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SUR LE CHAMP ÉLECTROMAGNETIQUE
ENGENDRÉ PAR LA

TRANSLATION UNIFORME D’UNE CHARGE ÉLECTRIQUE

PARALLÈLEMENT A UN PLAN CONDUCTEUR INDÉFINI,

PAR M. T. LEVI-CIVITA,
à Padoue.

ANNALES
 

FACULTÉ DES SCIENCES
DE L’UNIVERSITÉ DE TOULOUSE.

PRÉFACE.

Dans une Conférence (t) tenue en septembre dernier, M. Righi a renseigné la
Société italienne de Physique sur la question, si discutée aujourd’hui, de la pro-
duction d’un champ magnétique par la convection électrique.

Après avoir rappelé les différentes expériences (depuis celles de Rowland jus-
qu’aux dernières de M. Crémieu et de M. Adams), il les a analysées avec sa critique
pénétrante, en signalant les points faibles et ceux qui restent simplement douteux.

Parmi ceux-ci l’éminent physicien compte les perturbations du champ magné-
tique provenant du conducteur, que l’on emploie généralement dans ces expé-
riences pour mettre l’aiguille aimantée à l’abri des actions électrostatiques.

Il est évident, dit-il, qu’un diaphragme métallique de conductivité finie n’ar-
rête pas les actions magnétiques, mais il exerce sans doute une influence et l’on

(1) Voir Nuovo Cimento, 5P série, t. II; octobre I90I.
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n’a pas le droit de la négliger. Malheureusement nous ne sommes pas en mesure
d’apprécier cette influence, comme il serait nécessaire pour une bonne discussion
des résultats expérimentaux.
Ceux qui cultivent la Physique mathématique pourraient fournir à cet égard

des indications assez précises en déterminant, ne fût-ce autre chose, le champ
électromagnétique engendré par une charge électrique qui se meut avec une

vitesse constante sur une droite parallèle à un plan conducteur indéfini.
Peu après sa conférence M. Righi a bien voulu attirer mon attention sur cette

recherche. Voilà l’origine du présent Mémoire.
On y trouvera une solution rigoureuse du problème énoncé et une solution

approchée, qui, tout en différant de la première par des quantités absolument
insignifiantes au point de vue pratique, prête mieux à l’étude soit qualitative,
soit quantitative du champ.
On est conduit aux résultats suivants :

Soient a le rapport entre la vitesse de convection et celle de la lumière ; 30k la
résistance ohmique de l’unité de surface du plan conducteur (exprimée en ohms) ;
1a - 2’~~; de façon que, dans les conditions expérimentales ordinaires, a et k
sont des nombres très petits (de l’ordre de 10-G dans l’exemple cité au n° 18),
pendant que A est généralement fini.
Au delà de l’écran conducteur, les forces électrique et magnétique dérivent

l’une et l’autre d’un potentiel (aux termes en a? près). 
’

La force électrique est négligeable; la force magnétique est à peu près égale
au produit par I + 1" I I -i- j22 de celle qui s’exercerait si le plan conducteur n’exis-
tait pas (voin, pour plus d’exactitude, le n° 18). Elle est donc réduite au moins de
la moitié et pourrait être interceptée, à l’instar de la force électrique, seulement

pour une conductivité infinie ( k _-- o, 
C’est justement ce que prévoyait M. Righi.
Quelques mots encore sur la position analytique du problème.
Les équations de Hertz à elles seules ne suffiraient pas, tout en tenant compte

des conditions (de continuité, régularité, etc.) qui sont imposées aux compo-
santes des forces électromagnétiques.
Une discussion facile montre en effet que, pour rendre la question déterminée,

il l faut se donner (parmi les conditions dites aux limites) deux relations qui
devront être vérifiées sur le plan conducteur et qui traduiront précisément cette

qualité. Nous ne pourrons y parvenir sans sortir de la théorie hertzienne pure.
’ 

En effet, ce qui caractérise un conducteur est sans contredit la loi de Ohm.

Mais, au point de vue de Hertz, on n’a là que la définition du courant (de ses deux

composantes dans notre cas), et il n’en résulte naturellement aucune relation nou-
velle entre les composantes des forces électromagnétiques.



Il faut donc avoir recours *à quelque autre hypothèse.
Or l’expérience ne nous donne à cet égard aucun renseignement ; bien au con-

traire, il s’agit en quelque sorte de la devancer.
D’autre part, on n’entrevoit même pas, parmi les éléments de la théorie de

Hertz, deux relations qui puissent paraître justifiées a priori.
D’après cela, j’ai été conduit à m’appuyer sur une théorie un peu plus restreinte

que celle de Hertz, où l’on a affaire non pas précisément aux équations différen-
tielles de Hertz, mais à un certain système de leurs intégrales.

C’est ce qui arrive dans la théorie originale de Maxwell, dans celles de M. Lo-
rentz et de M. Larmor (’), qui, d’ailleurs, n’en diffèrent pas, tant qu’il s’agit,
comme à présent, de milieux isotropes en repos.

C’est ce qui arrive aussi dans la théorie de Helmholtz, dès qu’on lui ajoute
simplement l’hypothèse que les actions à distance se propagent avec une vitesse
finie (voir Chap. I).
On a bien, dans le cadre de ces théories, tout ce qu’il faut pour que notre ques-

tion et d’autres analogues deviennent parfaitement déterminées.
J’ai préféré la dernière (celle de Helmholtz modifiée) parce que les principes

sont peut-être plus simples, et à mon avis très suggestifs.
Ce ne serait pas une raison suffisante. Mais on peut démontrer qu’on serait

conduit à la même solution aussi en partant des intégrales de Maxwell. Je me
borne à signaler cette conclusion, qui se rattache à la remarque suivante, d’ordre
plus général :

’ Les deux théories intégrales ne sont pas identiques. Elles s’accordent naturel-
lement dans le domaine différentiel, mais elles s’accordent encore sur quelques
détails importants non envisagés par la théorie de Hertz.
On a besoin de ces. compléments pour toutes les questions qui appartiennent

au même type du problème simple étudié ici. Parmi ces questions, il y en a une
notamment (celle de l’influence d’un écran conducteur sur le champ magnétique
d’un courant variable) où l’on peut s’attendre à ce que les résultats obtenus par
la théorie seront accessibles sans peine au contrôle de l’expérience (pendant que
dans le cas actuel on se trouve presque à la limite des quantités appréciables par
inobservation). 

’

Je me propose de revenir prochainement sur ce point. ,

( i ) Elles sont résumées. dans la seconde édition du Traité classique de M. Poincaré : :
Électricité et Optique. Voici les citations des Ouvrages des deux savants contenant l’exposé
de leurs théories : LORENTZ, Versuch einer Theorie der elektrischen und optischen
Erscheinungen in bewegten Körpern, Leyde ; i 8g5. 2014 LARMOR, Aether and matter, Cam-
bridge ; 1900.



CHAPITRE I.

RAPPEL DE QUELQUES NOTIONS D’ÉLECTRODYNAMIQUE.

1. J’ai démontré autrefois (’ ~ qu’on peut retrouver les traits essentiels de la
théorie de Maxwell même en partant des lois classiques. Il suffit de les compléter
par l’hypothèse que les actions à distance se propagent avec une vitesse finie.
La théorie de Helmholtz conduit alors aux équations de Hertz.
Voici, en peu de mots,. cette déduction. .

2. Généralités. - Envisageons un milieu homogène S, indéfini et en repos,
siège de phénomènes électrodynamiques.

Soient, pour un point quelconque P (x, y, ~), et dans un instant quelconque t,
e(x, y, z, t) la densité électrique ; u(x, y, .~, t), v(x, y, ~, t), â, t) les

composantes du courant rapportées à l’unité de volume : : e dS représente alors la

quantité d’électricité contenue dans le volume dS à l’instant t ; u dy d.~ dt est la

quantité d’électricité qui traverse, pendant le temps dt successif à t, l’aire dy dâ
normale à l’axe des x; de même v dz dx dt est la quantité d’électricité, etc.

Je suppose e, il, v, w finies et continues avec toutes les dérivées des deux pre-
miers ordres. Je suppose, en outre, que ces fonctions s’annulent à l’infini, de

façon que les intégrales[ ; dS, ..., étendues à tout l’espace S, aient un

sens (pour toute valeur de t), r étant la distance du point variable d’intégration
à un point fixe quelconque. ,

3. Principes de conservation de l’électricité. - Entre e, cc, v, w on a l’équa-
tion de continuité, qui s’écrit

Il va sans dire que e dS, tc dy dz dt, v d~ dx dt, w dx dy dt ( qui sont toutes des

quantités d’électricité) doivent être mesurées de la même façon, en unités élec-

trostatiques par exemple. A ce système se rapporteront alors les valeurs numé-

riques de e, u, v, w.

( 1 ) Sulla niducibilitâ delle equazioni elettrodinamiche di Helmholtz alla forma
hertziana (Nuovo Cimento, août 1897). ,



4. Loi de Coulomb. - Potentiel électrostatique retardé. - Conformément
à la loi de Coulomb, le potentiel électrostatique (en supposant pour simplifier la
constante diélectrique, ou pouvoir inducteur spécifique de notre milieu, égale à
l’unité? est 

- .....

où l’on désigne par x’, y’, z’ les variables d’intégration, par x, y, z les coordon-
nées du point quelconque P, auquel se rapporte le potentiel, par ~° la distance

Je pose, A étant une constante, l’inverse de la vitesse de la lumière dans S,

On appelle F potentiel électrostatique retardé. Chaque élément e r dS de F
est, on peut dire, le potentiel d’une action partie de P’ avec une anticipation A r
sur l’instant auquel on l’envisage au point P.

Par conséquent, en prenant F, au lieu dS, comme potentiel électrosta-

tique, tout se passe comme si les actions élémentaires, envisagées par la loi de
Coulomb, se propageaient en ligne droite de leurs origines à P avec la vitesse de
la lumière. 

’

5. Potentiel vecteur retardé. - Loi de Biot et Savart. - Force magné-
tique. - Le vecteur dont les composantes suivant les axes coordonnés sont

sera notre potentiel vecteur. Il diffère du potentiel vecteur ordinaire par la sub-

stitution de

à u(x’, y’, z’, t), v (x’, y’, z’, t), tw ( x’, y’, z’, t) ce qui correspond, comme tou t à

l’heure, à une propagation par ondes sphériques avec la vitesse I ~A

La force magnétique da champ, d’après la loi élémentaire de Biot et S,avart



(dite parfois aussi loi de Laplace), est définie comme le tourbillon (curl des
Anglais) du potentiel vecteur, changé toutefois de sens si les axes sont orientés
comme dans la i, ce que nous voulons supposer.

’ 

Fig. I.

Dès lors, en combinant la loi de Biot et Savart avec notre hypothèse sur la

vitesse de propagation, on a, pour les composantes L, M, N de la force magné-
tique, les expressions suivantes :

6. Loi d’induction de F. Neumann. 2014 Force électrique. - Les dérivées
de - AU, - AV, - par rapport à t, donnent les composantes de la force

électromotrice d’induction : c’est la loi potentielle de F. Neumann, où l’on a seu-
lement remplacé le potentiel vecteur ordinaire par le potentiel retardé.

Lorsqu’il n’y a pas de forces électromotrices extérieures (d’origine chimique,
thermoélectrique, etc.) la force électrique totale (X, Y, Z) est la somme de la

composante électrostatique et de celle provenant de l’induction.
On a donc .

7. Propriétés cles fonctions F, U, V, W. - Tout potentiel retardé



satisfait à Inéquation

C’est l’analogue de l’équation de Poisson, et l’on peut la vérifier de la même
façon 1 ’ ).
Nous avons ainsi

De plus les fonctions F, U, V, W sont liées entre elles par la relation

Pour le démontrer, je remarque d’abord qu’on peut écrire, avec la notation des
dérivées partielles,

Or

d’où, puisque u dépend de .r uniquement par l’intermédiaire de l’argument
. i)’n ~~ ~’

’ ~ c~x ~~

, 

Transformons la première intégrale par la formule de Green. L’intégration
étant étendue à tout l’espace, il vient

) l’oir, par exemple, VOLTERRA, Sul principio di Huygens (Nuovo Cirrcento,
3e série, t. XXXI, XXXII, XXXIII; i8g2-I8g3), ou bien encore POINCARÉ, Oscillations

électriques, n° 40.



ou bien, à cause de l’identité, rappelée ci-dessus,

De même

eL en ajoutant

L’équation de continuité (I), appliquée aux fonctions e, u, v, w, devient 
demment 

_ _

le second membre de l’équation qui précède est donc égal à 2014A s de dt 1 r dS,
c’est-à-dire à2014A-.’ c. Q. F. D.

8. Vérification des équations de Hertz. - En éliminai la fonction F des

équations ( Il), et ayant égard aux équations (I), il vient tout de suite

C’est le premier groupe des équations de Hertz.
Dérivons maintenant la première des équations (II) par rapport à i ; multiplions

par A, en remplaçant - A2.i§ t> i par sa valeur 2014 03942 U - £  A u. Nous obtenons

Les deux dernières équations (1) donnent d’ailleurs,



. En tenant compte de (5), et en retranchant de la précédente, il reste sim-

plement

Les deux équations

s’établissent de la même manière, et l’on a ainsi retrouvé le second groupe de

Les équations (I~ donnent t encore

pendant que les équations (II), en ayant égard à (5) et à la relation

donnent

9. Charges et courants de surface. - Discontinuités qui ena dérivent dans
les forces électromagnétiques. - En nous plaçant au point de vue des actions
à distance, qui nous a conduit aux équations (I), (II), il est presque évident que
ces dernières s’étendent au cas où il y aurait, sur quelque surface r du milieu
indéfini S, des distributions à deux dimensions de charges et de courants. Il suffit
d’ajouter aux expressions des potentiels F, U, V, W les intégrales doubles corres-
pondant à ces distributions.
On n’arien à modifier aux équations (4), (5), ..., (g) pour les points non

situés sur les surfaces s; mais on doit prendre garde aux discontinuités que l’on
rencontrera en les traversant.

Il importe surtout de reconnaître celles qui se produisent dans les composantes
des forces électrique et magnétique. On les détermine aisément (en fonction des
charges et des courants de surface) à l’aide des formules bien connues, se rappor-
tant aux dérivées premières des potentiels de surface, formules qui sont valables
même pour les potentiels retardés ( ~ ). 

,

(1) VOLTERRA, loco citato, t. XXXI.



On peut encore montrer que (charges et courants de surface satisfaisant, bien
entendu, au principe de la conservation de l’électricité) les discontinuités qui se
produisent dans les forces électromagnétiques ne diffèrent pas de celles que l’on
mettrait au jour en suivant la voie indiquée par Hertz.
Du reste, au .point de vue physique, une telle démonstration ne serait pas

nécessaire; l’identité apparaît d’elle-même. ’
Pour nous en rendre compte, voyons en quoi consiste ce principe de Hertz.

Nous envisagerons, pour plus de netteté, le cas d’une portion de surface a~ paral-
lèle au plan z = o.
Ce qui arrive pour des distributions superficielles, situées sur s~, doit être

cherche par un passage à la limite, en considérant d’abord une couche 03C4 d’épais-
seur g limitée d’un côté par a’, et exprimant ensuite que les équations indéfi-
nies (6), (7), (8), (g) continuent à subsister dans 03C4, lorsqu’on suppose que e,
ll, p grandissent indéfiniment, pendant que g décroît, de manière toutefois que
les limites de ge, gu, gv restent finies.

Ce même passage à la limite introduit, dans les équations (I), (II), les termes

correspondant aux distributions de surface sur (j.
Dès que l’on a affaire à la même cause, les effets (dans notre cas, les disconti-

nuités des forces électromagnétiques à travers 5) doivent être les mêmes quelle
que soit la voie que l’on choisit pour les évaluer.

10. Remarque. - On peut présenter les considérations qui précèdent sous
une forme valable pour tout milieu isotrope, même s’il est polarisable, c’est-

à-dire s’il est doué d’un pouvoir inducteur spécifique et d’une perméabilité ma-

gnétiqu.e quelconque.
C’est ce que j’ai fait dans le Mémoire du Nuovo Cimento cité plus haut.

CHAPITRE IL

TRANSFORMATION DES POTENTIELS RETARDÉS.

Transf ormation directe des potentiels dans le cas où le mouvement

des charges se réduit à une translation. - Dès que l’on a affaire à un mouve-

vement de translation, tout système qui est animé, par rapport aux axes
fixes Oxyz, de la même translation, doit rester invariablement lié aux charges.
La densité e de leur distribution est donc une fonction de  r~, ~, indépendante
de t.



Complétons la définition des axes mobiles en choisissant, par exemple, Oxyz
comme position initiale (pour t = o) du trièdre On a alors, entre les coor-
données x, y, z; ~, ~, ~ d’une même particule électrisée par rapport aux deux
systèmes, les relations

les ~ ~, y étant des fonctions données du temps ~ qui se réduisent à o, pour
~=o.

Dans un instant quelconque ~ la vitesse des charges électriques est, pour tout
. , , ~ ~yBpoint du champ, ().

Or la quantité d’électricité qui traverse dans le temps dt l’aire élémentaire

(c’est-à-dire la charge d’un parallélépipède ayant t dy dz pour base et

2014’ dt pour hauteur) est exprimée par e 2014 
Comme représente par définition la même quantité, il s’ensuit que

Occupons-nous d’abord du potentiel électrostatique

La densité e ne dépend que de e, r~, ~, dex - ,y- ~~,
2 - ~; on a donc l’identité

en convenant de désigner, pour une fonction quelconque, le changemenL de t en
t - Ar, par un trait superposé.



Posons

et appelons D le déterminant fonctionnel de t par rapport à x’, y’, ~’.
Ayant _ _

on trouve tout de suite

En adoptant, dans F, au lieu de x’, y’, z’, pour variables d’intégra-
tion ~’ ), il vient, d’après (3),

Tout se passe donc comme si chaque charge élémentaire agissait avec le poten-

tiel I r |D|
D’une façon plus précise cette expression transformée de F correspond à la loi

élémentaire suivante :

La charge, qui occupe dans un instant quelconque t une position quelconque
P, (x, y1, z1), agit, sur le point envisagé P (x, y, z) avec le potentiel (rapporté à

l’unité de charge) , où r représente la distance de P, non pas à P,, mais à un

certain point P’(x’, y’, z’), qui dépend de P et de P~ d’après (4) ; D étant défini

par l’équation ( 5 ).
Il est aisé d’apercevoir la signification géométrique du point P’.

( 1 ) La transformation est légitime, toutes les fois que D ne s’annule pas; ce qui arrive

notamment lorsque la vitesse de translation ne dépasse pas celle de la lumière (voir plus

loin).



La comparaison de (1 ) et (4) montre, en effet, que P’ est la position occupée à
l’instant t - An par la charge qui occupe à l’instant, t la position P, ( fig. 2 ).

Fig.2.

’ 

C’est justement la position de ladite charge, d’où une action, se propageant avec

la vitesse I , atteint P à l’instant t.
v étant la vitesse de la charge en P’, c’est-à-dire à l’inst.ant t - les compo-

santes de v ne sont autre chose que dx. On a donc 

la direction positive de /~ allant de P’ à P.

On voit bien que D reste toujours positif [ce qui garantit la légitimité de la

transformation et l’univocité de la correspondance entre les points P, et P’]
si, comme nous le supposerons désormais,

c’est-à-dire si la vitesse des charges reste inférieure à celle de la lumière.
Le potentiel électrostatique élémentaire se présente donc sous la forme

Ce résultat est dû à M. Wiechert ( ’ ).
Pour le potentiel vecteur on est évidemment conduit à des conclusions ana-

logues.
A cause de (a)y les expressions transformées de U, V, W se tirent de F en v

remplaçant e par Au = Ae d03C6 dt, Av = A e d03C8 dt, A w = Ae d~ dt.

(’) Elementargesetze (Archives Néerlandaises, 2" série, t. V)
(Volume jubilaire en l’honneur de M. Lorentz); 1900.



11 sera plus commode, dans ce qui va suivre, de se rapporter aux axes mobiles.
Les coordonnées des points P, P,, P’ seront alors naturellement désignées par ,
r ~ ~ ~ ~~ ? ,~~ ~ ~~ ~ ~r~ .’1’, ~r~ et les expressions des potentiels (où il convient bien

entendu, d’introduire, même comme variables d’intégration, les coordonnées ~,,
TI t, 03BE1 au lieu de x,, y1, z1) s’écrivent

r et f ayant la signification définie tout à l’heure.
Ces formules, nous le verrons bientôt, sont valables pour un mouvement quel-

conque des charges. Ici les trois dernières se réduisent simplement à

12. Cas d’une charge unique. - Supposons que la fonction e(03BE, ~, 03B6) soit
généralement nulle, en dehors d’un très petit espace T entourant le point Q.
On peut évidemment faire cette hypothèse sans renoncer à la condition (néces-

saire pour la validité des considérations du premier Chapitre) que les dérivées
premières et secondes de e soient partout finies et continues ~’ ~,

il suffit d’imaginer une fonction quelconque, douée de cette propriété pour les

points de r, qui s’annule sur le contour avec ses dérivées des deux premiers
ordres. Il est partant permis de supposer en outre

ni étant une constante donnée.

Ceci posé, le cas d’une charge unique m, placée à l’origine Q des axes mobiles,
se déduit sans peine comme cas limite du numéro précédent, en faisant décroître
indéfiniment l’espace T,

(1) A la vente, on peut se tirer d’affaire avec des conditions moins restrictives; mais il ne
vaut pas la peine d’y insister. 

’



Les potentiels retardés se réduisent alors au; produits de ni, A i>1. J§§ , Am §§11 ,. t t

~Î par

Le passage à la limite, dont nous nous sommes servi pour y arriver, permet
évidemment d’affirmer (ce qu’on pourrait aussi vérifier directement) que ces
potentiels élémentaires satisfont bien aux équations différentielles (4) et (5) du
Chapitre précédent, ou plutôt (comme nous nous rapportons ici aux axes mobiles)
à leurs transformées en coordonnées 1, ~, ~.

Il va sans dire que la distance r et la vitesse v se rapportent, non pas à la posi-
tion actuelle Q de la charge ni, mais à la position antérieure, dont les coordon-
nées ~’, ~’, ~’ sont définies, en fonction de  ~, ~, t, par

C’est ce qui résulte de Inéquation (4), lorsqu’on y met en évidence les coor-
données ~7~ ..., en tenant compte de ce que (le point P~ étant ici représenté
par Q)

Pour arriver aux expressions définitives des potentiels, il faut éliminer les

coordonnées auxiliaires ~~, de r . . Voici comment on peut disposer le

calcul.

Tout d’abord on tire, des équations (7),

équation qui définit directement r en fonction de  r~, ~, t.

En la dérivant par rapport à A, il vient



Mais, 

Remarque. - Comme les fonctions 03C8(t), ~(t), qui définissent le mou-

vement de Q sont censées être quelconques, ce qu’on vient de dire permet de

construire en tout cas le champ électromagnétique dû à un mouvement d’une

charge unique .

13. Cas général d’une distribution et d’un mouvement quelconques. 
-

.Analoyies hydrodynamiques. - S’il s’agit d’un nombre quelconque de charges,
on n’a qu’â faire la summe des potentiels élémentaires pour obtenir les expres-
sions de F, il , V, XNi.

Dans le cas d’une distribution continue m, m d03C6 dt , m d03C8 dt , m d~ dt ne sont - autres

que

et l’on trouve, par suite, les formules (6), qui restent ainsi démontrées en

général, tandis qu’auparavant nous les avions établies seulement pour 
les mouve-

ments de translation des charges.
Il ne serait pas difficile d’obtenir, même dans le cas général, la transformation

des potentiels retardés par un calcul direct, mais il est inutile de s’y 
arrêter.

Je préfère faire remarquer qu’on peut concevoir l’action d’un champ 
donné

(sur un point P et dans un instant t) répartie entre les points du champ 
d’une

infinité de manières. On peut notamment : _

10 Attribuer à chaque point du champ la charge qui s’y trouvait à l’instant t.

On a de la sorte les expressions primitives des potentiels retardés, tels qu’ils
ont été définis au début du Chapitre précédent. _ 

.

2° Attribuer à toute charge la position qu’elle occupait à l’instant t.

C’est ce qu’on fait dans les expressions transformées (6).



Dans la forme originale les actions sont en quelque sorte réparties suivant le
point de vue d’Euler.

Les expressions transformées correspondent, au contraire, au point de vue de
La grange.

14. Charge unique en mouvement de translation uniforme. - Si c désigne
la vitesse constante de translation, on a

en supposant l’axe; dirigé suivant la translation.
Les équations (7) et (8) se réduisent à

est une constante numérique plus petite que l’unité.
L’expression (5 bis) de r D devient

Or, en multipliant par (I - a2 ), on tire de ( 8’ )

ce qui donne

Les potentiels élémentaires sont donc

Les formules de transformation (i) étant à présent

les opérations différentielles



seront exprimées dans nos variables ri, ~, t par

d’où, pour toute fonction f des seules variables ~, ~, ~,

On voit bien que

C’est la vérification directe des équations (4) et (5) du Chapitre précédent.
Les expressions explicites des forces électromagnétiques du champ dérivent

de (I) et (II), en y substituant les valeurs (10). Je n’y insiste pas davantage, car
un tel champ a déjà été très bien étudié ( ~ ).

CHAPITRE III.

RÉSOLUTION DU PROBLÈME PROPOSÉ.

15. Données et mise en équation. - Un conducteur placé dans un champ
électrostatique s’électrise par influence. Un phénomène analogue doit évidemment
se présenter lorsque le champ varie avec le temps. Seulement la distribution
induite sera en général variable et il se produira des courants.
En tout cas, la présence d’un conducteur dans un champ donné entraîne des

modifications du champ.
Selon notre point de vue la question de déterminer ces modifications revient

au calcul des termes additionnels que la présence du conducteur introduit dans
les expressions des potentiels retardés. En d’autres termes, il s’agit d’assigner les
potentiels retardés correspondant à la distribution et aux courants induits sur le
conducteur.

(1) HEAVISIDE, Electrical papers, II. - RIGHI, Sui campi elettromagnetici e par-
ticolarmente su quelli creati da cariche elettriche e da poli magnetici in movimento
(Nccovo Cimento, se série, t. II; août 190I ),



. Sans envisager ici le problème général, arrivons tout de suite au cas particulier
qui forme l’objet de notre recherche.
Une charge donnée m se meut alors avec une vitesse constante c parallèlement t

à un plan conducteur indéfini a~, le milieu ambiant étant l’éther (jig. 3).

Fig. 3.

Choisissons un système d’axes mobiles invariablement liés à ni, ayant
c pour plan i = o, et m sur le demi-axe positif des ~. Les coordonnées de na sont
alors o, o, ~~> o, d étant la distance constante de m à a.

S’il n’y avait pas de plan conducteur, les potentiels du champ seraient donnés
par les formules (10) du Chapitre précédent en y changeant seulement ( en  - d.

Mais le mouvement de ni donne naissance à une distribution induite (variable)
sur le plan conducteur et il lui correspond un potentiel électrostatique F, et un
potentiel vecteur Ut, V, (Wt est évidemment nul, car le mouvement de l’électri-
cité a lieu sur le plan ( = o).

Les potentiels du champ, modifié par la présence du plan conducteur, se pré-
sentent donc sous la forme

en ayant posé pour abréger

Examinons maintenant à quelles conditions doivent satisfaire les inconnues 
U,, V, comme fonctions des variables 1, .Il, ~, t.

Tout d’abord, eu égard au fait que le phénomène est stationnaire par rapport
aux axes ces fonctions ne dépendront pas explicitement du temps t.



Elles sont toutes des potentiels retardés (correspondant à des distributions de
surface sur le donc, d’après le numéro précédent, des solutions de
l’équation

elles satisfont à l’équation (5) du Chapitre l, qui devient à présent

elles se comportent partout, même à l’infini et a la traversée du plan conducteur,
comme des potentiels ordinaires (’ ). Leurs expressions analytiques (sous forme
d’intégrales doubles étendues au plan ( = o) ne changent pas lorsqu’on change le
signe de Ç. Elles ont donc même valeur dans les points symétriques par rapport
au plan ( = o ; elles sont en somme des fonctions de l’argument |03B6 L

Les conditions caractéristiques, relatives au plan 1 = o, peuvent alors être

présentées sous la forme

et, u,, v, étant la densité de la distribution et les composantes du courant

Induit.

Ce sont de nouvelles inconnues dont, pour le moment, on sait à peine quelles
doivent vérifier Inéquation de continuité.

Il n’y a pas lieu d’en tenir compte, car c’est une conséquence de (4). En effet,

ladite équation ( 1 
== o, par rapport aux axes fixes s écrit

et cela résulte bien de (5) en ayant égard à (4).
Les équations (5) ne servent donc, peut-on dire, qu’à définir e,, 
Les prémisses générales du Chapitre 1 ne nous donnant pas d’autres renseigne-

ments sur les fonctions Fi, Ut, V,, on n’en a pas assez pour les déterminer.

( 1 ) On pourrait même dire, en se rapportant aux variables 03B6 I - a2, ~, 03B6, que les fonc-

tions F 1, Ui, Vi sont des potentiels ordinaires de distributions ayant pour siège le plan ( = o.
C’est ce qui résulterait directement de leurs expressions transformées. C’est d’ailleurs ce

qui résulte de (3), d’après la façon dont se comportent lesdites fonctions.



On devait s’y attendre, car jusqu’à présent nous avons traité le plan conduc-
teur simplement comme un siège d’électricité en mouvement.
Or ce qui caractérise les conducteurs est bien quelque chose de plus précis : :

c’est la loi de Ohm.

Pour les surfaces conductrices (isotropes) elle exprime que le courant est pro-
portionnel à la composante tangentielle de la force électrique, et a la même

direction.

Nous devons donc poser

k étant une constante, puisque nous supposons bien que le plan conducteur 03C3 est
homogène.

Quelle est la signification physique de cette constante k ?
Ayant choisi (n° 3) le système d’unités électrostatiques, Ak n’est autre chose

que la résistance de l’unité de surface de notre plan conducteur, mesurée en
unités électrostatiques. Or, si Re, Rm, Ro sont les trois nombres qui mesurent une
même résistance, respectivement en unités électrostatiques, en unités électro-

magnétiques et en ohms, on a (i )

Il s’ensuit

La constante k est donc un trentième de la résistance de l’unité de surface
du plan conducteur exprimée en ohms.

Il est à peine nécessaire d’ajouter que, une fois trouvées F,, U,, V,, on a,

d’après (y et les formules (1), (II) du Chapitre I, les potentiels du champ.
Il faut, bien entendu, remplacer dans (I~, les symboles opératifs

par les équivalents

( 1 ) ) Voir, par exemple, MASCART et JOUBERT, Leçons, etc., t. I, p. 671-675.



On a ainsi

représentent évidemment les composantes des forces électromagnétiques du

champ provenant de la distribution 
et des courants induits sur le plan .. Les

promit termes, dans (Hl) et (IV), défissent, au contre, le champ qui serait
produit par le mouvement de m, 

s’il n’y avait pas de plan conducteur.

Nous avons désormais tout ce qu’il nous faut pour aborder la résolution mathé-
matique de notre question. En effet, 

nous allons montrer que, en tenant compte
des conditions qualitatives rappelées ci-dessus, les équations (4) 

et (6) suffisent

bien à déterminer V.



16. Expressions analytiques des potentiels retardés. - Explicitons d’abord
les équations (6) en y exprimant tout en fonction de nos inconnues V,.
On a, d’après (IV) et 

et, par suite, en remplaçant par leurs valeurs (5),

Ces deux relations sont satisfaites en tout point du plan ( = o. Il est aisé d’en
déduire deux autres valables en tout point de l’espace.
Remarquons pour cela que, d’après les propriétés dont doivent jouir F~, U,,

V1, les premiers membres des (6’) sont deux fonctions de  ry, ~ ~ ~, holomorphes
pour toutes les valeurs réelles et pour ] Ç ) > o, se réduisant respective-
ment à

pour [ ( ) I ~ o, et vérifiant l’équation

Les fonctions n2 1- a2) d I 0394 d03BE ni 
d I 0394 d~ 

elles-mêmes satisfont à toutes ces condi-

tions, pourvu seulement qu’on y remplace Ç par - |03B6| (autrement elles auraient
des singularités au point /~).
Comme il n’en peut pas exister d’autres, on voit bien qu’en posant



on tire des ~6’~ les équations

vérifiées en tout point de l’espace.
Il s’agit maintenant d’intégrer le système formé des équations du premier

ordre (8 ), y de 
’

et des équations du second ordre

qui sont bien compatibles, par des fonctions de  r~, ~ ~ ~, holomorphes dans le
domaine indiqué tout à l’heure, et s’annulant pour J ç == 00, comme il convient à
des potentiels de distributions situées sur le plan ç == o.

Les conditions aux limites (6’) sont alors nécessairement satisfaites.

Détermination de F,. - En dérivant la première des équations (8) par rap-
port à ~, la seconde par rapport à r~, et ayant égard à (4), il vient

d’où, à cause de

En intégrant, par rapport à |03B6| , depuis une valeur quelconque jusqu’à l’infini,
on obtient

1

car les deux membres s’annulent = ce.



Dans cette équation mettons en évidence F, + m ~ comme fonction inconnue.
Elle s’écrit alors

et il est aisé d’en obtenir une solution par l’artifice suivant.
Posons 

°

u étant une indéterminée.

On a évidemment

et en outre (r dépendant de pL par l’intermédiaire des arguments 03BE + ak 203C0 a,

|03B6| + d + )

D’après cela, la fonction

satisfait bien à l’équation (~o’~. Mais elle satisfait encore à

~1 
( ~ ) Il est à peine nécessaire de faire remarquer que la fonction sous le signe 2014~- reste

finie et continue pour toute valeur et devient infiniment petite du second ordre

dI
Dès lors, l’intégrale de d~ entre o et oc a un sens; elle est même une fonction

régulière des [ dans tout le champ réel (c’est-à-dire pour toutes les
valeurs réelles de ), r~, ~); elle peut être dérivée sous le signe, etc.



s’annule à l’infini et se comporte régulièrement pour toutes les valeurs réelles
de E, r~, ~, ayant seulement une discontinuité normale pour ( = o (qui provient
de Il en est de même pour F,, dont on a ainsi achevé la

recherche.

En effet, comme F, f doit satisfaire à (10), son expression ne pourrait différer

de (12) que par une fonction arbitraire de ( + ak 203C0|03B6|. Mais, d’après les autres

conditions qui sont imposées à F1, cette fonction de ( + ak 203C0 |03B6| devrait satisfaire
à l’équation o et s’annuler à l’infini. Dès lors, elle est identiquement nulle,
ce qui démontre l’unicité de la solution fournie par (12).

Détermination de V1. 2014 La seconde des équations ( 8 ) peut être écrite

Posons (v étant une nouvelle indéterminée)

Ayant égard à (12~, on reconnaît sans peine que

est une solution de (8b).
On s’assure, comme tout à l’heure, que cette expression de V, satisfait bien à

toutes les autres conditions, et c’est la seule pour laquelle il en soit ainsi.
Une remarque s’Impose toutefois à l’égard de l’intégrale double

~~ 1
Tant qu’on n’a pas à la fois a = k = o, la fonction sous le signe devient 

’

~I p ~~ ~.~ ,



infiniment petite du troisième ordre, lorsque le point représentatif ( ~, v ~)
s’éloigne à l’infini d’une façon quelconque dans le premier quadrant. L’intégra-
tion est alors légitime et V, est bien une fonction régulière de  r~, ~ ~ y

Mais il ne serait pas permis de supposer à la fois a = k = o, puisqu’alors G ne
dépendrait plus de v, et l’intégrale

n’aurait pas de sens. 

Cherchons donc directement ce qui se passe pour V, (et pour Ut) lorsque
a==k==o.

Ce n’est pas difficile, puisque, pour a = o, quel que soit d’ailleurs k, on est
reconduit au problème statique.

Il s’agit alors de l’influence d’une charge électrique m (o, o, d) sur le plan
conducteur 1 = o : U, et V, sont évidemment nuls, et il est bien connu que le
potentiel électrostatique de la distribution induite se réduit à

C’est bien ce qui résulte des (15), (i/{) et (12) en y faisant a = o. Mais en
surplus, nous pouvons maintenant affirmer, à l’égard de U~ et V,, qu’ils s’an-
nulent pour a = o, même si k est aussi = o, tandis que cette conclusion n’aurait

pas été légitime d’après les formules (i4) et (15), puisqu’elles n’ont plus de sens
pour a = k = o.

Détermination de U, . - Attendu la forme de V,, l’équation (4 ), 

nous donne après coup

fonction régulière, etc.
Il nous reste à vérifier la première des équations (8), qu’on peut écrire



Son premier membre, en y introduisant pour U, - aF1, F, + m ~ leurs
valeurs (1 5), (I2), devient

Mais à cause des identités

l’intégrale double se réduit à

dont la somme avec 2014 (1 -- a2) 
0 § dp peut être remplacée (à cause de

[] I 03C4 = 0 ) par

Le premier membre de (8a) n’est donc autre chose que

Comme on a



il reste bien

Remarque. - Les quadratures indiquées dans les formules qui donnent F,,
U 1, Vt peuvent toutes être effectuées à l’aide des transcendants élémentaires.

Ainsi, par exemple, en posant

on obtient .

C’est une expression assez peu instructive, dont, d’ailleurs, on n’aura pas
besoin dans la suite.

Les expressions de U, et de V, sont encore plus compliquées. Je ne les trans-
cris pas, parce que je n’aurai pas non plus occasion de m’en servir.

17. , des fonctions F,, U,, , V1 pour les petites valeurs du
mètre a. - L’expression (12) de F, est valable pour toutes les valeurs (réelles)
de a et de k, l’intégrale

étant une fonction régulière de  r;, I ~ ~, même pour a -. lï == o, Montrons que,
comme fonction de ces paramètres aussi, elle est holomorphe dans le domaine
de~==:/r==o.

On pourrait le déduire de (12 bis). Ce serait une vérification a posteriori
exigeant le calcul préalable de l’intégrale; il vaut peut-être mieux s’en rendre
compte directement comme il suit. 

’



Partons de l’identité

changeons, dans la seconde intégrale,  en I , et posons
f~

Il vient

Dans Je second membre, la fonction sous le signe est bien une fonction holo-
morphe de a et de k, au voisinage de a = k = o, pour toutes les valeurs de 
comprises dans l’intervalle d’intégration. (En effet, ni T, ni T, ne s’annulent dans
cet intervalle, lorsqu’on v fait a = fi. = o.) .

Cela suffit pour nous assurer qu’il en est de même de l’intégrale 
t / cl ‘ clu .

F t se comporte donc régulièrement pour les petites valeurs des paramètres
cc et A’. ’

Elle est, par conséquent, développable suivant les puissances de a et de h.
Occupons-nous particulièrement du développement suivant les puissances

de a ..

Les expressions de T et T, montrent que, en envisageant a comme une variable
complexe de module non supérieur à l’unité (quelles que soient les valeurs réelles
de ç, r~, ~, réelles et non négatives de k, p~), les modules de ~’’, ~; ne peuvent pas
descendre au-dessous de

dès qu’on suppose

Donc ni T ne s’annulent tant que



et l’on en conclut : :

h, est une fonction de a, certainement holomorphe à l’intérieur de la cin-
conférence I a _-_ 1. . Son développement eca série de puissances de cc est donc
toujours convergent (a étant ici  y, pourvu seulement que l’on ait

Les fonctions U 1 et V, 1 ne son t pas holomorphes pour a = A- = o.
La recherche des singularités dont elles sont affectées pour ce couple de

valeurs nous entraînerait trop loin.

Les remarques suivantes suffisent pour notre but.

Tout d’abord, dès qu’on suppose k > o, U, et V, sont des fonctions holo-

mophes cle a, au voisinage de a = o. .
On le démontre sans peine en changeant, dans les intégrales doubles à l’aide

desquelles s’expriment U, f et en 203C003BD k ( ce qui implique justement que h soit t
différent de zéro), et en vérifiant ensuite que les fonctions sous le signe restent
holomorphes au voisinage de a == o, dans tout le champ d’intégration. Il va sans

dire que, le champ étant infini, la vérification doit être conduite avec les précau-
tions nécessaires, conformément à ce qu’on vient de faire pour l’intégrale simple
exprimant F, . _

Cela nous assure que U, 1 et 1", sont développables suivant les puissances de a,
pour a assez Mais si l’on cherche, comme ci-dessus, à fixer me limite
inférieure pour la validité du développement, on est conduit à la condition res-

trictive

Les développements de U, 1 et t suivant les puissances de a ne convergent donc
(ou du moins on n’a pas le droit d’affirmer qu’il en est ainsi) que sous la con-

dition

Pour les valeurs numériques de ~~c et de k, qu’on peut présumer dans les con-
ditions expérimentales ordinaires (voir le numéro suivant), l’inégalité (16) est
toujours satisfaite; mais il n’en est pas de même pour la (1~), et l’on devrait par
suite renoncer à développer U, et ~T, suivant les puissances de ~r.



On peut tourner la difficulté en modifiant un peu la forme du développement.
Posons

expressions (I4) et (15) de V i et de U, - aF1, après le changement de v

_~r ~ , ,

en 11 v, peuvent être écrites

Pour toutes les valeurs réelles de ~, ~;, ~, réelles et non négatives des para-
mètres A et k, la fonction i~’’’ ( de la variable complexe a) ne s’annule pour aucune
valeur de a, à l’intérieur de la circonférence en supposant, bien en-

tendu, que l’inégalité ( 16) soit satisfaite. On le vérifie aisément diaprés l’expres-

11 en résulte cette circonstance importante :

Les développements des intégrales doubles

suivant les puissances de a, lorsqu’on y traite la comme un paramètre (pou-
vant prendre, d’ailleurs, une valeur quelconque) sont convergents, pour  i ,

sous la seule condition (I6), qui garantit également la validité du
pement de h, .

18. Expressions approchées lorsqu’on néglige les termes en a2. - Carac-
généraux dcc - Au point de vue des applications physiques, on

peut traiter a et k comme des quantités très petites.
Pour nous rendre compte de l’ordre de grandeur, supposons, par exemple, que

la vitesse de la charge mobile soit de 300m par seconde (ce qui est déjà assez exa-
gnré); , il vient alors 

,.... 



Supposons que le plan conducteur T soit une plaque de cuivre de l’épaisseur
d’un millimètre.

Si g’ est l’épaisseur de la plaque, r sa résistance spécifique (exprimée en 
on aura, d’après le n° la,

A présent

n peu près, et

il en résulte donc que l’on a à peu près
l. 1 _ ___A r.

La condition

est bien vérifiée (et le sera toujours, de quelque façon que l’on modifie les condi-
tions expérimentales). L’inégalité (y~ ne l’est pas (mais on pourrait y satisfaire,
soit en remplaçant le cuivre par un métal plus résistant, soit en supposant la

plaque plus mince). 
’

Pour avoir des expressions approchées, valables en tout cas (et plus que suffi-
santes dans la pratique non seulement pour l’analyse qualitative, mais aussi pour
la discussion numérique du champ), il convient de développer suivant t les puis-
sances de a, en ayant soin, bien entendu, de traiter les intégrales doubles (y’ 1
et (15/) comme il a été Indiqué au numéro précédent.

On pourra bien se contenter des termes du premier ordre en cc, car les

termes d’orâne supérieur sont absolument négligeables.

En effet, dès que le rayon de convergence des développements dont il t

est l’unité, on est assuré que la somme des termes d’ordre supérieur au premier
ne dépasse pas, pour 1 al  1 ,

où n. > 1 et où est le module maximum des valeurs que la fonction correspon-

dant à la série prend sur la circonférence = I . .



Par cette voie il serait aisé de vérifier en toute rigueur que, pour les trois
fonctions

les restes (après les termes en a) ont des valeurs numériques tout à fait négli-
même si la vitesse de convecdon atteibnait quelques kilomètres par

seconde.

Cela posé, arrivons à l’évaluation effective des expressions approchées.
On a, tout d’abord, en négligeant 

Comme, d’autre part, les seconds membres des formules et (I5’)
contiennent a en facteur, on peut poser a = o dans les fonctions T et ~~’. Les

expressions de ces fonctions se réduisent alors à

IL cm résulte

d’oÙ, en posant pour abréger,

D’après (V), pour former les composantes de la force magnétique, on a besoin
de dU1, d03B6, dU1 d~, - endant quc , d’a l’ rès (VI), les termes en U , et V

dans les composantes de la force électrique, résultent du second ordre et doivent
par conséquent être négliges. 11 convient ainsi d’évaluer directement

au lieu de Ut et 



On peut écrire, d’après (I ~’),

mais, en tenant compte de ce que

l’intégrale intérieure se réduit à

. 
,

et, par suite, dm a

Le calcul de l’intégrale donne

en ayant posé

Il vient donc

On trouve de même

d’où, en négligeant dans les termes du second ordre,



Quant a dU1 d~ 
- 

dV1 d03BE
, les formules (I4’) et («’), en remarduant que

donnent

et il reste, comme ci-dessus,

On a évidemment

selon o.

Les composantes de la force magnétique provenant du plan conducteur 03C3 sont
donc, d’après (~T~;



La force électrique dérive du potentiél

Voilà les modifications du champ dues à l’influence du plan conducteur z.

Considérons d’un peu plus près ce qui se passe pour 03B6  o, c’est-à-dire au
delà de l’écran conducteur a~, par rapport à la charge mobile,
On a alors

et., comme on doit négliger a2, les formules (Ht) deviennent

Il s’ensuit que (aux termes en a2 prés) la force magnétique totale au delà de
l’écran conducteur dérive du potentiel

La force électrique totale dérive également d’un potentiel; ce potentiel est

C’est une expression à peu près du second ordre, par rapport à a, vu que k a- ,
même ordre de grandeur que a. La force électrique est par suite négligeable,
Le plan conducteur, qui est un diaphragme parfait pour les actions électrosta-

tiques, l’est ici encore, aux termes du second ordre près.
La force magnétique est modifiée par l’interposition du conducteur; l’ordre

reste toutefois le même.

Détaillons ce qui se passe aux points immédiatement au-dessous de la charge
mobile, c’est-à-dire aux points M(o, o, ~ ~ o~, situés sur le prolongement de la
perpendiculaire abaissée de m au plan conducteur a.
On a pour ces points M 

. 

.



et les composantes des forces électrique et magnétique sont, par suite,

Remarquons que, lorsque le plan conducteur n’existe pas, les composantes de
,1 ,i

la force magnétique sont o, ~ - ma ~~ ~, et elles se réduisent, ~ pour les

points M, à

On en conclut : : -

La force électrique (négligeable, d’ailleurs, comme il a été observé), aux

points NI, est inversement proportionnelle au carré de la distance M m et

directement opposée à la convection.
La foice magnétique est aussi inversement proportionnelle aic carré de la

distance et est dirigée selon la règle d’Ampère par rapport à la

trajectoire de la charge mobile. Elle est à celle qui agirait au même point M, ,

s’il n’y avait pas de plan conducteur, dans le rapport de - ec I

( A = etant ordinairement un nombre fini) .

L’interposition du conducteur réduit donc la force magnétique de la moitié au
moins, mais la réduction est d’autant plus grande que la résistance k de la plaque
conductrice s’affaiblit.

Au cas limite d’une conductivité infinie (k ---- o, h = oc), la force magnétique,
de même que la force électrique, s’annulerait partout au delà du plan. Celui-ci

serait alors un écran parfait pour toute action électromagnétique.

19. Cas d’une charge se déplaçant avec la vitesse de la lumière. - Les
expressions générales de F,, U,, V,, assignées au n° 16, sont valables pour toute
valeur de a  i. Comme elles admettent des limites bien déterminées pour a = i,
elles restent applicables méme dans ce cas.

Les équations (7 ), (1 1) et (I3~ donnent, pour ~ == 1 ,



de façon que

Il vient alors, d’après (12), (t~)? (15),

c’est-à-dire :

Dans le cas limite où la vitesse de convection serait égale à celle de la lumière,
la présence du plan conducteur ne modifie aucunement le champ électromagné-
tique.

20. Remarque. - Le champ électromagnétique, dû à un système quelconque
de courants constants, n’est pas altéré par la présence d’un plan conductear (ou
plus généralement d’un système quelconque de conducteurs ).

C’est un fait d’expérience bien connu, qu’on doit naturellement retrouver par
nos formules.

Envisageons le cas du plan indéfini et rapportons-nous cette fois aux axes fixes
x, y, .~ .

Soient F’, U’, U’, W’ les potentiels correspondant au système donné de cou-
rants. Comme les courants sont constants, ces fonctions ne dépendent pas de t.

Soient, d’autre part, F,, U,, V, (W, = o), les potentiels inconnus correspon-
dant à la distribution et aux courants induits sur le plan. Evidemment ils ne
dépendront pas non plus de t et seront, par suite, des fonctions harmoniques.
On doit les déterminer d’après les équations [(5) du Chapitre 1, (6) de ce

Chapitre]

En tenant compte du fait que F = F’ -p F, , U = U’ -p 1, , ... , que

~ ==2014 2014 ~ ~i ===2014 I , que U’ V’ W’ satisfont aussi à la première’ ’ p

équation, et en remplaçant X, Y par leurs valeurs (II)? il vient

les deux dernières équations devant être vérifiées seulement pour z = o.
On satisfait bien, et d’une façon unique, à toutes les conditions imposées à F,,

U,, V,, en prenant 
~- ~-
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et en déterminant la fonction harmonique F,, y qui prend sur le plan z _-__ o la
valeur - F’ et se comporte régulièrement dans tous les autres points de l’espace.
Le conducteur n’exerce donc aucune perturbation magnétique sur le champ

des courants donnés, puisque son potentiel vecteur s’annule.
L’influence sur la force électrique s’évalue comme en électrostatique. Il devait

bien en être ainsi, du moment qu’il s’agit d’un régime permanent.


