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ANNALES

DE LA

FACULTE DES SCIENCES

DE L’UNIVERSITE DE TOULOUSE.

SUR LE CHAMP ELECTROMAGNETIQUE

ENGENDRE PAR LA

TRANSLATION UNIFORME D'UNE CHARGE ELECTRIQUE

PARALLELEMENT A UN PLAN CONDUCTEUR INDEFINI,

Par M. T. LEVI-CIVITA,

a Padoue.

PREFACE.

Dans une Conférence (') lenue en septembre dernier, M. Righi a renseigné la
Société italienne de Physique sur la question, si discutée aujourd’hui, de la pro-
duction d’un champ magnétique par la convection électrique.

Aprés avoir rappelé les différentes expériences (depuis celles de Rowland jus-
qu’aux derniéres de M. Crémieu et de M. Adams), il les a analysées avec sa crilique
pénétrante, en signalant les points faibles et ceux quirestent simplement douteux.

Parmi ceux-ci I’éminent physicien compte les perturbations du champ magné-
tique provenant du conducteur, que I'on emploie généralement dans ces expé-
riences pour mettre I’aiguille aimantée a I’abri des actions électrostatiques.

Il est évident, dit-il, qu'un diaphragme métallique de conductivité finie n’ar-
réte pas les actions magnétiques, mais il exerce sans doute une influence et I'on

(1) Voir Nuovo Cimento, 5° série, t. II; octobre 1go1.
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n’a pas le droit de la négliger. Malheureusement nous ne sommes pas en mesure
d’apprécier cette influence, comme il serait nécessaire pour une bonne discussion
des résultats expérimentaux.

Ceux qui cultivent la Physique mathématique pourraient fournir & cet égard
des indications assez précises en déterminant, ne fiit-ce autre chose, le champ
électromagnétique engendré par une charge électrique qui se meut avec une
vitesse conslante sur une droite paralléle 4 un plan conducteur indéfini.

Peu aprés sa conférence M. Righi a bien voulu attirer mon altention sur cette
recherche. Voila I'origine du présent Mémoire.

On y trouvera une solution rigoureuse du probléme énoncé et une solution
approchée, qui, tout en différant de la premiére par des quantités absolument
insignifiantes au point de vue pratique, préte mieux a I'étude soit qualitative,
soit quantitative du champ.

On est conduit aux résultats suivants :

Soient a le rapport entre la vitesse de convection et celle de la lumiére; 30k la

résistance ohmique de 'unité de surface du plan conducteur (exprimée en ohms);
q p ;

ama .. L . .
h= 5 de facon que, dans les conditions expérimentales ordinaires, a et &

sont des nombres trés petits (de I'ordre de 107¢ dans I’exemple cité au n° 18),
pendant que / est généralement fini.

Au dela de I’écran conducteur, les forces électrique et magnétique dérivent
I’une et 'autre d’un potentiel (aux termes en a* prés). '

La force électrique est négligeable; la force magnétique est & peu prés égale

au produit par de celle qui s’exercerait si le plan conducteur n’exis-

141+ A2
tait pas (voir, pour plus d’exactitude, le n° 18). Elle est donc réduite au moins de

la moitié et pourrait étre interceptée,  l'instar de la force électrique, seulement
pour une conductivité infinie (k= o0, h=).

(est justement ce que prévoyait M. Righi.

Quelques mots encore sur la position analytique du probléme.

Les équations de Hertz a elles seules ne suffiraient pas, tout en tenant compte
des conditions (de continuité, régularité, etc.) qui sont imposées aux compo-
santes des forces électromagnétiques.

Une discussion facile montre en effet que, pour rendre la question déterminée,
il faut se donner (parmi les conditions dites aux limites) deux relations qui
devront éire vérifiées sur le plan conducteur et qui traduiront précisément cette
qualité. Nous ne pourrons y parvenir sans sorlir de la théorie hertzienne pure.

" En effet, ce qui caractérise un conducteur est sans contredit la loi de Ohm.
Mais, au point de vue de Hertz, on n’a 1a que la définition du courant (de ses deux
composantes dans notre cas), et il n’en résulte naturellement aucune relation nou-
velle entre les composantes des forces électromagnétiques.
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Il faut donc avoir recours quelque autre hypothése.

Or I'expérience ne nous donne a cet égard aucun renseignement; bien au con-
traire, il s’agit en quelque sorte de la devancer.

D’autre part, on n’entrevoit méme pas, parmi les éléments de la théorie de
Hertz, deux relations qui puissent paraitre justifiées a priori.

D’aprés cela, j’ai été conduit & m’appuyer sur une théorie un peu plus restreinte
que celle de Hertz, o 'on a affaire non pas précisément aux équations différen-
tielles de Hertz, mais & un certain systéme de leurs intégrales.

C’est ce qui arrive dans la théorie originale de Maxwell, dans celles de M. Lo-
rentz et de M. Larmor ('), qui, d’ailleurs, n’en différent pas, tant qu’il s’agit,
comme a présent, de milieux isotropes en repos.

C’est ce qui arrive aussi dans la théorie de Helmholiz, dés qu’on lui ajoute
simplement ’hypothése que les actions a distance se propagent avec une vitesse
finie (voir Chap. I).

On abien, dans le cadre de ces théories, tout ce qu'il faut pour que notre ques-
tion et d’autres analogues deviennent parfait‘ement déterminées.

Jai préféré la derniére (celle de Helmholtz modifiée) parce que les principes
sont peut-étre plus simples, et & mon avis trés suggestifs.

Ce ne serait pas une raison suffisante. Mais on peut démontrer qu’on serait
conduit a la méme solution aussi en partant des intégrales de Maxwell. Je me
borne & signaler cette conclusion, qui se rattache a la remarque suivante, d’ordre
plus général :

Les deux théories intégrales ne sont pas identiques. Elles s’accordent naturel-
lement dans le domaine différentiel, mais elles s’accordent encore sur quelques
détails importants non envisagés par la théorie de Hertz.

On a besoin de ces compléments pour toutes les questions qui appartiennent
au méme type du probléme simple étudié ici. Parmi ces questions, il y en a une
notamment (celle de I'influence d’un écran conducteur sur le champ magnétique
d’un courant variable) ou I'on peut s’attendre & ce que les résultats obtenus par
la théorie seront accessibles sans peine au contrdle de I'expérience (pendant que
dans le cas actuel on se trouve presque a la limite des quantités appréciables par
I'observation ).

Je me propose de revenir prochainement sur ce point.

(1) Elles sont résumées dans la seconde édition du Traité classique de M. Poincaré :
Electricité et Optigue. Voici les citations des Ouvrages des deux savants contenant lexposé
de leurs théories : LorENTz, Versuch einer Theorie der elektrischen und optischen
Erscheinungen in bewegten Korpern, Leyde; 1895. — LARMOR, Aether and matter, Cam-
bridge; 1goo.

———0 § O —
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CHAPITRE L.

RAPPEL DE QUELQUES NOTIONS D’ELECTRODYNAMIQUE.

1. Jai démontré autrefois (*) qu’on peut retrouver les traits essentiels de la
théorie de Maxwell méme en partant des lois classiques. Il suffit de les compléter
par 'hypothése que les actions & distance se propagent avec une vitesse finie.

La théorie de Helmholtz conduit alors aux équations de Herta.

Voici, en peu de mots, cette déduction.

2. Généralités. — Envisageons un milien homogeéne S, indéfini et en repos,
si¢ge de phénoménes électrodynamiques.

Soient, pour un point quelconque P (z, y, z), et dans un instant quelconque ¢,
e(z,y, 5, t) la densité électrique; u(z,y, 5, t), o(2,¥, 5. 8), w(x,¥, 53, ¢)les
composantes du courant rapportées a 'unité de volume : e dS représente alors la
quantité d’électricité contenue dans le volume dS & I'instant ¢; udy dzdt est la
quantité d’électricité qui traverse, pendant le temps dt successif & ¢, aire dy ds
normale a I'axe des z; de méme v dz dz dt est la quantité d’électricité, etc.

Je suppose e, u, ¢, w finies et continues avec toutes les dérivées des deux pre-
miers ordres. Je suppose, en outre, que ces fonctions s’annulent a I'infini, de

. e U e \ \ .
facon que les mtegralesf = ds, f = dS, ..., étendues a tout 'espace S, aient un
s s

sens (pour toute valeur de ¢), r étant la distance du point variable d’intégration
a un point fixe quelconque.

3. Principes de conservation de Uélectricité. — Eutre e, «, ¢, w on a 'équa-
tion de continuité, qui s’écrit

de du dv+d¢v_o
(I) 'cTt_+c7._x+Zl; -(E-—-.

Il va sans dire que e dS, v dy dz dt, v dz dz dt, w dzx dy dt (qui sont toutes des
quantités d’électricité) doivent étre mesurées de la méme fagon, en unités élec-
trostatiques par exemple. A ce systéme se rapporteront alors les valeurs numé-
riques de e, u, ¢, w.

(1) Sulla riducibilita delle equazioni elettrodinamiche di Helmholts alla forma
hertziana (Nuovo Cimento, aoit 1897).
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4. Loi de Coulomb. — Potentiel électrostatique retardé. — Conformément
alaloi de Coulomb, le potentiel électrostatique (en supposant pour simplifier la
constante diélectrique, ou pouvoir inducteur spécifique de notre milieu, égale a

Punité) est
fe(x”);,, 5, ) dS,

S

ou I'on désigne par 2, »’, 5 les variables d’intégration, par z, y, z les coordon-
nées du point quelconque P, auquel se rapporte le potentiel, par r la distance
de P au point P'(2/, y/, &'). _

Je pose, A étant une constante, 'inverse de la vitesse de la lumiére dans S,

e=e(z,y,s,t—Ar),

(2) F:f%ds

On appelle F potentiel électrostatique retardé. Chaque élément—f—_ dS de I’

est, on peut dire, le potentiel d’une action partic de P" avec une anticipation Ar
sur I'instant auquel on 'envisage au point P.
; . e C
Par conséquent, en prenant F, au lien def‘; dS, comme potentiel électrosta-
S
tique, tout se passe comme si les actions élémentaires, envisagées par la loi de

Coulomb, se propageaient en ligne droite de leurs origines a P avec la vitesse de
la lumiére.

5. Potentiel vecteur retardé. — Loi de Biot et Savart. — Force magné-
tique. — Le vecteur dont les composantes suivant les axes coordonnés sont

(3) U:Afﬁds, V:Af ds, szffds
S r S S r

sera notre potentiel vecteur. Il différe du potentiel vecteur ordinaire par la sub-
stitution de

Nl

v=u(z,y,s,t—Ar),
v =y (2, y,5,t—Ar),

;—v: W(xl7y’) z',t—Ar),

au(a,y, 7, t), (2, y, 7, t), w(a, ', 7, t): ce quicorrespond, comme tout a

1

i

La force magnétique du champ, d’aprés la loi élémentaire de Biot et Savart
Fac.de T., 2¢ S., IV. 2

I’heure, & une propagation par ondes sphériques avec la vitesse
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(dite parfois aussi loi de Laplace), est définie comme le tourbillon (cur! des
Anglais) du potentiel vecteur, changé toutefois de sens si les axes sont orientés

comme dans la fig. 1, ce que nous voulons supposer.

Y

Dés lors, en combinant la loi de Biot et Savart avec notre hypothése sar la
vitesse de propagation, on a, pour les composantes L, M, N de la force magné-

tique, les expressions suivantes :

dv ~ dW
L —_— Ez‘ - d—y,
dW dU
du  dv
Ny T
6. Loi d’induction de F. Neumann. — Force électrique. — Les dérivées

de — AU, — AV, — AW, par rapport a ¢, donnent les composantes de la force
électromotrice d’induction : c’est la loi potentielle de F. Neumann, ol I'on a seu-
lement remplacé le potentiel vecteur ordinaire par le potentiel retardé.

Lorsqu'il n’y a pas de forces électromotrices extérieures (d’origine chimique,
thermoélectrique, etc.) la force électrique totale (X, Y, Z) est la somme de la
composante électrostatique et de celle provenant de I'induction.

On a donc
dF dU
dF dV
(1) Y=—0 - AT
L dF  dW
L=—g AT

7. Propriétés des fonctions ¥, U, V, W. — Tout potentiel retardé

F:f—"ids
sr
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satisfait & ’équation
d*F
der

OF=AF— A2 —=—/me.

C’est 'analogue de 'équation de Poisson, et P'on peut la vérifier de la méme
facon (*).

Nous avons ainsi

( OF =—/{4me,
OU =—/4mAu;
(4) ,
OV =—/4rAvp,

OW=—/4mAw.

De plus les fonctions F, U, V, W sont lies entre elles par la relation

. A d¥  dU dV . dW
() ai Tdw Tay T as T
Pour le démontrer, je remarque d’abord qu’on peut écrire, avec la notation des
dérivées partielles,
du _ du du dr
dz' ~ oz’ dt dx'’

dl
U (ﬁ r i) g
de — ")\ dr T dz v ’

d’ou, puisque u dépend de x uniquement par l'intermédiaire de l'argument

. dr dr
t—Ar, et que d’ailleurs —— = — —
et gu dx dz’’

Or

~ I
dl _
du -y du dr 1

Transformons la premiére intégrale par la formule de Green. L’intégration

4 7]

étant étendue a Lout I'espace, il vient
dU du du dr\ 1 .
%*A[<W+AE z;) P

(1) Voir, par exemple, VOLTERRA, Sul principio di Huygens (Nuovo Cimento,
3¢ série, t. XXXI, XXXII, XXXIII; 1892-1893), ou bien encore PoiINcARE, Oscillations
électriques, n° 40.
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ou bien, a cause de 'identité, rappelée ci-dessus,

dU du 1
%—-A[W}‘_ds.

av. v 1
ZZ}—A/SBTF"S’

‘ﬂ:A @’_ds’

ds s 93’ r

av_ dv  dw _, [((ou  ov  dw
az day Tas ) \ow Toy T ow

L’équation de continuité (1), appliquée aux fonctions e, u, v, w, devient évi-

De méme

-

el en ajoutant

N =

demment
de+0u +d(_f dﬁfﬂo.
de ' dz' 0y’ Tog T
11 . N TN . \ d(; I 5
le second membre de V'équation qui précéde est donc égal & — A T ds,
s
T dF
c’est-a-dire & — A - - c. Q. F. D.
dt
8. Vérification des équations de Herts. — En éliminant la fonction I des

équations (II), et ayant égard aux équations (I), il vient tout de suile

dL_dl _d

dt — dy A4z’

dM dX dZ,
(6) A= d A

LN _dY _dX,
dt —dxr  dY
C’est le premier groupe des équdtions de Herts.

Dérivons maintenant la premiére des équations (II) par rapport a ¢; multiplions

par A, en remplagant —A2-%:t—l3 par sa valeur — A, U — 4mAu. Nous obtenons

aX Ai-—F——AgU—_/urAu.

A= Mads

Les deux derniéres équations (I) donnent, d’ailleurs,

ds ~ dy  dx\dr dy = dz e
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En tenant compte de (5), et en retranchant de la précédente, il reste sim-

plement
dX dM dN
(7) d—tza—z——a—;—-éﬂ:Au.
Les deux équations
dY dN dL
‘ Am:gl‘;— 7= —4mAv,
(7) ¢
AdL_dL_am
( dt — dy dx s

s'établissent de la méme maniére, et l’on a ainst retrouvé le second groupe de
Hertsz.
Les équations (I) donnent encore

o dl.  dM_ dN _
(8) et dy T

pendant que les équations (II), en ayant égard a (35) et ala relation

a*F
A F — A2 dt?:-&ne,
donnent
, dX dY_}_d_Z___A .
(9) —Ji+@ e Te.

9. Charges et courants de surface. — Discontinuités qui en dérivent dans
les forces électromagnétiques. — En nous placant au point de vue des actions
a distance, qui nous a conduit aux équations (I), (II), il est presque évident que
ces derniéres s’étendent au cas ou il y aurait, sur quelque surface ¢ du milieu
indéfini S, des distributions & deux dimensions de charges et de courants. Il suffit
d’ajouter aux expressions des potentiels F', U, V, W les intégrales doubles corres-
pondant a ces distributions.

On n’arien & modifier aux équations (4), (5), ..., (9) pour les points non
situés sur les surfaces o; mais on doit prendre garde aux discontinuités que l'on
vencontrera en les traversant.

Il'importe surtout de reconnaitre celles qui se produisent dans les composantes
des forces électrique et magnétique. On les détermine aisément (en fonction des
charges et des courants de surface) & I'aide des formules bien connues, se rappor-
tant aux dérivées premiéres des potentiels de surface, formules qui sont valables
méme pour les potentiels retardés ().

(1) VoLTERRA, loco citato, t. XXXI.
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On peut encore montrer que (charges et courants de surface satisfaisant, bien
entendu, au principe de la conservation de I'électricité) les discontinuités qui se
produisent dans les forces électromagnétiques ne différent pas de celles que I'on
mettrait au jour en suivant la voie indiquée par Hertz.

Du reste, au point de vue physique, une telle démonstration ne serait pas
nécessaire; I'identité apparait d’elle-méme.

Pour nous en rendre compte, voyons en quoi consiste ce principe de Hertz.
Nous envisagerons, pour plus de netteté, le cas d’une portion de surface ¢ paral-
lele au plan z=o.

Ce qui arrive pour des distributions superficielles, situées sur o, doit étre

- cherché par un passage a la limite, en considérant d’abord ane couche = d’épais-
seur g limitée d'un coté par o, et exprimant ensuite que les équations indéfi-
nies (6), (7), (8), (9) continuent a subsister dans 7, lorsqu’on suppose que e,
u, v grandissent indéfiniment, pendant que g décroit, de maniére toutefois que
les limites de ge, gu, gv restent finies.

Ce méme passage a la limite introduit, dans les équations (I), (1I), les termes
correspondant aux distributions de surface sur s.

Dés que l'on a affaire & la méme cause, les effets (dans notre cas, les disconti-
nuités des forces électromagnéliques a travers =) doivent étre les mémes quelle

que soit la voie que ’'on choisit pour les évaluer.

10. Remarque. — On peut présenter les considérations qui précédent sous
une forme valable pour tout milieu isotrope, méme s'il est polarisable, c’est-
a-dire s'il est doué d’un pouvoir inducteur spécifique et d’une perméabilité ma-
gnétique quelconque.

C’est ce que j’ai fait dans le Mémoire du Vuovo Cimento cité plus haut.

CHAPITRE T1I.

TRANSFORMATION DES POTENTIELS RETARDES.

11. Transformation directe des potentiels dans le cas ot le mouvement
des charges se réduit & une translation. — Dés que 'on a affaire & un mouve-
vement de translation, tout systéme QEn{, qui est animé, par rapport aux axes
fixes O zyz, de la méme translation, doit rester invariablement 1i¢ aux charges.
La densité e de leur distribution est donc une fonction de &, 1, {, indépendante
de ¢.



~

LE CHAMP ELECTROMAGNETIQUE ENGENDRE PAR LA TRANSLATION, ETC. 10

Complétons la définition des axes mobiles en choisissant, par exemple, Ozys
comme position initiale (pour £ = 0) du triedre Q&4Z. On a alors, entre les coor-
dounées z, y, z; &, 1, { d’une méme particule électrisée par rapport aux deux
systémes, les relations

xr={+0,
(I) }’:ﬂ-i—‘-l/,
\Z:c_i_)(’

les 9, ¢, 7 étant des fonctions données du temps ¢, qui se réduisent a o, pour
t—=o.
Dans un instant quelconque ¢ la vilesse des charges électriques est, pour tout

. do di dy,
point du champ, (Ea =5’ d_t>
Or la quantité d’électricité qui traverse dans le temps d¢ I'aire élémentaire

dy dz <c’est-é-dire la charge d’un parallélépipéde ayant dy dz pour base et

% dt pour hauteur> est exprimée par e g;} dy ds dt.

Comme « dy dz dt représente par définition la méme quantité, il s’ensuit que

_ 4

u_ems

: d:

(2) 4V:8d—‘f)
_ . ax

iV——e'zl—l"

Occupons-nous d’abord du potentiel électrostatique

F:ffds.
Sf‘

La densité e ne dépend que de &, 0, §, c’est-a-dire, d’aprés (1), dex — o, y — ¥,
5 — 7y ; on a donc I'identité

(3) e(x,y,5t)=e(x—9, y—¥, 5—1);

e=e(a'—9, ) —, 5 ~7),

en convenant de désigner, pour une fonction quelconque, le changement de ¢ en
t — Ar, par un trait superposé.
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Posons
w,-—~<p:x’—§,
(%) Cp—y=y =0,
( 5 — (=3 — %

etappelons D le déterminant fonctionnel de x4, 1, 54 par' rapport a z', ¥/, 5.
Ayant

dry dg; . dEpT x —x'
dw =T AG ETAG
doy _ _ydoy—y
dy' ac — r ’
dz, d_c‘;u—.,’
dz' .~ r

on trouve tout de suite

o dq) z—a dq;y—y’ dy z— 3
©) =M (G TR G T)

En adoptant, dans F, z,, yy, 5, au lieu de &/, 3, 5/, pour variables d’intégra-

tion ('), il vient, d’aprés (3),

e(x, CP’ "l)? Z1_X) — e(xlvyl"’l’ t)
(6) _f e dS_fs g D as.

Tout se passe donc comme si chaque charge élémentaire agissait avec le poten-

el —— IDl

D’une fagon plus précise cette expression transformée de F correspond a la loi
élémentaire suivante :

La charge, qui occupe dans un instant quelconque ¢ une position quelconque
P,(zy, ¥1, 51), agit sur le point envisagé P (z, ¥, ) avec le potentiel (rapporté &

I'unité de charge) ik o r représente la distance de P, non pas a Py, mais a un

certain point P'(/, y/, 5'), qui dépend de P et de P, d'aprés (4); D étant défini
par I’équation (5).
Il est aisé d’apercevoir la signification géométrique du point P'.

(1) La transformation est légitime, toutes les fois que D ne s'annule pas, ce qui arrive
notamment lorsque la vitesse de translation ne dépasse pas celle de la lumiére (voir plus
loin). :



LE CHAMP ELECTROMAGNETIQUE ENGENDRE PAR 1A TRANSLATION, ETC. 17

La comparaison de (1) et (4) montre, en effet, que P’ est]a position occupée i
'instant ¢ — A r par la charge qui occupe a I'instant, ¢ la position P, (fig. 2).

Fig. 2.

v

) .
/ Py

Yp

(’est justement la position de ladite charge, d’olt une action, se propageant avec

. 1 . .
la vitesse % atteint P 4 'instant ¢.

¢ étant la vitesse de la charge en P/, c’est-a-dire a l'instant ¢ — A r, les compo-

do dy dy
santes de ¢ ne sont autre chose que 5 =5 On a donc
VAN
(5" ]):I—A(’COS((’I’>,

la direction positive de 7 allant de P’ a P.

On voit bien que D reste toujours positif [ce qui garantit la 1égitimité de la
transformation (4) et I'univocité de la correspondance entre les points P, et P']
si, comme nous le supposerons désormais,

Av <1,

c’est-a-dire si la vitesse des charges reste inférieure a celle de la lumiére.
Le potentiel électrostatique élémentaire se présente donc sous la forme

1
/-[1 ——Avcos(ﬁl\)]

Ce résultat est dd & M. Wiechert (".
Pour le potentiel vecteur on est évidemment conduit a des conclusions ana-

logues.
A cause de (2), les expressions transformées de U, V, W se tirent de I en y

dy
dt’

remplacant e par Au= Ae %D’ Ap=Ae %’ Aw=Ae

(') Elektrodynamische Elementargesetse (Archives Néerlandaises, 2¢ série, t. V)
(Volume jubilaire en 'honneur de M. Lorentz); 1goo.
Fac.de T., 2¢ S., 1V, 3
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Il sera plus commode, dans ce qui va suivre, de se rapporter aux axes mobiles.
Les coordonnées des points P, P,, P’ seront alors naturellement désignées par &,
7, §; &y mey G5 &, 05§ et les expressions des potentiels (ot il convient, bien
entendu, d'introduire, méme comme variables d’intégration, les coordonnées &,

N1, G au lieu de x4, ¥y, 5,) s’écrivent

F :/ e(&ny, 8) ;
1 —Avp cos(w ﬂ
- Au(Giy i, 8)

r — Ay cos(vr)]
A% / Ao, 01, 61) S
x — Avcos vr)]
W — / Aw (& (Ey5 0y, C,
l 1—Av cos ]
r et ¢ ayant la signification définie tout a I’heure.
Ces formules, nous le verrons bientdt, sont valables pour un mouvement quel-

l

(6)

conque des charges. Ici les trois derniéres se réduisent simplement &

4, do o Sy dd
U=A—F,  V=AZF

dx

W=A =ZF.

12. Cas d’une charge unique. — Supposons que la fonction e (&, 7, {) soit
généralement nulle, en dehors d’un trés petit espace t entourant le point Q.

On peut évidemment faire cette hypothése sans renoncer a la condition (néces-
saire pour la validité des considérations du premier Chapitre) que les dérivées
premiéres et secondes de e soient partout finies et continues ().

11 suffit d’imaginer une fonction quelconque, douée de cette propriété pour les
points de 7, qui s’annule sur le conlour avec ses dérivées des deux premiers

ordres. Il est partant permis de supposer en outre

fe dsS =m,
T
m étant une constante donnée.
Ceci posé, le cas d’une charge unique m, placée a I’origine Q des axes mobiles,
) g ) g :
se déduit sans peine comme cas limite du numéro précédent, en faisant décroitre

indéfiniment I'espace <.

(1) A la vérité, on peut se tirer d’affaire avec des conditions moins restrictives; mais il ne

vaut pas la peine d’y insister.
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Les potentiels retardés se réduisent alors aux produits de m, Am ‘;—f) Am%,
d
Am d—>;’ par

T roen ol

Le passage a la limite, dont nous nous sommes servi pour y arriver, permet

évidemment d'aflfirmer (ce qu’on pourrait aussi vérifier direclement) que ces
polentiels élémentaires satisfont bien aux équations différentielles (4) et (5) du
Chapitre précédent, ou plutdt (comme nous nous rapportons ici aux axes mobiles)
a leurs transformées en coordonnées &, 1, &.

Il va sans dire que la distance 7 et la vitesse ¢ se rapportent, non pas i la posi-
tion actuelle Q de la charge m, mais & la position antérieure, dont les coordon-
nées &, 1/, { sont définies, en fonction de &, 1, §, ¢, par

(E=0(t—Ar)—o(t),
(7) ' =Yt —Ar)— (),
U= q(t—Ar)—yx(t)

[r=VE=2) 7+ —n)+ (=0 )]

(est ce qui résulte de I'équation (4), lorsqu’on y met en évidence les coor-
données &, 0, ..., en tenant compte de ce que (le point P, étant ici représenté

par Q)
Et =0 =§f=o.

Pour arriver aux expressions définitives des potentiels, il faut éliminer les

) o 1 .. .
coordonnées auxiliaires &, 7/, £ de Sk Voici comment on peut disposer le
calcul.

Tout d’abord on tire, des équations (7),

(8) P=E=E))+ =m0+ (=0
= [E+o9()—o(t—Ar)]
-+ d () —g(e —Arp
H+[E+n(8) —x (e —Ar),

équation qui définit directement r en fonction de &, 1, ¢, ¢.
En la dérivant par rapport a A, il vient

ra=le-n v —-n'>j’,—“;+<c—c'>f,~f] (r+a )
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Mais, d’aprés (5),

: Ty — di’- 1 dy ’ d;(. o _l
(5 bis) ID_—I—A['d—t'(E'—a)-i—m(ﬂ_ﬂ)‘i‘zﬁ(c s)»,
d’ot
dr
Ar i "
rD=r— >
r+A dr 7 &—al
ak TN aK
1 I d;-
DNk
Remarque. — Comme les fonctions o(t), $(¢), 1.(¢), qui définissent le mou-

vement de Q sont censées élre quelconques, ce qu’on vient de dire permet de
construire en tout cas le champ électromagnétique dd a4 un mouvement d’une

charge unique.

13. Cas général d’une distribution et d’un mouvement quelconques. —
Analogies hydrodynamiques. — S’il s’agit d’un nombre quelconque de charges,
on n'a qu'a faire la summe des potentiels élémentaires pour obtenir les expres-
sions de ¥, U, V, W.

do 4y . dy

Dans le cas d’une distribution continue m, m 00 g Mg ne sont autres

que

d9 g — Y 15— U gg —
edS, e—cﬁdS_udS, e?ﬁdS_cdS, cmds_wds,

et lon retrouve, par suite, les formules (6), qui restent ainsi démontrées en
général, tandis qu’auparavant nous les avions établies seulement pour les mouve-
ments de translation des charges.

Il ne serait pas difficile d’obtenir, méme dans le cas général, la transformation
des potentiels retardés par un calcul direct, mais il est inutile de s’y arréter.

Je préfére faire remarquer qu’on peut concevoir I’action d’un champ donné
(sur un point P et dans un instant ¢) répartie entre les points du champ d’une
infinité de maniéres. On peut notamment :

1° Attribuer & chaque point du champ la charge qui s’y trouvait & I'instant t.

On a de la sorte les expressions primitives des potentiels retardés, tels qu'ils
ont été définis au début du Chapitre précédent.

2° Attribuer 4 toute charge la position qu’elle occupait a I'instant ‘.

C’est ce qu’on fait dans les expressions transformées (6).
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Dans la forme originale les actions sont en quelque sorte réparties suivant le
point de vue d’Euler.

Les expressions transformées correspondent, au conlraire, au point de vue de
Lagrange.

14. Charge unique en mouvement de transiation uniforme. — Si ¢ désigne
la vitesse constante de translation, on a

p()=ct,  Y(t)=o, x(¢t)=o,

en supposant I'axe § dirigé suivant la translation.
Les équations () et (8) se réduisent a

(7') Y =—ar, n' —=o, ¢ =o,
(8" r=({+ar) 4+ 02+ 22,
ou

(9) a=Ac

est une constante numérique plus petite que I'unité.
L’expression (5 bis) de rD devient

rD=r—a(l+ar)=(1—a*)r—at.
Or, en multipliant par (1 — a2), on tire de (8)

[(1—a)r —atP =8+ (1— a*)(n* + &),
ce qui donne
PD=E (- a) (24 12).

Les potentiels élémentaires sont donc

N m N
(10) Ve (—a)(nr+ )
U=aF, V=o, W —o.

Les formules de transformation (1) étant a présent
x=Ef+ct, y=mu, z=¢,

les opérations différentielles

d d d ,d
dz’ dy' ds° " di
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seront exprimées dans nos variables &, 7, {, ¢ par

d d d  d_d
dz’ da’ dg’ ac T dz’

]

d’ol, pour toute fonction f des seules variables &, 4, ,

_af afr af L, df n@f  df &S
Di=gmtartam N =" g gtz
On voit bien que
OF=00=o,
dF  dU _ d o

Clest la vérification directe des équations (4) et (5) du Chapitre précédent.

Les expressions explicites des forces électromagnétiques du champ dérivent
de (I) et (II), en y substituant les valeurs (10). Je n’y insiste pas davantage, car
an tel champ a déja été trés bien étudié ().

CHAPITRE TIL.

RESOLUTION DU PROBLEME PROPOSE

15. Données et mise en équation. — Un conducteur placé dans un champ
électrostatique s'électrise par influence. Un phénoméne analogue doit évidemment
se présenter lorsque le champ varie avec le temps. Seulement la distribution
induite sera en général variable et il se produira des courants.

En tout cas, la présence d'un conducteur dans un champ donné entraine des
modifications du champ.

Selon notre point de vue la question de déterminer ces modifications revient
au calcul des termes additionnels que la présence du conducteur introduit dans
les expressions des potentiels retardés. En d’autres termes, il s’agit d’assigner les
potentiels retardés correspondant  la distribution et aux courants induits sur le
conducteur.

(1) Heavisior, Electrical papers, Vol. II. — Rieut, Sut campi elettromagnetici e par-
ticolarmente su quelli creati da cariche elettriche e da poli magnetici in movimento
(Nuovo Cimento, 5¢ série, t. II; aoat 19o01).
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Sans envisager ici le probléme général, arrivons tout de suite au cas particulier
qui forme I'objet de notre recherche.

Une charge donnée m se meut alors avec une vitesse constante ¢ parallélement
a un plan conducteur indéfini , le milieu ambiant étant I'éther (fig. 3).

Fig. 3.
7
S
m.
d
Q g
//
c e
’/’/
_____________ ‘._._.____.}”
I
)
1
!
WM
B

Choisissons un systéme d’axes mobiles Q21 invariablement liés & m, ayant
s pour plan { = o, et m sur le demi-axe positifdes L. Les coordonnées de m sont
alors o, 0, d > o, d étant la distance constante de m & o.

§’il n’y avait pas de plan conducteur, les potentiels du champ seraient donnés
par les formules (10) du Chapitre précédent en y changeant seulement { en { —d.

Mais le mouvement de m donne naissance a une distribution induite (variable)
sur le plan conducteur et il lui correspond un potentiel électrostatique F; et un
potentiel vecteur U,, V, (W, est évidemment nul, car le mouvement del’¢lectri-
cité a lieu sur le plan { = o).

Les potentiels du champ, modifié par la présence du plan conducteur, se pré-

sentent donc sous la forme

F:K +F,,
(1) .
U:z)%Z U,, V=V, W=o,
en ayant posé pour abréger
(2) A=+ (1 — @) [ + (L —d)].

Examinons maintenant a quelles conditions doivent satisfaire les inconnues F,,
U,, V, comme fonctions des variables &, =, , ¢.

Tout d’abord, eu égard au fait que le phénoméne est stationnaire par rapport
aux axes Qn¢, ces fonctions ne dépendront pas explicitement du temps ¢.
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Elles sont toutes des potentiels retardés (correspondant a des distributions de
surface sur le plan { =o0); donc, d’aprés le numéro précédent, des solutions de
Péquation

3) Cor=-ae G S

=03

elles satisfont & I'équation (5) du Chapitre I, qui devient & présent

dF, dU, dV,,
(4) “g{—*gg +71;’

elles se comportent partout, méme a P'infini et a la traversée du plan conducteur,
comme des potentiels ordinaires (*). Leurs expressions analytiques (sous forme
d’intégrales doubles étendues au plan { = o) ne changent pas lorsqu’on change le
signe de {. Elles ont donc méme valeur dans les points symétriques par rapport
au plan { = o; elles sont en somme des fonctions de 'argument | {|.

Les conditions caractéristiques, relatives au plan = o, peuvent alors étre
présentées sous la forme

L—dU =Au,, — v,
am d| |

L
o d|g|

(5) —

1 dF,
amdig] T =A
ey, Uy, 9, étant la deunsité de la distribution et les composantes du courant
induit.

Ce sont de nouvelles inconnues dont, pour le moment, on sait & peine qu’elles
doivent vérifier I'équation de continuité.

Iln’y a pas lieu d’en tenir compte, car c’est une conséquence de (4). Eu effet,

dul dv, y, .
ladite ¢é uatlon —_ —+ = 0, par rapport aux axes fixes ) s'éerit
q d ay par rapp
d du, dyy
a d§ = A( —+ ?{?‘—))

et cela résulte bien de (5) en ayant égard a (4).

Les équations (5) ne servent done, peut-on dire, qu’a définir ey, wu,, ¢,.

Les prémisses générales du Chapitre I ne nous donnant pas d'autres renseigne-
ments sur les fonctions F,, U, V,, on n’en a pas assez pour les déterminer.

-——E———.; 7, §, que les fone-
\/I —a?
tions Fy, Uy, Vy sont des potentiels ordinaires de distributions ayant pour siége le plan {= o.
C’est ce qui résulterait directement de leurs expressions transformées. C’est d’ailleurs ce
qui résulte de (3), d’aprés la fagon dont se comportent lesdites fonctions.

(1) On pourrait méme dire, en se rapportant aux variables
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On devait s’y attendre, car jusqu’a présent nous avons traité le plan conduc-
teur simplement comme un siége d'électricité en mouvement.

Or ce qui caractérise les conducteurs est bien quelque chose de plus précis :
c’est la loi de Ohm.

Pour les surfaces conductrices (isotropes) elle exprime que le courant est pro-
portionnel & la composante tangentielle de la force électrique, et a la méme
direction.

Nous devons donc poser

(6) X =Akuy,  Y=Ake,

k étant une constante, puisque nous supposons bien que le plan conducteur & est
homogéne.

Quelle est la signification physique de cette constante £ ?

Ayant choisi (n° 3) le systéme d’unités électrostatiques, Ak n’est autre chose
que la résistance de I'unité de surface de notre plan conducteur, mesurée en
unités électrostatiques. Or, si R, Ry, R, sontles trois nombres qui mesurent une
méme résistance, respectivement en unités électrostatiques, en unités électro-
magnétiques et en ohms, on a (')

R.=AR,, R,=10R,.
Il s’ensuit
k=A10°R,,

. . I
d’ou1, puisque 1= 3.10'0,

k: 16 Ro.

@),

La constante k est donc un trentiéme de la résistance de U'unité de surface
du plan conducteur exprimée en ohms.

Il est & peine nécessaire d’ajouter que, une fois trouvées F,, U, V,, on a,
d’aprés (1) et les formules (1), (II) du Chapitre I, les potentiels du champ.
Il faut, bien entendu, remplacer dans (1), (II) les symboles opératifs

d d d A d
dz’ dy’ ds’ dt
par les équivalents
d d d d
dﬁ’ d_‘f)’ gca —a ‘E

(1) Voir, par exemple, MAScART et JOUBERT, Legons, etc., t. I, p. 671-675.
Fac.de T., 2¢ S., 1IV. 4
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On a ainst
i L == Ll’
d—k |
(I1l) M=—ma —&f—i—Ml,
1
N= ma t-i—é + N,z
S dn '
a3
— a2 ——
X =—m(1 a)dg + X,
i
d—~
0
1
7 = tj} + 2Ly
—_——m d§ 19
ou
' dv
Ll: 71?17
dU
(V) Ml:— —gc—l’
_dy, dav, .
Ne= G T ES
dF, dU,
Xl————-—gg‘l—a dg ’
o _dF, dv,
(V]) Yl —--‘Bjn*-‘l—a di ’
_ dF1
3

représentent évidemment les composantes des forces électromagnétiques du
champ provenant de la distribution et des courants induits sur le plan o. Les
premiers termes, dans (I11) et (1V), définissent, au contraire, le champ qui serait
produit par le mouvement de m, il n’y avait pas de plan conducteur.

Nous avons désormais tout ce qu'il nous faut pour aborder la résolution mathé-
matique de notre question. En effet, nous allons montrer que, en tenant compte
des conditions qualitatives rappelées ci-dessus, les équations (4)et (6) suffisent
bien a déterminer Fy, Uy, Vi
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16. Expressions analytiques des potentiels retardés. — Explicitons d’abord
les équations (6) en y exprimant tout en fonction de nos inconnues I',, U;, V.

On a, d’aprés (IV) et (VI),

1

d -
X:—m(l—az)—d—?—-—%—?A—a%a

I

1% ar, dv,

Y=—m %_%_;_a.gg_,

et, par suite, en remplacant Aw,, Ay, par leurs valeurs (3),

!
\L _dF, _au,_ 93
N an d aE Tqp Tmu—a)
(6" i
k _dF  aVy _A
_7: an T4 T dn

Ces deux relations sont satisfaites en tout point du plan { = o. Il est aisé d’en
déduire deux autres valables en tout point de I'espace.

Remarquons pour cela que, d’aprés les propriétés dont doivent jouir I, Uy,
V., les premiers membres des (6') sont deux fonctions de &, 7, | {|, holomorphes

pour toutes les valeurs réelles de §, 4 et pour || > o, se réduisant respective-
ment a

1 1
m(1— a?) dK m ‘—ZE
dg”’ dn
pour | {| = o, et vérifiant I'équation
Of=o.
di  d

Les fonctions m (1 — a?) s m g elles-mémes satisfont & toutes ces condi-

tions, pourvu seulement qu’on y remplace { par — | {| (autrement elles auraient
des singularités au point m).

Comme il n’en peut pas exister d’autres, on voit bien qu’en posant

(7) V2=8 4 (1—a?) [0 + (| ¢] + d)?]



28 T. LEVI-CIVITA.

on tire des (6') les équations

oAU, b v, Y
am d[C] dE daz ds’
(8)
dl
koavy dFy AV v
Vom d] ] dan de dn’

vérifiées en tout point de I'espace.
Il s’agit maintenant d'intégrer le systéme formé des équations du premier
ordre (8), de '
dF, _dU, _dv,
(4) CE T E A

et des équations du second ordre

(9) OF, =o, OU,=o, OV,=o,
d? da? d?
[D—-—(I‘-—az)d—-—gg—*—c—iﬁ—l‘“w]a

qui sont bien compatibles, par des fonctions de £, | €], holomorphes dans le
domaine indiqué tout a Pheure, et s’annulant pour |{| = w0, comme il convient &
des potentiels de distributions situées sur le plan { = o.

Les conditions aux limites (6') sont alors nécessairement salisfaites.

Détermination de F'y. — En dérivant la premiére des équations (8) par rap-
port a &, la seconde par rapport a v, et ayant égard a (4), il vient

2 L 2 L
ak d?F, d*F, a?F, o d*F, —m 2 ‘f—v -+ d__v
mag & @ dw @ | T g |

d’oi, & cause de

1
OF,=o, O 7=
o1
ak &F, dF, V.
am d|g|dE  d|L]* djg?
En intégrant, par rapport a ||, depuis une valeur quelconque jusqu’a l'infini,
on obtient
1
g_li d_F1. -+ _dFi ——m dv
(10) am dE T djg] T "aley

car les deux membres s’annulent pour }‘Q ] = .
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, . (. m ..
Dans cette équation mettons en évidence F, -+ g comme fonction inconnue.

Elle s’écrit alors
al
, ak d (o d ( >—mﬂ‘_!
(107) 21rd£< ‘+ d — Toamg dE’

et il est aisé d’en obtenir une solution par l’artlﬁce suivant.
Posons

(o) o= (5 Sop) (=@t (18] d )]

u étant une indéterminée.

N1 ()
'E>p‘= _V’ T p‘zw—_‘ ’

On a évidemment

DZ=o
et en outre <T dépendant de . par I'intermédiaire des arguments E—&—g T
]m+d+ﬁ
R

(12) F,—i——m—:—m—

satisfait bien a I'équation (10’). Mais elle satisfait encore a

a <F1 —+ %) =o,

d—
(1) Il est & peine nécessaire de faire remarquer que la fonction sous le signe 7& reste
finie et continue pour toute valeur de 2o et devient infiniment petite du second ordre

d_
pour p =cc. Dés lors, I'intégrale de dﬁ entre v et a un sens; elle est méme une fonction

réguliére des arguments §, 7, | {| dans tout le champ réel (c’est-a-dire pour toutes les
valeurs réelles de &, », £); elle peut étre dérivée sous le signe, etc.
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s’annule & 'infini et se comporte réguliérement pour toutes les valeurs réelles
de &, 7, ¢, ayant seulement une discontinuité normale pour { =o (qui provient

de I'argument [{]). Il en est de méme pour F,, dont on a ainsi achevé la
recherche.

En effet, comme F, doit satisfaire & (10), son expression ne pourrait différer
. _ ak . \
de (12) que par une fonction arbitraire de £ + ;—ﬂ:l C|. Mais, d’aprés les autres
. . . L . ak .
conditions qui sont imposées 2 F,, cette fonction de § + Er‘ €| devrait satisfaire

aléquation O f = o et s’annuler & 'infini. Dés lors, elle est identiquement nulle,
ce qui démontre I'unicité de la solution fournie par (12).

Détermination de V,. — La seconde des équations (8) peut étre écrite
dv, k dv, d m
(8) ad—5+27r d|g|— <Fl V)O

Posons (v étant une nouvelle indéterminée)

(13) G":(c,—t« —kp+av>2+(1—a2)[n2—|—<|§l—|—d+;i—|—2—k%v>2j|,

d’ou

—
-

é k @
== 0, _ = ——|—

- 27 d[C]

1
(]

Ayant égard a (12), on reconnait sans peine que

@ L ]
a2 -
ak
(14) V,:mg—ﬂ_/ dp./ de
0 0

est une solution de (8;).

On s’assure, comme tout & ’heure, que cette expression de V, satisfait bien a
toutes les autres conditions, et c’est la seule pour laquelle il en soit ainsi.

Une remarque s'impose toutefois a I'égard de l'intégrale double

/ "“/ i
dZ

Tant qu'on n’a pas a la fois @ = k = o, la fonction sous le signe & dn devient

G2 =
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infiniment petite du troisitme ordre, lorsque le point représentatif (u, v)
s’éloigne & I'infini d’une fagon quelconque dans le premier quadrant. L’intégra-
tion est alors légitime et V, est bien une fonction réguliére de &, =, |{|.

Mais il ne serait pas permis de supposer a la fois @ = k = o, puisqu’alors & ne
dépendrait plus de v, et 'intégrale

©

I
2 __
d@

d——i an dv

0

n’aurait pas de sens. ;

Cherchons donc directement ce qui se passe pour V, (et pour U)) lorsque
a=k=o.

Ce n’est pas difficile, puisque, pour @ = o, quel que soit d’ailleurs %, on est
reconduit au probléme statique.

1l s’agit alors de l'influence d’une charge électrique m (o, o, d) sur le plan
conducteur { =o: U, et V, sont évidemment nuls, et il est bien connu que le
potentiel électrostatique de la distribution induite se réduit a

m

F,—— .
VE -+ + ([C]+d)?

C’est bien ce qui résulte des (15), (14) et (12) en y faisant @ = 0. Mais en
surplus, nous pouvons maintenant affirmer, a I’égard de U, et V,, qu'ils s’an-
nulent pour @ = o, méme si k est aussi = o, tandis que cette conclusion n’aurait
pas été légitime d’aprés les formules (14) et (15), puisqu’elles n’ont plus de sens

pour a =k =o.
Détermination de U,. — Attendu la forme de V, I'équation (4), c’est-a-dire

d(U,—aF,) dv,
d@E T

)

nous donne aprés coup

@ il I
d?—
ak &
(15) U—aFi=—m— / cl‘u/ dv,
! 2T han?

fonction réguliére, etc.

Il nous reste a vérifier la premiére des équations (8), qu’on peut écrire

d k d
(82) acTE(U‘—aF')+§rd—|Zj_|

1
o d m ak d m\ _ ak Y
_"_“)?£<F‘+V>+EEW<F1+V>""ﬁdlct‘

(Uy—aFy)




32 T. LEVI-CIVITA.

. . . m
Son premier membre, en y introduisant pour U, — aF,, F, + 2 leurs
valeurs (15), (12), devient

° ° I 1
_mak[/d & <adg+i.d_§>dv
ar A # A dn? 7{ am d|¢|
© o1 ° 1
d2_ dZ__
——(1-—a2)/ ~—po+g£/\ ——T—.dv:l.
@ an ), d|L|d

Mais a cause des identités

aodz—x- .
T A {5
dont la somme avec — (1 -— a?) r dy. peut étre remplacée <a cause de
0

Od :0>par
/md2i
T
——dp.
o digr

Le premier membre de (8,) n’est donc autre chose que
amJ,  d|f|\2m dE d|t]| P

1 1 1
ak 47 4z 4

an & T d|g] T ap

Ao

Comme on a
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il reste bien
1
dL
m ak ¥ C. Q. F. D
om AT . Q. F. D.
Remarque. — Les quadratures indiquées dans les formules qui donnent F,,
U,, V, peuvent toutes étre effectuées a I'aide des transcendants élémentaires.

Ainsi, par exemple, en posant

e —ar) (2] )
o 2T ,
T 1—a‘-’—a2k2

fm?

on obtient

Sl { ak
/ dz E— Rk I

— d[J.: P ——— P —— )
o dt Py e e
0 \/1—(12— s V(V—I‘\/l-—fl?——a—TFQ)

d’ott

(r2 bis) l<'1+£l:—m£l£ . —_— .
v 2T , a*k? , ark?
1T—at— —VIVH\/1—a>— —- ¢
42 27?

C’est une expression assez peu instructive, dont, d’ailleurs, on n'aura pas

besoin dans la suite.

Les expressions de U, el de V, sont encore plus compliquées. Je ne les trans-
cris pas, parce que je n’aarai pas non plus occasion de m’en servir.

17. Etude des fonctions ¥, U,, V| pour les petites valeurs du para-
meétre a. — Llexpression (12) de F est valable pour toutes les valeurs (réelles)
de a et de k, I'intégrale 3

a2t
T

@

étant une fonction réguliere de §, 7, | {|, méme pour « =k = o. Montrons que,
comme fonction de ces paramétres aussi, elle est holomorphe dans le domaine
dea=/k=o.

On pourrait le déduire de (12 bis). Ce serait une vérification « posteriori
exigeant le calcul préalable de P'intégrale; il vaut peut-étre mieux s’en rendre
compte direcltement comme il suit. '

Fac.deT., 2¢S., 1V. 5
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Partons de I'identité

con ol e
dl dl d?t
—Ldu—= | —tdp-+ — dp,
/AN 4 L de oSy dE

. 1
changeons, dans la seconde intégrale, wen —, et posons
H.

. ak\?
rf:<H€+ g}) + (1 —a) [’ (1 | L]+ pd )]

Il vient
o ~ly o ak . ak
d- Et o e —
T dp = — am’ 2T dp
AN (3 A ™ T

Dans le second membre, la fonction sous le signe est bien une fonction holo-
morphe de @ et de k&, au voisinage de @ =k = o, pour toutes les valeurs de y
comprises dans l'intervalle d'intégration. (En effet, ni , ni <, ne s’annulent dans
cet intervalle, lorsqu’on y fait @ = &k =o0.) )

al
Cela suffit pour nous assurer qu'il en est de méme de I'intégrale d—; dyp..
/o -

Fy se comporte donc réguliérement pour les petites valeurs des paramétres

aeth.

Elle est, par conséquent, développable suivant les puissances de « et de 4.

Occupons-nous particuliérement du développement suivant les puissances
de a. -

Les expressions de < et 7, montrent que, en envisageant ¢ comme une variable
complexe de module non supérieur a 'unité (quelles que soient les valeurs réelles
de &, 7, {, réelles et non négatives de k, 1), les modules de =2, 3 ne peuvent pas
descendre au-dessous de

[n*+ (18] +d+p)*] (t—lal?),
[pn®+ (1 p L]+ pd) ] (1—[al?),
dés qu’on suppose
/‘,.

— <1.
2T

Donc ni 7 ni 7, ne s’annulent tanl que

la] <,
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el 'on en conclat :

I'y est une fonction de a, certainement holomorphe & Uintérieur de la cir-
conférence |a|=1. Son déceloppement en série de puissances de a est donc
toujours convergent (a étant ici < 1), pourvu seulement que l'on ait

(16) — <.

Les fonctions U, et V{ ne sont pas holomorphes pour @ = k = o.

La recherche des singularités dont elles sont affectées pour ce couple de
valeurs nous entrainerait trop loin.

Les remarques suivantes suffisent pour notre but.

Tout d’abord, dés qu'on suppose k> o, U, et V, sont des fonctions holo-
mophes de a, au voisinage de a = o.

On le démontre sans peine en changeant, dans les intégrales doubles a I'aide

. . 27y .. . . .
desquelles s’expriment U, et V,, v en - (ce qui implique justement que k soit

différent de zéro), et en vérifiant ensuile que les fonctions sous le signe restent
holomorphes au voisinage de @ = o, dans tout le champ d’intégration. Il va sans
dire que, le champ étant infini, la vérification doit étre conduite avec les précau-
tions nécessaires, conformément a ce qu’on vient de faire pour I'intégrale simple
exprimant F,. A

Cela nous assure que U, et V; sont développables suivant les puissances de «,
pour a asses petit. Mais si I'on cherche, comme ci-dessus, a fixer une limite
inférieure pour la validité du développement, on est conduit a la condition res-
trictive

la] < ’ :

\/ ( k 27:)’
1+ + —-
PEH ko

Les développements de U; et V, suivanlles puissances de @ ne convergent donc

(ou du moins on n’a pas le droit d’affirmer qu’il en est ainsi) que sous la con-
dition

1
Verl )
1+ -+
27 I

Pour les valeurs numériques de « et de &, qu’on peut présumer dans les con-

(17) a<<

ditions expérimentales ordinaires (voir le numéro suivant), I'inégalité (16) est
toujours satisfaite; mais il n’en est pas de méme pour la (17), et I'on devrait par
suite renoncer a développer U, et V, suivant les puissances de a.
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On peut tourner la difficulté en modifiant un peu la forme du développement.

Posons
(18) h:27/1::a’
() o= (e ) e e[ (2] d ),

Les expressions (14) et (15) de V, et de U, — aF,, aprés le changement de v

2T A o
en T ) peuvent etre ecriles
AY

~a® Few i,, I

&2 —

/ &'
(14" v, = mabo/ d‘u/) mdv,

Pour toutes les valeurs réelles de &, #, {, réelles et non négatives des para-
métres /o et k, la fonction &2 (de la variable complexe @) ne s’annule pour aucune
valeur de @, a l'intérieur de la circonférence |a|=1; en supposant, bien en-
tendua, que l'inégalité (16) soit satisfaite. On le vérifie aisément d’aprés Pexpres-

s

sion (19) de &".

Il en résulte celte circonstance importante :

Les développements des intégrales doubles
S

<y d‘u‘e/ 0 dn dE, dv, 0 ({H 0 77)? d’»’,

suivant les puissances de a, lorsqu’on y traite b comme un paramétre (pou-

vant prendre, d'ailleurs, une valeur quelconque) sont convergents, pour |a| <1,
sous la seule condition (16), qui garantit également la validité du dévelop-

pement de 'y,

18. Expressions approchées lorsqu’on néglige les termes en a*. — Carac-
teres généraux du champ. — Au point de vue des applications physiques, on
peut traiter @ et A comme des quantités trés petites.

Pour nous rendre compte de U'ordre de grandeur, supposons, par exemple, que
la vitesse de la charge mobile soit de 3oo™ par seconde (ce qui est déja assez exa-

géré); il vient alors
__300.10%

— —6
= 300 0
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Supposons que le plan conducteur o soit une plaque de cuivre de I'épaisseur
d’un millimeétre.
Si g est 'épaisseur de la plaque, r sa résistance spécifique (exprimée en ohms),

on aura, d’aprés le n° 15,

1 1 r
k= +—Ry= 5 —-
307" 30 g
A présent
7r=16.10"7,
a peu pres, et
g=10"1;
il en résulte donc que I'on a & peu pres
k=110,
oma
h=—— =47
Ly
La condition
/‘.
(16) <1
am

est bien vérifiée (etle sera toujours, de quelque fagcon que I'on modifie les condi-
tions expérimentales). L'inégalité (17) ne I'est pas (mais on pourrait y satisfaire,
soit en remplacant le cuivre par un métal plus résistant, soit en supposant la
plaque plus mince). ‘

Pour avoir des expressions approchées, valables en tout cas (et plus que suffi-
santes dans la pratique non seulement pour 'analyse qualitative, mais aussi pour
la discussion numérique du champ), il convient de développer suivant les puis-
sances de @, en ayant soin, bien entendu, de traiter les intégrales doubles (14)

et (15') comme il a été indiqué au numéro précédent.

On pourra bien se contenter des termes du premier ordre en a, car les

termes d’ordre supérieur sont absolument négligeables.

En effet, dés que le rayon de convergence des développements dont il s’agit
est 'unité, on est assuré que la somme des termes d’ordre supéricur au premier

, I
ne dépasse pas, pour |a| << o
Nun?|al?
e — ]
1—nj|al
ol n>1 et ol ML est le module maximum des valeurs que la fonction correspon-

N roe . ’ 1
dant & la série prend sur la circonférence |a| = —-
n
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Par cette voie il serait aisé de vérifier en toute rigueur que, pour les trois
fonctions

£k Kk Sex [ ] 0
1 1 s 1
d~ d® — d* —
- G &
.
a A du, « du. ——dv, «a dp. gy v,
ag /o [ dﬁ, dn [ 0 an=

ey 0

les restes (aprés les termes en @) ont des valeurs numériques tout a fait néoli-
I 8

geables, méme si la vitesse de convection atteignait quelques kilométres par
scconde.

Cela posé, arrivons a I'évaluation effective des expressions approchées.
On a, tout d’abord, en négligeant 2,

(7) V=g (]

Comme, d’autre part, les seconds membres des formules (12), (14') et (15"
conliennent @ en facteur, on peut poser @ = o dans les fonctions = et @'. Les
expressions de ces fonctions se réduisent alors a

(1) =240+ ([ +d+p)?,
(19") G"’:('§+/z*1)‘3+n2+(]§|+d_;_H_{__u)e.

Il en résulte
/ (lé £
- ) e E

d’ou, en posant pour abréger,

I

(»0) A A
. k
(ra") ]‘,:»—%—L-i—m;l—ﬁ&jf.

D’aprés (V), pour former les composantes de la force magnétique, on a besoin

. N
de 03;1, (i—l[éla (j{—[i' - d—d~v‘, pendant que, d’aprés (VI), les termes en U, et Vi,

dans les composantes de la force électrique, résultent du second ordre et doivent
par conséquent étre négligés. 1l convient ainsi d’évaluer directement

dv, du, &__dvx
d[z)’ d\t]’ da ~ dZ’

au lieu de U, et V,.
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On peut écrive, d’aprés (1

. av,
et, par suile, ‘?W a

1
c \& /=0
— ma —/ dv.

Le calcul de 'intégrale donne
o)

([< >
_ﬁd\—

=— o,
1

Q”‘I[_.

]
en ayant posé

(21)

1

VT iV hE L]+ d)

Q=

Il vient donc
(14" i = ma
On trouve de méme

d : d(2)
az] (Uy —al))=

— ma ————,
dn

d’ou, en négligeant dans aI*, les termes du second ordre,

I
(15") LT “¥ e
| ar == ar

ETC.

39
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. dU dv ~
Quant a _Jn—l — d_?l’ les formules (14") et (15'), en remarquant que
1 1 1
dg ; dzé—' d‘ =7
de2 dn? ‘“_dlmz’
donnent

et il reste, comme ci-dessus,

1
. d
du, av, — ma [__ v i d(*n(p)].
dn di da  d|f]

On a évidemment

selon que {2 o.
Les composantes de la force

donc, d’apres (V)

Y

I L, = ma-

al '
(V1) M, — ma v d(m)J,

N, =ma | —
pour L > o, et
L ma 89
4y = dE, )
. _
d -
_ v (n9)
(V" Mlﬁ_——ma[ 35_~I+ i >
1
d—
N, =— ma [——E —|—d(nr‘—)]7
o 0 d|¢|

pour { < o.
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La force électrique dérive du potentiel

' 7,0k
(VD) F, = mo

z .

Voila les modifications du champ dues & Uinfluence du plan conducteur s.

Considérons d’'un peu plus prés ce qui se passe pour {<Co, c’est-a-dire au
dela de I'écran conducteur o, par rapport & la charge mobile.

On a alors
V=A—=Pm,

et, comme on doit négliger a2, les formules (III) deviennent

_ d(n9)
L =— ma P ’
(1) M:—-maig]—n@,
_ d(ne) __d(n9)
N = madl“_ ma pis

Il s’ensuit que (aux termes en a? prés) la force magnétique tolale au dela de
U’écran conducteur dérive du potentiel

mane.

La force électrique totale dérive également d’un potentiel; ce potentiel est
ak
mn —— .
an e/

C’est une expression a peu prés du second ordre, par rapport a a, vu que & a _
méme ordre de grandeur que a. La force électrique est par suite négligeable.
Le plan conducteur, qui est un diaphragme parfait pour les actions électrosta-
tiques, l'est ici encore, aux termes du second ordre prés.

La force magnétique est modifiée par I'interposition du conducteur; 'ordre
reste toutefois le méme.

Détaillons ce qui se passe aux points immédiatement au-dessous de la charge
mobile, c’est-a-dire aux points M(o, o, {<C0), situés sur le prolongement de la
perpendiculaire m Q, abaissée de m au plan conducteur o.

On a pour ces points M '

f-' I . 1 _I
T o[l AP T aT—d)r T 2y,
1 I
T+ VI N
Fac.de T., 22 S, 1V, 6

(P:
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et les composantes des forces électrique et magnétique sont, par suite,

ak 1
— m — e o, o,
bm Mm
. ma 1
o, — o.

LI —5 )
Yy

Remarquons que, lorsque le plan conducteur n’existe pas, les composantes de

I 1
d—A— d—
la force magnétique sont o, — ma aT Mg et elles se réduisent, pour les
points M, a
I
0, —ma-——y> O.
Mm

On en conclut :

La force électrique (négligeable, d’ailleurs, comme il a éLé observé), aux
points M, est inversement proportionnelle au carré de la distance Mm et
directement opposée a la convection.

La force magnétique est aussi inversement proportionnelle au carré de la
distance Mm, et est dirigée selon la régle d’Ampére par rapport a la
trajectoire de la charge mobile. Elle est a celle qui agirait au méme point M,

s’il n’y avait pas de plan conducteur, dans le rapport de s ——a
L1+ A2

oma , . .
(h =7 étant ordinairement un nombre ﬁn1>.

L'interposition du conducteur réduit donc la force magnétique de la moitié au
moins, mais la réduction est d’autant plus grande que la résistance & de la plaque
conductrice s’affaiblit.

Au cas limite d’une conductivité infinie (k = o, & =), la force magnétique,
de méme que la force électrique, s’annulerait partout au dela du plan. Celuai-ci
serait alors un écran parfait pour toute action électromagnétique.

19. Cas d’une charge se déplacant avec la vitesse de la lumiére. — Les
expressions générales de 'y, U,, V, assignées au n° 16, sont valables pour toute
valeur de @ << 1. Comme elles admettent des limites bien déterminées pour & =1,
elles restent applicables méme dans ce cas.

Les équations (7), (11) et (13) donnent, pour a =1,

ak | ak
v=lzh  r=[i+nel  e=|iefiaeal)
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de facon que

I 1
ak ?z M7 dE
am df  dp’ dn

Il vient alors, d’aprés (12), (14), (15),

Fi=U,=V,=o,
c’est-a-dire :
Dans le cas limite o la vitesse de convection serait égale a celle de la lumiére,
la présence du plan conducteur ne modifie aucunement le champ électromagné-
tique.

20. Remarque. — Le champ électromagnétique, dd a un systéme quelconque
de courants constants, n’est pas altéré par la présence d’un plan conducteur (ou
plus généralement d’un systéme quelconque de conducteurs).

C’est un fait d’expérience bien connu, qu'on doit naturellement retrouver par
nos formules.

Envisageons le cas du plan indéfini el rapportons-nous cette fois aux axes fixes
Zy Yy %

Soient F/, U, U, W’ les potentiels correspondant au systéme donné de cou-
rants. Comme les courants sont constants, ces fonctions ne dépendent pas de ¢.

Soient, d’autre part, F,, U;, V,(W, = o), les polentiels inconnus correspon-
dant a la distribution et aux courants induits sur le plan. Evidemment ils ne
dépendront pas non plus de ¢ et seront, par suite, des fonctions harmoniques.

On doit les déterminer d’aprés les équations [(5) du Chapitre I, (6) de ce
Chapitre]

%—!—%}-}-%:o, X = Aku,, Y =Ako,.

En tenant compte du fait que F=F + F,, U=U+U,, ..., que

Uy =— —;—ﬂ_ j—l—g’., 0y =— 2—11; jl—‘i‘l, que U’, V', W' satisfont aussi a la premiére

équation, et en remplacant X, Y par leurs valeurs (II), il vient
q ) ptag ’ P ’

av, | av,
dx dy

k4G,
an d|s]|

k av,
am d|s|

d d
—o0; o (F+F,)= Z(F+F)=A
i gp(F+F)=A 2y (T
les deux derniéres équations devant étre vérifiées seulement pour z =o.
On satisfait bien, et d’une fagon unique, a toutes les conditions imposées a F,,

U,, V,, en prenant
Uy=V,=o,
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et en déterminant la fonction harmonique F,, qui prend sur le plan s =ola
valeur — I et se comporte réguli¢rement dans tous les autres points de ’espace.
Le conducteur n’exerce donc aucune perturbation magnétique sur le champ
des courants donnés, puisque son potentiel vecteur s’annule.
L’influence sur la force électrique s’évalue comme en électrostatique. Il devait
bien en étre ainsi, du moment qu’il s’agit d’un régime permanent.



