombre
rationnel.

Supposons en effet que o ne soit pas un nombre réel commensurable, et soit
Z = a un zéro d’ordre m du polynome P(z). On a

y(z)=(z—a)y"y,(z),

Y1 (x) étant holomorphe et différent de zéro pour x = a.

. 1 . :
La fonction 7 est aussi holomorphe pour z =a pwisque y,(a) est différent
1

de zéro; on a donc

J(x)—f(x a)me 1:f(x—la)rzta[c°+cl(‘x_a)+02(~T—Cl)2—|—...]d.l’.
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En intégrant

1
J(z)= gy [e,+ci(x—a)+cy(x—a)+...]1+C,
! ’ ’ , , . N . .
Cq4y €y Cyy - - . étant des constantes numériques, G une constante arbitraire.

Dans le domaine du point z = @ on a, d’aprés I'égalité précédente,
(11) y(x2)J(z)=9¢(z)+ CP%,

¢ () étant une fonction holomorphe.

Si la fonction J(z) s’exprime algébriquement a l'aide de z et y il en est de
méme de J(2) augmentée d’une constante.

Il nous suffit donc de considérer la fonction J(z) pour laquelle la constante C
introduite par I'intégration dans le domaine du point 2 = a est nulle.

Le produit y(x) J(x) s’exprime algébriquement en z et y.

Soit

y(@)I(z) =f(z,y).

On a en particulier, dans le domaine du point z = a,
(12) o(2) =/ (z, y).

Donnons & « une valeur x, voisine de a et faisons décrire au point représen-
tatif de 2, & partir de z,, un nombre quelconque de cercles de centre a; le premier
membre de I'égalité (12) garde la méme valeur et y(x) prend une infinité de
valeurs. Or si la fonction algébrique f(z,, y) dépend effectivement de y, elle ne
peut garder la méme valeur que pour un nombre fini de valeurs de y; il faut donc
pour que l'égalité (12) soit possible que la fonction f soit indépendante de y,

c’est-a-dire que l'on ait
(13) y(x)I(z) = f(x).

f(z) est une fonction algébrique dont les seuls points singuliers possibles sont
ceux de y(z) et ceux de J(z), ces points sont les zéros du polynome P(z).

La fonction f(z) est holomorphe dans le voisinage du zéro particulier x = a.
Dans le voisinage de tout autre zéro = b du polynome P, on a, d’aprés I'éga-

lité R
le(ll) f(x'):(h(.z‘)-l—cl[)“,

o, étant holomorphe, C, une constante d’intégration déterminée.
Comme P* admet le point 2 = b comme point singulier transcendant, cette
égalité exige que 'on ait C,=o. On peut aussi, pour le prouver, reprendre le

raisonnement qui a été utilisé pour I'équation (12).
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La fonction algébrique f(z) est donc holomorphe pour toute valeur de z, elle
se réduit par conséquent a un polynome entier en .

Pour trouver le degré du polynome f(z), cherchons le développement du
produit ¥ (z)J(z) pour z infiniment grand.

Posons

Si le polynome P(z) est de degré n, en a
I
Y = Pe— ﬁ.}@(z)’
2(z) étant holomorphe et différent de zéro pour z=0:

J(x)_—__fzna—ﬂ(do+d,z dyzt.. ) ds,

ou bien
J(z)=s5"""Y(d,+dyz+dyz2-+...)+C

et, par suite,

@)=y @I (@)=24(s) + € () o>

¥ () étant holomorphe et différent de zéro pour z = o.

D’aprés un raisonnement indiqué, la constante (I est nécessairement nulle et
I'on voit que le polynome f(z) est de l'ordre de z pour z infiniment grand. Le
polynome f est donc de la forme

f=cxz+d.

Pour calculer P on a, en prenant la dérivée logarithmique de I'égalité (13),

S P
7 ozl) +f7
d’out
P c—1 c
P ca cx+d

L’ c—1 , . b . .. s .
exposant est necessairement un nombre entier posmf et ’on voit que P

ne peut étre un polynome ayant plusieurs racines distinctes si « n’est pas un
nombre rationnel.

5. Lewme Il. — S¢ deuz intégrales abéliennes J(x) et J,(x), toutes deuz
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transcendantes, vérifient une relation algébrique en J, J, et z, cette relation
est nécessairement de la forme

Ji=kJ + ¢(2),
k étant une constante, o(x) étant une fonction algébrique.

Nous avons indiqué (Chap. I, n° 15) une premiére démonstration en utilisant
la forme que 'on peut donner, a priori, a la relation algébrique hant J, J, et z.

On peut en présenter une seconde dans 'ordre d’idées du Chapitre II.

Il est loisible de supposer les deux intégrales abéliennes J et J, attachées a la
méme courbe, soit

Sf(x,y)=o.

Résolvons la relation liant J, J, et & par rapport a J,. Ceci est toujours possible,
sinon J serait une fonction algébrique de x. On a donc

Ji=¢{J, x),
¢ étant algébrique en J et z.

Puisque I'intégrale J n’est pas algébrique, il existe dans le plan des x (ou sur la
surface de Riemann correspondant a la courbe f) au moins un contour fermé C,
d’origine arbitraire, ramenant x et y a leurs valeurs initiales et le long duquel J
s’accroit d’une période w.

Quand x parcourt le contour G, J; ne peut que s’augmenter d’une période w,;

on a, par conséquent,
(14) o =4 +0,2) = ¢(J, 2),

et cela quelle que soit I'origine z sur le contour C.
L’équation (14) dans laquelle on regarde J et z comme deuxz variables indé-
pendantes ne peut renfermer J sinon on en tirerait J comme fonction algébrique

de 2. On a donc l'identité

0y +w,xz) dYydJ,z) _ o
aJ a
Cette identité montre que la fonction algébrique Qq/—f)’;’—gc—) de J admet la pé-

riode w, ce qui exige qu'elle soit indépendante de J.

Il en résulte, par intégration,
.L:q;(.],x) =Ja(z)+ ﬁ(x)’

a(x) et () étant deux fonctions algébriques.
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On en déduit

Tous les termes de cette égalité sont algébriques en x sauf le terme en J;

comme J est une transcendante, on a nécessairement

— =0 ou a=—k.

On a, de plus,
g dl,  dJ

dr ~ dz ~ “dz’

d . . R . .
Donc a’_ﬁ est rationnel en x et y, il en est de méme par suite de la fonclion
X

algébrique 3(x) et 'on a
Ji=kJ +o(x,y),

k désignant une constante el © une fonction rationnelle de x et y.

L’équation (14) devient alors

®
k:—lv

®

ce qui donne une signification de la constante £.

6. CororrAire. — Soient les deux intégrales abéliennes J et J,,

d. {x
=X =
xt—a y(x*—u?)

la courbe a laquelle elles sont attachées étant

2
y — (.Z‘i— a?.)m’

ol p et m sont des entiers positifs et premiers entre euz. Il est impossible que
P

. ., . , . N . 2
J, Ji et z soient liés par une relation algébrique, & moins que le nombre ==
m
ne sout entier, c’est-a-dire que Uune des intégrales J ou J, soit algébrigue.
En effet, si J et J, sont transcendantes, on a, dans le cas de liaison algébrique,

Ji=kJ+o(z, y).

On en déduit, en particulier, quand z parcourt le contour G défini précédem-
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ment,
' rdl A,
(15) m,_j(:‘%dx_kfcrg‘;dx_km.

Avant de parcourir Je contour G, tournons une seule fois, dans le plan de z,
autour du point & = a en supposant, comme on peut I'admetire, que le contour C
passe dans le domaine de ce point. La variable z reprend sa valeur initiale, y est

- -y
e, PYL R A | —2im
multiplié pare ™, — pare ",

J 2i1r£ L' L, . .
' T —— par e . L’égalité (15) devient alors

dx

)
L T
(16) w; € m=rlkwe ™.

On en déduit, par comparaison des égalités (15) et (16),

e el | ou — =n,

n étant un nombre entier.
Si la condition précédente esl satisfaite, les deux intégrales J et J, ne sont pas

transcendantes, une seule est algébrique.
En effet, supposons d’abord le nombre % entier, I'intégrale J se réduit & un

polynome entier en z. L'intégrale J, admet les deux points singuliers logarith-
miques £ = == @ comme on le voit immédiatement en développant sa différentielle

dans le domaine de ces points.
S osons ensuite que le quotient 2P soil tier 1 ir, 'intégrale J
upp q quoti ~~ soil un entier impair, I'in égrale J, est

algébrique, intégrale J contient des transcendantes logarithmiques. Ces intégrales
seront calculées dans la suite a Paide de formules de récurrence classiques, mais
on peut montrer rapidement le fait précédent de la fagon suivante. Posons

2
-—B:2n+x, Y —a.
m

J— s dz - (1—3z*)"ds
—= o —-———(]—52)”+', Jy=a ———-——;2,‘_‘_2 .

L’intégrale J admet les deux points singuliers logarithmiques 5 ===1, Uinté-

On a

grale J, est une fonction rationnelle de 5.

On voit donc que si J et J, sont transcendantes, il est impossible que J, J, et x
soient liées par une relation algébrique.

Si J et J, ne sont pas transcendantes, ce sont des intégrales binomes qui s’ex-
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priment en particulier & 'aide des fonctions élémentaires, ce qui exige, d’aprés un
, ap . .
résultat connu, que le nombre —~ soit entier.

Nous venons de montrer que cette condition nécessaire est salfisante pour que

J ou J; soit algébrique.

7. Lemume 1II. — Soit J(z) une intégrale abélienne transcendante attachée
& la courbe f(xy) = o et soit

K(x) :fJ(x)p(a:, y)dz,

p étant une fonction ratwonnelle de z et y.
SiJ, K et z vérifient une relation algébrique, U'intégrale abélienne

fp(x,y)dx

sSexprime algébriquement a Uaide de J et z.

La relation algébrique liant J, K et x dépend de K, sinon J serait algébrique ;
on en déduit
K =9¢(J,2),
¢ étant algébrique en J et x.
Faisons parcourir a la variable x un contour fermé G ramenant x et y a leurs
valeurs initiales et augmentant l'intégrale J d’une période w. L’expression K (x)

se transforme en K, () et 'on a
Ki(z)—K(z)=0o(J+o,z)—9(J,z) =04, z).

D’autre part, en dérivant 'expression initiale K(x), on a, en utilisant le méme

contour C,
dK, dK
%1 — =0 +e)p—Jp=wp( )

et, en intégrant,

QJ(J,x):mfp(x,y) dx.

Comme ¢ est algébrique en J et x le lemme est démontré.
Le lemme II indique la forme de Pexpression ¢ et il en résulte que 'on a néces-
salrement

k
(17) [eteyrde =1+ a2,

¢4 étant une fonction rationnelle de x et y.
Fac. de T., 2¢ S., VIII. 17
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Il est facile de déduire de I’égalité (17) la forme de la relation algébrique liant
J, K et z, lorsque cette relation existe.

En intégrant par parties 'expression initiale K (x), on a, en effet,

k dJ
K@) =1 (150 +0)— [ o2 L ds.

Le dernier terme du second membre est une intégrale abélienne qui doit s’ex-
primer algébriquement en J et x; donc, d’aprés le lemme II, I'expression K(z)
s'écrit :

K(z)= %Jz—i— a(z,y)J -+ b(z, y),

a(x, y) et b(x, y) étant des fonctions rationnelles de z et y.
Nous n’aurons pas dans la suite & utiliser ce dernier résultat; il nous suffira de
nous borner & I'énoncé du lemme III.

§ III. — Conditions nécessaires d’existence de l'intégrale algébrique.

8. Revenons a I'égalité (10) et cherchons a exprimer que le systéfne (8), (9)
admet une intégrale premiére algébrique.

Je dis que s’il existe une intégrale algébrique nouvelle la fonction y,(r)
est algébrigue.

Si Y” ne figure pas dans Fy, cette propriété résulte immédiatement de 1'éga-
lité (10).

Si y" figure dans F, la fonction y'(r) s’exprime algébriquement & I’aide de r
et y,. Or on a

C
y.Z:(rﬂ—oﬂ)i_xJ, J:const.——%qtangs/v——i——c:

(r*— aa)‘_x
C
Y= (rt— a?)A 1",

d dr
I"=2%,+ A _Jdr rw + Ay — T
(r2_a2)X+1 . (rz_a‘z)K'H

oy A1y Ag étant, d’aprés I'équation (g bis), des constantes arbitraires et indépen-
dantes.

La fonction y”(7) est un polynome en Ay, Ay, Ay, comme y(r) est indépendant
de ces arbitraires, lous les termes de ce polynome s’expriment algébriquement
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en fonction de r et y,. Les trois expressions

G . 2
J‘):(ra_ae)i, J]:/__fd'_c, J,= _JC.Q‘._T:
(,.z_ae)“'x (rz_az)H'T

s’expriment donc algébriquement & 'aide de 7 et Vo ,
En utilisant en particulier J, et J; on en déduit, en éliminant y,, que ces deux
expressions et 7 sont liées par une relation algébrique.

A
nécessairement rationnel; si cette relation est indépendante de J,, J, est algé-

Si cette relation dépend de J,, d'aprés le lemme I, <1 —+ E) et par suite g est

brique et 'on obtient le méme résultat.

En résumé, si v' figure dans F,, le rapport KJ est rationnel, et ceci que

¥2(r) soit ou non une fonction transcendante de r.

L . Ja traction £ étant irréductible.
m m

9. Supposons SA—:

L’expression J; doit s’exprimer algébriquement a I'aide de r et y, ou de r et J.
Les intégrales J et J; ont été étudiées a ce point de vue (n* 5 et 6). D’apres le

. . . . 2GC .
corollaire du lemme II, ceci n’est possible que si le nombre & ost eatier.
Notons que ce résultat s’applique quel que soit J, algébrique ou transcendant.

. C . . . o .
Si — est entier, J, (transcendant) ne s’exprime pas en fonction algébrique de
A ) P P gebriq

r et J (algébrique).

Si 28 est tier impair, J, est algébri
I—A——-CS un entier impair, J4 est algebrique.

2C

Donc Fy ne peut renfermer y' que si le rapport 1

est un entier impair.

. 2C . . ., e
10. Soit 3 =2n—1 Il nous reste & exprimer que l'intégrale J, se réduit a

une fonction algébrique de 7 et y, ou de r et J.
Supposons d’abord ¢ différent de zéro, I'intégrale J est transcendante, donc,
d’aprés le lemme IlI, I'intégrale

J.— dr . dr
3—/ )H_%J—'f(,.z_az)zn

(r*— a?

doit s’exprimer algébriquement a l'aide de 7 et de J ou bien encore a l'aide de r



132 E. HUSSON.

et de I'intégrale

e dr o . . dr
! -/ (”Te—f““—"” N

rn_a X

Les intégrales J; et J' se calculent élémentairement 4 I'aide de formules de

récurrence classiques, et I'on a

r—a
r+a

J;=09 (r) +oa log

J=o,(r)+olog(r+yrr—a?),

v et o, étant des fonctions algébriques, o et «, des constantes différentes de zéro.

Les points 7 === a sont donc des points critiques algébriques de J' et par suite
de toute fonction algébrique de r et J'; comme ces points sont des points singu-
liers logarithmiques de Js, 1l est impossible que J; s’exprime algébriquement a
I'aide de r et J.

. . , , dl, dY’ .
On peut aussi obtenir ce résultat en développant d—;’ Te dans le voisinage des

points r == a.
Soit ensuite ¢ = o, I'intégrale J se réduit & une constante, donc J, se réduit a
J, et par suite J; doit étre une fonction algébrique de r, ce qui est 1impossible (*).
P gebriq yceq P

Nous arrivons donc aux conclusions suivantes :

Tuatorime. — Dans aucun cas U'expression ¥y ne peut dépendre dey'. La

JSonction y.(r) est par suite toujours algébrique.

11. La fonction y,(r) est une somme de deux termes dont I'un est multiplié

par un facteur constant arbitraire; comme les deux termes sont indépendants de
cette arbitraire, ils sonl séparément algébriques.

Donc les deux expressions

c
=5 2G dr 2C
(r*t—a?) 4, —Ktange/——————g = K—tangs.l’

( r:— a2 )1_ A
sont algébriques.

En considérant la premiére de ces deux expressions, on en déduit que le

G , . .
rapport K est nécessairement rationnel.

(1) Au lieu d’appliquer le lemme IIl, on peut établir les résultats du n° 10 en déve-

loppant directement % let j—i: dans le voisinage des points r == a.



RECHERCHE DES INTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. 133

On obtient aussi ce résultat en appliquant directement le lemme 1 & la fonc-
tion y. (7).

Considérons la seconde expression.

Si € est nul, elle se réduit & zéro, elle est par suite algébrique.

Si ¢ est différent de zéro, I'intégrale J' doit étre algébrique.

Comme — est rationnel, J' n’est autre que l'intégrale J étudiée au n° 6 et nous

A

avons vu, en appliquant les propriétés des intégrales binomes, que le rapport i

doit se réduire 2 un nombre entier.
Nous obtenons finalement les conditions nécessaires d’existence suivantes :

Tutorime. — Pour qu’il puisse exister une intégrale algébrigue nouvelle
J

. . G . .G .
il faut : ou bien X rationnel et ¢ nul, ou bien 3 ontier.

-
12. Le premier terme Fo(hy, hoy by, s, ', 1) du développement de I'inté-
grale F étant le premier membre d’une intégrale premiére du systéme (8), (9),
nous sommes amenés a chercher, lorsque les conditions nécessaires indiquées
sont satisfaites, quelles sont les intégrales premiéres algébriques de ce systéme.
L’équation (8) donne I'intégrale algébrique
c

2C i !
»—tangsf(r?—a‘-’)“ dr = const.,

Z—1
ya(rt—at)t

ou encore

o

[

——1
f( r*—a*)* dr =const.,

. %-1 2 8ine C
hi=y253  + A \cose

3, étant défini par la relation

Cr*—sz,cose = h;=Ca?.

Le systétme (8), (9) n’admet pas d’'intégrale premieére algébrique distincte
de h,.

En effet, toute nouvelle intégrale premiére algébrique dépendrait nécessairement
de ', sinon y, serait une constante; or, nous avons démontré qu’une telle inté-
grale ne peut exister. Cela revient aussi a dire que y(r) ne peut étre algébrique
pour des valeurs arbitraires des constantes et cette propriété ressort nettement
des calculs faits.

Le systéme (4), (3) ne saurait donc posséder d’aatres intégrales premiéres

algébriques et indépendantes du temps que les quatre intégrales hy, hy, hy, hy.



134 E. HUSSON.

L'expression Fy est donc nécessairement une fonction de hy, hq, hy, h, et
dépend effectivement de h,.

§ IV. — Etude progressive de intégrale.

13. Revenons au systéme différentiel général (1 bis) ou au systéme (3) qui lui
est équivalent. ,

Le systeme (3) définit y,(r), Y(r) en fonction de ), et les équations (2 bus)
permettent de calculer y, (r), z,(r), z2(r).

Nous désignerons pary_,, )_,;, Z, 52, ')_” les valeurs des fonctions yy, ya, 34, 22,
Y’ pour A = o; ces valeurs sont définies par le systeme (8), (9) et les relations (6).

Substituons a la fonction y,(r) la fonction u(r) définie par I'équation

c .
c_ ; A, c_
(18) u(r)=y,z4 l+ 25?%{%> /(r‘ﬂ-—az)A 1dr‘,

y2 est une fonction algébrique de u, z, et r, donc 'intégrale premiére
F(hly h'zv h:}a )\r }’2, 7”7 l‘)

est algébrique en u, v/, r, et son développement suivant les puissances de X
devient

1 K
(19) F=F,(hy,liy. by, ) + 2 F (hy, hy, s, 11, Yry e+ AP F (g ey, w, Y ry+....
Le premier terme F, dépend uniquement de Ay, hy, hj, u car pour A =o
u devient identique & h,; Fy dépend effectivement de w et, par suite, ? est dif-
Ju
férent de zéro ().
Pour A suffisamment petit, l'intégrale générale y'(r), y.(r) ou wu(r), du
systéme (3) est développable suivant les puissances de \. On a

7= N Y,

u=h+rAe,+Nu,+...,

h, étant une constante arbitraire.

(1) On pourrait, en résolvant I'équation F = Fy(hy, Ay, hs, u) par rapport a u, amener le
premier terme a se réduire & u, mais cette simplification ne se présente pas comme trés
utile.
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Soient de méme :
=y A+ Ry 4+,

Ya= Yo+ Ay 4+ A2y 4. ..,
B =3 + k3, + A5 4. .,

Zy== 5y 4+ A5, 4+ A5 ...

les développements suivant les puissances de X des fonctions y, (r), y.(7), 5,(r),
z5(r), ces développements étant donnés par les égalités (2 bis) et (18).

Remplagons u(r) ev y"(r) par leurs développements dans Dégalité (19g), le
second membre prend une valeur constante (c’est-a-dire indépendante de r),
cette constante étant une fonction de A, A, ko, hs, Ay, ..., soit

F(hyy hoy by, A, 10, 3", r) = ®(R).
1
Donc, si nous développons ®()) suivant les puissances croissantes de A7, les

coefficients de tous les termes du développement seront séparément des con-
stantes. L’égalité (19) donne

1
(D()‘) = Fo(hl, hzv h3v bé) -+ )\FFl(hn h?s 113’ hu 79 ") +...

dFO(/lU b:!, /13’ hk)
—l—)\[ul oh,

+ Fp(hh /l;n hb; /lln 7_/7’ I‘)] “+...

~ OF 1, 0*F OF,(hyyhgy by hyyy", r , OF . -
+7\2[ 5]1_: S u dh;—l-u, oy ;h: vy )—i—y,5}_7’,’—|—[‘2p(/l,,/zz,lz3,hb,y”,r)]

en remarquant que Ay, h,, ks sont supposées indépendantes de A.
On a donc, en utilisant les termes correspondant aux puissances entiéres de X,

(20) u, g%’ + F,(hyy by, hyy by, ¥7, 1) = const.
13
OF, ,OF, 1 ,0F IF —
(21) uZ(_)TZ -+ 71 ;)_;_(’f -+ 5 % dh%o -+ Uy “(ﬁ -+ F?p(hh Ilz: 113, hh }',’ I') = const.
OFy(hy, hay by, - o .
Comme 90! ld/lzi M) o5t différent de zéro, Iégalité (20) exprime que u,

est une fonction algébrique de Y et r; cette condition étant satisfaite et x, calculé,
I'égalité (20) donne F .

L’égalité (21) exprime que u, Yi» w1, Y" sont liés par une relation algébrique
et elle donne F,,.
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Nous discuterons successivement ces conditions.

14. La relation (18) donne, par dérivation, pour définir u(r) I'équation diffé-

rentielle
du % ?(A,ryz—z,sins+)\y”coss)+(%—1>Q;f2(rz2-)\y”y2)
47;_2(“'2 ‘¢ COS (33— h5y)
asine/ C \A £y
A <cose> (r—aht
ou bien
CcoSe ( C) . C
du  2CA %—2 s A 2 TR ac zA
7 = sy Y — Ztange —%—
7 cose 59— A3y A Z9— A3y
c
asine/ C \* ¢
A <cosa> (r—ah)t

Le second membre se présente sous la forme d’une fonction rationnelle expli-

cite de A.
1 vient, en développant cette fonction rationnelle suivant les puissances de A

du  2C %—3 cose C\ ., 5y, 1z},
[ a2+<1—1—\>y2]<)\+z—2-1+1—.2227\ +>

22 — =
(22) dr ~ cose ® A
3 c ¢
a2sine / G \* -1 2C <1 5, 52
+ — rz—a)d — —Ztangezl )\+—-'
A <coss> ( ) A 8E% 1.2 53

En remplagant, dans 'équation (22), u(r), Y'(r), 32(r), ... par leurs dévelop-
pements suivant les puissances de A, nous obtiendrons, en égalant les coefficients des

diverses puissances de A, les équations différentielles définissant w, (r), us(r),

Les termes indépendants de A donnent

du _ o ou bien © = const.— A
ar— 7 o B

Les termes en A donnent

diy _ 2C (i 7S m(1-5) 5]

(23) @ = cose

G
@ (5407

A

L’intégrale premiére 2, permet de calculer z), sous la forme

3y €08e = A ¥, ya— 5; C0se — 27" sine.

12+...>.
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Enfin I’étude du cas particulier A = o nous fournit les fonctions W, %, )—f;, .
entrant dans le second membre de I'équation (23).
On a notamment, en posant

~|
—~
)
)
-~
o}
s
-

(24) dl"  a2hy cose ¥ hy 1
dr — G LT A I
(r2—a*)A (r:—a?)A

E:———l——[/z’— ——tangs/(z- a? )A dr]

(ri—a?)i "

—1
A
K, = h, (9(.?5) .

(25)

e

§ V. — Etude du cas % entier, ¢ différent de zéro.

15. Nous rencontrerons fréquemment dans la suite des intégrales hyperellip-

f(ﬂ a*)*dr ou f(r* )’

2o étant un nombre entier positif.

tiques de la forme

Ces intégrales se calculent élémentairement a ’aide de formules de récurrence.

On a, en intégrant par parties,
f(ﬂ— a)dr=r(rt—a*)*— 2o_cfr‘2(r"—~ a*)*tdr,
On en déduit

(a) f(r’—a’)“d/-: r(r—a)r  2ed f(rz—zﬂ)““‘ dr

200 +1 20 —+1

et, en changeant o en — «,

b dr ___ 1 r 20t — 1
(%) (/T“)““—— 2aa’ (/'2—a2)°‘_ 20 a? (7 —a? )°‘

Les formules de récurrence (a) et (b) sout classiques et s’appliquent, quelle que
q ppiq » q q

soit la nature du nombre a.

Soit -i— = n.

Fac. de T., 2 S., VI 18
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Pour satisfaire & la condition exprimée par la relation (20), étudions la nature
de la fonction y”(r) ou encore I'".
Posons

m(r) :f(ﬂ— a?)"1dr,

II(7) étant la fonction primitive particuliére s’annulant pour 7 =o;
II(r) est un polynome fonction impaire de r.
Pour calculer II(r), on a, en appliquant la formule de récurrence (a
) ) pPphq ’

3 2 ___ y2\n—1 - 2
f(ri—az)”—‘ dr — r(r’—a*) _ 2(n—1a f(l"’—cﬂ)”_?a'r,

20— 1 20 —1
r(r:—a?)v-2? 2(n—2)a?
f(rz—az)’l~2d,-—_: ( 2/L—~§ - (Q;L%; f(/'?—az)"—3dl',

Il en résulte
(26) M(r)=rlay+ a,(r*— a®) +. ..+ a,— (r*— a*)*1],

Qyy Ayy Asy ..., ay_,y étant des constantes différentes de zéro.

Les équations (25) et (24) s’écrivent alors

— 1 , 2C )
V= R g [ha— lange I, )],
I — 2 hy ), cose dr _h dr L4,y sing M(rydr
- G (r*—a? )2n+1 A (,.2_ a?)n+i - A (,.2_ a2)2u+l )

La troisiéme intégrale figurant au second membre est une fonction rationnelle
de r daprés I'égalité (26).
Pour calculer les deux autres, on a, en désignant par m un nombre entier et

en appliquant la formule de récurrence (),

dr _ I r om —1 dr
(,.2_ az)nu»l - 2ma? (,-'.’_ a?)m 2 ma’ . (,.-z_ a‘l)m’
. dr . 1 r am—3 dr
(r*—a®)m - a(m—1)a® (1 — a?)"1 a(m—1)a? (,.:r_az)mw’
........................ ey
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[l en résulte

bO bl bm—i r—a
( 7)f(,___ )m+l [(, az)m+(,-z___ a2)m—l +.”+,-'-‘_a2] +b,,110g,_+a7

bo, by, b, ..., by étant des constantes différentes de zéro.

Les calculs précédents montrent que la fonction y'(r) est une fonction algé-
a

brique de r et de log : : .

JF, , . . . s
16. La constante —* étant différente de zéro, la relation (20) s'écrit

oh,
a
(28) uﬂ—cP( logr—|—a>
i . . r—a
¢ étant une fonction algébrique en r, et log ra

Or Péquation différentielle (23) montre que u,(r) est un polynome entier en
ha, hs, by, comme Ay, kg, h, sonl des constantes arbitraires sans aucune liaison,
la condition précédente est satisfaite pour toutes les valeurs numériques de ces

r—a .,
conslantes, car log 7 g enest indépendant.
“+a

En particulier pour Ay = hg=o0, on a
;,r/:k(,.z__az)n’

k étant une constante arbitraire;

d C - - C\ -
dl:1_ 2 <2>A 3— [cose%_'_(l_K)(ﬁ)a]

COose

4C i,/ . Cry,
—I——A—<X—l> tange /..2) <sme+ z >

et, par suite
b ki

% —=a(r*—a*)—24 <1 —_ %)r(r?— a*)"2 oy + oty I1( 1))

c 1 , 20 ?
—+ a3<[—~ K) p g [/la* A Laugell(/')] .

%, oy, 0z, %3 sont des constantes numériques, la derniére élant toujours différente
de zéro.
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On en tire

C 2C 1 dr -
Uy = a3<1 — K)f[h;— X tange Il(r)J [l fonct. algébrique de r

ou bien
’ a; C 2C 2
u, = ~2—;<I-——K> [h;-xlangsﬂ(a)J log(r — a)
% (_C\ [+ 2Ctange 11(a) | log + fonct. algébrique d
—sa\l— 3 14—|—K- angell(a)| log(r+a) -+ onc.a,,e‘uque er,
en observant que II(r) étant une fonction impaire, II(— a) = — I (a).
On a donc

r—a

_4C C H(a) s s
Uy=— = <1 — X>a3 P tangelog(r*— a?) + fonct. alg. de r et logr a
Je dis qu’il est nécessaire que le coefficient de log (72 — a?) soit nul.
Si, en effet, il n’en est pas ainsi, la relation (28) s’écrit

(28 bis)  log(r—a)+log(r +a)=q¢,[r, log(r —a)—log(r+a)],

¢4 étant une fonction algébrique de r et de la différence [log (r—a) — log(r—+ a)].
L’égalité (28 bis) ne peut étre indépendante de log(r — a) et log(r 4 a) sans étre
aussi indépendante de leur somme et de leur différence, ce qui est visiblement
impossibie. Il suit de 13 que cette égalité n’est pas indépendante de log(r + a),
sinon elle montrerait que log(» — a) est une fonction algébrique de r; on en tire,
par conséquent,

(28 ter) log(r + a) =o,[r, log(r— a)],

@2 étant une fonction algébrique de r et log(r — a).

Le second membre de I'égalité (28 ter) est une fonction de r admettant le
point 7 = — @ comme point critique algébrique, donc cette égalité est impossible,
et 'on a, par suite,

<1 — %) tangeIl(a) = o.

Si II(a) était nul, le polynome impair II(r) serait divisible par (r2— a?) et,
par suite, par r(r*— a?)", ce qui est impossible car le polynome II(r) est seule-
ment de degré 2n — 1; d’ailleurs, I'égalité (26) donne (@) = aa,, et 'on sait
que a4 est différent de zéro.
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On a donc nécessairement

<1 — :—{—) tange = o.

Tutorime. — Pour qu’il existe une intégrale algébrique nouvelle, il faut :

c . .
1° Que le rapport 3 soit rationnel;

2° Que le centre de gravité du solide soit situé dans le plan équatorial de
Uellipsoide d’inertie supposé de révolution.
La seule exception est le cas de Lagrange.

9 rationnel.

§ VI. — Etude du cas 1

17. L’angle ¢ étant toujours nul, les équations ulilisées se simplifient et de-
viennent

du 2—3 o[ =2 C\ , 34 1 5}
(29) —%_2ng 7 [K+<I—X>y2] [)\—i— ;—27\34—;3 33124—...],

C C
Y= N, (Zz)l—xz R (r*— a? )l_x,

— ¢
}’”: (r:— a‘l)AI‘”;

dI o hyh, 1 hy 1
dr —  C T A [
(30) (,.a_az)A'H (rz_az)A'H
)du,_ oo ) I - C\,, 1
[ 7;-—2C r K(, '—'a) +<I—*K>Ilb m .

Les équations (30) sont de la forme

d-
= [ — o [ AT 40Ty,
(rr— a'z)T+1 (,.2_612)X+1
‘ u‘:‘/l‘” [oc(ﬂ—az)A —!—1372—_—‘7] dr,

Ay, Az, A5 étant des constantes arbitraires et indépendantes, « une constante nu-

(31)

mérique non nulle.

La fonction u,(r) doit étre, d’aprés la relation (20), une fonction algébrique
de ret 1.
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Or nous avons montré que I'expression I" est, dans tous les cas possibles, une
intégrale abélienne transcendante; donc, d’aprés le lemme III, il est nécessaire,
mais non suffisant, que U'intégrale abélienne

2C
— T S 1 .
J_/[a(r a®) +>\"r<—a]d'

s’exprime algébriquement en r et I".

L'intégrale J esL un polynome entier en X;; donc, comme I" est indépendante
de la constante arbitraire A, les deux intégrales

J,= rz—az)%—‘ldr Jo= ar___ L logt—2
1= ] ’ = m T 54 % 1 a

doivent s’exprimer algébriquement en r et I'".

Il résulte de I'expression de J, que J, et I” doivent s’exprimer algébriquement
r—a r—

» et, comme log
r+a

en r et log

a ., .
g oSt indépendant des deux constantes arbi-

traires A, Ay, il en est de méme des deux intégrales

3 d‘ .
— T, T,= o
(r:_az)T_H (r*— a? )K'H

rl:

[ [

Les deux intégrales Ty et I'; sont de la forme

dr
K=[ e

m étant un nombre positit et rationnel.
Dans le domaine du point r =a, on a

1 c, ¢ ¢,

(’.2_ az)m+1 - (,- . a)m-H -+ (,- - a)m + (,. _ a)/n—i -+

2C
A

admettent les deux points r === a comme points critiques algébriques. D’autre

Donc, si le nombre == n’est pas entier, les deux intégrales abéliennes T, et T,

. 2G . ., . . .
part, si le nombre N n’est pas entier, I'intégrale binome Ty ne s’exprime pas a

’aide des fonctions élémentaires; elle est donc transcendante et ne peut, par
r—a
r+a

suite, étre une combinaison algébrique de r et log
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Les conditions nécessaires d’exisience d’une intégrale algébrique nouvelle

~

N .. 20 .
se complétent donc par la condition | entier.

~

2G
A

rence indiquées, que J,, Ty, T, sont des fonctious algébriques de r et log

est entier, on montre de suite, a ’aide des formules de récur-

Si le rapport
r—a
r+a

18. On peut aussi arriver rapidement au résultat précédent sans utiliser le

lemme 111.

2C .
Supposons == non entier.

A

L’étude de Ty et Ty nous a montré que la fonction I admet les deux points
r = a comme points critiques algébriques.

L’expression u,(r) étant une fonction algébrique de r et I” posséde donc la
méme propriété.

Or u,(r) est un polynome entier en A, Ay, Ag; donc I'expression u,(r) satis-
fait a la condition précédente pour toutes les valeurs numériques des arbitraires 4,
Aoy As.

En faisant

=1, Ay=2A;—o,
Pintégrale
2C

J3:/ L(rr— az)T_‘ld/'

doit admeltre les deux points r === a comme points algébriques.

En posant
2C =m
A - b
on a, dans le domaine du point r = a,
c, c c
T, = o ! e —2
1 +(r—a)"l+(r—a)”‘—‘+ (l.__a)m-p ’
et, par suite,
d 2 1 d
T,(r+a)ym2= 0 2
1((r+a) (r—a)m m(m—1) (r—a)mt + (r—a)r* + ’
dJs. d, 2 1
=2 = - ds(r —
dr — (r—a)? + m(m—i1) r—a it dy(r—a)+

. 2C . .
Donc, si N n'est pas un nombre entier, J, admet les deux points r=-a
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comme points singuliers logarithmiques et, par suile, «,(r) ne peut élre une
fonction algébrique de r et I".
.2C . . ), .. ,
SI—A- est entier, on constatera par la suite que I’étude du cas particulier précé-

dent ne peut donner aucun résultat.

19. Les conditions exprimées aux n° 17 ou 18 ne sont pas nécessairement suf-
fisantes pour que u(r) s'exprime algébriquement a I’aide de r et IT".
. o r—a
Nous avons vu au n° 17 queI” est une fonction algébrique de et de log —
i
cette propriété résulte d’ailleurs immédiatement des formules de récurrence (a)
et (b) appliquées a Ty et Ts.

. . r—a
La fonction u,(r) est un polynome entier en A, Ay, A3; comme log a st
indépendant de ces constantes arbitraires, tous les termes de ce polynome

—a ,
- Donc, pour que l'éga-
a ’ .

. Sl e r
s’expriment algébriquement a l'aide de r et log

lité (20) soit vérifiée, il faut et il suffit que les quatre intégrales

2C_, T
J3:[r1<r'2—a2)A dr, Jk:f,--z_l dr,

a?

2 ‘ZTC_Z r?
Jszfn(rz—a-) dr, 6:\/F--_—-(;Zalr

. o . r—
s’expriment algébriquement a l'aide de r et log

+a
Les calculs présentant des différences profondes suivant la parité du nombre

. 2 ,
entier —y ’ hous séparerons les deux cas.

§ VII. — Le rapport % est entier. — Impossibilité.

2()¢ S()it
) —n
— .

L égalité (27) donne les expressions des intégrales I'y et T',. On a

. b, bl bn—l r—a
rz_r[(rﬁ_a'—’)u + (rt—a*)"! et ETa | T b”lOg" + a

r —

Je dis que J; n’est pas une combinaison algébrique de r et log T




RECHERCHE DES INTEGRALES ALGEBRIQUES DANS LE MOUVEMENT, ETC. 145

En effet, on a

Js:fr(r?— @) by 4 by (r*—a?) ..o by (1P — @) ] dr

r—a
b 2 g2)2n=2lpgo - dr,
+ nf(' ) °r+a

Soit d’abord
n2a.

La premiére intégrale figurant dans 'expression J; est un polynome entier en 7.
Pour calculer la seconde, posons

f(rz— @) =rdr =P (r).

P(r) est un polynome entier en 7 ne renfermant que des puissances impaires.

On a, en intégrant par parties,

f(,.z__az)znAHOgr——adr:: P(r)log":Z—fP(r)< ! . I >dr.

r+a r r—a r—+a

Comme P(r) est une fonction impaire de r, on en déduit

JSZ_P(a)lOg(l.z_az) _|_(P<r, log::a>a

a

—

. . S e r—
© étant une fonction algébrique de r et log -
r—+a

Le raisonnement indiqué au n° 16 s’applique a J;; celte expression ne peut se

e . o r—a
réduire a une fonction algébrique de « et log 7 que pour P(a)=o et, comme
P(a) est différent de zéro (n° 16), il y a impossibilité.
. , 2C _ .
Les calculs qui seront effectués lorsque - ©st un enlier impair montreront que

Js, J4, Jy s’expriment algébriquement a 'aide de r et log r—«a

r+a
Examinonslecas n =1 ou A=C. On a

I ardr I r—a
Js——mfm—wf"’gmd’-

Il s’introduit deux termes en log(r2 — a?) et 'on voit que 'on a

1 r—a
Jy—=— —rlog——.
r+a

4a*

Fac. de T., 2° S., VIIL I9
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ntorime. — Le rapport 3 Gtant entier, il n’existe d’intégrale algébrique

nouvelle que dans le cas o Uellipsoide d’inertie relatif au point de suspen-
sion se réduit & une sphére.

~

§ VIII. — Le rapport 27;1 est un entier impair.
21. Soit
2 C =m=2an 1
—K u— p— — 1.

Je dis que J;, Jiy Js, Jo s’expriment algébriquement a I'aide de r et de
r—a
o83 1 a’

On a

dr : dr
F,:fm, L= [ ——=-

(r—at) ?

L’égalité (27) donne

— bo b1 bm--l r—a
I“_—r[(rz— a?)m + (r*—a2)m1 et E— g | T bmlOgr—l—a'

Pour calculer T’y on a, en appliquant la formule de récurrence (b),

dr 1 r 2(n—r1) dr
el T (an—1)a? =1 (2n—1)a? 217
(rt—a* ? (rt—a?) ? (rt—az?) *

dar . 1 r 2(n—2) dr
2"—‘_—(2n—3)a2 2"—3—(211—3)512 2n—3°
(1‘2——-612 2 (,.2__a2) 2 (rz_az) 2

|

r,— r o + C: USRI s NP
2— (,.2 az); (,.z__ az)n—l (,,2___ az)n—z cet 72— qt nt

Ci, Cay ..., Cp Gtant des constantes.
La forme de Pexpression I'; montre que J; et J; sont des fonctions algébriques

de r.
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On a, d’aprés I’expression de T'y,

JA:¢(I'>_+fr2La2 log =% ar,

r—+a

ou bien

Ji=y(r)+ ha <log a>2,

r+a

¢(r) étant une fonction algébrique de r.
Pour calculer J; posons

P(r) :f(rﬁ— a*)ym2dr.
) 2C .o » e . S s
Supposons d’abord T différent de Punité, m est un entier au moins égal a
trois; par suite P(r) est un polynome entier en » donné par I'égalité (26) :
P(r)=rla,+ a,(r*— @) Ay (P — a?)m-1].

On a, en’intégrant par parties,
P(r)
J3— r P( ) f(, a.)m—i—l dr.

D’aprés l'expression de P(r), l'intégrale figurant au second membre se réduit a
une fonction rationnelle de r, et 'on a

J,= b, P(r)log :;Z + 4, (r),

¢, étant une fonction algébrique de r (*).

.2C , N ., ., . .
Si 5 est égal & 'unité, les intégrales J; et J. sont identiques.

2(C .. . . . . ,
Donec. lorsque —— est un entier impair, les fonctions u, et I s’expriment algé-
) q A K p

. . r—
briquement a I'aide de r et log .
I+ a

2C .. e e, ., . R
22. Lorsque —4 st un entier impair différent de I'unité, on obtient, d’aprés ce

. . Lo . 2C .. AT
(1) Ce résultat, étant indépendant de la parité du nombre X justifie les indications don-

nées aux n° 18 et 20 sur les intégrales non calculées explicitement.
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qui précéde, les résultats saivants :

G —
=7 (rt—a?) A= b,log—2 +o(r),
r-+a
(32) A )
u,:ahb,,,P(r)log%’l + ﬁh%(log%‘—;) + 9. (r),

o(r) et o, (r) désignant des fonctions algébriques de 7.

e r—a ) . .
En éliminant la transcendante log e entre les équations (32), on obtient la
relation unique donnant u, comme fonction algébrique de r et ?’ Cetterelation est

_c
A

u,:aP(r)[V(rz—a?)

2 . . ?
_(19(')]_"47):[, [Y.'/(,.z_af) A_(?(,)] +CP1('.)'

Et, en remplacant dans I’égalité (20), on en déduit

[
X

\

) ; K .
F,,(Iz“/z‘_,,lza,/z,,,?”, r)=-— %% ot P(r)[?(r?——a?) ! —cp] + [7(1'2—a2) A cpJ %—i—const.

3
{ hah b,
En substituant « et y” aux lettres A, et 7, dans P’égalité précédente, on obtient
le terme en A du développement de I'intégrale algébrique F.

Les équations (32) et, par conséquent, le calcul de F, ne s’appliquant pas
2C , . .y . :
lorsque le nombre x est égal & I'unité, nous écarlerons dans la suite le cas de

Mme Kovalevsky.

23. La relation (20) étant satisfaile, passons aux termes en A* du développe-
ment de I'intégrale algébrique F et cherchons a satisfaire a la relation (21).

. — . o o r—a
Les fonctions u, et y" s’exprimant algébriquement a I'aide de r et log o
la relation (21) est de la forme

r

_(‘
iy —2),
r+a

0]"0 dFo "o oa g—gg ) )‘3 NS
u,m——(—)@yl(r—a) al(”)‘*‘m[}’ (r a*)

— cp(,-)]}:@,(,‘, log

. oF ey ,
ou bien, comme =2 est différent de zéro,

o,
7 I‘—i—c_t

Cr _
_¢ A r—a r—a

p J— (2 oy A M e J— . . .

(33) V=u,—yu a*) [1P(r) R 2alnb . aJ __(D<1,log >a

. . - r—a
® el @, élant des fonctions algébriques de r et log .
! ° Srt+a
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L’équation différentielle (29) s’écrit

du %—2 AR ’ C Fi—?TC , 544, I
217_20" 4 X+<I_K>N2 “ <)\+z_2)\+l.2

-1y

NIN

2)\3+...>,
2

on en déduit en remplagant w, ¥, 3,, 3, par leurs développements en série, sui-

1o

vant les puissances de 2,
c 2¢ c
/ du ~( X—2 ” ! G - 1~T 9 Al C - —-X_l—”y
(34) d—::2(,<z2) Y’[K +<1—K>(:2) /l;f:l—!—ﬁ(,(l-—l—\)/t,‘(zg) 7",

. E—3_ ¢ \ / C2 _ 1—2——(—;
+2C0(5)" 75 [T; <X — 2) -+ kﬁ — 1>/12(5-z) '
o f‘._.s___ C . 1-‘£
+203,(3)" y”[l—I\-+<1—K>h‘j(:2) A]-

L’expression v” est donnée par I’équation différentielle

" 3,— 13 T VoG — V15 3
Ely_zcye‘q g 2~:C[.y2 1~ .71Z_+)\(),251_y1z2) 124_)\2()_,_]
~ 2

r 39— A3, 5

L’expression v} est donc solution de ’équation

|
|
]
'

(3

o ay N | 33 L
(35) _71:(][)/2_'_ +;1J—'~2 _52(};—1; —y'1+(y251—".7152)(5_;)‘i:|'

dr

Les quantités y', ¥, 2,, 5, sont déduites des équations (2 bis), correspondant

aux intégrales classiques, a I'aide des relations conséquences,

- /_}__:~ ! P ~ /_L_zc o
Y18y =+ Ry Yo Byt 5 Y, A 'y =0,
18 C _t
—\ 73 —\" A,
yi=u,(5,) +h4<1——x>(zg By,

L’expression V est une fonction des deux constantes arbitraires /4, et A, ; comme

r—a . . . .

log est indépendant de ces constantes, la propriété exprimée par I'équa-
r+a ’

tion (33) est satisfaite pour Loutes les valeurs numériques des constantes h, et A;.

On voit, d’ailleurs, que V est un polynome en %, et hy et, par suite, reste fini

pour toute valeur de £, el A;.
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24. Examinons le cas particulier Ay = hy;—=0. On a

1= 0, Z;ZAZZ’

— N )2

=20, o @
Sg Sy

= ,_ 2C - =,
ziyi—_’x’}ﬂ_‘yl"z_yz"u
c

7 A r—a’
" — k(r? 2\A A ) JFI 3 o !
Y'=k(r*— a?)A, u,_/\[alu)—i——Qaloor aJ+k'

[’équation (35) devient

dr z

ou bien

ayy _C 2ar o . a1/ 2G 20 a?

P W L e A € e )

En posant
C
Y= (r*— a?)ir",

on a

dr’, 2 ., (2C 2C  a* I
77-e’”“(x“+xm>r7_—aa'

En appliquant la formule (27), on en déduit

tC_r ! <9—|>Iogr—aJ+k”,

C
M=2C 22N, | — 2 —— + —
A r—a 2a

k, k', K" étant des constantes arbitraires.
L’équation (34) devient, dans les conditions particuliéres indiquées,

’ rr—q?

du, \2—1 o [ (r?— a?)m—2 B
dr'_Q( I‘l[ A + 9J

B

G\ -2 u ,
41§ )€ b (r an |8+ G |

a?

B, B4, P2 étant des conslantes déterminées.
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Comme on a m2 3, il en résulte

4 /C ) , I . s r—a 8 _C) ,2/ P(r) /
"2—A_C<K—I,ll‘k a—af(r—-a) logmdr—i-m =3 /15/.' A

r—a

+ fonction algébrique de r et log
r+a

Or, en intégrant par parties, il vient

—a

f(r“—az)m—’log:+adr:P(r)log P(r)

r —
2 3 5
r—+a re—a*

dr.

On a donc

12 C , [F P(r) r—a
Uy = ¥ (I — X)/z,,k-f*——ﬂ_a?dr-k cp(r, logr_l_a).

/

En revenant a I'expression de P(r), donnée par Pégalité (26),

6 . C r—a
Us= 4= (1— K)hbkﬁao log(r?— a?) —|—<p,<r, logr+ ),

a

1.2.3...(m—2)

@ =(—1)""2(2a?)m 1.3.5...(2m —3)’

r—a

¢ et o, étant des fonctions algébriques de r et log T

Dans les conditions particuliéres hy= h;= o, Y est une fonction algébrique
r—a
r+a
D’aprés un raisonnement indiqué au n° 16, ceci exige que I'on ait @;—=o0; comme a,

de r et log ; donc, d’aprés I'équation (33), il doit en étre de méme de w,.

est évidemment différent de zéro, nous avons mis en évidence Uimpossibilité de
2C
A

obtient aussi le résultat trés facilement en formant 1’é uation différentielle qui
q q

Uexistence de 'intégrale algébrigue F lorsque == est différent de {’unité. On

donne la fonction V et en utilisant les conditions hy= h3=o0. Cette équation
différentielle est indépendante de u, et Y,, elle s'introduirait naturellement s'il
était nécessaire de continuer le calcul.

Nous arrivons finalement aux conclusions suivantes :

Les conditions initiales étant supposées arbitraires, les lettres A, B, C re-
présentant les moments d’inertie ou des nombres positifs quelconques, toute
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intégrale premuére algébrique et indépendante du temps du systéme diffé-
rentiel définissant le mouvement d’un solide pesant autour d’un point fize
est une combinaison algébrique des intégrales classiques.

Il R’y a exception que dans les cas d’Euler, de Lagrange et de M™¢ Ko-

valevsky.



