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SUR UN PROBLEME

RELATIF A LA

THEORIE DES EQUATIONS AUX DERIVEES PARTIELLES

DU SECOND ORDRE

(SECOND MEMOIRE ),

Par M. E. GOURSAT.

Ce Mémoire est consacré a ’étude du méme probléme que le précédent ().
Mais, au lieu de supposer la fonction f(z, y, 5, p, ¢) et les données analytiques,
je suppose les variables essentiellement réelles et les conditions de continuité
réduites au minimum. La marche suivie offre un parallélisme presque complet
avec la marche suivie dans le premier travail; les méthodes seules sont différentes,
en particulier celle qui est employée pour résoudre les équations fonctionnelles
que l’on rencontre. Il est clair que, dans ce nouveau probléme, il ne saurait étre
question de 'emploi des séries entiéres.

La nouvelle méthode s’appliquerait aussi sans difficulté au cas déja traité des
intégrales analytiques.

1. Je rappellerai d’abord les résultats obtenus par M. Picard (?) pour deux
problémes spéciaux, que l'on peut considérer comme deux cas particuliers
importants du probléme général dont je m’occupe.

Etant donnée une équation

S:f(x, Yz, P,(]),

2

il existe, sous certaines conditions de continuité inutiles & rappeler dans ce
résumé, une inlégrale qui est continue, ainsi que ses dérivées partielles du
premier ordre, lorsque z varie de zéro a a(a>>0), et y de zéro a B(f5 > o), et qui

(1) Voir Tome V de ce Journal (2° Série, p. 405-436).
(2) Note du Tome IV de la Théorie générale des surfaces de M. Darboux.
Fac. de T., 2° S., VI. 16
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se réduit pour ¥ = o & une fonction déterminée () de z, et pour £ =0 a une
fonction déterminée 4 (y) de y.

Dans le cas particulier des équations linéaires
s=ap+ bg+cs,

on peut énoncer le résultat sous une forme plus précise. Si les fonctions a, b, ¢
sont continues dans le rectangle R obtenu en faisant varier  de o 4 /, et y de o
am, et si les fonctions données o (), 4(y) sont continues et admettent des dé-
rivées partielles du premier ordre continues lorsque x varie de o a et y de o a m,
I'intégrale répondant aux conditions initiales est elle-méme continue dans le
rectangle R.

La méthode employée par M. Picard permet aussi, comme il I'indique rapide-
ment, de déterminer une intégrale d’'une équation linéaire, se réduisant, pour
y = o0, a une fonction donnée f(z) et, pour ¥ = x, a une autre fonction o(z).
1l n’y aurait aucune difficulté a étendre la méthode au cas d’une équation de la
forme plus générale s = f(x, ¥, 5, p, ¢). On pourrait aussi, a l'aide d’une trans-
formation que nous emploierons plus loin (n° 10), traiter le méme probleme
lorsque la droite y = z est remplacée par une courbe issue de 'origine, en rame-
nant ce probléme au probléme de M. Picard.

Il ne reste donc a examiner, dans le méme ordre d’idées, que le cas ou 'on se
donne les valeurs de l'intégrale le long de deux courbes issues d’un méme point,
aucune de ces courbes n’étant une caractéristique.

2. Nous traiterons d’abord un certain nombre de problémes préliminaires :

Prosrime 1. — Soit =(z) une fonction définie dans Uintervalle (o, a), oit a
est positif. Déterminer une autre fonction o(z), définie dans le méme inter-
valle, et telle que ’on ait

(1) o(az)—o(a)=x(z) (0<z<a),
% étant une constante positive différente de l'unité.

v ; : . ffet hangeant Z dans la relati
1\OUS [)Oll\OﬂS SllppOSCl OL> I, en clie ,en C angean . X en p ans la relation

() rer=—=(2)

: A \ - 1
et nous oblenons une relation de méme forme, ou « est remplacé par Pl w(x)

précédente, elle devient

par — :<;> - Nous supposerons constamment dans la suite o supérieur a un.
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Si la fonction cherchée o(z) doit éire continue pour z =o, ce que nous
admeltons.aussi, ¢ (a2) — 9 (z) tend vers zéro avec z; la fonction =(z) doit donc
tendre vers zéro lorsque x tend vers zéro pour que le probléme soit possible.

Celte condition étant vérifiée, on déduit de la relation (1), en y remplacant suc-

cessivement x par ;, prl ey ﬁ’ ey

et par conséquent
(2) o(x):@<—n>+7r(~>+7:<—;>—l—...+7’:<—~>-
! P\ \ O 4 ol

Lorsque le nombre n croit indéfiniment, — tend vers zéro et cg(—) a pour
a

all
limite ¢(0). Pour qu'il existe une fonction o(z) répondant A la question, il faut
donc que la série dont le terme général est = = ) soit convergente, et, lorsqu’il
ar ) ) q

en est ainsi, la fonction o() a pour expression

(3) (p(x):q)(o)—t—ﬂ<§>+7f<£>—I—...—l—ﬂ(\%)—{—....

On voit que cette fonction o(z) est complétement définie, 2 une constante
arbitraire prés o (o), comme il était évident @ priori, et 'on vérifie immédiate-
ment sur la formule (3) que la fonction ¢(z) satisfait hien a la relation (1) dont
on est parti. ‘

Si la série
) (%)
n=1

est convergente dans un intervalle (0,0), o 0 << b< a, elle sera convergente

. 3 o
dans tout l'intervalle (o, @), car, a partir d’une valeur de n assez grande,
o’ gua1? * - seront inférieurs & b. Tout dépend donc de la facon dont la fonc-
tion =(z) tend vers zéro avec z. S'il existe une puissance positive de z, soit z¥,
n(x)
xt

telle que le rapport tende vers une limite, la série est convergente. Plus
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généralement, supposons qu'il existe trois nombres positifs u, ¢, K, tels que
Ion ait
|m(z)| <Ka*  pour o<<x<Ie.

A partir d’une valeur de n assez grande, — sera inférieur & ¢, et 'on aura
o

n
X
@

les termes de la série (4) sont donc inférieurs en valeur absolue aux termes d’une

x¥ Kat
prTR—T

<K

progression géométrique dont la raison a~* est inférieure & ’unité.

Le méme raisonnement prouve que la série est uniformément convergente dans
Pintervalle (o, @). Sila fonction =(z) est continue dans cet intervalle, il en sera
donc de méme de la fonction o(x).

Remarques. — 1° Lorsque la série (4) est convergente, la fonction ©(z) est
définie dans un intervalle (o, a«), plus grand que U'intervalle (0, @), mais la rela-
tion (1) n’est vérifiée que dans I'intervalle (o, @), si la fonction =(z) n’est définie
que pour les valeurs de z inféricures & a.

2° Il est facile de former des exemples ou la fonction =(z) tend vers zéro
avec z, sans que la série (4) soit convergente. Soit

@)=  (a<1),

on a

por

X . — 1 _ I
ar) = x\  nloga—logx’
log< ) °

et le produit IZTE(;%) a une limite positive lofroc : la série (4) est donc diver-
gente. °

3° Le probléme que nous venons de résoudre n’offre aucune difficulté si 'on
suppose la constante o négalive.

Soit o =— 3, f étant positif. On peut choisir arbitrairement la fonction o(z)

dans P'intervalle (o0, @) et la relation
o(—pBz) —o(z) =n(x)

fait connaitre le prolongement de cetle fonctlion dans l'intervalle (— af, o). Le
probléme est donc tout a fait indéterminé dans ce cas.

3. Nous allons supposer maintenant que la fonction =(x) est continue et admet
une dérivée @'(x) continue dans I'intervalle (o, @), et, en outre, que cette dé-
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‘rivée ='(x) satisfait a la condition de Lipschitz, c’est-a-dire qu’il existe une

conslante positive K, telle que I'on ait 'inégalité
(3) |7'(z)| <K,z

pour toute valeur de z comprise entre o et @. Si K est la valeur maximum
de ©'(x) dans cet intervalle, on aura aussi, d’aprés la formule des accroissements

finis,

(6) [m(x) | <Kz

pour toute valeur de x eutre o et a.
Prenons o(0)==o. La série qui représente o(z) et celle que 'on obtient en

prenant les dérivées
+ o
\

’
La(E
aIL alt

n=1

sont uniformément convergentes dans l'intervalle (o, @). La remarque a déja été

faite pour la premiére; quant a la seconde, remarquons que 'on a .

1 [« Kz Ka
s << <W’

K,a ‘o ) . [ A , .
et —— est le terme général d’une progression géométrique décroissante. La fonc-

a!llo
tion ©(z) admet donc aussi une dérivée ¢’(x) continue dans l'intervalle (o, a),

et nous pouvons éCl'il‘G

o ki
o(x) :Zﬁ<§;>, o' (x) :2;:—“#(%).
n=1 n=1
Il cst facile, d’aprés ces formules, d'avoir des limites supérieures pour les
valeurs absolues de o (x) et de ¢’ (z). Nous avons, en effet, d’aprés les inégalités (5)
et (6),
) Ka

I 1 I

(/) |(P(.Z‘)I<K([a+&—‘;+..'|—o-ﬁ —l-—...’*—a_[w
(1 1 I t K,z

! N — .

(8) [p(x)|<K,xza2ﬁ—a,*—|—...+am—|—.. | = @

4. Prosiive II. — Soit f(z, y) une fonction continue dans le rectangle R
défini par les inégalités
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déterminer une intégrale de U’équation

023

(9) 9y =/(z,5),
continue dans ce rectangle, et s’annulant le long des segments des droites
v=ux et y=ax(2>1), situés dans ce rectangle.
L’intégrale générale de 1'équation (g) est
s=F(z,y)+o(z) +4(¥),

o(z) et 4(y) élant deux fonctions arbitraires, et F(z, y) élant l’intégralé double

x y
F(z, y)= [ duf S(u, 0)dy (osxla, 0oZyZaa).
0

<0

Les deux fonctions ¢ () et () sont déterminées par les deux conditions

Flz,z) +o(z)+d(z) =o,
(10) ;

Fla,ax) +o(x)+ Y(ax)=o,

d’ott I'on tire
(11) b(ax) —d(z)=F(z,2) —F(x,ax) =n(=x).

La fonction =(2) qui est au second membre est définie dans P'intervalle (o, a).
On en déduira donc pour ¢(z) une fonction continue définie dans linter-
valle (0, a«). Nous avons ensuile

o(2)=—Y(z) — F(z, z),

égalité qui détermine la seconde fonction ¢(2); cette fonction ¢ () est continue
dans lintervalle (o, @). Les fonctions ¢ et ¢ étant ainsi obtenues, I'intégrale

s=F(x, y)+o(x)+d(y)

est continue dans le rectangle R, et satisfait & ’énoncé.

Il est facile d’avoir une limite supérieure de la valeur absolue de cette inté-
grale. Supposons que dans le rectangle R la valeur absolue de f(z, y) reste infé-
rieure & un nombre positif M; la valeur absolue de F(z, y) est inférieure a Mzy,
et les dérivées partielles

JF v or o
e ___fo Sz, ) do, e [ Slu, y)du

v Yo
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sont respectivement inférieures en valeur absolue a My et a Mz,
(Q)g]<My, 'g; <Mz.
D’ailleurs on peut écrire
n(z)=0—a)zF (z,lz),
¢ étant compris entre 1 et a; on a donc
|m(z)| <M(o —1)22

i ! —
Si nous supposons ¢ (o) == 0, nous avons

() —r<§> +ﬁ<§;> +...+ﬂ<%> +

et, par suite,

D FLINTL !
[ (2)| <M(o— 1)z §a2+a,‘ ot
ou
M a2
(12) 42 < e

Pour trouver une limite supérieure de | ¢(z)|, remarquons que I'on dédait des
relations (10), en changeant dans la preniiére de ces relations x en az, et en
rctranchant membre & membre, .

o(ax) —9(x)=F(z,az) — F(az, az) =, (x),

relation qui permet de définir la fonclion o(z) dans lintervalle (o, @), car le

oo ’ a .
second membre =, (z) est défini dans I'intervalle <o, —)- On a, dans cet inter-
o
valle,

m(2) =(1—a)zF,(Ez, ax),
§ étant compris entre 1 et 2, et, par suite,
[mi(z) | <Ma(a — 1) a2,

La fonction ¢(z) est elle-méme représentée par la série convergente

’ x x X
CP(x)::TL] Zt +7fl —0? +...+7T1 W “+ ...
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124
et 'on en conclut comme tout & I'heure que, dans l'intervalle (o, @), on a
Mo x?
ra’ x .
(12") lo(@) [ < oo

Dans le rectangle R, on a donc

Moz?  M»?

|5 <Mzy + + —-
o+ 1 a-—+1I

(13)
. A (e g . Js 0s .
Cette fonction z admet elle-méme des dérivées partielles 3% 9 continues

dans le méme domaine. On a, en effet,

' (x) =F,(z,2) + Fy(z, ) — F (2, 0ax) — aF, (2, ax),

en posant
JF JF .\
()x—FI(J;,J)’ @——1‘2(%)’),

ce que 'on peut encore écrire
(z)=F(z,z) — F (z,02) + Fy(&x, 2) — aF,s(z, ax)

=(—a)zf(z,nzx)+ Fy(z,2) — aFy(x, ax),
7 étant un nombre compris entre 1 et a. On aura douc, dans l'intervalle (o, a),

7' (2) | <M(z—1nax+M1+a)r=2Maz;

on en conclut que la série des dérivées
1 [ 1 [z 1, [
-l )+ 5T |\l )+ =T = +...
o o : o? al al

est uniformément convergente dans I'intervalle (0, aa) et que la somme de cette

série est plus petite en valeur absolue que la somme de la série

\ 1 I ! )  a2Moax
QN[OC.Z' ’—2+*,'+...+f+...>:——q—-
}a o ot \ oar—1

La fonction &(y) admet donc une dérivée continue dans U'intervalle (o, @)

dont la valeur absolue vérifie la condition
oMoy
1! .
W<

(r4)

On a de méme
w (z) =F (2, az) + aF,(z,ax) — aF(az, az) — aFy(az, az)
= a[F,(x,a2) —Fy(az,az)| + F(xz,ax) —aF(az, az),
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et I'on voit comme tout & I’heure que la valeur absolue de = (z) dans linter-

a P .
valle <o, ;> est inférieure a
a(a —1)Mz +~Mazx +Malx =2Ma®x.

On en déduit ensuite que la fonction o(z) admet une dérivée ¢'(x) continue
dans I'intervalle (0, @) dont la valeur absolue satisfait a la condition
. 2Matz

(*47) le' (@) | <

o —1

Il résulte de toutes ces inégalités que, dans le rectangle R, les valeurs absolues

, . , 03 03 .. .
des dérivées ——, —— ont les limites suivantes :
dx” dy

l‘/M +2Ma- ,

a‘—.

2Mcxy

2—1

(13)

’d..

dy
Dans un rectangle R’, homothétique au premier par rapport a l'origine et de

dimensions r et ra (o << r<a), on aura les inégalités
b

(16) |5 | << AMr2,

p|<BMr, lg|<CMr,
A, B, C étant trois nombres positifs qui ne dépendent que de «,

2 2
2a 20
— ’ C=r1+ 3 .
oaf—1 at— 1

(17) A=2a, B—=a-+

5. Lorsque la fonction f(z, y) satisfait a la condition de Lipschitz, on peut
trouver des expressions différentes pour les limites supérieures de |¢'(z)| et de
|9'(»)|, ne contenant pas o —1 en dénominateur. Supposons, en effet, qu’il
existe deux nombres positifs H et K tels que 'on ait

S (@ y") =S (2, ) | <H|2'—z |+ K|y — y],

(%,y) et (z', ') étant les coordonnées de deux points quelconques du rectangle R.
Nous pouvons écrire comme il suit la dérivée @' (z)

' (x) = F,(.L',w)—-F (2, 22) + Fo(2, 2) — Fy(2, az) + (1— 2) Fy(x, az)
on a, comme plus haut,

[Fi(x, 2) —Fy(z, az) | <M(a — 1)z
et
|Fo(z, ax) | <M.
Fac. de T., 2° S.,VI. 17
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La différence Fy(z, 2x2) — F. (2, 2) est égale &
f. [f(u, 2+ ax)—f(u,x)] du,
0

et la fonction sous le signefest, d’aprés I'hypothése faite, inférieure en valeur

absolue en K (o — 1)2; la valeur absolue de l'intégrale est donc elle-méme infé-
rieure a K(a — 1)2?, et, par suite, 'on a

[n'(z) | <2M(ax—1)z + K(e —1)22
On en conclut, en reprenant les calculs du paragraphe précédent, les inégalités

2My K y*

aMy K 2
> ) —+
a1 a1

o 41 o1

V<

Id—;|<Mx—l—
4))’

En partant de I'expression de =, (z), on établira par une marche toute pareille
les inégalités
|ni(z)|<eMa(a—1)z+H(a—r1)02?,
2Max Hoaa?
a+1 a4 ot

o' (z) | <

aMax Hox?
o+ 1 o4 o+ 1

ds ‘
[5;‘<My+

6. Nous arrivons maintenant a I’objet essentiel de ce travail, qui est la résolu-
tion du probléme suivant :

La fonction f(z,y, s étant continue dans le voisinage des valeurs
) p7 q ]
=y =135=p=¢q=o0, trouver une intégrale de l'équation
9’z Jz 0s

18 ——=flz, ¥y, 5, 7> —

(18) 0z dy AR ’dx’dy)’
continue dans le voisinage de Uorigine, et qui soit nulle sur deux segments
de drotites issues de Uorigine.

Pour préciser entiérement les conditions du probléme, nous supposerons que
la fonction f(z, y, 5, p,q) est conlinue pour tous les systémes de valeurs des
variables satisfaisant aux conditions

(19) oSxla, oiyia«, |3|ZZ, |p|P, [q]|2Q,

et que sa valeur absolue reste inférieure & un nombre positif déterminé M, dans
ce domaine, Nous supposons de plus qu’il existe trois nombres positifs H, K, L,
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tels que 'on ait
(20) | f(x, 2, s phg')y—f(z, ¥ 5 P q) [ <lel—3|+KlP’_/’|+ LI‘],_ q I’

2, ¥y 5,y q €t x,¥,5,p'yq' étant deux systémes quelconques de valeurs des va-
riables satisfaisant aux inégalités (19). On se propose de déterminer une intégrale

conlinue, ainsi que ses dérivées —,

9% 9y dans un rectangle situé dans 'angle z Oy

et défini par les inégalités

ofzZr, olyira,

r étant un nombre positif inconnu; cette intégrale doit étre nulle le long des
deux segments de droite situés dans ce rectangle, appartenant aux droites y =z,
¥ = ax (a désignant toujours un nombre positif supérieur & un).

La méthode des approximations successives conduit & former une suite de
fonclions

(21) i ’:0’ ‘51, e ;IL-—IQ ‘:"ll’ AR

se déduisant I'une de I'autre par le procédé suivant : on pose 5,=o0, et 'on prend
pour 5, lintégrale (que nous avons appris a former aux paragraphes précédents),

de I'équation
023,
dx dy

. . 03p—1 0344
——.f(x’y’“n—n Jdx ’ 0‘}/ >’

qui est nulle le long des deux segments de droite considérés. Montrons d’abord
que, si le nombre positif 7 est assez petit, toutes ces fonctions z, 55, ...y 54, ...
sont continues dans le rectangle R’ de dimensions 7 et ar. Supposons, en eflet,
que dans ce rectangle on ait

|5u—1| <7, an—1I<P, ’Qn—il<Q§
alors la valeur absolue de
f(x’ Ys Sn—1s Pn—1s qn—l) .

est inférieure 3 M dans R’. La fonction z, est donc continue ainsi que ses déri-
. d3, 0z .
vées d_a:’ -0—)," dans le méme rectangle, et I'on a dans ce domaine

z, | <MAP?, |pn| <MBr, |gn| <MCr,

A, B, C étant trois nombres positifs qui ne dépendent que de «. Si 'on choisit
assez petit pour que l'on ait ’ '

(22) MA <7, MBr<P, MCrqQ,
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la fonction z, satisfera aux mémes conditions que z,_, dans le rectangle R'.

Comme la premiére fonction z, est nulle, on voit que toutes les fonctions z; de
. . . e, . 03; 03;

la suite (21) sont continues ainsi que leurs dérivées partielles Zﬁf’ 5;', dans le

rectangle R/, si le nombre r satisfait aux inégalités (22).

Pour savoir si la fonction z, tend vers une limite lorsque le nombre » augmente
indéfiniment, il suffit de rechercher si la série

(23) S1 4 (5e—51) oo (Sp— Fpey) e

est convergente. Or, nous avons, d’aprés la fagon dont les fonctions z, ont été
définies,

dz(zn — zn~l)

:f(d‘, Ys Sn—1s Pn—1s Qn—-l) —f(.’L‘, Y Sn—2s Pn—2s (]11—2)’

et la différence z, — z,_, est nulle le long des deux portions de droites y =z,
— ax, situées dans le rectangle R'. Nous avons, d’aprés Pinégalité (20
Y ’ 3 ’ P g ’

If(x’ Ys Sn—1s Pn—1s qn—l) —'f(x’ Y Bn—2s Pn—2s qn—z) I ;
< HI Sp—1— Sp—2 l -+ Klpn-l — Pn—2 [ -+ L[ Gn—1— Gn—2 [;

si dans le rectangle R’ on a constamment
(25) Izn—i'_sn—2l<T’ ]pnfl_'pn—2|<T’ an—l_qn—2I<T7

le second membre de I'équation (24) reste inférieura (H4-K +L)T et, d’apres
les résultats établis plus haut, on aura aussi, dans le méme rectangle R/,
lzn '_5n——1|<A(H—|"K+L)TI‘2,
(26) < IPn—l_Pn—zl<B(H—|—K+L)TI‘,
A ( |9n—1—¢],,_2[<C(H+K+L)Tr,
A, B, C étant les nombres positifs donnés par les formules (17), (ui ne dépendent
que de a.

Supposons que 'on ait choisi r assez petit pour vérifier, en méme temps que
les inégalités (22), les conditions nouvelles

(27) AM+K+L)r'<), BMH+K+Lyr<i, CH+K+L)r<i

% étant un nombre positif inférieur a I'unité; le nombre 7 étant ainsi choisi, nous
aurons dans le rectangle R/, de cbtés r et ra, les nouvelles inégalités

(28) lsn_‘zn—ll<)\T, an_'[)n—1]<)\T’ ](In—qn—l[<)~T»

de méme forme que les inégalités (25) ou T est remplacé par AT.
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Cela étant, soit 91U le plus grand des trois nombres Z, P, Q. On a d’abord, dans
le domaine considéré,

| 51— 30 | <IN, |p1—po| <IN, [ —q0] <IN,

puis
[ 53— 3, | << LR, | pa—p1 | <IWA, [ a—q, | << LB,

et d’une maniére générale
| Sn— Sn—y | << AR, [ Pr— Py | << O A2-1, | gn— qu=y | << A1,

Les trois séries

-+ o

2(~3n_5u—1)7 E([)n_l)n—l)’ E((]n_’[u--t)

n=1 n=1\ n=1

sont donc uniformément convergentes dans le rectangle R'; w(z, y) étant la
. . dow  dJu

somme de la premiére, les sommes des deux autres sont respectivement az o
: oy

En d’autres termes, lorsque le nombre n augmente indéfiniment, les trois fonc-

do Jdw

05” dzn

Lions 5,, —~, —" tendent respectivement vers w(x — —- La démonstra-
T 9z dy P (z,7), oz’ dy
. . , e, d(l) d&) . '
tion prouve aussi que les dérivées oz’ 9y Sont continues dans le rectangle R'.
X
La série
-+

0*(5p— 34—1)
2 0xd.yl

n=1

est aussi uniformément convergente. Nous avons, en effet, d’aprés la facon dont

on a choisi r,
P(en=2nm)| (g 4 K 4 Lyoran-t;
dox dy ,

90 a aussi pour limite la dérivée da
dx dy P drady

niment. Cela étant, imaginons que dans la relation

il s’ensuit que lorsque 7 croit indéfi-

02511' - . 03",_1 d;"_l
Jdx ()VV _f<-1'9 Ys Sn—1 _(T.l‘—.’ _dy_>

le nombre n augmente indéfiniment; la fonction f étant continue, il vient a la
limite

Pwn ) Jdw Jduw
(29) ()Jl)y */(‘1"7 Y, m, 5;’ a)'
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D’ailleurs, il est clair que la fonction w(z, y) estnulle le long des droites y =2
et y = ax, dans le rectangle R'. Cette fonction w(x, y) est donc une intégrale
de I'équation proposée, continue dans le rectangle R’, et satisfaisant a toutes les
conditions de I’énoncé.

7. Il n’existe pas d’aulre intégrale que celle-1a satisfaisant aux mémes condi-

tions. Soit, en effet, u(z, y) une intégrale de '’équation (18), continue ainsi que
ses dérivées partielles dans une portion de I'angle 2Oy, voisine de I'origine,
limitée par les axes eux-mémes, et nulle le long des droites y =2 et y = ax.

Choisissons un nombre »'Sr assez petit pour que les fonctions u(z, y),
du Jdu .

-5 — soient conlinues dans le rectangle R” de dimensions 7, a7/, et que I'on ait

dx” dy
dans ce rectangle

Ju
dx

Jdu

|u|<Z, <P, 5)‘/<Qy

. . bl . | S . du dud .
ce qu1 est toujours possible, puisque les trois fonctions u(x,y), oz 3; oivent

étwre nulles a 'origine. En partant de la relation

0% (u—3,) _ Jdu Jdu ;
_W f<x, Y U oz’ W) —S(Z5 ¥s Suts Pr—1y n—1),

et en raisonnant comme au paragraphe précédent, on en conclut de proche en
proche les inégalités

du

| —s5,| <<, } du Jy

55— P [ < JA,

— n [;)IL 2

la différence « — 5, tend donc vers zéro lorsque n augmente indéfiniment, et la
fonction u(z, y) est identique & w(xz, y) dans le rectangle R”.

La limite que nous avons obtenue pour le nombre 7 est, en général, beaucoup
trop faible, et I'intégrale cherchée existe dans un domaine plus étendu. Un cas
particulier intéressant est celui ou la fonction f(z,y, s, p, ¢) est continue pour
tous les systémes de valeurs de 3, p, ¢, pourvu que z et y restent compris res-
pectivement entre o et & et o et aa; on n’a pas alors  se préoccuper des condi-
tions (22), et le nombre r doit vérifier seulement les inégalités (27). C'est ce qui
arrive en particulier lorsque la fonction f est linéaire en 5, p, ¢. On peut méme,
dans ce cas, démontrer l'existence de la fonction intégrale dans un champ beau-
coup plus étendu. Considérons I'équation

(30) s=ap—+ bg+cs+ g,

a, b, ¢, g étant des fonctions des variables z, y, continues dans le rectangle OABC,
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ayant pour diagonale OB la droite y = az, et soient OA = [, OC = [« les deux
cOtés (fig. 1). La méthode générale prouve que I’équation (30) admet une inté-

Fig. 1.
4
c L 8
e :
i xs
F E/ ] M
K
X2 G
x3
(o} D A x

grale 5, = o(z,y), continue dans le rectangle ODEF, homothétique au premier,
et s’annulant le long de la diagonale OE et le long du segment OG de la bissec -
trice de I'angle zOy. On peut prolonger cette intégrale dans la portion du rec-
tangle OABC qui est extérieure au rectangle ODEF. Il suffit, pour cela, de
s’appuyer sur les remarques suivantes.
Soit 5 =F(z, y) une intégrale d’une équation de la forme
0%z
m; =f(z. ¥y, 5P 9),

conlinue, ainsi que ses dérivées partielles du premier ordre, le long d’une portion
de caractéristique. Supposons, par exemple, pour fixer les idées, que, pour
Z = x,, et y compris entre deux limites y,, ¥, la fonction F(x,,y) coincide
avec une fonction déterminée de y, soit ¥(y). La dérivée partielle

est connue par la méme lorsque y varie de y, a y,. Quant ala dérivée particlle

__OF
— oz’
elle satisfait a I'équation différentielle

() "l W
5’;’ =/ (%0 > F(@oy)s Py Fy(@0,5));



132 E. GOURSAT.

il suffira donc de connaltre la valeur de p en un point de la caractéristique pour
qu’elle soit déterminée en tous les points de cette caractéristique. Nous voyons par
la que, si deux surfaces intégrales, représentées par les équations

) )

s=F(z, ), =@z, y),

ont une portion de caractéristique commune, et si elles se raccordent en un

point de cette caractéristique, elles se raccordent tout le long de la portion
de caractéristique commune.

Cela posé, soit H le point ou la bissectrice de I'angle Oy rencontre le c6té AB
du rectangle extérieur; soit KH la paralléle a 'axe Oz. Nous supposerons, comme
c’est le cas de la figure, que cette paralléle rencontre le c6té DE du rectangle inté-
rieur en un point K compris entre G et E. Les fonctions a, b, ¢, g étant con-
tinues dans le rectangle GLHK, il existe une intégrale de I'équation linéaire (30),
conlinue ainsi que ses dérivées partielles dans ce rectangle, s’annulant le long de
GH, et prenant le long de GK la méme valeur que l'intégrale 5, =109 (z,y) qui
est supposée définie dans le rectangle intérieur ODEF et sur son contour. Soit
s, la nouvelle intégrale ainsi définie dans le rectangle GLHK; les deux inté-
grales 3, et z, se raccordent au point G, puisqu’elles sont nulles I'une et l'autre
quand on se déplace suivant la bissectrice OGH. Donc elles se raccordent tout
ie long de GK et en particulier au point K.

Dans le rectangle ALGD il existe de méme une intégrale z;, conlinue ainsi
que ses dérivées, coincidant avec z, le long de DG et avec z, le long de GL. Les
trois intégrales 3y, 32, 53 se raccordent au point G; donc 5, et z, se raccordent Je
long de GD, et 5, et 53 se raccordent le long de GL. Dans le rectangle EKHM,
on a de méme une intégrale 3,, conlinue ainsi que ses dérivées, se raccordant avec
s, le long de EK et avec 3, le long de KH,

Dans le rectangle EMBP il existe aussi une intégrale z;, continue ainsi que
ses dérivées, nulle le long de la diagonaie EB et prenant la méme suite de valeurs
que 3, le long de EM. Les deux intégrales 3, et z, se raccordant au point E, leur
plan tangent commun renferme la bissecirice OB; il s’ensuit que les intégrales 5,
et 5; se raccordent aussi au point E et, par suite, tout le long de EM. Enfin, dans
le dernier rectangle EPCF, nous avons de méme une intégrale 54, continue ainsi
que ses dérivées, se raccordant avec 5, le long de EF et avec z5 le long de PE.
Nous avons ainsi, dans chacun des six rectangles partiels que forme le rectangle
complei OABC, une intégrale 5,(i =1, 2, 3, 4, 3, 6), qui est continue, ainsi que
ses dérivées parlielles du premier ordre, et en un point commun au contour de
deux de ces rectangles les intégrales se raccordent toujours. L’ensemble de ces

six intégrales 5; forme donc une intégrale, qui est continue, ainsi que ses dérivées
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partielles du premier ordre, dans tout le rectangle OABC. D’apreés la facon dont
elle a été obtenue, cetle intégrale est nulle le long des droites OH et OB.

On raisonnerait d'une facon analogue si I paralléle menée par H a I'axe Oz
coupait la droite DE au-dessus du point E. Il suffirait d’employer un ou plusieurs
rectangles intermédiaires, homothétiques au rectangle OABC et compris entre
OABC et ODEF.

Le méme procédé de prolongement par raccordements successifs s’appliquerait
aussi & I'intégrale de I'équation non linéaire s= f(z,y, s,p,q), qui s’annule
pour y = x et pour ¥ —ax, mais on ne peul assigner a 'avance l'étendue du
domaine ou cette intégrale est continue, sauf dans des cas particuliers analogues
a celui que nous venons de traiter.

8. Le résultat obtenu parait trés particulier, mais il est facile de le généraliser.
On a d’abord une généralisation immédiate en se proposant de déterminer unc
intégrale continue dans un rectangle ayant un de ses sommets a 'origine, un
second sommet A sur Oz, un troisiéme sommet B sur O, ‘et se réduisant pour
¥ =muz a une fonction donnée ¢(z), et pour y = m, z & une autre fonction
donnée ¢ (x), en supposant, bien entendu, ©(0) = o,(0). Les coefficients m et
m, sont supposés positifs, etles fonctions o(z) el 9, (z) sont supposées continues,
ainsi que ¢/(z) et ¢ («) lorsque z varie de o & un nombre positif . 1l suffit (en
supposant m, > m) de poser mz =z, puis

’::Z+(P ._.____.m— +o’<.'y_i>_(‘p(o)

\my—m

pour étre ramené au probléme déja traité. La fonction Z doit satisfaire a une

. . . m
équation de méme forme, et s’annuler le long des droites y = 2/, et y = — &’
! ’ m

dans le voisinage de l'origine.

Nous allons maintenant passer & un probléme plus général, en supposant que
I'on se donne les valeurs de la fonction intégrale le long de deux courbes issues
de l'origine. Nous examinerons d’abord le cas ou I'une des courbes est la bissec-
trice elle-méme de 'angle £ Oy, 'autre courbe OMA étant située tout entiére au-
dessus d’une droite y = az, o étant un coefficient supérieur 4 un. Celtte condition
exige que I'arc OMA ne soit pas tangent a 'origine a la bissectrice OL et nc ren-
contre pas cette bissectrice, sauf a 'origine. Soit

(31) y=uv(z)

I’équation de I'arc OMA ; la fonction w(z) est supposée conlinue et croissante
lorsque z croit de o & @ ( fig. 2).
Fac. de T., 2* S., VL. 18
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Nous supposerons de méme que la dérivée ©'(x) est continue dans linter-
valle (o, a), sauf peut-étre a l'origine (ce qui arrivera si I'arc de courbe OMA

Fig. 2.

Y
Q

esl tangent a l'axe Oy), et que cette dérivée »'(z) ne s’annule pas dans I'inter-
valle (0, @), ce qui aurait lieu s’il y avait sur OMA un point d’'inflexion avec une

tangente paralléle 8 Oz. Dans ces conditions, la fonction inverse
z=w ' (y)

Y

est une fonction continue de la variable y dans I'intervalle (o, b), b étant I'or-
donnée du point A. En désignant toujours la variable indépendante par la lettre z,
nous voyons que la fonction @~ !(z) est continue et positive dans l'inter-

valle (o, 6); elle croit de o a @ lorsque x croit de o & b. La dérivée
d
= lw (@) = (@)
est elle-méme continue dans l'intervalle (o, &). On a, en outre, les inégalités
x
m(x) > ax, zzs‘1(x)<;,

dont la premiére s’applique i toutes les valeurs de z dans I'intervalle (o, @), et la
seconde & touies les valeurs positives de z inférieures a b.
Nous poserons encore

o} (z) =w (@ (2)),
o3 (z) =o' (v (2)),
et, d’'une maniére générale,

v (x) =" (Zﬁ‘{”—” (x)),

en raisonnant de proche en proche, on voit aisément que toutes ces fonc-
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lions ® () sont continues et admettent une dérivée premiére continue dans

Iintervalle (o, 4). On a, de plus,

—1 (.
o)< TE) 2
o o
el, en général,
x
(32) w"‘(x)<a—”-

Il est facile d’avoir une limite supérieure de la valeur absolue de la dérivée

do—"(x)
dx
Nous avons, en effet,

4 d d LN
e (@)= o [m om0 (@)]] = £ (=00 () 7 (500 ()
et par suite

Lo (@)] = £ (500 (2)) 5 (=0 (). .. £ (7 (2)) E().

La dérivée §(x) a un certain maximum N lorsque z varie de o a b, et, d’autre
part, cette dérivée tend vers une limite que nous pouvons supposer inférieure ou au

, I .. . vl
plus égale & —, en choisissant convenablement le nombre o, qui n’a pas été com-
[24

plétement précisé jusqu’ici, puisqu’on peut le remplacer par tout autre nombre
plus petit supérieur & un. Nous choisirons ce nombre « de telle fagon que, pour

toute valeur de 2 inférieure & un nombre ¢ << b, on ait

E(r)<

I

o

D’autre part, il ne peut y avoir dans la suite
w1 (b), w2(b), ..., wr(b), ...

’ N 4 P! —n
qu’au nombre limité de termes supérieurs & ¢, puisque I'on a »~7(b) < prl Sup-

posons qu’il y en ait p; il y aura @ fortiori p termes au plus de la suite
o~ (z), & (z), ..., (=),

supérieurs a c. Cela élant, si n<p, on a évidemment

d
EXEu v~
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a - ) !
_._gw n($)§|<NP<_)
Dans ]es deux cas, on peul. écrire

(Na)? ®

. 7. |
Vg 4 pEn A, ,
(33) ld.l}'(m. (x)‘l< on <0C'L

. étant un nombre positif déterminé qui ne dépend que de la fonction = ().

9. Cela posé, nous n’avons qu’a suivre absolument la méme méthode que dans

le cas particulier déja traité ot la fonction w(z) se réduit a xz. Les modifications
qu’il faut apporter sont peu importantes, et nous les indiquerons rapidement.

Prosrive 1 bis. — Soit =(x) une fonction définie dans Uintervalle (o, a).
Déterminer une fonction ¢(x) satisfaisant dans cet intervalle & la relation

(34) ¢(w(2)) —o(x) =mn(2),
ot w(x) est la fonction qui a été définie au paragraphe précédent.

Si 'on admet encore que la fonction o(z) tend vers zéro avec x, cette fonction
doit étre la limite, pour n infini, de 'expression

n(w (@) +n(oH(z)) +... + TC(ZD'”(.Z'));

il faut donc, pour que le probléme soit possible, que la série

(35) zn(w—”(x))

n=1

soit convergente. Il en est ainsi toutes les fois que la fonction =(z) satisfait a
une condition de la forme
In(z) | <Ka,

K étant un nombre positif déterminé. On en déduit, en effet, d’aprés I'inégaq
lité (32),
Kz
l Tc(m‘"(x)) I < 5
et les différents termes de la série (35) sont inférieurs en valeur absolue apx
termes d’une progression géométrique décroissante. Si, de plus, la fonction =(z)

est continue, il en est de méme de la fonction o(z), et I'on trouve pour limite
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supérieure de | p(x)| U'expression suivante :

P x xr .

ou
Kz
a—1

’

lo(z)] <

formule toute pareille 4 la formule (7) du n° 3.
Si la fonction =(x) admet elle-méme une dérivée ='(z) continue dans l'inter-
valle (o, @) et satisfaisant & la condition de Lipschitz, on a encore, pour toute

valeur de z dans cet intervalle,
(36) | 7'(2) | <Kz,

K, étant un nombre positif convenablement choisi. La dérivée du terme général
de la série (35)

'd% [ﬂ(w‘”(_.x))] =7 (w="(z)) z%c fw“"(x)%

est elle-méme continue entre o et @, et sa valeur absolue est inférieure, d’aprés
les conditions (32), (33) et (36), a

N

Ko "(x);,; _K'HEF"T

La fonction % (z) admet donc elle-méme une dérivée continue ¢'(z) dans I'inter-
valle (0, @) et I'on a

1 1 1 K xZ
ICP’(«Z')I<K1|U*‘Z'<O?+;5+"'+;2-l—l+"'): ;f’;

b

formule qui ne différe de la formule (8) que par la présence d’un facteur w, ne

dépendant que de la fonction w(z).

Prosrive I bis. — Soit f(x, y) une fonction continue dans be rectangle R
défini par les inégalités

oSzla, olysi,

déterminer une intégrale de l’équation

(37) soas =S @),

continue dans ce rectangle et s’annulant le long de la bissectrice y = x, et
le long de U'arc OMA représenté par l'équation y = w(z).
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Posons, comme plus haut,

F(x,y):fxdufyf(u,v)dv

I'intégrale générale de 'équation (37) est
s=F(z,y) +9(2) +¢(y)
o(z) et 4(y) désignant deux fonctions arbitraires que I'on déterminera par les

deux conditions
F(z,z)+o(x)+ Y(x) =o,

F(z,m(2)) + o (2) + b(® (2)) =o.
On en déduit, par exemple,
Y(w(x)) —d(2)=F(z,2) = F(z,0(x)) =n(2),
et la fonction ¥ (z) est égale, en supposant (o) = o, 4 la somme de la série
Y(@)=x(o (@) +n(@2(2) +. .+ (@ (@)
Si la valeur absolue de f(z, y) dans le rectangle R reste inférieure a M, on a

encore
[m(z) | <Mz |o(z)—a|<<M(a—1)2?

el, par suite,
[(2) | <M(a— 1)3 [z:s“l(x)]2+ [w—z(x)]z—k. . [zﬁ*"(x)]g—t—. (,

ou enfin, d’aprés les inégalités (32),

M2
05—'—1’

(38) [d(z) | <

formule identique a la formule (12) du n° 4.
Pour avoir ane limite supérieure de | /() |, remarquons qu’on peut encore

écrire la série qui donne ¢(z)
(39) Y(x) =) + (o (@) +o (@)

en pOSﬂllL

{x)=n(o () =F (o~ (2), & (@) — F (== (2), ).
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On en déduit
5 ' de~!(z)
¢(2) =[Fi (571 (2), 87 (2)) + Fs (57 (@), 57 (@) — Fi (w7} (2), 2) | ==
—F, (w—l(x), J’),

F,(x,y) et Fy(z, y) désignant les dérivées particlles du premier ordre de la fonc-

tion F(z, y). Mais on a

[F\ (- (2), 57! (2)) — Fi (w7 (2), 2) [ <M|o~! (2) — x| <M (oc';- : > x

\

el, par suite,

{g/($)[<E’hi(i_—_ﬂx+},1f%+Mx:Mxlf_fﬁ.
o oL o ) o4

{

La dérivée du terme général de la série ¢ (2), ou

¢ (2)] g‘i(w“”»v))*

v

est moindre en valeur absolue, d’aprés cela, que le produit

) (A § Y e k) Y

oL allv aIL dzIL+l

On en déduit que la série des dérivées est uniformément convergente et que
I'on a

+ & [
H——gl—l— — gx
o xr—1

(40) [V (2z) | <M

On trouverait de méme des limites pour |o(x)| el |¢'(z)|, et par suite pour
|51, 9z | | 93]
dx| | dy |
tangle R relativement a I'origine et de dimensions r et ro (7 étant un nombre

) - D'une fagon générale, dans un rectangle homothétique au rec-

positif inférieur a @), on a des inégalités de la forme (16)

. s 03 )
|5] < AM 7, (TI]<BM,~, oy | < oM,

A, B, C étant des constantes positives dont il est inutile de donner I’expression,
el qui ne dépendent que de la fonction m(z).

La démonstration du n° 6 s’applique maintenant sans modification, et 'on en
conclut que I'équation (18) admet une intégrale continue, ainsi que ses dérivées
partielles du premier ordre dans un rectangle homothétique au rectangle donné R
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par rapport a l'origine (le rapport d’homothétie étant suffisamment petit) et
s’annulant sur la bissectrice et sur I'arc de courbe OMA.

Plus généralement, on peut se proposer de déterminer une intégrale, connais-
sant les valeurs qu’elle prend le long de la bissectrice et le long de l'arc de
courbe OMA. Pour fixer les idées, supposons que I'intégrale cherchée doive se
réduire & une fonction donnée F(x) quand on y remplace y par z, et & une autre
fonction donnée ®(z) quand on y remplace y par w(z). Il est clair que ’on doit
avoir F(o)e=®(0), et il est permis, sans restreindre la généralité, de supposer
F(0)=®(0)=o0. Nous supposerons de plus que les fonctions F(z) et ®(z)
admettent des dérivées du premier ordre continues lorsque z varie de o a . Pour
ramener ce probléme au précédent, on peut procéder de la facon suivante. Formons
d’abord une intégrale de I'équation

2z

dx dy

0,

satisfaisant 4 ces conditions; il suffit, comme on vient de le voir, de déterminer
deux fonctions ¢ et ¢ satisfaisant aux deux relalions

9(z) +y(z) =F(x),

o(z)+Y(w(x)) =0(x).

Soit Z = o(z) + () la fonction ainsi obtenue. Il suffira de poser z =7 + u

pour étre ramené au probléme précédent.

10. Arrivons enfin au cas ol I'on se donne les valeurs de I'intégrale le long de
deux arcs de courbe OMA, ONB partant de l'origine (fig. 3), et situés dans

Fig. 3.

0 X

I'angle z0y. Soient y = = () I'équation de OMA, y = w,(z) I'équation de ONB.
Nous supposerons que ces deux fonctions w(z), m,{z) satisfont aux mémes condi-
tions que la fonction w(x) considérée dans les derniers paragraphes, et de plus
qu’il existe un nombre o> 1, tel que V'on ait w(z)2aw,(z) pour toute valeur
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de z comprise dans un intervalle (0, @), ot @>>0; ce qui exige que les deux arcs
de courbe OMA et ONB ne soient pas tangents en O et n’aient pas d’autres points
communs que l'origine. Enfin nous supposerons que 'arc ONB n’est pas tangent
a l'origine & 'axe O«. La dérivée = (), qui est supposée continue entre o et a,
ne s’annule pas dans cet intervalle. Il en résulte que si 'on pose

(41) : w () =X
x sera inversement une fonction continue, admettant une dérivée continue, de la
variable X, dans lintervalle (o, ®,(a)). Soit
z=w'(X)
cette fonction inverse. La fonction

1(X) == (w71 (X))

obtenue par la substitution dans m(z) est une fonction de la nouvelle variable X
satisfaisant aux mémes conditions dans lintervalle (o,w,(a)) que la fonc-

tion w(x) de x; en particulier, on aura
72(X) > aX.

Si donc I'on prend X pour nouvelle variable indépendante a la place de z,
Loute équation de la forme

0%s
dzdv :f(xy‘)ﬁ 3P q)

conserve la méme forme et les deux courbes OMA, ONB sont remplacées respec-
tivement d’une part par la ligne droite y = X, d’autre part par un arc de courbe

Y = 1.(X). Nous retrouvons encore le cas qui vient d’étre traité.

L’intégrale dont on vient ainsi de démontrer 1'existence dans un petit rectangle
ayant un sommet & Porigine peut, en général, étre prolongée dans un domaine
plus étendu par des raccordements successifs, comme on I'a déja expliqué en
détail lorsque les courbes sont des lignes droites.

11. Nous avons supposé jusqu’ici que les deux arcs de courbe OMA et ONB
étaient situés dans le méme des quatre angles formés par les caractéristiques
issues du point O. Lorsque ces deux arcs sont situés dans des angles différents, il
ne suffit pas de se donner les valeurs d’une intégrale le long de OMA et le long
de ONB pour que cette intégrale soit déterminée.

Supposons d’abord que les arcs OMA et ONB sont situés dans deux angles
adjacents (fig. 4).

Fac.deT., 2*S., VL. 19
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Uneintégrale del'équation s = f(z, ¥, 3, p, ¢) est délerminée dans ’angle z O y
(ou du moins dans un rectangle de dimensions suffisamment petites ayant un
sommet en O et les cOtés issus de O dirigés suivant Oz et O y), si 'on se donne

Fig. 4.

o4 A
M

0 X
N\

Y .

les valeurs de I'intégrale le long de 'arc OMA, et si on I'assujettit en outre a se
réduire & une fonction donnée =(z)le long de O z; soit 5, 'intégrale ainsi obtenue,
qui n’est définie par les conditions précédentes que dans I'angle zOy.

Il existe de méme une intégrale 5,5, qui est définie dans un rectangle placé
dans £ Oy, prenant les valeurs données le long de ONB et se réduisant pour y = o
a la fonction =(z). Si l'on choisit la fonction arbitraire =(z) de facon que ces
deux intégrales 5, et s, se raccordent & l'origine, ce que I'on peut faire d’une
infinité de facons, elles se raccordent tout le long de Oz, et leur ensemble constitue
une intégrale répondant a la question.

Pour achever de déterminer le probleéme, on peut compléter les conditions aux
limites, en se donnant les données de Cauchy sur 'un des arcs, OMA par exemple,
et les valeurs de l'intégrale le long de ONB. On est ainsi conduit & un probléme
mixte, qui a été étudié récemment par M. Hadamard dans le cas des équations
linéaires (Bulletin de la Société mathématique, t. XXXI). Enfin, lorsque les
deux courbes OMA, ONB sont dans deux angles opposés par le sommet, il est
clair que 'on peut prendre arbitrairement les données de Cauchy sur chacun des

arcs, pourvu que les intégrales obtenues se raccordent & l'origine.

12. Dans le cas particulier de ’équation linéaire

(42) = —l—a%—#—bd—:ﬂ—cszo
+ dx dy ox dy ’

le probléme auquel ce travail est consacré peut se ramener au probleme de Cauchy
en résolvant d’abord un probléme d’inversion d’intégrales définies. Pour fixer les
idées, reprenons ’hypothése primitive, ct supposons que I'on veuille obtenir une
intégrale se réduisant a f(z) le long de la droite y = et & ¢(x) le long de la
droite y = az(a>1). Les coefficients @, b, ¢ sont supposés réguliers dans le

rectangle OABC (fig. 5) de dimensions OA = R, AB = Ra, et les fonctions f(z),
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©(z) sont continues et admettent des dérivées continues f'(z), ¢/(x) dans linter-
valle (o0, R). Soit M un point de la bissectrice OH de coordonnées (xo, x,); la
parallele MP a axe Oy rencontre la droite OB en un point P de coordonnées

Fig. 5.
R/
c B8
P H
N M
(o] A X

(Z4y 220), et la paralléle MN & axe Oz rencontre de méme la droite OB en un
. ’ x ;e \ . ,
point P de coordonnées Txg et zy. Désignons par u(z,y;xy,ye) l'intégrale de

‘équation adjointe qui intervient dans la méthode de Riemann (*). L’application

de la relation fondamentale
f (Mdy —Ndx)=o,
(S)
—auz+ (95 50
M—au~+2(udy d()y ]

N:bus+£( 93 ~‘)"),

“oz  Fox

et ol 5 désigne l'intégrale cherchée, au contour du triangle MNP donne

— (uZ)N':(UZ)P +

(43) (uz)y Ndz —Mdy.

(NP)
Dans cette égalité on doit remplacer y, par x, dans la fonction u(x,y;z¢,y,),
el tous les termes en dehors du signefsont connus d’aprés les conditions aux-
quelles doit satisfaire la fonction 5. Il en est de méme des intégrales définies qui

~
g

. .03 . .
ne renferment ni -—» ni =, et le seul terme qui ne soit pas connu d’aprés les

ox dy
1 . dz , \
gﬁp,u<—07dx—— %d‘y}.

(') Darsoux, Lecons sur la Théorie générale des surfaces, t. 11, p. 70-8o.

données est
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<

03
oz et de oy

on serait ramené au probléme de Cauchy. Entre ces deux dérivées on a d’abord

Si l'on parvenait & déterminer les valeurs de le long de la droite OB,

la relation
’(x) — Qi + a_d_z M
¢ T dx ay’

la relation (43) nous fournit une autre relation de la forme

. ) o5 0s), _
f% u(w, ams my, @) | 57 — o 57 Lo = F(0),

o

le second membre étant une fonction de x, dont la connaissance résulte de celle
des données. On déduit de ces deux conditions

- o ds
(1+a’)flc u(x,ozx;.ro,xo);’;dx
o

::F(xo)—i—af u(x,ax;xy, 2y) 0 (x)de = ®(x,).

g3

0y le long de OB en effectuant l'inversion de I'intégrale

On obtiendra donc
définie
[ i@,z 20 ) Y(2) da,

[+
c’est-a-dire en déterminant la fonction ¢(z), de fagon que cetle intégrale définie

soit égale a une fonction connue de z,. Nous renverrons pour ce probleme aux

travaux de M. Volterra (*).

(1) Atti della R. Accademia di Torino, 1896. — Rendiconti della R. Accademia dei
Lincei, 1896. — Voir aussi deux Notes de M. Burgatti, dans les Rendiconti della R.

Accademia det Lincet, 1903.



