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SUR LA FORMATION EXPLICITE

DES

EQUATIONS DIFFERENTIELLES DU PREMIER ORDRE,

DONT L’ INTEGRALE GENERALE EST UNE FONCTION
A UN NOMBRE FINI DE BRANCHES.

Par M. Armano CAHEN.

INTRODUCTION.

1. La théorie des équations différentielles & points critiques fixes a fait I'objet
de travaux récents et nombreux, dont les principaux sont dus 8 MM. Fuchs ()
et H. Poincaré (2) pour le premier ordre et &8 MM. E. Picard (3) et P. Painlevé (*)
pour le second ordre.

Généralisant la question, M. Painlevé a étudié les équations différentielles,
dont I'intégrale n’acquiert gu’un nombre fini n de branches, quand la variable
tourne autour des points critiques mobiles (%), sans tourner autour des points
critiques fixes.

On dit alors que l'intégrale générale acquiert seulement n valeurs autour
des points critiqgues mobiles.

Ces équations comprennent, comme cas particulier, celles dont I'intégrale est

(1) Fucns, Sitzungsberichte der Academie der Wissenschaften zu Berlin ; juin 1884.

(2) H. PoIiNcARE, Sur un théoréme de M. Fuchs (Acta mathematica, t. VII).

(3) E. Picarp, Théorie des fonctions algébriques de deux variables (Journal de Ma-
thématiques pures et appliquées; 1889).

(*) P. PAINLEVE, Mémoire sur les équations différentielles du premier ordre (Annales
de U'Ecole Normale; 1891-1892). — Lecons sur la théorie analytique des équations
différentielles professées & Stockholm en 1895. Paris, Hermann; 1897.

(%) Les points critiques mobiles sont ceux qui varient avec les constantes arbitraires
d’intégration et les points fizes sont ceux qui sont indépendants de ces constantes. Quand
la variable complexe # décrit un contour fermé, on dit qu'elle n’a pas tourné autour du

point @ = z,, par exemple, si la variation totale de Vargument du vecteur zoz est nulle.
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une fonction analytique n’admettant que n branches dans tout son domaine
d’existence. '

2. Ce travail est consacré a la détermination explicite des équations différen-
tielles du premier ordre dontlintégrale générale n’admet qu’'un nombre fini
. de branches ou plus généralement n’acquiert qu’un nombre fini de valeurs
autour des points critiques mobiles. '
Soit

(1) F(y,y, z)=o

une équation différentielle du premier ordre, ot I' est un polynome en y', y
dont les coefficients sont des fonctions analytiques de .

On peut se proposer de former toutes les équations (1) de degrés donnés en
Y' eten y, et dont 'intégrale n’acquiert qu’un nombre donné n de valeurs autour
des points critiques mobiles.

Pour fixer les idées, supposons que I' soit du premier degré en y’, et soit

oA, @) ha(2)y* ...+ k() ,
T By pal@)yB e (@)

(2) J

I'équation considérée, oit A ct B sont des polynomes en y de degrés a. et 3. Appe-
lons degré en y de l'équation (2) le plus grand des deux nombres «, § + 2;
aprés une transformation homographique quelconque, effectuée sur y, o est égal
af+oa.

Cherchons a déterminer toutes les équations (2) de degré donné q en y
(soit ¢ = 4) dont I'intégrale y (ar) n’acquiert qu’'un nombre donné n de branches
(soit n = 3) autour des points critiques mobiles.

L’intégrale de (2) peut alors recevoir la forme

aly, x)

—const.,
b(y, z)

ol a et b sont des polynomes en y de degré n.

Silon exprime que I'équation (2) satisfait a cette condition, on forme évidem-
ment un systeme de relations différentielles algébriques entre les coefficients
Doy« oy Moy P18y - - -5 o de A, B. Mais il serait trés pénible de discuter la compa-
tibilité de ces relations et le degré de généralité de leurs solutions. Enfin il res-
terait a intégrer ces relations pour obtenir les coefficients X, v en fonction des
constantes et des fonctions arbitraires qu’ils comportent.

Toute la difficulté da probléme consiste donc a déterminer explicitement

toules les équations (2) répondant & la question, c’est-a-dire & déterminer les X,
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@ en fonction ALGEBRIQUE des FONCTIONS ef CONSTANTEs ARBITRAIRES dont elles
dépendent,

Ce probléme a été entiérement résolu par M. Painlevé pour les équations (2).

3. Mais quand on passe aux équations du second degré en y’, la méthode,
bien que subsistant en principe, se heurte a des difficultés nouvelles.

Je me propose donc de traiter complétement ce probléme pour les équations
du second degré en y'. D’une fagon précise, soit

(3) Ly?—2aMy +~N=o

une équation différentielle, oi L, M, N sont trois polynomes en y, de degré ¢,,
¢z, ¢5 (analytiques en x) Soit ¢ le plus grand des trois nombres ¢, -+ 4, ¢, 4+ 2,
¢s- Nous nous proposons de déterminer exeLicITEMENT toutes les équations (3)
de degré nonnt q en y, dont Uintégrale générale n’acquiert qu’un nombre
DONNE 1 de branches autour des points critiques mobiles.

Par le mot explicitement, il faut entendre que les coefficients A(x), ...,
(), +-., v(x), ... dont dépendent les polynomes L, M, N doivent étre déter-
minés en fonction algébrigue de constantes arbitraires et de fonctions arbi-
traires de z (et de leurs dérivées).

4. La méthode que nous employons repose sur certaines propriétés établies
par M. Poincaré et M. Painlevé sur les équations différentielles du premier ordre,
et que nous rappellerons tout d’abord.

En premier lieu, comme I'a montré M. Poincaré, les équations & points cri-
tiques fizes s’intégrent algébriquement, ou par une quadrature, ou se raménent
algébriquement a une équation de Riccati.

D’autre part, d’aprés un théoréme de M. Painlevé, si l'intégrale générale
n’acquiert que n valeurs autour des points critiques mobiles, cette intégrale
générale

Yy =0o(x, yo, @),

considérée comme fonction de la constante arbitraire Yo (2o ayant une valeur nu-
mérique, zéro par exemple), est une fonction algébrique de y,.

M. Painlevé a déduit de ce théoréme que, quelle que soit n, I'équation
(A) F(J"a}’, z)=o

se raméne algébriquement aux équations a points critiques fixes. Son intégrale
générale s'obtient, par suite, algébriguement, ou dépend soit d’une quadra-
ture, soit d'une équation de Riccati.
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5. Enfin, je rappelle encore les deux théorémes suivants dus & M. Painlevé :

I. Etant donnée une équation (A), on sait reconnaitre, & Uaide d’un
nombre rixt d’opérations, si son intégrale y(x) ne prend qu’un nombre
poNNE n de valeurs autour des points critiques mobiles, et, dans ces condi-
tions, l'équation s’intégre ALGEBRIQUEMENT, ou se raméne algébriguement,
soit & une équation

du = (z)de,
Vi — ) (1 — k2u?)
soit & une équation de Riccatr.
II. Soit une équation donnée
(Al) Fl(}”’.}/’ (L‘):O,

ALGEBRIQUE en )’ x; on sait (a l'aide d’un nombre rint d’opérations) re-
) ) ) .p
connaitre si lintégrale générale est une fonction TRANSCENDANTE qui ne
rend qu’un nombre fini (inconnu) (1) de valeurs autour des points critiques
q
mobiles, ou ramener 'équation aux QUADRATURES.

6. Cela posé, considérons d’abord une équation du premier degré en y/,

pag(@) YT+ ag () Yy 4.y
Y24 by s () YT ...+ by

(2)

et cherchons & déterminer explicitement toutes les équations de cette forme, de
degré g donné en y, et dont 'intégrale générale acquiert un nombre donné n de
valeurs autour des points critiques mobiles.

- M. Painlevé a développé une discussion compléte, relative a la compatibilité
des conditions imposées aux coefficients aj, bz dans un Mémoire (2) consacré a
"étude plus générale des équations (2) dont I'intégrale générale est de la forme

C=h(@) [y —gu(@)]: [y —s(@)]% . [y — su(2)]

o0 Iy, la, «.., s sont des conslantes numériques données, et h, g\, gay «+«y gk
des fonctions inconnues de z.

Je reprends tout d’abord I'exposé de cette méthode, en lui faisant subir cer-
taines modifications, et je l'applique a la formation explicite de tous les types

(1) Ce nombre est le méme pour toutes les intégrales, sauf pour certaines intégrales

exceptionnelles.
(2) Annales de la Faculté des Sciences de Toulouse, G.1-35; 1896.
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d’équations (2) de degrés 3, 4, 5,6, 7, 8 en y dont I'intégrale générale prend
deux, trois ou quatre valeurs autour des points critiques mobiles (M.

Quant au passage des équations du premier degré aux équations du second
degré en ', la méthode montre bien encore que les conditions imposées aux
coefficients de I'équation (1) peuvent recevoir une forme algébrigue, mais la
question de compatibilité entre ces relations algébriques présente des difficultés
nouvelles, ol interviennent les intégrales singuliéres et les licux des points de
rebroussements des intégrales.

Avant d’exposer en délail la méthode et la discussion 4 laquelle elle donne lieu,
Je voudrais, dans cette Introduction, en indiquer rapidement les principes.

7. Lorsque l'intégrale générale de I'équation
(3) Ly?—a2My'+N=o

ne prend qu’un nombre fini 2 de valeurs autour des points critiques mobiles, elle

peut s’écrire

(4) aCt—2BC+y=o,

ou a, 3, y sont des polynomes en y de degré n, si le genre & de la relation entre

les constantes intégrales (2) est nul et de degré 2n, si ce genre est égal a un.
Quant au cas de w > 1, il ne peul se présenter ici (?).

(1) C’est pour moi une occasion de comparer les types ainsi obtenus a d’autres types,
formés précédemment par M. Painlevé, a Paide d’une premiére méthode développée dans
les Annales de I’Ecole Normale (1892). Cette méthode, qui donne lieu a des calculs
assez simples, ne fournit pas explicitementles équations (2), dés que le nombre de branches
de Pintégrale est supérieur & #ross, mais astreint les coefficients de (2) a certaines relations
différentielles.

(%) Quand I'intégrale générale est de I'espéce indiquée, il existe une classe de courbes
algébriques de méme module, dont la courbe (3) en Y’y y (ol z est un paramétre quel-
conque) est une {ransformée rationnelle d’ordre n, et dont le genre w est dit genrede la
relation entre les constantes intégrales. On peut choisir deux intégrales premiéres ra-
tionnelles en (y',y): C=R(y, y,2), c=r(y',y, z), telles que C et ¢ vérifient la relation
entre les constantes intégrales, et que toutes les autres intégrales premiéres rationnelles
en y', y, soit ¥ = o(y', ¥, #), s’expriment rationnellement en C, c.

() En effet, si w >1, il existe au moins deux multiplicateurs algébrigues de 1'équation
différentielle 12 2) o Hi(y, 2) Hiy,2)

QR v QR Hi(y,»)
lintégrale générale, qui correspondrait alors a une équation différentielle du premier degré
en y'. Voir PAINLEVE, Annales de I’Ecole Normale, p. 220 et suiv.; 1892.

> dont le quotient » égalé a une constante, définit
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Soit d’abord le cas de w = o. Posons
() M.‘J—LN:P?QR,
P, Q, R étant trois polynomes de degrés 7, j, k liés par la relation
(6) ag—h=2i+ ]+ A,

Péquation Q = o (de degré j) désignant le lieu des points de rebroussement, et
Péquation R = o (de degré k), les intégrales singuliéres.

La relation (4) est, par hypothése, irréductible en y et C, sauf pour cerlaines
valeurs exceptionnelles de C et, en particulier, pour les valeurs C = C, (néces-
sairement en nombre finf), dites valeurs remarquables de la constante, et telles
que 'équation (4) admet, pour C = C;, quel que soit x, des racines multiples
y = gr(x), dont les ordres de multiplicité a,, b, ..., e, sont liés au degré ¢ de
I'équation différentielle par la relation

(o) q:zn—l—k——z [(ap—1)+ (bpy—1)+...4+ (e,—1)] (')

Ecrivons que équation (3) posséde j courbes y = g(z) lieuz de points de
rebroussement, k intégrales singuliéres et p solutions remarquables

)’:g1(‘r)’ )’:é’z(-’”), R y=gp(x),
respectivement d’ordres @y, @», ..., @p, avec la condition

a—1+ay—1+...+~a,—1=2n+k—gq,
nous obtenons

. 3]+ k
2n—i—/f——q+2j+n———2—

conditions algébriques; et, si toutes ces conditions sont compatibles, I'équation

différentielle dépend de
3n+2— <2j—|—n— ﬂ#)—(zn—i—k——q):i—i—é

fonctions arbitraires et de p constantes arbitraires. Par suite, & tout choix des
entiers positifs Z, j, k, satisfaisant & I’égalité (6), correspondent un nombre fini
de systémes de conditions algébrigues entre les coefficients de I'équation (4).

Chacun de ces systémes définit une équation (4) dépendant de ¢ + 4 fonctions
arbitrairesetd’un certain nombre de constantes arbitraires, égal au nombre
des solutions remarquables.

(1) P. Pastevi, Legons de Stockholm, p.167.
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Ce nombre atteint son maximum 2n + k — q, quand toutes les solutions re-
marquables sont d’ordre deux.

8. Dans ce dernier cas, qui peut étre considéré comme le plus général, nous
faisons la discussion compléte des conditions algébriques correspondantes, et
nous montrons :

1° Que les conditions précédentes sont cOMPATIBLES € DETERMINEES

2° Que Uéquation (4) ainsi obtenue en y, C est imRrEDTCTIBLE;

3° Que Uéquation différentielle (3) correspondante (dont le degré est au
plus égal @ q) est EXACTEMENT DE DEGRE ¢/;

4° Que le nombre des sxancues de l'intégrale, permutables autour des
points critiques mobiles, nombre qui est au plus égal a n, cst siEN £cAL @ n,

et que, par suite,
® Le centE ® de la relation entre les constantes intégrales est NuL.

La question posée au début est donc résolue dans le cas de w= o, el le type le
plus général des équations (3) dépend de i - 4 roncrions amsrrraires el de
2n +k — ¢ — 3 consTANTEs ARBITRAIRES (') distinctes, ¢ élant le nombre des
racines doubles du discriminant M?*— LN de P'équation en y/, et k le nombre
des intégrales singuliéres distinctes.

Si I'on passe au cas ol le genre w est égal a unx et si 'on recherche d’abord
directement les équations (3) correspondantes, on remarque qu'il n’y a pas, en
général, de courbe Q = o, lieu des points de rebroussement (?), et que I'équa-
tion R = o (de degré 2p + 2) désignant les intégrales singuliéres, I'intégrale gé-
nérale est donnée par la quadrature de différentielle totale de premiére espéce

ot P [

ol A(z) est une fonction arbitraire de x, et ot les polynomes H(y, z), K(y, x),
R(y,z) dépendent de p -2 fonctions arbitraires et d’une constante

(1) Le nombre 2n+ A —g¢q des constantes arbitraires distinctes peut étre réduit a
an +k—q—3 (ce dernier nombre devant étre remplacé par zéro, s'il est négatif),
parce que toutes les formes (4 de I'intégrale générale se déduisent de I'une d'entre elles

AC . -
par le changement de C en T-é—p&’ A, p, p désignant des constantes numériques.

(2) Dans quelques cas exceptionnels, on peut, cependant, rencontrer des lieur de points
de rebroussement, pour lesquels les deuxr valeurs de ' deviennent infinies.
Fac.de T., »* S., L. 30
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arbitraire p, module de la différentielle elliptique, dont %) est une trans-

Jormée rationnelle.

Si I'on veut que I'équation différentielle correspondante, dont le degré appa-
rent est 2p -+ 2, s’abaisse au degré ¢, il faut introduire, comme plus haut, les
notions de solutions remarquables et de constantes remarquables; d’otr des
relations, qu’on peut écrire sous la forme (ranscendante (')

(7) Co=Jd(yp 2),

ot y, est une fonction algébrique des p + 2 fonctions précédentes.
Ces relations sont en nombre 2p + 2 — ¢ pour la solution la plus générale.
On trouve ainsi { + 4 fonctions arbitraires et 2p + 2 — q constantes arbi-
traires, en fonction desquelles les coefficients s’expriment algébriquement.
Nous conservons aux relations (7) lear forme transcendante, nous y ajoutons

- . . Hdy .
les conditions transcendantes, exprimant que l'intégrale / \/Ey n’a que deux

périodes, qui sont des constantes absolues, el nous montrons que P'ensemble de
ces deux séries de relalions transcendantes est compatible et déterminé (*).
Hya donc { + 4 fonctions arbitraires, et, comme, d’autre part, les relations
peuvent recevoir une forme algébrique, on en conclut que les coefficients dé-
pendent algébriguement de (+4 fonctions arbiiraires convenablement choisies.

’10 Observons, dans ce dernier cas ue, si 'on met I'intégrale générale sous
’ bl el o
la forme

(4) a,(l?——zﬁ,(]—'r--/,:o,

il n'y a pas de lieux de points de rebroussement (j=o)et z,, 3,,v, sont de degré
aneny.

Inversement, si une relation (4) de degré 2 n définit 'intégrale d’une équation
différentielle (3) de degré g en y, cette intégrale acquiert 2 n valeurs autour des
points critiques mobiles; les coefficients de (3) dépendent de i+ 4 fonctions ar-
bitraires et de 4n + 2p — q — 1 constantes arbitraires, et le genre w est nul.
Mais, comme dans le cas de m = 1, les constantes arbitraires sont au nombre de
2p + 2 — q, il faut en conclure que, dans lecasdew =1, les jn+2p +2—gq
constantes remarquables, ou bien ne donnent pas lieu chacune a une seule solu-
tion double, on bicn sont lides par 4n— 4 relations algébriques.

(1) Ces relations pourraient, d’ailleurs, étre ramenées a des formes algébriques.

(2) Les autres objections, que 'on peut faire au raisonnement, font également ici Uobjet
d’une discussion compléte, mais rapide, analogue a celle que nous dé\'eloppons a propos
des équations de genre w = o.
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Nous montrons qu'il existe alors quatre constantes remarquables telles, que
le premier membre de (4) devenant un carré parfait, elles donnent lieu respec-
tivement & un abaissement de degré n.

Ces quatre constantes ne sont autres, d’ailleurs, que les quatre racines du ra-

“dical, qui engendre la différentielle elliptique dont il a été question un peu
plus haut.

11. En définitive, nous obtenons le théoréme fondamental suivant :

Tuatorime. — Les entiers q et n étant donnés (4=q<4n), appelons i, j, k
trois entiers positifs satisfaisant a la condition '

2l )+ k=29 —14,
et aux inégalités

J+ A2, 3j+k<an, hzqg—2an.

A chacun de ces systémes d’entiers i, j, k, correspondent une infinité
d’équations (3), dont Uintégrale acquiert exactement n valeurs aulour des
" points critiques mobiles. Ces équations, qui forment deux classes distinctes,
sutvant que le cexve w de la relation entre les constantes intégrales est égal
a 76ro ou @ uN, dépendent ALGEBRIQUEMENT de [ 4 FONCTIONS ARBITRAIRES e/
de coNsTANTES AnsITRAIRES, dont le nombre est on +k —q—3oul —q ('),
selon qu’on se trouve dans l'un ou Uautre de ces deux cas.

Le théoréme n’est en défaut que si I'entier ¢ étant égal & 4, on a k = 4, ou
k=2, J = o. Dans ces deux cas exceptionnels, I'équation (3) correspondante a
toujours ses points critiques fixes.

12. Un probléme intéressant consiste & former les équations différentielles de
I'espéce précédente, dont les coefficients appartiennent & une classe donnée de
Jonctions; nous avons la encore un genre de questions, ot le nombre des con-
stantes remarquables joue un rble des plus importants.

Voici les deux principales questions, que nous résolvons, et qui se rattachent
a cet ordre d’idées.

L. Former les équations (3) a coefficients sLcésriQues, de degré ¢ DoNNE:
eny, dont l’intégrale générale prend un nombre vonnt n de valeurs autour
des points critiques mobiles.

IL. Former les équations (3) a coefficients aLcisriQuEs de degré q ponwE,

(1) Les deux nombres 2n + k — g et k — g doivent étre remplacés par séro, s'ils sont
négatifs.
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dont l'intégrale est une fonction TrANSCENDANTE qui ne prend qu’un nombre
Jini (xon poxni) (V) de valeurs autour des points critiques mobiles.

13. Les principes utilisés précédemment et les méthodes correspondantes
s’appliquent a I’étade beaucoup plus compliquée des équations du second degré
en y'etde degré g eny

(3) Ly?—aMy' +N=o,
ayant pour intégrale générale
(8) 2 C?—23'C+y'=o,
ou o/, B, ¢ sont des expressions de la forme
h(x) [y — g (@)Y — ga2(2)Pee o [y = g ()],

Kiy A2y «vvy Ay étant des constantes numériques quelconques données, et pour
lesquelles nous établissons une formule (), qui peut étre considérée comme une
généralisation de la formule (2) du n° 7.

Nous n’avons pas encore résolu complétement la question, qui consiste a
former explicitement les équations (3) de degré ¢, dont I'intégrale générale est
de la forme (8), mais les quelques développements que nous consacrons a ce
probléme suffiront & montrer comment les méthodes précitées permettent de le
traiter complétement.

Pour terminer, nous consacrons quelques lignes aux équations (3) qui ad-
mettent un facteur intégrant sALcisriQue et nous établissons, l1a encore, une
formule (2)", analogue a la formule () du n°® 7, permettant de traiter le probleme

de la formation explicite de ces équations.

14. Jc rappelle aussi les nombreuses applications développées dans le corps
de ce Mémoure.

Tout d’abord, comme je Pai déja signalé plus haut, je forme explicitement
toutes les équations du premier degré en y', qui correspondent aux valeurs 3, 4,
3, 6, =, 8 de I'entier ¢ ct aux valeurs 2, 3, 4 de I'enticr n.

Jinsiste longuement sur certains exemples particuliers, afin de bien montrer le
but poursuivi en introduisant la méthode en uestion.

Je forme ensuite toutes les équations du second degré en y', dont U'intégrale

(1) Ce nombre est toujours supposé le méme pour toutes les intégrales, sauf pour des
intégrales exceptionnelles.
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n’acquiert que deux branches autour des points critiques mobiles et pour les-
quelles P'entier ¢ prend les valeurs 4, 3, 6, 7 et 8.

Enfin, je forme les types les plus intéressants d'équations du second degré
en y', dont Vintégrale générale acquierl trois valeurs aulour des points cri-
tiques mobiles ().

CHAPITRE I.

EQUATIONS DU PREMIER DEGRE EN j'.

I. — GENERALITES ET PROPRIETES CONNUES.
1. Etant donnée une équation différentielle

. B(y, z)
(l) Yy = A(y, .’L‘),

ot B et A sont deux polynomes en y premiers entre eux pour z quelconque, le
premier de degré g (), le second de degré ¢ — 2, si lintégrale générale ne
prend que n valeurs autour des points critiques mobiles, on peut la mettre sous
la forme
N ﬁ(y’ ‘T)
(2) C=200 %),
a(y, )
La relation (2) détinit, par hypothése, une fonction y (), qui, pour une valeur
quclconque donnée ila constante C, a n valeurs distinctes. L' équation de degré n

en y ,
a(y, 2)C—B(y, x)=o

ne sera réductible que pour certaines valeurs exceptionnelles de C, et, cn parti-

culier, pour les valeurs C=C,, dites valeurs remarquables, de la constante pour

lesquelles I'équation (2) admet, quel que soit z, des racines multiples y = g (x),

dites solutions remarquables, et dont les ordres de multiplicité sont liés au

degré q de I'équation par la relation (?)

qg=12n —E(a,.— 1) 4+ (b,—1)+...4 (e,—1).

(1) Les principaux résultats contenus dans ce Travail ont été résumés dans une Note
présentée a 'Académie des Sciences (séance du 26 décembre 1898).

(%) D’une fagon plus générale, si p; et ¢, sont les degrés de B et A, g est le plus grand
des deux nombres py, g+ 2.

(3) P. PAINLEVE, Lecons de Stockholm, p. 146.
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2. Inversement pour que I'équation (2) délinisse l'intégrale générale d’une
équation (1) de degré g, 1l faut et il suffit qu'il existe p solutions remarquables
yi(x), ¥2(z), « oo, yp(ar) de multiplicités @y, as, ..., a,, telles qu’on ait

l':P
qg=2n— E (a,—1).
r=
Soit donc l'intégrale générale
(3) e B By Buca " A A By + B
o yr+ an—l,y"-l “+ . oy

Si nous exprimons que y,= o,(x) est une racine d'ordre a,— 1 de I'équation
J S q

_ 9B 0% _
D=« d‘;’ 5 d.)’ =0,
et, de plus, qu’elle rend constant le rapport g’

¢ Bl @)
gp = ——
(v x)

nous formons a, conditions algébriques portant sur les 2n -1 coefficients
de o, 3. Si 'on élimine g,(x) entre ces conditions, on obtient @, — 1 conditions
algébriques entre les coefficients a;, 3; et la constante C,.

n opérant ainsi pour chaque solution remarquable, on obtient

(ay—1)+(ar—1)+...+(a,—1)=2n—¢q

conditions algébriqueés (S). Si toutes ces conditions sont compatibles, I'équa-
tion (2) dépendra algébriquement de ¢ -1 fonctions arbitraires ct d’un
nombre de constantes arbitraires égal au nombre des solutions remarquables;
ce nombre sera mazimum et égal & 2n — ¢, si toutes les solutions remarquables
sont d’ordre deux.

On peut donc dire que la solution la plus générale dépend de ¢ + 1 fonctions
arbitraires (nombre indépendant du nombre n des branches de I'intégrale géné-
rale) et de an — ¢ constantes arbitraires.

. — CoMPATIBILITE DES RELATIONS (S).

3. Les conclusions précédentes ne sont rigoureusement exacles que si les con-
ditions (S) sont compatibles et déterminées.

Nous allons démontrer directement que, au moins pour la solution la plus
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générale ('), c’est-a-dire pour laquelle toutes les solutions remarquables sont
d’ordre deux, il y a bien compatibilité.
>y 74
En effet, dans ce cas, les 212 — ¢ conditions sont de Ia forme
) ) q

. a( ¥y, 41?)’
- ﬁ(yl, x)

{ (Jl

%(Yan—g, Z)

6 (yZn—qv *Z‘) ’

(‘;'n——q -

oy (), 32(2)s o,y Yan_g(x) sont des fonctions algébrigues des coeflicients
inconnus a;, 3; de a, 3.

Les constantes C,, Gy, ..., C,y,_, élant enliérement arbitraires, le systéme (8S),
qui contient algébriquement les fonctions a;, P, sera résoluble par rapport
a2n— q d’entre elles, 3 moins qu’un des seconds membres de (5), par exemple
le dernier, ne soit identiqguement fonction des autres.

Supposons qu’il en soit ainsi, et exprimons que Lloules les autres racines
de D, soit

Yen—q+1s  Yan—giay -y Yon—s,

sont des intégrales de (1), d’ou le systéme

{

, a(}’zn—rpru z)

LT 6(}’2n—q+l, 1'),

C; . “(.an—en-zy x)

- 5 (Yon—gi2s &) ’

@

Coa= 2(Van=p ),
\ @(yzn—-e’ 17)

Pour des valeurs arbitraires données aux 22 — 2 constantes C, C, a fortiori,
les 22 — 2 seconds membres de (S) et (S) ne sont pas distincts, et, par suite,
I’équation (1)’ correspondant a ces 2 — 2 valeurs remarquables de la constante
dépend au moins de quatre fonctions arbitraires; mais c’est une équation de
Riccati; or, I'intégrale générale d’une équation de Riccali dépendant au plus de
trois fonctions arbitraires, il y a contradiction et, par suite, les équations (S)
sont bien résolubles par rapporta 2 n — g des fonctions «;, B;.

(1) GL. P. PAINLEVE, Lecons de Stockholm, p. 152. — Annales de la Faculté des Sciences
de Toulouse, loc. cit.
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Il résulte de la qu’en faisant abstraction de certaines YALEURS EXCEPTIONNELLES
des constanles ¢, les conditions (S) définissent on—q des 2n -1 fonc-
tions o;, 3; sLcisriQueMenT @ ’aide de q + 1 d’entre elles et de an — ¢ con-
stantes arbitraires. ‘

IHI. — EMPLOI DE LA TRANSFORMATION HOMOGRAPHIQUE.

%. On peul remarquer que, si l'on effectue sur y une transformation homo-
graphique, dont les coefficients sont des fonctions de z et sur z le changement
de fonction z=19(X), les équations (1) et (2) gardent leur forme et leur degré;
donc, a toute solution de la question, pour un systéme de valeurs données de n, ¢,
en correspondent une infinité dépendant de quatre fonctions arbitraires.

Or, nous venons de voir que la solution la plus générale dépendait de ¢ -1
fonclions arbitrairves.

Si g est plus grand que 2, nous avons bien un minimum de quatre fonctions
arbitraires; mais si ¢ == 2, c'est-a-dire si nous sommes en présence d’'une équation
de Riccati, il semble qu’il y ait contradiction, puisqu’en réalité nous ne dispo-
sons plus que de trois fonctions arbitraires. Cela tient & ce que l'équation de
Riccaui admet une transformation en elle-méme de la forme

(@)Y 4 Ay ()

YT R@Y Ry TR

dépendant d’une fonction arbitraire.

En effet, on peut toujours ramener cetle équation i la forme 3'= o, au moyen
d’une transformation homographique et, sous cette derniére forme, on voit que
I'équation ne change pas quand on remplace  par ¢(X).

Inversement, si une équation (1) admet une transrormiTioN en elle-méme
dépendant d'une fonction arbitraire, c’est une équation de Riccali.

5. Enfin, on peut se servir de la transformation homographique, suivie du
changement de variable, pour ramener I'équation (1) a des formes canoniques
intéressantes ('), et alors les équations (1) répondant & la question ne dépendront
que de (¢ + 1) — 4 = q — 3 fonctions arbitraires; par exemple, on peut supposer
que B est seulement de degré ¢ — 3 et que 3 est de la forme

VI, v L+ a,
T VI by 4 b,

!

On peut choisir comme fonctions arbitraires les coefficients by, by, ..., b, ,

(1) Voir P. PANLEVE, Annales de I'Ecole Normale, p. 21-30 et 101-104; 1892,



FORMATION EXPLICITE DES EQUATIONS DIFFERENTIELLES DE PREMIER ORDRE, ETC: 253

du dénominateur, qui dépendent algébriguement des coefficients o, 3; et non de
leurs dérivées; il reste alors quatre fonctions arbitraires, lesquelles ne subsistent
plus, d’ailleurs, sil'on assujettit le degré du numérateur a étre égal a ¢ — 3, le
coefficient de y773 étant égal a un. Alors les coelficients @q, @y, «.., @q_; s'ex-

primeront algébriquement a 'aide des coefficients b et de leurs dérivées pre-
miéres.

IV. — NOMBRE DE BRANCHES DE L’INTEGRALE.

6. 1l resterait & démontrer que, si I'on adopte la solution la plus générale des
équations-(S), le degré g ne s’abaisse pas nécessairement, c’est-a-dire que les
équations (S) n’entrainent pas comme conséquence que d’autres racines y = g(x)
“de D = o soient des solutions remarquables; car, s'il en était ainsi, une des équa-

tions (S') serait conséquence des équations (S), ce qui est impossible, comme
nous 'avons vu plus haut.

7. Enfin, montrons que la fonction y () ainsi définie a bien n branches et non
pas un nombre moindre, du moment que ¢ est plus grand que deux.

En effet, supposons que l'intégrale générale ne prenne qu'un nombre v de va-
leurs (v < n). Elle est alors réductible a la forme

6 C @:(}” .Z‘)
©) o (Y, x)
ol B, et 2, sont des polynomes en y de degré v.
= SE% ) est alors une fonction rationnelle de C/
(7) C=R(C).

Si G est une racine multiple de ’égalité (7), et il y en aura toujours au moins
une, da moment que v > 1, et G, la valeur correspondante de C, I'égalité

t=5=xr(3)

admet des solutions y = g(x) multiples, et pour qu’elles soient seulement
doubles, il faut que C; soit racine double de l’egahte

Co=R(C),

et que, de plus, I'équation .
C/ “1(}’, .Z‘)
r— it 2
Bi(ys ‘T)

ait ses racines en y simples.
Or, da moment que v>1, cette derniére équation a plusieurs solutions
Fac.de T., 2*S., 1. _ 33
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y=g(x), y=~h(z), ... correspondant a la méme valeur C, de C; et, comme
ce sont des solutions remarquables, les valeurs de la constante qui leur corres-
pondent n’auraient pas été prises arbitrairement, puisqu’elles sont toutes égales
a C,. Il est donc impossible que, pour la solution (2) la plus générale, le nombre
des branches soit inférieur a n.

Le raisonnement n'est en défaut que si v est égal a un, mais on sait que I'équa-
tion (1) correspondante est une équation de Riccati, par suite ¢ = 2.

Donc, si I'on suppose ¢ > 2, n est bien le nombre de branches permutables
de y ().

Je n’examinerai pas davantage la discussion ni les applications aux équations
a coefficients algébrigues, pas plus que d’autres questions intéressantes, me bor-
nant & renvoyer au Mémoire de M. Painlevé ('), ol tous ces problémes sont
traités avec les développements qu’ils comportent.

CHAPITRE L

EQUATIONS DU PREMIER DEGRE EN »'. — APPLICATIONS.

I. — EQUATIONS A DEUX BRANCHES.

1. EquaTions pE pEeRE QUATRE. — L'intégrale générale des équations diffé-

rentielles de cette espéce se met sous la forme

S G S

(M IR R ———

et intégre I'équation de degré ¢ = 4,

(2) ro_. )"2)’&‘*"()"2!"'1’*' My — 1) )‘2))’3’*'(}"0)‘,2’" Aopry + Ry g — Hll)‘l).yz"_(l**o)‘ll +. )Y+ V'o)"o—)\of"':)
= (M — ko) y?+ 2()-0“Ho7\2)}’+}*1)~0—7\1p-o

ou les coefficients des diverses puissances de y s'expriment rationnellement al’aide
des cing fonctions arbitraires s, iy Moy iy (o et de leurs dérivées premiéres.

2. EouaTioNs vE DEGRE TRols. — Pour former les équations de degré trois
dont I'intégrale générale acquiert deux valeurs autour des points critiques mobiles,

(") Annales de la Faculté des Sciences de Toulouse, loc. cit.
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on pourrait exprimer, par exemple, que le numérateur et le dénominateur de y"
dans la relation (2) ont un facteur commun » — K, d’ott une relation algébrigue

(3) H()‘h )\19 )‘O)V'lf-‘o,)\,z, )\'1,7\:;’#/1, IJ,()):O’

qu’il est facile de former, ot H est un polynome entier par rapport aux fone-
tions A; w et leurs dérivées premiéres; en sorte qu'en supprimant le facteur
commun y — K [K est une fonction rationnelle des %, w, ¥, ' liés par la rela-
tion (3)], on obtiendrait une équation différentielle, de degré trois en y, dont les

coefficients sont des fonctions rationnelles des X, #, Ny ' liés par la relation di/-
Sérentielle (3).
L’équation
. Py, 2)

T T, @)
ainsi oblenue dépend bien de quatre fonctions indépendantes, puisque les coef-
ficients des diverses puissances de y sont exprimés de la fagcon indiquée plus haut;
mais comme la relation H = o contient les dérivées premiéres X', i/, ..., on ne
peut dire que 'on a exprimé explicitement les coefficients a I'aide de quatre fonc-
tions indépendantes, puisque, pour exprimer une des cinq fonctions 2, p en fonc-
tion des quatre autres, il faudrait savoir intégrer la relation H = o.

Ainsi donc, pour que la question que nous nous sommes posée fit résolue, il
faudrait pouvoir déduire, de la relation H = o, une relation algébriqgue H, = o
ne contenant plus les dérivées des fonctions A, e

Or, laméthode employée dans ce travail, ayant précisément pour objet de substi-
tuer & la relation H = o, qui contient les dérivées premiéres des A, u, une relation

H, 0‘0; Ay Ay o5 1y CI) =0,

contenant algébriquement les fonctions X, u et une constante arbitraire C,, cette
relation H, = o doit étre considérée comme intégrant la relation H = o.
Il suffit d’écrire que les deux équations

C, — hy*+ Ay + 4,
Ty

()‘l_f‘-t;\z))’z‘*‘ 2 (A — )‘2.“0),}’ A=y hg— 7\1‘“0: o
ont une racine commune en y, d’ou la relation

[(Co— o) (pra o — prody) — (Cypro— Ro) (B, — #ihg)]?
—[2(C, —7‘2)(7\0__Po)‘2)—()‘1—'#17\2)(5’-1 Cl—7\1)][(1“-101*7\1)(.’-*17\0—7\1}lo)"2(5*0(:*)\0)()\0*#010)] =o0.

Quand cette relation est satisfaite, on peut supprimer au numéraleur et au
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dénominateur de (2) le facteur commun

L= Ca)(praRo— R p20)— (1o C—Ro) Ay — 1 Ao) ]+ (1 Cr—21) (1 ho—Rs o) o ha— Do
et 'on obtient I'équation différentielle dexﬂandée.

. I . .
Du reste, on peut supposer — = o; cela revient a remplacer

G,

. )\o, )\n gy Hos 41
!‘espectlvemenl par

7\0— ClHo’ M — Cl[-‘u Ay — Cy, Hos  i1s
et la relation H, = o se réduit alors a
PHE AU

relation qu’on aurait pu d’ailleurs écrire immédiatement; le facteur commun se
réduit alors a 2 -+ ., et aprés I'avoir supprimé il reste

(3) = 2Rl ok =2l Ol =2 by hopn — 2
'),()\l— “17\2)}/ -+ 1,{)\0— Hl)'l

3. En écrivant que I'équation différentielle s’abaisse au degré deux (auquel cas
c’est une équation de Riccati), c'est-a-dire que

- hho— Hi7\1
1= 2(fhe— M)

est une solution remarquable, on obtient une relation entre Ay, Ay, Ag, pro S0it sous
forme différentielle, en écrivant que le numérateur de (3) s’annule pour y = y,
soit sous forme algébrique en écrivant que, pour G = C,, on a

hoyi Ay + l.,’

C,—=
? (2y1=+ 1)?

et, par suite, I'intégrale générale se met sous la forme

¥+ 7\1“4021‘*1 )
2(7\2—402)\/7\*_—432 N
2VY+H| 2 2 ’

ou l'on a posé

V=VC—0GC,,

et sur cette forme on vérifie bien que 'équation différentielle est @ points cri-
tiques fizes. Clest le cas exceptionnel g = 2.
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II. — EMPLOI DE LA TRANSFORMATION HOMOGRAPHIQUE SUIVIE DU CHANGEMENT
DE VARIABLE INDEPENDANTE.

4. Nous avons vu que la transformation

) b
%) r=o(x), y="GH D

conservait le degré de I'équation différentielle et le nombre de branches de l'in-
tégrale. ‘

Si I'on suppose que ¥ = 0, =1, ¥ = o0 sont des intégrales des équations dif-
férentielles, moyennant la transformation (4), on voit que, dans le cas de ¢ = 4,
I'intégrale générale (1), étant de la forme

. y—1
b= zyly —a(x)]’

donne lieu a I'équation différentielle

o () — —[y — ()]
yi—2y +oa(z)

(5) Y=y —r

Pour le cas de ¢ = 3, la quantité « étant nulle, 'intégrale est de la forme
q , laq ’ g

Péquation différentielle correspondante se réduitalors a

y—1
6 =y .
©® T C=s

Si Pon part des formes (5) et (6) des équations différentielles, on obtiendra
toutes les équations différentielles dont I'intégrale générale a deux branches, en
effectuant dans (3) et (6) sur x et y, la transformation (4), ou ©(X), a(X),
b(X), ¢(X) sont des fonctions arbitraires de X.

5. Remarque. — On pourra se reporter au Mémoire (') déja cité de M. Pain-
levé, qui contient des types d’équations un peu différents de ceux que nous avons
introduits. Mais la méthode que nous avons employée permél; d’obtenir des types
identiques, comme nous allons le montrer rapidement.

(') Annales de I’Ecole Normale; 1892.
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6. Equarions pE DEGRE QuATRE. — Pour que 'équation différentielle, dont

Ay hy+

C= 2
Yoty + e

représente I'intégrale, soit de la forme -

I aky“*' a3y3+ ay'+ a,y + a,
Yy = Iz ’

il faut et il suffit que Pon ait

p1do— A =o, M—pidy=o, avec hy— Ry Z o0,

d’ott
11 —=M.=0,
= DY (ot Mo — Ry o) " o Ko pa— Aoty
2(ho— Aafao)y
7. EqQuaTions pE DEGRE TROIS. — Pour que ¢ soit égal & trofs, il faut et il suffit

que pour C = C,, y = o soit solution remarquable, d’ou

01: )‘_0,

o
ou bhien encore que pour C = C,, y = o soit solution remarquable, d’ot
% == C,.

On obtiendra alors les deux formes

¥y = Ny 4[5 po + 10 (G — 7\'2)].""
240 (Cy—23)

'

y' = (Wo—Caprg) y* + Ao pro — Doty ,
2(hg— Capro) y

. L . I
qui se déduisent, d’ailleurs, 'une de 'autre par le changement de y en —-

Dans chacune de ces deux formes, la constante arbitraire introduite figure
d’une facon artificielle, la premiére de ces deux formes pouvant s’écrire

d ) '
;,;(7\2—(31))'34-#05;(12—01)—#o(lz— Gy)
— 2p5(he— Cy) ’

si l'on pose
)\2 —_ Cl = A,
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Ot
Nel

il vient
| A A — A
o —2A

Y

>

el Pon retombe bien ainsi sur un type trés simple obtenu par M. Painlevé.

IIT. — EQUATIONS A TROIS BRANCHES.

8. EquaTions DE pEGRE six. — L'intégrale générale étant de la forme

_ )‘3.7'3 -+ 7\2.72 ‘F7\1_)’ —+ Ao
pu— 2
VP )t Y

(7)
I’équation différentielle correspondante (1) la plus générale est de degré siz

f_ SR Ny 4 00) (0 Sy o+ ) — (5 7 By o) (e ey Ry + Ay)
By 2pey + ) (M)® +hy + by + k) — By 2hyy + M) ()P + o) + 1y + 1)

(8)

Nous disposons des coefficients de la transformation homographique, de facon
que trois des racines du dénominateur, qui aprés les réductions est du qua-
trieme degré, soient o, 1 et oo, d’ou les conditions
(9) hs —pad;=o0, pako — Apo =0,

(10) 2h; 4 3 A, 4+ Ay g + 20y = 0.

Le dénominateur D devient alors

A . A
D=3 (o — )y (r —1) (y — 557,
et I'on a pour I'équation différentielle

— B x)
A(y, =)

ou A el B ont les développements suivants :
B =210 +2p A5 y°
+ [AG (A3 = A0) == Roha (Mg pro — Raply ) — Ao &y prods 4 Ay Ag oy ]
A+ [AT (N pro Ko — Aapy + pa k) — Aypy)
Ao prady (Mg o — Agprg) — Roproha (pady — Ay py) = prodady Ay pa ]
A [ 1 20+ A po (hs + pa k) + A3 pa (Rg — Rapsly) + A3 (R 2o — Ao prg)] ®
+ 202 (N — 5 20) ]y =+ A3 (Mg pro — Ao 1),

A
A=2hh (R — peds)y(y —1) <y-— P;\l °>,

les fonctions A, i étant liées par les relations (g) et (10).
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9. Equarions pE pEcré cing. — Kcrivons qu’une des racines de D, par
exemple y = oo, est intégrale de (), d’ou

A3 = const.,

el comme 23 ne figure que dans la combinaison pe),, on peut supposer hy = o,
d’out ), = o, et I'équation différentielle correspondante est de la forme

By, Ar),
Y= RG, 2)

ou Bel A ont pour expréssions

B =020yt -+ (N — i) P
[ a2 Ay + AT o — Aoty )]
2 ko hy (N o — Aot 7 -+ A2 (o — 2 Do),

A
A= 27\1)'(:;.}/(.},— l) <y— F’;TQ>’

-

Moy hay Wy €L ug étant liés par la relation
2h 4+ 3% + Ay + 20 pe=o.

10. Equations pe pEcrRE QuATRE. — Deux cas peuvent se présenter, car
I'abaissement du degré de 'équation (8) provient de la présence de deux solu-
tions remarquables doubles, ou d’une solution remarquable triple.

Premree cas : Il existe deux solutions remarquables doubles. — Soient
Yy =0,y =owx, d’ott
)
dy =Gy, p—o =GCy;
on peut supposer

C,=o, Cy = oo, d’ou o =0, = o0,
et, par suite,

r— FIN2A4 (0 4 o dy — Aypy)y - pady — Ao py ]

Y ) 4
2l (y =) (y — B2
0
avec
2k + 3%+ My + 2R e =o0.
Druxiime cas : Il y a une solution remarquable triple. — Soit y = w0, d’ol

by =21, =Xk —=o, B =o0, 202+ 3 =0,

y= R Ry e e — oy,
Sy(y—n) '
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11. Equarions pE pEGrE TRois. — Nous devons distinguer deux cas, saivant
qu’il y a trois solutions remarquables doubles, ou une solution triple et une
solution double.

Premier cas : Iy a trois solutions doubles. — Soient o, 1, co. Nous n’avons
qu’a écrire que, pour I’équation (g), ¥ =1 est en outre une solution remarquable
correspondant a la valeur C =1 de la constante, d’ol les conditions

M=h= =, =o, 1+p.2:)\1+7\0, A+ 2k +1=0,

et I'équation différentielle prend la forme

/ )‘:)(l_y)
(10) y'= ’
PN [UED e .

dont I'intégrale générale est

Ay —2A

() T (hF2)y -

Deuxikme cas : Il y a une solution triple et une solution double. —

Soient = oo solution triple et » = o solution double, d’ot

A=kh=MA=p =o, 2y + 3 =0, o =0,

My(—y—+1
(12) ],I: 0)3’5),;}—?;2).

12. Remarque I. — Si I'on exprimait qu’il y a un abaissement plus considé-
rable, on obtiendrait une éguation de Riccati.

On peut vérifier sur les formes correspondantes de I'intégrale générale que 1'on
se trouve bicn en présence d’une équation & points critiques fizes.

Pour P'équation (10), par exemple, si 'on exprimait qu’il y a abaissement
d’une unité dans le degré, c’est-a-dire que

(Mo +2)(2h+2)
— i

est une solution remarquable double, correspondant & une valeur C = C, de la
constante, on obtiendrait une équation de Riccati, et, d’autre part, l'intégrale
générale se réduisant & la forme

%y  + Biy*+y1y + 0, =o,

ot ay, By, vy, 8, sont des constantes numériques, I'équation diflérentielle cor-
respondante aurait bien ses points critiques fixes.
Fac. de T., »* S., 1. 3/;
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De méme, si 'on exprime que y =1 est solution double pour I'équation (12),
il vient

A, =o, d'ou y' =o,
et I'intégrale générale, se réduisant a
2y —3y -+ a,:c;,
ol o, est une constante numérique, a bien encore ses points critiques fizes.
[-’-27\0

A
remarquable, on aurait rencontré des formes d’équations différentielles, identiques

Remarque Il. — SiTon avait exprimé tout d’abord que y = est solution

a celles trouvées par M. Painlevé (') a I'aide de sa premiére méthode.

13. Signalons enfin les types intéressants d’équations différentielles, obtenus
en écrivant que I'équation différentielle admet y = 0, y =1, y = © comme so-
lutions ordinaires pour les valeurs G =o0, C=1, C=o de la constante. Ceci
est toujours possible puisque I'équation différentielle dépend au moins des quatre
fonctions arbitraires ¢ (), a(z), b(x), c(x) de la transformation

_ _a(®)y+b(x)
X =9¢(2), Y—W

et que toutes les formes de l'intégrale générale () se déduisent de I'une d’entre
aC+f
elles par le changement de C en <

L’équation de degré siz s’obtient en partant de

C= Ll hy
Ty Ay e
avec
do Ay 1= o+ Py o

d’ou
Ay —1)A
y’ — Z_(_LB_]_)_ ,
ou A et B sont deux polynomes de degrés trois et quatre.
Ecrivons que y = w0 est solution remarquable, d’ou I'équation de degré cing

c— Tl +hy y= X —DA
- 1)+ o ’ - B

A et B élant du wroisieme degré; et 'on formera de méme les équations de degrés

(1) Annales de I’Ecole Normale, 1892, loc. cit.
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quatre et trois

(=Y hy? f Y =D [= iy el = hape ]
Y e P Ty B+ hap)y + 2 ha i
avec
ke + 1== g —+ gy
et,‘ .
= Y +hy ,  yi= y(a—y)h .
T B2k y — (A +2) (2he +3)y + 2o (A + 2)

1V. — EquaTioNs 4 QUATRE BRANCHES.

14. Dans tout ce qui suit, nous supposerons qu’on a disposé des coefficients de la
transformation homographique, de fagon que y =0, y =1, ¥ = soient des
solutions ordinaires de 1'équation différentielle. 1l suffira alors, dans tous les

: oay +
types que nous obtiendrons, de remplacer y par 3%/:?6 pour former toutes les

équations différentielles de I'espéce indiquée. Elles contiendront, par con-
séquent, rationnellement les fonctions arbitraires «, B, & et leurs dérivées
premiéres.

Le degré de ces équations varie entre huit et trois. Je vais passer lrés rapi-
dement sur les équations de degrés huit, sept, six et cing dont la formation est
analogue 4 celles des équations du paragraphe précédent, et j'insisterai plus lon-
guement sur les équations du quatriéme et du troisiéme degrés.

I. Equarions pE pEerE Hurr. — L’'intégrale générale est de la forme

(1) C:y(.}'3+)\2y2+7\2)’+)\0)
Pay® + m Y+ Y+ o

(U 2g =2y + R == s+ pa—+ Py + o),

P Y= OBy A+ ok — Rop]
Gyt -F2pey® .o A= ok

(ry Y

II. Equarions nE DEGRE sEpT. — Fcrivons que y = oo est solution remarquable
double pour C =, d’ou

(2) C:}’()’S—i“)\g.yg—f-)\hy—f‘}.o)
PP+ Y + o

Y =Dyt + (g g hapy— Ry pa )y oo oy — hopti ]
2‘1'2),5—’— (3‘U~l+)ng#2)y6 ~+ ...+ ;\op.o

(l+)‘-2+}~1+)\0:y~3+“1+l"0).‘

(2) y'=

I1I. Equarions pE pEGRE six. — Deux cas peuvent se-présenter :



()’

!

264 A. CAHEN.

Preveer cas @ Il y a deur solutions remarquables doubles.— Soient y = cc,
y=o pour C=0o0,C=o,

(3) c= Y+ hy + k)

Py 4 PaY + o

(3) y/:}'(}’- 1) [H;y3+(l~"g +[J-I, +)\2[J-’2—)\{2}L2)y2+...+ Pody ——)\oy.lo].
ooyt B Aap) Y4 2k

(4R 2o = pa + 1y + o),

Deuxiime cas : Il y a une solution remarquable triple. — Soit 3 = o pour
C == 0,
c= Y (P Hhy+hy +h)
1Y+ o

by == DIy (ot g hopi —puky) yior e ok —hopto ],
3yt (Ao +2hapy) P+ o+ Ao

(4)

(1 + o =1+ Ay + Ay + Ay),

IV. EquaTions pE pEGRE ciNg. — Trois cas peuvent se présenter :

Premier cas @ Iy a trois solutions remarquables doubles. — Soient y = o,

y=1,y=wpourC=o0, C=1, C=o00;

) C— A Y2 (y*+Ay+B) .
' Dy +(3A+2B—2D+4)y—2A —B+D—3

1.’¢équation différentielle correspondante est

M—-Ny —=o,
oul'on a
N=D'y’+ (AD'— DA'+ 2B’ +3A'—2D") y*
+[BD'— DB’ 4+ 2(AB' — BA’) — 2(AD' — DA') — 6A’ — B'+ D'])?
+[AD' — DA’ — 2(BD' — DB') — 4 (AB' — BA')} y?
4 [2(AB’ —BA’) + BD'— DB’ + 3B']y

i

y(y —1)2[D'y? + (3BA + 2B+ AD’ —DA') y
4+ 2(AB'—BA’) -+ BD'— DB’ + 3B/]

. M=12Dx)+ (9A +6B —6D + AD +12)y° ‘
+ (6A2 4+ 4AB —4AD — 4B + 4D —12) »?
+ (—6A2+3AD —gA +2B2—2BD -+ 4B)y + 2B (—2A—B + D — 3)

=(y —1)[2Dy*+ (9A+ 6B — 4D + AD +12)y*

+(9A+2B —3AD +6A2+ 4AB)y +2B(2A + B —D + 3)],
d’out

Py —1)[D'y?+ (3A" + 2B’ + AD'— DA") y -+ 2 (AB'— BA’) + BD' — DB’ + 3B’]

Y = oDy 1+ (9A+6B—4D +AD +12) 7+ (9A + 2B —3AD+ 6A’+4AB)y +2B(2A + B—D+ 3)

.
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Deuxikme cas @ Il y a une solution remarquable triple et une solution
double. — Soient y —x et y = o,
Y i+ Ay + B)
Dy +A+B—D+1’
(6) 3 = Y(r—n[D'y*+(AD'—DA’+A'+B') y + AB’ — BA'+-BD'— DB’ + B'|
(4y*+3Ay+2B)(Dy +A+B—D+ 1) —D(y*+Ay*+B)

(6) C=

Trowstime cas : Iy a une solution remarquable quadruple. — Soit y = o

pour G = o0,

(7) C:A}”’—!—B‘y"'—i—D]2+(I—A—B_—D)y,
( )r ,_.7’(‘—}’)[A'.V’+(A'—i—B’),y—i—A’—i—B’—!—D’]'
7 = 4Ay* +3By* +2Dy+1—A—B—D
V. EquaTions pE DEGRE QuaTRE. — Dans tous les exemples formés jusqu’a

présent, le nombre de valeurs remarquables de la constante n’étant jamais supé-
rieur & (rois, on pouvait faire en sorte qu’aucune constante arbitraire ne figurat
dans I'équation différentielle définitive. En effet, toutes les formes de l'inté-
a; C+ B3,
C+ v
(o1, 81, v désignant des constantes numériques), on peut donner & trois des

grale, se déduisant de 'une d’entre elles par le changement de C en

valeurs remarquables de la constante les valeurs o, 1 et oo.
Nous allons rencontrer maintenant des équations o une ou deux constantes
arbitraires distinctes figureront algébriquement d’une fagon ESSENTIELLE.
Nous supposerons toujours qu’on a effectué sury une transformation homogra-
phique, telle que o, 1, o0 soient des intégrales correspondant aux valeurs o, 1,

o de la constante d’intégration.

Premier cas : Il y a une solution quadruple (soit y = oo). et une solution
double (soit y =o); d’ou
(8) C=Ay'+By + (1—A—B))?,

yo—y)Ay+A"+B)
4AY*+ 3By +2(1— A —B)

(8)" Y=

Devxtime cas 1 Il y a deux solutions triples. — Soient y = w et y = o,

Y +Ay)

(9) ' =B rA—B
(o) y(y—n[B y + AB’'— BA' + A’] .
9 Y =3By LA —B+1) +2ABly + 3A(1 — A —B)

Troistkme cas : Il y a une solution triple et deux solutions doubles. —
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Soient )’ =, y =0, y = 1, on obtient les formes suivantes :

(1.0) C= y(r+Ay+B) )
(BA+2B+4)y — (2A+B+3)

Y(r—10[(BA"+ 2By y + 3B’ + 2(AB’ — BA’)]
3(3A+ 2B +4)y*+(6A*+9A +4AB +2B)y + 2B(2A+B+3)

(r0) y'=

Quarrieme cas @ Il y a quatre solutions doubles. — Soient y = o, y =1,
y =0 les trois premiéres solutions doubles, correspondant aux valeurs C = o,
(G =1, C =0 dela constante, 'intégrale générale est de la forme (5).

Pour exprimer qu’il existe une solution remarquable double, pour la valeur
(=1 de la constante, il faut écrire que les deux équations

(1) { 4y* +3Ay*+2(B—Dy)y —y(3A+2B—2D +4)=o,
11 <
PAy*+2B—Dy)y*—3y(3A+2B—2D+4)y + 4(2A+B —D +3)y=o,

ou, ce qui revient au méme, que les deux équations qui s’en déduisent
[8A’+8(Dy— B)]y? +[2A(B —Dy)+129(3A+ 2B —2D +4)]y
—7A(BA +2B—2D +4)—16(2A +B—D +3)=o,

[162A+B—D+3)+Ay(3A+2B—2D+4)]y?
+[12A2A +B —D+3)+2y(3A +2B—2D +4)(B—Dy)]y
+8(B—Dy)(2A+B—D +3)—3y*(3A+2B—2D+4)*=o,

et que j'écris

(Uy* +Vy + W =o,
12
(r2) E Uy*+V,y+W,=o,

aient une racine commune, d’ou une relation algébrique
(13) (UW, —WU,)2— 4(UV, —VU;)(VW,— WV,)=H(A,B,D, y) =o,

qui permet d’exprimer D, par exemple, en fonction algébrique de A, B et de la

constante arbitraire y
D=/A(A,B,y).

I’intégrale remarquable a pour expression

_ UV,—VU, _P(ABD,y)
7(®) =g =UW, = Q(A,B,D,7)

ou P et Q sont deux polynomes en A, B, D et v; et A, B, D, y étant liés par la
relation algébrique H = o.
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Moyennant ces conditions, le numérateur et le dénominateur de I'équation €2
s’annulent pour y =y, (z) et I'équation différentielle se réduit a

Y(y—1[D'P(A,B,D,y)y—3B'Q(A, B,D, y)]
2DP(A,B,D,7)Q(A,B,D,7)y*+[9A+6B—4D+AD+12-+2DP(A,B,D,7)]P(A,B,D,;)y—2B(A+B—D=+3)

avec
H(A,B,D,y)=o.
Remarque 1. — Silon exprimait directement que le numérateur et le déno-
minateur de I'expression (5)' ont un facteur commun différent de yetdey —1,
c’est-a-dire que les deux équations

D'y*+ (3A"+ 2B'+AD' —DA')y + 2(AB’ — BA') +~ BD' — DB’ -+ 3B'=o,
2Dy3+(9A+6B—4D—|—AD+12)y2+...+2B(2A—f-B——D—L-3):0

ont une racine commune, on obtiendrait
K(A,B,D, A’, B, D') —o,

relation différentielle algébrique entre les coefficients A, B, D, dont la relation
H = o donne l'intégrale, en exprimant D, par exemple, en fonction algébrique
de A, de B et de la constante arbitraire Y-

Remarque 11. — On peut pousser plus loin les calculs et exprimer les coeffi-
cients de I'équation différentielle (13) en fonction raTronNeLLE de deux fonctions
arbitraires convenablement choisies, de leurs dérivées premiéres et de la con-
stante arbitraire vy. La relation

H(A,B,D,y)=o0

exprime, en effet, que les deux équations (12) ont une racine commune T. Pre-
nons celte racine commune T comme fonction arbitraire, nous pouvons alors
exprimer A et B en fonction rationnelle de D, T et Y en résolvant les équa-
lions (12) par rapport & A et B.

On obtient alors A et B sous la forme de deux fractions ayanl pour dénomina-

teur commun

3T —y)(T*—=3yT+2) — (T —y)(T*— gy T),
et pour numérateurs, la premiére

2Dy[(T—1)(T2——3yT+z)—- (T —=y)(T—1)(T — 2)]

—4(T3—y)(T*— 3y T + 2) —12(T —1)(T — ),
la seconde
Dy[—(T—1)(T°—97T) +3(T —1) (T —2)(T* — y)]

+2(T2—9) (T — 9y T) + 36y (T — 1) (T* — y),
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etl'équation différentielle correspondante devient, aprés la suppression du facteur
y — T qui figure au numérateur et au dénominateur de (5,

P Y(y —1[TD'y +2(BA’— AB') + DB'— BD'—3B’]
Y T ADTy*+ T(2DT +9A + 6B — 4D + AD +12)y —2B(2A + B —D +3)’

ot A et B doivent étre remplacés par les fonctions rarionnerLes de D, T et v
trouvées précédemment; et A'; B par leurs dérivées.

VI. Equarions o pEeré Tro1s. — Il y a cinq cas a distinguer :
Previer cas @ Il existe deux solutions triples et une solution double. —
Soient y = o0,y =, y =1,

C— - ¥y +4)
T BA+h)y—(2A+3)
,y.‘ A’}()’—l)

Y= BA+h)y +A(2A +3)’

Druxiime cas : Il existe une solution quadruple et deux solutions doubles. —
Sotent y =0, y =0,y =1,

C=yAy*—2(A +1)y +A+3],
__Ayy—n
Y= a(A+3)—4Ay’
Trorsieme cas : Il existe une solution quadruple et une solution triple. —
Soient y =0, ¥ =0,
C=y*(Ay +1—A),
g _Aya—y) .
Y= Ay +30—A)’
Quarniive cas : Il existe une solution triple et trois solutions doubles. —
Soient y = la solution triple, y = o, y =1 deux des solutions doubles.
Nous partons de la forme d’intégrale générale (10)

P+ Ay+B)

€= BA+2B+4)y—(2A+B+3)

Exprimons qu’il existe une nouvelle solution remarquable double pour la va-
leur C = de la constante. Cela reviendra, comme dans le § V, a exprimer que
deux équations du second degré

Uy? +Vy +W =o,
U2+ Vyy+W,=o

onl une racine commune, d’ott une relation

H,(\,B,7)=0
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permettant d’exprimer B en fonction algébrique de A el de la constante arbi-
traire v; l'intégrale remarquable correspondante sera la racine commune

 PUALB,Y)
() =5, B, 7)

aux deux équations précédentes, P, et Q, étant des polyndmes entiers en A,
B, v; Péquation différentielle (10)' s’abaissera au degré trois par la suppression
du facteur commun y — y, au numérateur et au dénominateur de 3/, et il restera

(15) i Yy =1 (BA'+2B)P,(A, B, y)
VT SBA T B+ 4) P (A, B, 1)y —2B(2A+ B +3)Q;(A, B, 7)

avece -

H, (A, B, y) =o.

Remarque I. — Sil'on écrit que (10)' se réduit au degré trois, en exprimant
2(BA’— AB’) — 3B’ . . . .
que ¥, = A o est une racine du dénominateur, on oblient une

relation différentielle algébrigue
3(3A + 2B +4) [2(BA'— AB') — 3B'J2++ 2B(2A + B -+ 3) (3A’+ 2B/ )?
—(6A+9A -+ 4AB+ 2B) [2(AB'— BA') +3B'](3A'+2B') =o,
dont l'intégrale générale est précisément mise sous la forme algébrigue

H1:O.

Remarque 1I. — On peut exprimer les coefficients de I'équation différen-
tielle (14) en fonction rarronneLLE d’une fonction arbitraire T(x), de sa dérivée
premiére et de la constante arbitraire y.

En effet, quand la condition
H,(A, B, ) =o

est satisfaite, les deux équations

by*+3Ay*+ 2By —y(3A+ 2B +4)=o,
Ay*+2By?— 3(3A + 2B+ 4)yy +4y(2A+B+3)=o0
ont une racine commune T(z); on a alors les deux relations
ABT*—3yT+27) +B(2T —2yT+y) =— 4T3+ 4y T — 3y,
A(TP— 97T +8y) +2B(T*—3yT +2y) = 2y(T —1),

qui, résolues en A et B, donnent A ¢t B en fonction rationnelle de T (x) et de Y.
Fac. de T., 2 S., 1. 35
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/

[2équation différentielle devient alors

i Yy —1) (34" 2B)T
T T3BA+ 2B+ )Ty —2B(2A +-B—3)’

ot 'on doit remplacer A et B par les valeurs précédentes, et A’ et B’ par leurs
dérivées. '

Cinquikme cas @ Il existe cing solutions remarquables doubles. — Nous
avons vu précédemment que, dans le cas de qguatre solutions doubles, 1’équation
correspondante (14) était du quatriéme degré.

Pour qu’elle s’abaisse au troisiéme degré, il faut et il suffit qu’il existe une
nouvelle solution remarquable pour une valeur v, de la constante, autrement dit
que les deux équations

Uy +Vy+ W =o,
Ui+ Viy+ W, —o

qui ne difféerent des équations (11) que par le changement de v en v,, aient égale-

ment une racine commune, d’ott la relation

H(A,B,D,y)=0
qui, jointe & la relation
H(A,B,D,y)=o,
détermine Bet D en fonction algébriquede A et des deux constantes arbitraires~y

ctv,. De plus, 'intégrale remarquable correspondant a v, a pour expression
Yy ) a |

UV, — VU, _ P(AB,D, )
)= W WIU, T Q(A, B, D, 1)

et I'équation différentielle ainsi obtenue s’écrit :

6 v P(A,B,D,))P(AB,D,7)Dy(y—1)
(0 Y= P&, B,D,7)P(A, B, 1, 7) Dy +-aB(2A + B—D 4 3)Q(A, B, 1),,)0(& B, D, )

ot les coefficients sont des fonctions aLcisriques de A et des deux constantes
¢ty ou encore des fonctions exriines des quantités A, B, D, vy, y, lices par les

deux relations H=o0, H'=o.

Remarque 1. — Les deux relations algébriques
H(A,B,D,7)=o0, H(A,B,D,7)=0

donnent précisément Uintégrale des deux relations différentielles algébrigues ob-
tenues en écrivant que, dans I'équation (3)', le polynome

2Dy3+.. .4+ 2B(2A+B—D+3)
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~J
-

est divisible par
D'y .4 2(AB'— BA') + BD'— DB+ 3RB".

Remarque II. — Les coefficients de 'équation différentielle (16), que I'on
vient de former, peuvent encore s’exprimer rationnellement a 'aide de deux
fonctions @ (), T(x) liées par une relation algébrique, de leurs dérivées pre-
miéres et des deux constantes arbitraires v etvy,.

En effet, en désignant par T () et ©(z) les deux intégrales remarquables cor-
respondant aux valeurs v et vy, de la constante, A, B et D vérifient les relations

‘ 3(T*— A + 2(T — ) B — 2D7(T — 1) + 4(T°— 7) =o,
o (T*— 97 T)A 4+ 2(T*— 37T+ 2)B — 2Dy (T — 1) (T — 2) — 127(T —1) = o,
K ' 3(0°— 71)A +2(0 —7)B —2D7,(0 — 1) + 4(0°— ) = o,

L (02— 97, 0)A +2(02—37,0 +2)B—2Dy, (0 —1)(0 —2) —12y,(0 —2)=0.

¢s relations seront compatibles, si le déterminan
C lat t patibles, si le dét t

3(T*— ) T—vy 7(T —1) Ts—
T2—9yT T*—3yT+2 y(T—1)(T—2) $(T—1)
3(0*—v,) 60—y 71(0 —1) @3'—?1

0 —9y,® 0*—3y0+4+2 ¥ (O0—1)(0—2) ¥,(0—1)
est nul; d’oti une relation
J(T,8) =o.
Alors les trois premiéres équations (17) donneront A, B, D en fonction ration-

nelle des quantités T, © liées par la relation f= o, et 'on aura I'équation

3= TOD y(y—1)
T aDTOy +2B(2A+B—D+3)’

ot A, B, D sont remplacés, au moyen des relations (17), par leurs valeurs en
Jonction rationneLLe de T, O, v, v, et D' par la dérivée de D.

CHAPITRE TII.

ETUDE DES EQUATIONS DU SECOND DEGRE EN .

1. — ETABLISSEMENT D’UNE FORMULE FONDAMENTALE.

1. Soit
(1) , Ly”?—aMy'+~N=o

une équation différentielle algébrique; le premier membre est un polynome irré-
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ductible du second degré en j' et de degré donné en y, dont les coefficients
sont des fonctions analytiques quelconques de z. Si ¢y, ¢, .q; désignent les
degrés en y des polynomes L, M, N, on peut loujours, moyennant une transfor-
mation homographique effectuée sur y et dont les coefficients sont des fonctions
de z, admettre que L, M, N sont de degrés ¢ — 4, g — 2 et ¢ en ¥, en désignant
par ¢ le plus grand des trois nombres ¢, + 4, g2+ 2 et gs.

C’est ce nombre ¢ que nous appellerons désormais le pecri de Péquation dif-
férentielle.

Nous nous proposons de former expLiciteMENT loules les équations (1) de
DEGRE ¢ DONNE, dont Uintégrale générale ne prend qu’un nombre vonne n de
valeurs autour des points critiques mobiles.

Il s’agit donc, dans les équations que l'on formera, d’exprimer algébrique-
ment les coefficients des polynomes L, M, N a I'aide d’un certain nombre de con-
stantes et de fonctions arbitraires de x (et de leurs dérivées).

2. Silintégrale y (z) acquiert exactement n valeurs autour des points cri-
tiques mobiles, elle peut s’écrire, dans le cas ol le genre w de la relation entre
les constantes intégrales est nul (*)

(2) aCz—zﬁC-—i—y:o,

ol , B, v sont des polynomes en y de degré n.
Différentions I'équation (2), il vient

(3) Ci<g;y’+%>—qt< 98 5 +di)+7y + 9L =1/(C, 5, 2).

L’élimination de C entre (2) et (3) conduit & une équation diflérentielle de
degré 4n,

(4) Liy?—2M,y+N,=o,

que 'on peut écrire sous les deux formes suivantes :

o [(gh—rg)r et -] |
—i|(=gr =)y et [ CHET R 150] =
(6) [(2@%—7%~ g§>y+°53 /‘j—;-— :,)1,]

s ol (93 . 9B\ _ (9=, 9%\ (9dy ﬂﬂ_
s [(Sr+ 52) - (G 32) (G +38) | =~

(1) Sile genre » de la relanon entre les constantes intégrales est égal a un, a, 3, y sont
de degré 2n. Le cas de ® > 1 ne peut pas se présenter ici. (Voir I'Introduction.)
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Ces deux derniéres équations vont nous servir, 'une et I'autre, & établir rapi-
dement une formule, qui n’est d’ailleurs qu'un cas particulier d’'une formule beau-
coup plus générale, de M. Painlevé ('), relative aux équations différentielles

P(yhy,z)=o0

de degrés quelconques en ), y.

3. Si I'équation différentielle (4) se réduit au degré g, c’est que les poly-
nomes L, My, N, contiennent un facteur commun H(y, ) de degré 4n — g en y.
Les racines de H jouent, d’aillears, un role important dans la théorie qui va suivre.

Posons

Li(y,z)=L(y,z)H(y, z), M, =MH, N, =NH.

(7) M2 — LN = P2QR,
Iéquation R =o0 de degré A désignant les intégrales singuliéres et Q =o

de degré j, le liew des points de rebroussement des courbes intégrales. Soit, de
plus, i le degré de P; les nombres &, j, & vérifient la relation

(8) 2 —h=20+j+ k.
Si I'on forme le discriminant 32 — ay, on a
(9) ﬁgﬁa'/:H?Q”{,

ct le degré m de Il est 1ié a n, j, & par la relation
(10) an=2am—+ 3; + k.

De I’égalité (8), on déduit

255 B a_;* 37—HQ € OR@+3HR"Q 11035‘)
55 y9E —adl = HQ’(zQRd 3HR3Q +mQgh),
et la forme (5) de I'équation différentielle devient
(11) H?Q330[<zon‘1)l—l+3nn"Q o % >
+2QRIT 1 3mR2Y nQdRJ

[(ds - oi) - (%J'-F (,x><3;',y - %>J§ =o,

(1) Lecons de Stockholm, p. 169, égalité (9).
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ce qui montre que [12Q?* entre en facteur dans le premier membre de I'équa-
tion (4) et, par suite, que (), x) contient lesracines multiples du discrimi-
nant %*— oy auw méme degré de multiplicité. ’

D’autre part, sur la forme (5), on vérifie que toute racine y = 2{x) d’ordre p
de (2) pour €= G, (G, = o par exemple) est racine d’ordre p — 1 dans P'équa-
tion (5) quel que soit »”. Donc, toute solution remarquable d’ordre p figure
dans H(y", z) aua degré p — 1. :

Inversement toute racine ) = g () de H= o vérifiant simultanément les Lrois
relations

ar . Jr ar . _
ﬁ[o (), x, C(g,x)] dr + 7);([‘)/+ H—C([(‘(O’ x)=o,
Jar Ja

= d},_o,

vérifie

or | .
E[g(f)» x,C(g,x)]dC(g, x)=o,
¢’est-a-dire, soit la relation

Jar .
2C lg(x), x, C(g, x)]=o0,

soit la suivante
dC(g,2)=o.

Donc, toute racine y = g(«) de H est soit une racine du discriminant 3* — oy,
soit une solution (non singulié¢re) de I'équation différentielle.
Le degré 4n — ¢ de H(y, ) est égal, par conséquent, i

2m -+ 3/'—%—2[((1,.— D4+ (b, —1)+...+(e,—1)],

ct comine
an—am—+ 3+ k,

on obtient la FORMULE FONDAMENTALL
Wl
(12) q==2n—+hk— Z[(a,.—x)—l—(b,,—l)—J;—. o+ (e,—1)],

@pybyy ooy e, étant les degrés de multiplicité des racines 3 = g,(a) de1' = o pour
la valeur C, de la constante C, ‘et la somme Z s’étendant a toutes les solutions
remarquables, qui sont nécessairement en nombre fini.

Nous avons posé précédemment L, = LH, L, est le discriminant de I' par rap-

. < g , (e e . or
port & y, c’est-d-dire le résultat de I'élimination de C entre I'= o, oy =0 On
peut donc écrire ’

L, =1I2Q*D,,
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et si l'on désigne par A le degré du diviseur D, de D, telles que toutes les racines
de D, distinctes ou non soient solutions de 1'équation différentielle, la somme

Nllar—1)+(h—1)+...]
est égale a A,
g=2n+hLk—14,

et ¢ Z 4, puisque . '
1shn—4—a2m— 3.

1. — EXAMEN D'UN CAS SINGULIER.
4. Donnons-nous mainlenant une équation

22— 280 + 7 =o.
SiT'on a posé

B?—ay =1*QR,

C est une fonction rationnelle de y, 3’5 c’est-a-dire une fonction a deux valeurs

de y, renfermant le radical \/QR. -

Tout ce que nous avons dit précédemment subsiste.

1l y a toutefois un cas exceptionnel, que 'on peut rencontrer, méme en sup-
posant la relation () irréductible. C'est celui ol le premier membre de I'équa-
tion en »', déduite de (2), est carré parfait.

Quand 1l en est ainsi, soient C, = 11 (¥, x), Co=.(y,x) les deux racines
de (2) correspondant & une méme valeur de y. /1 est une fonction de /., et, par

suite,
L1+ 2= const., L1772 == consl.

sont deux formes de I'intégrale de 'équation (1); autrement dit

2

— = const., £ = const.
a

QIN

définissent toutes deux I'intégrale générale de (1). On voit alors immédiatement

qu’il existe entre =, 3, v une relation de la forme
aoa+ b3 + cy=o,

@, b, ¢ élant des constantes numériques.
Dans ce dernier cas, les racines » = g () du discriminant

B—ay=o

sont des solutions ordinaires de (1), c’est-a-dire qu’elles donnent a la fonction
C(y, x), définie par (2), des valeurs constantes.
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En effet, s'il en était autrement, la courbe y» = g () serait soit une enveloppe,
soit un lieu de points de rebroussement, soit un lieu de points doubles des
intégrales particuliéres. Or pour une équation différentielle du premier degré
en y', il ne peut exister de tels lieux.

III. — PoOSITION DE LA QUESTION.

5. Arrivons maintenant au probléme que nous nous sommes proposé au com-
mencement de ce Chapitre.

On se donne le degré q de 'équation différentielle (1) et 'on suppose que
celte équation est véritablement du second degré en y'. Choisissons un systéme
quelconque d’entiers positifs £, j, & satisfaisant a la relation

ag—bh=2i+j+k
avec les conditions

J+kZo, 3j+kSan, kZqg—an.

Je dis que, dans ces condilions, il v a une infinité d’équations (i) correspon-
) s 1) q |
dantes.
En eflet, prenons arbitrairement quatre polynomes 3, II R de degrés n, m,
» P Y Py h Y g y 12,
J, k eny, avec la condition

an=am+3;+ k.
* La différence
B—1II Q*R

est un polynome de degré 2n en y, que je puis toujours décomposer en un
produit de deux polynomes de degré n, que jappelle o et y. Les coefficients
de ces derniers polynomes sont ainsi déterminés en fonction algébrique des
m 4+ j 4 k + n 4+ 2 coefficients arbitraires h(x), w(x), ... de 3, 1, Q, R.

Pour que 'équation (1) dont (2) définit I'intégrale générale soit de degré q, il
faut et il suffit qu’il existe p solutions remarquables y(z), y2(x), - .., yp(x) de
multiplicités @y, @y, ..., ay, telles que 'on ait

r=y
q=2n-+hk— Z(a,.~ 1).
r=1

Exprimons que y = g,(z) est une intégrale remarquable d’ordre @, autrement
dit que 3 = g,(x) est une racine de D, = o d’ordre a,— 1 et que, de plus, ¢, dé-
signant une constante numérique, on a

C,= @(y,.,x)—i—\/@‘(y,.,x)—ot(_y,.;x)y(y,., z) .
K a(Yrs x) ’
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nous obtenons a, égalités, qui, aprés I'élimination de y7, donnent lieu & a, —«
conditions algébriques dépendant de la constante C,.

Si maintenant je désigne par @, —1, ay—1, ..., a,—1 un systéme d’entiers
positifs (moindres que n), dont la somme a; —1 4y —1+4...4 a,—1 est
égale d 2n ++ k — ¢, et si Jesprime qu'il existe u solutions remarquables

=g (x), =g (x), .)"u.:gy,(f)
de muluiplicités ay, ¢s, ..., ay, J'obliens
ay—14+a—1+...+a,—1=2n+k—gq

conditions algébriques dépendant de constantes C,, ecn nombre égal au nombre 1
des solutions remarquables.

11 reste donc
[k

P

m—+j+k+n+2—0Cn+hk—qg)=qg+2—
) =i+
fonctions arbitraires.

Pour ¢, j, k choisis, comme nous 'avons fait plus haut, le nombre des con-
stantes C, est maximum si tous les «, sont égaux a 2; on a alorsan + A — g con-
stantes C,, c’est-a-dire 2n + ¢ — 4 — 27— j. Si j = 0, le nombre des constantes
est égal & 2n + g — 4 — 2¢; on peut dire que c’est la solution la plus générale.

Nous voyons donc que, @ chaque choix des entiers positifs i, j, k assujettis
a la condition 21 + j + k= 2¢ — 4 (avec les restrictions indiquées) correspond
un nombre ¥ix1 de systémes de conditions aLcisriQurs entre les coefficients de
Uéquation (2).

Chacun de ces systémes définit une équation (2) dépendant de i + 4 fonc-
tions arbitraires et d’un certain nombre de constantes arbitraires, égal au
nombre des solutions remarquables. Ce nombre atteint son maximum 21 +Ak—gq
quand loutes les solutions remarquables sont d’ordre deu. '

IV. — RESOLUTION DES OBJECTIONS QUE L’ON PEUT FAIRE A LA THEORIE PRECEDENTE.

6. Plusieurs objections peuvent étre faites a la discussion précédente :

1° Les conditions imposées sont-elles coMPATIBLES €¢ DETERMINEES?

2° Quand elles sont remplies, n’entrainent-elles pas un ssarssevMeNt plus
considérable du vrent ¢ de Uéquation (1)?

3° Quand elles sont remplies, I’tquarion (2) est-elle irrépucrisLe?
4° La relation (1) correspondante ne se réduit-elle pas au vrEMIER DEGRE?
5° Enfin, le nombre de srancues de Uintégrale, permutables autour des

Fac.de T., 2 S., L. 36
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points critiques mobiles, est-il BiEN feAL & n et ne peul-il pas élre Invk-

RIEGR & n?

Nous allons montrer que toutes ces objections sont en défaut dans le cas, que
I'on peut considérer comme le plus général, ou toutes les solutions remarquables
sont d’ordre deux.

Nous traitons en méme temps les trois premiéres objections portant sur I'in-
compatibilité, abaissement de q et U'irréductibilité de I'équation (2),

aC?—2B8C+y=o.

7. Ossecrions I, IL gr III. — Les conditions qui portent surles m4-j+k+-n-+2
fonctions arbitraires M(z), w(z), ... peuvent s’écrire, si tous les a, sont égaux

a deuz,
o — B, 2]+ VR Ly (@), ] —alyi (@), 2]y [y (@), 2]
‘ alyi(z), 2]
C, :ﬁ(J"l’x)_"\/@?()’?’w)—a(.)’z’x)]/(,yz’x),
(S) { i a(}'%x)
Consiie g = B(Yenir—g» x)_'_\/ﬁz(,}’gn_.-k—q’ x) — o Yontk-gs ) Y (Vonvi—gs ) .

[24

les fonctions y,=g(x), Ya=g2(Z), +++s Vangh_¢= ZSangi_q(x) désignant
on 4 k — ¢ racines de Dy =o.

Les seconds membres de (S) sont donc des fonctions algébriques connues des
coefficients h(z), n(z), ... de 3, II, Q, R.

Tout d’abord les constantes G, étant entiérement arbitraires, pour z = x,
les fonclions A(zo), ®(Zy), «.. coefficients de §, I, Q, R sont arbitraires, et,
par suite, il en est de méme des polynomes

ﬁ()” xo)a .H()') xﬂ)a Q()’,xo), R(yy xo)'
On peut donc toujours supposer que pour £ = z, la relation
a(—2B8C-+y=o,

est irréductible et que, de plus (pour z = 2,), les polynomes II, Q, R ont leurs
racines en y simples et distinctes; par suite, pour =u1,, D, a toutes ses racines
simples. .

Ceci posé, siles équations (S) ne sont pas compatibles et déterminées pour
des valeurs des C, arbitrairement choisies, c’est qu'un des seconds membres
de (S),.par exemple le dernier, est identiquement fonction des autres; autrement
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dit, que les 2n + k& — 1 premiéres racines de D, ne peuvent donner a la fonction

B2+ VB (@) —a(y, 2)7 (0, 2)

C(y,x)= (7, @)

des valeurs constantes, sans qu'il en soit de méme pour la racine suivante de D,
et, par suite, pour toutes les autres par raison de symétrie.

8. Nous allons voir que celte conclusion est impossible ; nous allons démontrer
en méme temps qu’il est impossible que les relations (S), distinctes ou non,
entratnent comme conséquence que d’autres racines de D, = o, distinctes de
celles qui figurent dans (S), rendent nécessairement constantes les valeurs
correspondantes de Gy, x).

Admettons, en effet, que p équations (S) (¢S2n + k — ¢) entrainent comme
conséquence qu’une racine suivante de D, et, par suile, toutes les autres soient
solutions ordinaires de I'équation (1). Dans ces conditions, le degré irréduc-
tible ¢, de (1) est nécessairement éal a 4. Ceci n’est possible que si le ra-
dical QR que renferme »' porte sur un polynome du quatriéme degré, c'est-
J+k

2

a-dire si j + A< 4; donc est égal soit 4 2, soit a 1.

Observons tout d’abord que, si l'entier ¢ donné est égal a 4, ou bien
o = 2n + k — 4, et alors, toutes les racines de D, sont épuisées dans ce systéme
des p relations (S), ou bien p<<on-+k—4, et alors, si j k=4, le systéme (S)
laisse au moins cing des fonctions X, u, ... arbitraires; et si j +hk=o», il laisse
au moins siz fonctions arbitraires.

Enfin, si ¢ > 4, les p équations (S) laissent au moins cing fonctions arbitraires
st J + k = 4 et six fonclions arbitraires si J+hk=2.

Deux hypothéses sont alors possibles :

Previire nyveornise. — L'équation en y' correspondant & (2) est bien du
second degré en ).

Dans cette hypothese, si j + A= 4, exprimons qu’'une des racines
y=gs(z) de QR=o

rend conslante la fonction C(y, ), autrement dit, est une solution ordinaire
de (1), »» — g¢(x) doit figurer, comme ’on sait, en avant du radical dans I'équa-
tion (1) résolue en )’

Y'=M+VQR=M+[y — g,(2) VU (y, ).

Le radical étant du quatri¢me degré, ceci est impossible, & moins que I'équa-
tion (1) ne se réduise au premier degré.

Mais comme celte équation du premier degré est nécessairement une équation
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de Riccati et que, d’autre part, il reste au moins quatre fonctions arbitraires, il
Y a contradiction.

Si, maintenant, j/ + A = 2, il reste au moins siz fonctions arbitraires; si nous
disposons de deux de ces fonctions de facon que deux racines de QR = o soient
solutions ordinaires de (1), c’est-a-dire donnent a C(y, ) une valear constante,
il reste quatre fonctions arbitraires. D’autre part, 'équation (1) en »’ ne peut
rester du second degré, car dans ’équation résolue en »', on aurait le facteur dua
second degré

(¥ — &)y — hy),

en avant du radical, ce qui est impossible puisque ¢ = 4. Done, ’équation se
réduirait aw premier degré, el serait, par suile, une équation de Riccati, ce
qui est absurde, puisqu’elle dépendrait, dans le cas actuel, de quatre fonctions
arbitraires.

Secoxpe HyrornisE. —— Le premier membre de U'équation du second degré
eny' est carré parfait.

C’est, par suite, une équation de Riccali, puisque ¢, = 4; or nous aurions au

moins cinq fonctions arbitraires, ce qui est absurde.

9. Passons, maintenant, aux deux derniéres objections :

Owiecrion 1V, — Léquation différenticlle (1) qui correspond a Uéqua-
tion (2) la plus générale, est-elle bien du second degré? autrement dit, les
conditions (S) portant sur les fonctions A(x), w(2), ... n’entrainent-elles pas
comme conséquence que 'équation (1) en »' est carré parfait?

5’1l en est ainsi, toutes les solations y = A(x) de NQR =0 sonl des inté-
grales ordinaires, c’est-a-dire donnent & G(y, x) une valeur constante.
Si nous posons
B VB —=
_}_*—/ =/ @)

la relation
(E) C=/f[h(x), z]=0(x),

est une conséquence des relations (S), que nous récrivons sous la forme

S C.  =fna) =Ll
( Czu-qH. :,/(yg,,_q+k, x) = 2”_,]+k(x),

Ceci exige que le second membre de (E) ¢ (z) soit une fonction des seconds

membres de (S) £, (), fa(Z), «o o) fonogpr(2).
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Inversement, le dernier second membre de (S), soit fo,_4.x(x), est une fonction
des seconds membres précédents et du second membre de (E). On peut donc
remplacer le systéme (S) par un systéme (S') comprenant I'équation (E), ou €' est
une constante arbitraire, et les 2n — ¢ + A — 1 premiéres équations (S)

o = fi(x),
G =/:(x),

sy e
Czn—q+k—1: 2/1—q+k—l(x)’
- =o(x);

la derniére équation (S) est alors une conséquence du systeme (S').

Le systéme (5') entraine donc comme conséquence, a cause du rdle symétrique
des racines restantes y = g(x) de D, = o, que toutes les racines y = g(z) de
D, = o non employées dans (S’) rendent constant C(y, z).

Donc 'équation différentielle (1) réduite & son degré minimum serait de degré
quatre, et comme son premier membre est un carré parfait, ce serait une équation
de Riccati, ce qui est en contradiction avec ce fait que le systéme (S') laisse arbi-
traires au moins quatre des fonctions A(z), u(x), ....

10. Omsecrion V. — Je dis tout d’abord que dans le cas le plus général, le
GENRE @ de la relation entre les constantes intégrales est égal @ zéno.

En effet, tout d’abord si j+ k>4, pour z = z, le radical y/QR est le radical
le plus général de son degré, et, par suite, la courbe

5P = Q(J’) ) R(.}/’ )

n’est pas la transformée rationnelle d’une courbe de genre un, ce qui a lieu né-
cessairement siw —r1.

Si, maintenant, j -+ k = 4, le genre de la courbe

5:\/61:_{’

est égal & un. Or, nous savons que si p = w = 1, ’équation (1) a ses points cri-
tiques fizes (). Alors j = o, k=4 et le degré irréductible de I'équation (1) est
égal a quatre.

Inversement si 'on a a la fois

(1) P. PAINLEVE, Annales de UEcole Normale, p. 211; 1891.
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I'équation a ses points critiques fixes, & est égal a un, et, par conséquent, le
nombre v des branches de y () est égal & un, quel que soit n.

Enfin, si j -+ A =2, on a p == o et, par suite, & = o.

On voit donc que, si on laisse de coté le cas de g=4, j=o0, k=4, le genre »

correspondant a U’équation la plus générale est égal a zéro.

11. Je dis, maintenant, que la fonction y(x) définie par (2) prend bien, en
général, n valeurs.

En effet, si elle en prenait seulement un nombre v << n, on pourrait mettre
'intégrale générale sous la forme

(2’) a1C/2_251C’+}’1:O,

ott 2, By, 74 sont des polynomes en y de degré v, ce qui est toujours possible
puisque w=o.

On sait que C est nécessairement une fonction rationnelle de €/, G =W (C)).
Soit d’abord v > 1, et C, une racine multiple de I’égalité

0=C—W(C),

et C, la valeur correspondante de C, qui existent toujours, puisque W n’est pas
du premier degré. Comme les ordres de multiplicité des solutions remarquables
sont égaux i deux, la multiplicité de G, est seulement égale a deux et les v solu-
tions ¥ = g,(x) correspondant a la valeur C, dans (2) sont distinctes.

Dans ces conditions, les valeurs de C, correspondant aux v solutions remar-
quables y = g,(z) de (2) seraient égales, ce qui est absurde, puisqu’on les a
prises arbitrairement.

Le raisonnement n’est en défaut que siv = 1; mais alors, siv=1, p = © et,
comme © = o, p est nul; j -+ &k = 2, il faut que j soit nul, £ = 2 et ¢ = 4.

Inversement si j = o, k = 2, ¢ = 4, v est égal a un, quel que soit n.

12. Nous pouvons donc énoncer les résultals suivants :

Laissons de coté les deux cas

I
=

k
k

|
©
<

cas ol I’équation différentielle a toujours ses points critiques fizes.

Dans tous les autres cas, les conditions imposées aux coefficients de (2)
pour des valeurs de n, g ponntes et les choiz de i, j, k (avec les restrictions
indiguées) sont coMPATIBLES el DETERMINEEs el définissent une équation (2)
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dépendant de i+ 4 FONCTIONS ARBITRAIRES etdean+k—qg=on+q—4--20—]
CONSTANTES ARBITRAIRES.

L’équation (2) la plus générale, satisfaisant & ces conditions, est mrEpuc-
r1sLE en y et C et intégre une équation différentielle (1) vraiment du seconn
DEGRE EN )/ et de prcrt irréductible en y, teaL a q.

De plus, la fonction y{x) définie par (2) prend EXACTEMENT 7@ VALEURS
autour des points critiqgues mobiles et, par suite, le cexre © de la relation

entre les constantes intégrales est égal a zéro.

13. Les propositions que nous venons de démonlrer ne sont vraies, bien
entendu, que si’on a choisi d’une fagon tout a fait arbitraire les fonctions et les
constantes arbitraires dont dépend I’équation (2). Pour des choix particuliers de
fonctions ou de constantes, le nombre des branches de I'intégrale peut éire un
diviseur de n et le genre w peut étre égal a un.

Les deux types exceplionnels correspondant aux deux cas ¢ =14, j=o,
k=4, 2, qui expriment au fond que {’équation (1) a ses points critiques fixes,
se raménent par la transformation homographique effectuée sur y et le change-
ment de z en ¢(X) aux deux équations

I

Yr=0—=)—p2y),

¥ =Ly — @)y,

ou lu.'-’ est une conslante ; et alors, quel que soit n,on ne trouve que ces deux types
d’équations et leurs transformées homographiques.

Y. — NOMBRE DE CONSTANTES ET DE FONCTIONS ARBITRAIRES
DONT DEPEND L’EQUATION DIFFERENTIELLE.

14. L’équation (2), nous venons de le voir, dépend de ¢+ 4 fonctions arbi-
traires et de 2n -+ k — q constantes arbitraires distinctes; mais en sera-l-il de
méme pour I'équation (1)? Quel sera le nombre de fonctions et de constantes
arbitraires dont dépendra celle équation?

Je dis que 'équation différentielle (1) dépendra de ¢ + 4 fonctions arbitraires
et de [ constantes arbitraires, | désignant le nombre 2n+k — g —3 st ce der-
nier nombre est positif et étant égal a zéro dans tous les autres cas. 1l suffit, pour
le démontrer, de nous appuyer sur la proposition suivante :

Quand Uintégrale d’une équation (1) prend exacTeMeNT n valeurs autour
des points critiques mobiles, et que le genre w de la relation entre les con-
stantes intégrales est nuL, on peut mettre U'intégrale sous la forme (2) et
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toutes les formes (2) s’obtiennent en effectuant sur G une transformation
homographique a coefficients constants.

On pourra donc se servir de cette transformation de facon & donner  trois des
valeurs remarquables C, de la constante des valeurs particuliéres, soit o, 1, %,
et il restera seulement 27 -+ A — ¢ — 3 constantes arbitraires. ’

Si le nombre des valeurs remarquables de la constante est seulement égal &
deuz, on donnera A ces constantes les valeurs o et o par exemple; si ce nombre
est égal & un, on donnera a la constante correspondante la valear oo; enfin, 'l
n’y a pas de constante remarquable, on ne fera rien.

D’autre part, les ¢ + 4 fonctions arbitraires et les / constantes arbitraires figu-
reront bien dans (1) d’une facon indépendante.

En effet, considérons une équation (2) ot P'on ferait varier d’une certaine
maniére les ¢+ 4 fonclions arbilraires et les [ conslantes arbitraires; s'il lm
correspondait toujours la méme équation (1), on devrait, d’aprés la remarque
précédente, passer d’une de ces formes (2) & une autre par une transformation
homographique continue, puisque la forme (2) varie d’'une fagon continue; ce

qui est impossible, cette transformation devant conserver les valeurs o, 1, oc.

15. Remarque 1. — Dans Péquation (1) les racines y — g(x) de L=o et les
racines de QR = o sont données algébriguement a I'aide des fonctions indéter-
minées A(x), u(x), sans que les dérivées figurent; par conséquent, on pourra,
par exemple, prendre comme ¢~ 4 fonclions arbitraires, ¢ -+ 4 des coefficients
de L, Q, R, et les autres coefficients de (1) s’exprimeront algébriguement en
fonction de ceux-la et de leurs dérivées.

Remarque 11. — On pourra se servir de la transformation homographique
pour abaisser, par exemple, au degré ¢ — 3 le coefficient N de (1).

CHAPITRE 1V.

FORMATION DES EQUATIONS DU SECOND DEGRE EN »', DONT L’INTEGRALL
A DEUX BRANCHES.

Voici tout d’abord le Tableau des diverses circonstances qui peuvent se pré-
senter dans cette élude ( désigne ici le nombre de solutions remarquables, & le
nombre d’intégrales singuliéres et j le degré en y de la courbe, lieu des points
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de rebroussement, q le degré de 'équation différentielle.

2=o0 q—==6,
k=2 ( ’ 7
?\)‘_1, g=25;
. 2 —o, =8
Jj=o © 7 ’
ke (7\_1, 7g=7,
()\:2, qg =256,
\ L =3, qg=75;
’=o, =5
J—=1 k=1 z 7 ’
=1, q=A4.
I. — IL Y A QUATRE INTEGRALES SINGULIERES.

1. j =0, k=4. L’équation la plus générale correspondante est de degré Au:t.
C’est en méme temps I'équation la plus générale dont I'intégrale acquiert deux
valeurs autour des points critiques mobiles.

Pour la former, il suffit de partir de la relation

(@202 oy + o) G — 2 (B20?+ L1y + Bo) C+ 729+ 7Y +po==o.

SiI'on suppose que ¥ = 0, y =1, ¥ = oo sont intégrales ordinaires correspon-
dant 8 C=o0, C=1, C= 0, on aura entre les a;, {3;, v; les relations

Oy == Y¢= 0, 0‘1“"1—2(624—131‘*“50)"‘}’2"““/1:0-
L’équation différentielle demandée s’écrira

Hanyst272y + 70y =yl vy — 710) Y 4+ (onyy — o+ 94 )y -+ 7, 112
—4[(a1 Boy? + 280y + Br— oy Bo) ' 4 (s By — Byt ) p?
+ (o By — Buor 4+ By) 2+ (o By — Boory + By + B4 ]
X A[(Brya— 71B2) ¥+ 2B 72y -+ Bori 1y
+ (Bavy— v2BR) 't + (Bayy — 72 Py + Buvy — 11 B2)°
ou encore + (Bryt — 71By + Bova — 72B80) 02+ (Boyy — )’15'0)."( =o

(1) Ly?*—oaMy'+y(y —1)N=o,

7

ot L, M, N sont des polyndmes de degrés 4, 6 et 5, dont je me dispense d’écrire
les développements.
Fac.de T.,2¢8S., 1. 37
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2. Silon avait voulu mettre en évidence les quatre intégrales singuliéres, on
aurait pu se servir de la transformation homographique et du changement
2 =9(X) de facon que ces intégrales fussenty =o, y =1, y =, y = x, en
posant

(B2 By + Bo)— (o) + ary + %) (20 + 711+ 7o)

=y(r—0( —2)(2BiBr— tya— y1%)

avec les conditions

B3— OyYa=— 0, Bs— %y Yo=—0,
2{3152_0‘172_710‘2“‘ B+ 2B,B.— az“/o“)/z_dl)’l‘*; 2B0@1—0‘1"/o_“/x:0’
(2B1Ba— o1 ya— y1o) 22+, . .= 0;

mais il vaut mieux, pour ce qui va suivre, s’en tenir a I'équation (3).

3. Equarions vE pEcrE sErT. — Sinous exprimons maintenant qu’il y a une
intégrale remarquable y = oo, par exemple, pour C =00, nous obtenons une
équation différentielle de degré sept, qu’on déduit de (1) en faisant zy = o0; d’olt

(2) Ly?—aM,y'+y(y —1)N,=o,

Ly, My, N, é1ant de degrés 3, 5 et 4 en y.

4. Equarions pe pecré six. — Pour ces équations, il y a deuz intégrales re-
marquables, soient y =, y = o0 pour C =0 et C= o, par exemple; il suffit
de poser, dans (2), y,=o0; d’ou

0=—v3yy" "+ [(2B2y + P))y + Loy + By + Bi]
X [(yaBry 4+ 2Boy2) )
= (Bayy— 72B5) = By — 2812+ (B Ya— 72080) ]

ou bien encore

[(2B2y + B1) (7281 +2B072) — 73] 0"
-+ 2(2327 +B1) [(Baya— 728 0+ Biyy— 7182+ (507;“72@;))']
+ (72Bry +2B072) (BLy2+ By + Bl
+y(y—1) :B;(B:/;"‘ 72B5)?
A 72 (BiBy+ BaP) — 2981 B3 1y — By (Borva— 7280 )] =o.

5. EquaTions DE DEGRE cing. — Il y a ici trois valeurs remarquables de la
constante, soient C =, C =10, C=1avec y =, y =0, y =1, parexemple,
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comme solutions remarquables correspondantes; d’ou

o= A=Y=y, =0,
2(By+ 51""‘50):1‘*-}’2’
2y,=1208,+ B,.

L’équation différentielle de degré cing, que 'on obtient, s’écrit

28172 (Bay — Bo) "
H (282 (Bavs — 7285)0° + Bs (3817, — 3B ya+ 2728, — 2Ba7) )
—Bo (2728 + Biva+ 3B, 72 )y — 2,8, 721y
0 () — 1) [By (Bays — 72B4) )2
H By (Bars — 12BY) +Biys — 7By + B (Bavh — 7285y
+ By (128, — 72 Bo)| = o,

" ou I'on doit remplacer {3, par {3, + 2 /‘ et 3, par y,— 28,.

6. EquaTions A poINTs cRITIQUES FIxEs. — Il est impossible d’avoir un abaisse-
ment plus considérable, sans.que 1'équation correspondante ait ses points cri-
tiques fixes.

Pour vérifier cette remarque sur Pexemple que nous venons de former, expri-

ﬁo — 72

mons que, pour la valeur C; de la constante, yy = 5° — 4. B
2

B

est une (nté-

grale remarquable. L’expression

C—=Cl2B:0°+ 2(a—2Ba)y + 1+ 28— 5] + 72)°

devient un carré parfait quand on y remplace C par C, et y par y,.
Posons

72 =A?% 28,= B2,
I'intégrale générale s'écrit alors
(3) C— C[A%y = B2(y — 1)+ 1] + A2y =o.

Ecrivons que, pour C == C,, I'équation admet la solution remarquable

1— B?
U e i)

Comme pour C == C,, le premier membre de (3) étant carré parfait, y, a égale-
ment pour expression
— B2C,
Ci(A?— B?) —
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et, par suite, on obtient successivement

—B —B2C,
ATB TG (AT—B?) — A
. ANC—1)

e e

Léquation (3) peut donc s’écrire

[(t—Cy) (CG— A%) + C(C, —1)]A%y?
—2C(C,— DAy +C[(C,— A (C—1) + A(C,—1)] =0

ou

AC—DC+HVA =) (A*—C)YC(C—1) (C—G))

Ay = CAA—1)+C,—A®

Clest une équation a points critiques fixes, dont la relation entre les constantes
intégrales, primitivement du genre zéro, s’écrit maintenant

Ct=C(C—1)(C—0C).

Elle est donc devenue de genre uvn ('), par suite de I'existence de quatre solu-
tions remarquables.

L’équation différentielle s'écrit, d’ailleurs,
2B172Bey?+ [2(Bars — 12807+ 2B ]y

=0 B — 7B [y = BB B o

avec

. A AY) AN . C—AY
=AY 2= n S S U = O

II. — IL Y A DEUX INTEGRALES SINGULIERES.

7. Equarions peE pEGRE six. — Dans ces conditions, le degré maximum de
I'équation différentielle est égal a siz. Clest le cas ol il n’y a pas de solution re-
marquable. Disposons des coefficients de la transformation homographique, de
facon que les deux intégrales singulicres solent y = o, y =, et que, dans
B2 — ay =N*R, II se réduise & 'unité.

L’in‘légrale générale

(o2 oty + o) C — 2(3: )+ Biy + B0) CH+ 2y + 71y +7p=0

(1) Sur le passage du genre zER0 au genre UN, voir les n** 12 et 13 du Chapitre VI.
(2) C, désigne, comme nous l'avons dit, une constante arbitraire.
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peut s’écrire actuellement

_ Buy? +ﬁ1y+ﬁo+¢y(y~ .
0(2')’ +0C|y+0(0

3

les coefficients By, Bi, Bo, ®a, %1, %o sont liés par les relations, qui expriment que

(B =+ By +Bo)—y(y—1)
est divisible par
ag‘y2 —+ al‘)" —+ 298
Soit Y272+ 1y + Yo le quotient, on calcule facilement les coefficients v, v, Yo

ﬁ, 7_25152_'“15?’ f)z
= o

o, ! o Vo= a,

(4) 72—
les ;, B; étant liés par les deux relations

2Bofi-t1— 2 (28,8 — 22

—1o

() —%<2Boﬁz+ﬁ$—l)+%§ﬁg+ - (2&&2—“‘53):0,

100

o232 o, (32
Bo_‘_‘(Ztgoﬁ +Bi—1)+ 0}732 +ala0< Bif— ;}32>:O.
2 2
I’équation différentielle s’écrit alors

[(2y — 1) =4y (y —1) (Bl —ouyi)]y”
— 4y =Dy [4B: B+ 281 By — 2{0ay) + o yy) — (&) ya+ 7105)])?
+ (BB, + 281 By — 200y — Yt —2a7y — V194)Y
+ 2B B — i — evef)
— 4y (y =By + Bly + o) — (0 + oy + o) (127 + 710 + 70l =0
ol les v, Y1, Y2 doivent étre remplacés par les valeurs (4), les a;, 3; étant liés
par les relations (5).

8. Equations pE pecri cing. — Il suffit d’exprimer qu’il y a une solution
remarquable pour C=o0 par exemple; d’ott a3 = 42, 4,.On vériliera que le facteur
29%5) -+ o, figure dans le premier membre de I’équation différentielle formée pré-
cédemment. C’est 1a une vérification un peu longue, mais qui ne présente aucune
difficulté. On supprimera ce facteur 2ay)y —+ o, et I'on obtiendra I'équation de
degré cing demandée.

9. EQUATIONS A POINTS CRITIQUES FIXES. — Si nous exprimons que l'abaisse-
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ment est, plus considérable, c’est-a-dire qu’il y a deuz solutions remarquables, le
degré de I’équation différentielle ainsi obtenu est égal a quatre. Mais, comme
il y a deux intégrales singuliéres, sans lieux de points de rebroussement (j =o),
nous avons affaire 4 une équation & points critiques fizes. Vérifions qu’il en est
bien ainsi.
Pour cela, écrivons I'intégrale générale sous la forme
C—2(Byy?+ Bry + BoC + y2y2=o,
Y =0,y = étant les deux solutions remarquables pour C = o et C = .
Soit (y —1)? le carvé parfait II2 figurant dans le discriminant p2—ay. Si
(Bo*+ Bry + Bo)* — y2?
est divisible par (3 —1)*, on aura entre les a;, B;, v; les relations
(Ba+Bi+Bo) (2B2+B1) —ya=o,
(Ba+ B+ Bo) (280 +By) —72=0

ﬁo:@b 72:(262—‘— 51)2~

1l en résulte que l'intégrale générale
q g g

et, par suite,

€ — 2B+ 1) + B 1€ + (3Bo+ B )Pyt = o
qu’on peut écrire
[(2Bs+B1)*— 2851 (r — )=+ (28,+ B, —C)3*=o

20+ 3, —C .
V(2 B+ B1)*— 28,

L’équation a donc bien ses points critiques fixes.

devient

Yy =1-+

II. — IL Y A UNE SEULE INTEGRALE SINGULIERE.

10. EquaTions pE pEGRE cinQ. — Dans ces conditions, le degré de I'équation
de différentielle est au plus égal a cing. Soient y=1lintégrale singulicre, y =o
le lieu des points de rebroussement. Supposons, de plus, que y = w0 soit solution
ordinaire pour C=o0; d’ott ay= o,

(o) 4 2) @ =2 (B + B1y + Bo) C + 120° + 11y + 70=o0,
By + Bry + B =0y — 1) = (1292 + 11y + 30) (uy + a,);

I'intégrale générale prend alors la forme (ou By=1)

C= VP B yVy (y =)
o4y + %
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les coefficients sont «,, a,, 8,, B, sont liés par la relation

(6) “1(“0@1_60“1)2_20‘3(“051"ﬁo°‘1)‘“330’
qui exprime que
(P +Biy +Bo)*— (¥ —1)
est divisible par a, ¥ + «,.
On déduit de la
(7) __@3, }’1:—*—2&60;—— @;
0

y Po 2@1"""
T« o oo

oy

V2=
et I'équation différentielle correspondante s’écrit

Yy =3 =4y — ) [(2y + By + By + B, I*
o — Ay —=0(ay' + ey 4+ a) [(2ra+ )y + 0+ Yy + v 1 =o
(8) M9 —4(Bt— ) +8(Bi—auya)ly + (B} — o, 7.)|y"
—4(r =028y +By) (2y +B1)
— (12 Ny ) — (o o) (29 + 7)1
Ay =By + B0 — (e y + o) (Vyy*+ 7'y + 7)) =o,

oll Y3y Y4y Yo ont les valeurs (7), et a4, 2, B4, 8- sont liés par les relations (6).

Dans le cas actuel, nous pouvons exprimer les coefficients de I'équation diffé-
rentielle, en fonction rarioNNELLE de trois fonctions arbitraires A, B, T, et de
leurs dérivées A’ B/, T".

En effet, de la relation (6) on tire

— a2+ ag\Va,(a,+ a
2By — Bo 2ty = 0 o\o/( o (ot 1).
1
Posons
Veo(ao+ o) = a, T,
I to=A, 0‘1_—-A(T2_‘)' ﬁoZB’
il vient .

Bi=B(T—1)+ o,
| 2 )
Y2= A*—(I,?_I)[QB(T?-——I)—}—T“_I .+1J,
B I
y‘:K[ﬁ +B(T2—l)].

Il suffira de remplacer dans (8) les «, B8, v par les valeurs que nous venons de

calculer.
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11. EquaTioNs DE DEGRE QUATRE. — Dans ce cas, ¥ = o est une solution re-

marquable (soit pour C=0); d’ol, en tenant compte des calculs précédents,

oy == ot; == 0, 2B =—1, Vo= Nn=— o0 72 "
0 0

By, B — 188,
0
I’équation (8) devient
YE=h(y —1) (2y =)oy +4(y — ) [eyiy + ey, — Bl =0
ou bien, en remplacant y, et y, en fonction de §3, et a,,

yr—=h(y —0) 2y —1) By’
+4(y—1)<a;m“_*;“_oﬁay+a;ﬂ@_§% _512>:O_
0 0

0

Ici les coefficients sont des fonctions rATIONNELLES de oy, By et de leurs
dérivées.

CHAPITRE V.

EQUATIONS DIFFERENTIELLES DU SECOND DEGRE EN j' DONT L'INTEGRALE
GENERALE EST UNE FONCTION A TROIS VALEURS, LE GENRE = DE LA
RELATION ENTRE LES CONSTANTES INTEGRALES ETANT EGAL A ZERO.

1. Voici le Tableau des différentes circonstances qui peuvent se présenter
qui p P

dans cette étude; j désigne, comme précédemment, le degré en y du lieu des

points de rebroussement et k le nombre d’intégrales singuliéres :

Degré ¢ des équations différentielles

correspondantes.
(k:6, g =12, 11, 10, 9, 8, 7, 6, 5.
J=o ¢ k=4, q= 10, 9, 8, 7, 6, 5, 4
(k::2, q= 8, 7, 6, 5.
k=3, q= 9, 8, 7, 6, 5, 4.
/:1?/{:[, q= 7, 6, 5, 4
J=o0 k=o, q= 6, 5, 4.

Comme il serait beaucoup trop long d’exposer, dans ses moindres détails, la
formation des soixante-quatre types différents, auxquels donnent lieu les six
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classes d’équations figurant dans le Tableau ci-dessus, je me bornerai, sans
pousser, d’ailleurs, jusqu’au bout certains calculs, a former tous les types de la
premiére et de la sixiéme classe. Ces derniers types correspondent aux deux cas
ou I'équation dilférentielle posséde six intégrales singuliéres ou n’en posséde
aucune. Le premier cas nous fournira des exemples d’équations renfermant
algébriquement et d’une lagcon essexTiELLE, une, deux, trois ou quatre con-

stanles arbitraires distincies.

I. — IL ¥ A SIX INTEGRALES SINGULIERES.

2. Dans ces condilions, nous supposerons qu'on a disposé des coefficients
de la transformation homographique de fagcon que y =0, y =1, y = soient des
intégrales ordinaires correspondant aux valeurs C=o0, C=1, C=w de la
constante d’intégration; en sorte que I'équation différentielle (') correspondante

sera loujours de la forme
(1) Ly?— oMy +y(y —1)N=o,

ol L, M, N sont des polynomes de degrés respectivement égaux & 8, 10 ct q.

FEQUATIONS DE DEGRE DOUZE. — L’équation la plus générale dont l'intégrale
posséde trois branches est de degré douze; L, M, N seront alors de degrés 8,
et 9; et si a, 3, y désignent trois polynomes en y de la forme

=y oy + 1, B=0Bs0*+ 30+ B3 + Bos 12V,

avec la condition suivante, qui exprime que y =1 est intégrale pour C =1,
Gyt +1+ Y3+ Y2+ 71— 2(Bs+ B2+ B+ Bo),

I'équation différentielle (1) s’écrit de la fagon suivante :

a()y O _i_ady da]
oy TToy)Y T or Tz

—l (o) e [ (<5 o e 2] =

et les coefficients de L, M, N sont, par suite, des fonctions rationnelles des »,,

3iy vi et de leurs dérivées.

(1) Pour obtenir toutes les équations répondant 4 la question, il suffira de remplacer
a(z)Y + b(x)
T Y £ (r)
sion; la nouvelle équation renfermera alors rationnellement les tvois fonctions arbitrair es
a(x), b(x), l(x) et leurs dérivées premiéres.

Fac.de T., 2* S., 1. 58

dans chacun des types obtenus y par et y' par la dérivée de cette expres-
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Remarque. — L’intégrale et le terme indépendant de j’ pouvant s'écrire
également
a(C—1)?—2(f—a)(C—1)+a—28+y=o,
d(ot — 2B + 9 do 12
[a.( df L)__(a»—:zﬁ—l—«/)(Ti]
0(p—ua) do d(ot— 2B 4+ 7) (P — a)
-4[a—%—x——<5—a)55][_<5—a)———£’—£—<a—zﬁ+~/>w—-ﬁt,x |

le facteur y —1 se met aussitdt en évidence dans ce dernier, en vertu de I'identité
a—2B+y=(r—0[(ys—28:)) + (13— 23+ 72— 28,4+ o)y + 28, —1].

3. Equarions pE pEGRE onzE. — En écrivant que y =90, par exemple, est une
intégrale remarquable double, d'ott ay=o0, on obtient une équation (1) ou L,
M, N sont de degrés 7, g et 8.

Equarions pE pEcré pix. — Deux cas peuvent se présentler, suivant que
’abaissement du degré provient de deux solutions doubles ou de la présence
d’une solution triple. Dans I’équation (1) correspondante L, M, N sont de degrés
6, 8 et 5.

1. Il y a deux intégrales remarquables doubles. — Soient y =, y = o,
d’olt 2y =", =o0. Aprés suppression du facteur y, il reste une équation (1) du
degré indiqué.

IL. 1l ¥y a une intégrale remarquable triple. — On partira de la forme de
I'intégrale
C—2(Bsy® + B2+ L1y + B)C+ 1)+ )+ iy =o
[7at 7y 1=2(Bs+ Bat- B+ 1)],

et 'on obtiendra une équation (1) de méme forme que tout a 'heure.

EquaTions pE pEcrE NEUF. — lci encore, il y a deux cas a distinguer :

I. Il y a trois solutions remarquables doubles. — Soient y=o0, y=1,y=w%
pour C=o0, 1, ». On partira de I'intégrale générale et des conditions

oy + 10— 2(B5)° + Boy?+ By + o) O+ 30"+ 12y* =0,
oy + I+ 73+ YQ: 2(ﬁ3+ ﬁz‘l_ ﬁl"'"ﬁo), o+ 272+ 3‘/3: 2(3@3"“ 2§2+ {31),
en remarquant que la relation suivante, conséquence des deux précédentes,

(73— 253))’3+(72—‘252))’2“‘(0‘1—261))"“‘—2@0
=(y —1)[(ys—2Bs)y +1—25]

permet de mettre en évidence le facteur y — 1 dans les coefficients de »'2 et y” et
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le facteur (y —1)* dans les aulres termes en sorte qu’aprés la suppression du
facteur y(y — 1), il restera I’équation (1) demandée.

1. 1l y a une solution triple et une solution double. — Soient y —c0, y —o0,
on parlira de
G =235y + By + i1y +B0) C+ 73y + 7202 =0
[1+ 72+ 7:=2(Bo+ B+ Po+ Pa)l.
%. Equarions pE pEGRE HUlT. — Il ¥ a trois cas & distinguer:
I. 1l y a quatre solutions doubles. — Quand y = o, y = w sont deux solutions
doubles pour C == 0, C = o, l'intégrale générale prend la forme

() 0 € —=2(fs1? 4+ B0+ Buy + Bo) C+ 750° + 2 =o.

St y =1, )="T, sont deux nouvelles solutions remarquables doubles pour
C=1 et C=C,, les fonctions v, B3, B2, B, s'expriment en fonction rationnelle
de Ty, a;, 72 et de la constante C,, au moyen des relations linéaires

‘ =3y T+ 63,0 T+ 43,C, T, +206,C, =27, T,+«,C2,

(2) 1 "'373 ~+ 603, +!Iﬁz +2F31 =2y, oy,
? 28,0, T2 48, C Ty = 7. T! +22,CT,+3(C2—25,C)),
252‘*—[}@1 =72 + 20, +3(1"'250),

et le premier membre de I'équation différenticlle correspondante, aprés suppres-
sion du facteur y(y —1)(y —T), est de la forme (1), ot L, M, N sont des
polynomes de degrés 4, 6 et 5, dont les coefficiénts s’expriment xATIONNELLE-
MENT @ l'aide de la constante arbitraire C,, des trois fonctions arbitraires ,,
Y2, Ty et de leurs dérivées o, v, et T,.

L. Il y a unesolution triple (y =wx) et deux solutions doubles (y =o, y=1).
On partira des formes suivantes de I'intégrale générale et dans le résultat final on
supprimera le facteur y(y —1)

C—2(Byp®+ Loy + L1y + Bo) C+ 1507 + 12y =0,
T+ v+ vs=2(Bs+ B+ Bi+ Bo)s 27, + 373 =2(303;+ 203,+ Bo).
HIL. Il y a deux solutions triples (y = o, y = o). — Dans le résultat final,

on supprimera le facteur 2, aprés étre parti de la forme de I'intégrale générale

2= 2B+ 2202 + By + o) Fya)t=0  [ys+1=2(83+ Bt B+ B,)].

3. Equarions ve peeré sevr. — 1l y a trois cas a distinguer :
1. 1l existe cing solutions remarquables doubles. — Soient y = o, y =1,

y ==,y ="T,, =T, pour les valeurs o, 1, o, C,, C, de la constante. L’inté-
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grale générale s'éerira
() + 1) =2(B) + By + iy + Bo) C+ 73y + 7202 =,

et les fonctions 3y, 3y, Ba, B3, 72, s S'expriment en fonction rationnelle de Ty,

Iy, 2, et des constantes arbitraives Gy, C,, au moyen des relations /inéaires

[ =31 ys— 2Ty, +6C, T3+ 4C, T 5.+ 2C, 5, =o,C},
—3T3y3-—-2Ty7,+6C, T3 3, + 4C, T, 3,+ 2C, 3, =a,(C?,
3 =3y 2y +65 -+ 4B +205 =ay,
g —Tiy: + 20 T3+ 46T, 3, — 66, 8=2C} T o+ 30},
— T3y +20C,T33,+ 4C, T3, — 6C,3,=2C2Tyo,+ 3C2,
— 72 + 20, + 48, — 68, —=oaa + 3.

1’équation dilférenticlle correspondante, aprés suppression du facteur
Yy =ny—="T)0r—="T),

est de la forme (1), ot L, M, N sont des polynomes de degrés 4, 6 et 5, dont les
coefficients s’expriment rATIONNELLEMENT « {'aide des constantes arbitraires
Cy, Gy, des trois fonctions arbitraires «,, Ty, Ty et de leurs dérivées pre-
miéres o), T, T,

6. 1L 1l existe une solution remarquable triple et trois solutions remar-
quables doubles. — Soient )’ = o la solution triple pour C=o ety =0, y =1,
y =T, pour C=o, 1, C,. L’intégrale généralc est de la forme

C—2(Bay® + Boy? + By -+ 30) L+ 73)° + 1ay*=o.

Les coefficients B3y, s, 31, vy s’expriment rationnellement a l'aide de Ty, v,
et de la constante arbitraire G, au moyen de rclations linéaires qui se déduisent
des relations (2) en y faisant o, == o. L’équation dillérentielle qu’on obtiendra,
aprés suppression du facteur y () —1) (3 —T}), sera de la forme (1) et ses coef-
ficients seront des fonctions rationnelles de Gy, Ty v, T', v5.

I, 1l existe deux solutions triples (y =o,) = ») et une solution double
(y =1). — L'intégrale générale est de la forme
C2—2(B30°+ Loy + By + 530) C+ysp* =0,

— 343+ 6833+ 48, +23,=o0, s+ 1=2(B3+ B2+ i+ Do),

et donne lieu a une équation dilférentielle qui, apres la sappression du facteur
y2(y —1), cst de la forme (1).
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7. EQuATIONS DE DEGRE six. — Il y a quatre cas & distinguer:

I. 1l existe six solutions remarquables doubles. — Soient y —o, y =1, y =,
y="T, y="T, y="T; pour C=o, 1,0, C,, C;, C;. On peut partiv de la
forme
) (ot y +1)C*— 2 (Bsy*+ @2}’2+ ﬁx}"" 5e) G + v+ 72y o,
et si 'on posc

S, C0)==312y,—2Ty, +6CT*3,+ 4CTB,+2C53, —a,(
o(T,C)=—"Ty, + 2CT28,+ 4CTB, —6CB, —20Ta, — 302,
les sept coeflicients a;, B; sont liés par les huit velations linéaires

‘ f(T,,C,)':O, f(Tza Cz):(), f(T;,, C;;):O, f(l, 1) =o,

5
) 2 o(Ty, €))=0, o(Ty Cy) =0, o(T5, Cy)=o, o(1,1)=o0,

qui ne seront compatibles que si le déterminant A =F(T,, Ty, Ty, C,, C,, Cy)
est nul.

T: 2T, C,T: 2GT, ¢ o C o
T2 2T, C,T! 2CT, € o C o
T 2T, CT: 26,7, € o € o
I 2 1 2 1 o] I o

AE e ~ \E AR A 2l abXd alkb ’
o T: o CT: 2CT, C 20T, C:
o T: o GTP aCT, € 2CT, €2
o T! o CT 2T, C 20T, C,
(0] 1 (6] I 2 I 2 I

d’oui la relation algébrigue (ot F est un polynome en Ty, T, Ty, Gy, Gy, Gy)
(6) F(TI’T29 T3, Cl, C?)C‘:l):-:ov

qui permet d’exprimer T, par exemple, en fonction algébrique des fonctions
arbitraires T, Ty et des constantes arbitraires C,, C,, C,.

Dans ces conditions, on pourra résoudre les sepl premiéres équations (3) par
rapportaux 2, 3; qui seront exprimés ainsi rationnellement i laide de T, T, T,,
Ci, Gy, Gy, liés par la relation (6). L’équation différentielle correspondant a la
relation (4) (ou les fonctions 2, {3; sont exprimées au moyen des T et des C), apreés
suppression du facteur y (y —1)(y — T,)(y — Ty)(y —T3), est de la fornie (1),
ot les coefficients des polynomes L, M, N sont exprimés RATIONNELLEMENT
a Uaile des trois constantes arbitraires distinctes Cy, Cy, Cy, des trois Jonc-
tions Ty, Ty, Ty lides par la relation aLcEsriQue (6) (et de leurs dérivées), ou
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bien encore ol les coefficients sont exprimés ALcEBrIQUEMENT & U'aide des trois
constantes arbitraires Cy, Cy, Cy, des deux fonctions arbitraires Ty, T, et
de leurs dérivées.

1. 1l existe quatre solutions remarquables doubles et une solution triple.
Soient y = oo solution triple pour C=c, et y=o, y =1,y =T, =T,
solutions doubles pour C=o, C =1, C= C;, G=C,. On part de
Cr—2(Bs)*+ B2+ By + L) O+ 7y + 72y =0,
avec des relations qui se déduisent de (3) en faisant 2, = o. Ici L, M, N sont de
degrés 3, 5 et 4, mais les conclusions sont identiques & celles du premier cas

dun® 3.

8. lll. 1l existe deux solutions triples (y = o, y = =) et deur solutions
doubles (y =1,y =T,). — On a l'intégrale générale (7) avec les relations (8),

(7) C*—2(Bs )+ Ba)?+ By + 3 C+ =0,
[ — 37,12+ 683,C,T,+ 4B8,C, T, +28,C, —o,
8) s —3y; +603, + 483, + 283 =o,
? 28,C, +4B3,C,T,=3(C—25,C)),
283, + 4034 =3(1—20B).

L’équation différentielle correspondante, aprés suppression du facteur
y(y—=nly—"T,

est de la forme (1), ot L, M, N sont des polynomes en y de degrés 2, 4 el 3,
dont les coefficients sont des fonctions xationnNeLLEs de la constante arbi-
traire Gy, des deux fonctions arbitraires Ty et By, et de leurs dérivées T, 3.

IV. Il existe trois solutions remarquables triples. — Soient y =0, ) =1.

y=u= pour C=o0, C=1, C=cc. L'intégrale générale est de la forme
(2—(A)y*+3By?— 3By +B+1)C+(A+B)y*=o,

et Déquation différentielle correspondante, aprés suppression du facteur
y2(y —1)2, est de la forme
Ly*—aMy' +y(y—1)N=o,
ou
‘L =gB(A+B)[Ay*+ 2By —(B+1)],
\ M = (AB'+BA'+ 2BB')y — B'(A=+B)+(y—1) (AB'—BA’) (A )*+ 2 By*— By)
" 4+ B(A +B)[Ay 3By (v —1)+ B'],
N = (AB'— BA)(A')?+ 3B/y2— 3B’y + B) — B'(A'+ B')..

(0)
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Lci les coefficients sont des polynomes entiers par rapport aux deux fonc-
tions arbitraires A et B et leurs dérivées premiéres A’ et B'.

9. Equations be pecré cing. — Nous avons quatre cas a distinguer, suivant
le nombre et la maltiplicité des solutions remarquables.

I. 1l existe sept solutions doubles. — Soient o, 1, %, Ty, Ty, Ty, T, pour les
valeurs o, 1, o, Cy, Cy, C3, C, de la constante C. Dans l'intégrale générale

(ony +1)C—2(B5)° + Bay® + L1y +Bo) C+ y3° + 720" =0,
les sept coefficients 2y, B;, y; sont liés par les diz relations linéaires (voir § T)

s f(Tl)CI)Zoy f(sz CZ):‘:)? f(T:}’ C3):0v f(Th CL):(): f(l, l):O’

10
( ) @(Th Cl):O’ @(’r% C?):()’ (P(T:i’ C-’S):Oa (P(TL’ CA)ZO’ <P(I7 1)201

(ui ne seront compatibles que si trois conditions écrites sous forme de détermi-

nant
(11) ®,(T,, Ty, T;, Ty, Cy, Cy, G, Ci) =, ®, =o, ®,=o,

sont satisfaites, anquel cas les coefficients a,, 3;, v, seront des fonctions ration-
nelles des T; et C; liés par les relations algébriques (6), ou encore des fonctions
algébriques de Ty, par exemple, et de Gy, Cy, C3, C;. Apres suppression du
facteur y (y — 1) (y — T)) (¥ —T2)(y — T3)(yy — T4), I'équation différentielle
co;*respondanle est de la forme (1), ot L, M, N sont des polynomes en y de
degrés un, trois et deux, dont les coefficients sont des fonctions RATIONNELLES
des Ty, Gy, liés par les relations algébriques (11) et de leurs dérivées.

IL. 1l existe une solution triple et cing solutions doubles. 1l suffit dans
le calcul fait au 1 du § 7 de supposer 2, = o, d’ou deux relations

(12) W, (T,, Ty, Ts, Cy, Gy, G) =, W, =o,
qu’on écrit sous forme de déterminant. On a, par exemple,

T2 2T, C,T? 2C,T, C, o o
T2 2T, C,T? 2C,T, o o
T2 2T; C;T2 2C,T; G o o
Vo= 1 2 1 2 1 o o
o T o c,T: 20,T, C
o T ) C,T: 2C,T, C, C2
o T2 o CT: 2CT; C; CI
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On arrive a des conditions analogues i celle du paragraphe précédent, les rela-
tions algébriques (12) élant ici au nombre de deux.

1. 1l existe deux solutions triples et trois solutions doubles. — 1l suffit de
- se reporter au Il du § 7 et d’y faire y, = o.

LV. Il existe trois solutions triples et une solution double. — Nous avons vu
que, lorsque 'équation posséde les trois solutions triples y=o, y =1,y ==»
pour C=o0, C=1, C=ow, cetle équalion prenait la forme (1) ot L, M, N
avaient les expressions ().

Ecrivons de plus que y =T, est solution double pour C = C,, dou

T: —2C, T, +Cy.
—“rl"\‘.lz (Tl — 1)2 >

Ci—1

Sy AT

les polynomes L, M, N, aprés suppression du faclear commun y —T,, de-

vicnnent

L =9B(A+ B)(Ay + 7‘,"),
1

M= A(AB —BA") y* -+ [A(T, —1)(AB' — BA’) + BA(A+ B) +2B]y?
+ [ AT, (T, —-1) (AB’ —BA’) + BA’ (A +B) T, + 2 B(T, — 1)

— B(AB'— BA’) + 2BB/(A + B)] y + B_i{lTJZ(A+B),
1

! !
N = (AB'—BA') [A’)'2 + (AT, +3B")y — ]:,—] -+ % (A"+B").
1 1 -~
II. — IL N'Y A PAS D'INTEGRALES SINGULIERES.

Nous pouvons toujours disposer des coefficients de la transformation homogra-
phique de fagon que les courbes y = g (), licuzx des points de rebroussement
des intégerales, qui dans le cas actuel sont au nombre de deux, soient y = o,

8 ) ) Y

2 =1, et que de plus 3 = oo soit solution ordinaire pour C = .

EouaTions pE pEGrE six. — Dans ces conditions, 'équation différentielle cor-
respondante est en général de degré siz. Les coefficients o;, {3;, dans Pintdgrale

générale
(o) oy +1)C—2(Ba)° + Bo) + By + L) C 72y + 120"+ 11y +1=0,
sont liés par les relations
2@2@3—“273“‘363:0’ B2+ 2B,Bs— dpys— a3 y3— 3P =0,
(13) ¢ 283035+ 2B4Be— a1 — Y2y, — ¥+ Bi=o0, Be =70
B+ 2BeBr— dayo— 11— y2=0, 2@0@1—“1}’0"71:%
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résultant de Pidentité suivante relative aux lieux des points de rebroussement

(Bay+ Boy* + By + Bo)?
— (oay?+ oy + o) (ysy*+ Y2+ VY 7o) = By*(y —1)%

et on a, pour 'équation différentielle correspondanle, aprés suppression du fac-
teur y3(y —1)3,

y(y —D[3Bs(2y — 1)y + 2By (y— 1]
— G[(3Bay?+ 2Bay + By + B+ Byt Bly B I
+ 4200y o)y oyt oy ]
X [(372y2+ 272y + 7)Y + 151+ 1202+ 1y ] =0
qui, en tenant comple des relations (13), est de degré six et de la forme
(14) Ly?+4My + 4N —=o,
Les polynomes L, M, N ont les développements suivants :
L= (8B:B:s—houys— 3B3)y*+ (8aya+ 8y — 168, — 9B3)y + 4 (oiy — B1)s
M= (20,y + o) (75 0°+ 72 )+ 71y +70) + (2 + o, y)(3ysyt 4 272y + 71)
+ 33,8, (— 8y + by —1) — 6B (Byy*+ Bry + Bo)
— 2(2Bay + B1) (By0* + Boy*+ By +B0)
N = B2y (y — 10— (Byy+ By’ + By +B0)
- (dyy ) (V)P 120+ 71 7o)
ot les o, By, yi sont liés par les relations (13).

Equarions pe peeré cing. — L'équation s’abaisse au degré cing, s’il existe une
solution remarquable double, soit y = o pour C =, d’ou

(g + 1) — 3B+ Bay -+ Buy + BT+ 150 1+ 717 + =0
avec I'tdentité
(Bsy* 4+ Bay? + By + Bo)*— (o) = ) (Ya)* + 7202+ 1y 4 p0) = B (= 1)
Les relations qui en résultent
2B +3B,=0, Pi+2BBi—ays—3Bi=o,  2Bfi— =0
2B,Bs+ 2818 — yaoi— 13+ 35=0, Bi+2BB—aiyi— =0, Bi= 7.

permeltent d’exprimer Y3, Y2, Y1, Yo €n fonction rationnelle des By, By, 3, %0, %4
Fac. de T., 2¢ S., 1. 59
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liés par les relations
= ” 363 2 3 : 2 3
(‘D) 93—7“14"[310‘1-50“1 —‘63(1—}—0!1) == 0,
(70= B3, 71— 23,31 — o35, ye=— 0 (23081 — 2 3}) + Bi+ 25,5,
73=PB3(230—331) ot (28:B1— o) — o Bt — 20,5032+ B3
L’équation différentielle a la forme (13) avec
145353(2@1—353))/_45%7
M=a(730°+ 720+ 71y +70) + ey Bray 27y + 1) +33:5,(hy —1)
— 68:* (Bl +30) — 4Bay (Boy®+ 31y +By) —2B.(Byy* + 8Ly + By + B

N=a (Y + 720"+ 7y +70)
BBy =07 =28 (Bry +BY) — (Bt + By + By

!

(05 Y1y Y2, Y3 doivent étre remplacés par les expressions (16), vy, ¥\, Yy Y3 par
leurs dérivées; les coefficients de I'équation différentielle sont donc des fonctions
rationnelles des quantités 3 3, & lices par la relation algébrigue (15) (et

| 20 My MP3y % | =} q
de leurs dérivées), ou bien encore si 'on exprime o, algébriqguement a 'aide de
) : | 8 q
8o, By, B3, ces coeflicients sont des fonctions algébriques des fonclions indé-
M0y 21y 93y S
pendantes 8y, 5,, 3; et de leurs dérivées.
0y My

Equarions pe vecri Quarne. — L’abaissement au degré quatre peut provenir,
soit de P'existence de dewux solutions remarquables doubles, soit de I'existence
d’une solution remarquable triple.

1. 1l existe deux solutions doubles. — Soient y = et ¥y =T pour C ==
et C=o. Auxrelations (14) et (13), il faut ajouter les relations

(17) 3y T2+ 2y, T+ y,=o, yaT*+29, T +3y,=o,

qui expriment que y =T est solution double pour C = o. Alors, aprés suppres-
sion du nouveau facteur yy — T, il reste une équation (1) ot
L=3p,(25,—3ps), ,
M= (o7 + 3aiyy— 683:3) — 48:5, — 20:3))
4+ = iy +3BsB3+2B By +T(4B:L) +2B:1B) — 125,85 — oy —7.9) ¥

NEEVELI AETIES

N = (a7, + 35— 2BsBy — B Y+

les a;, i, yi étant liés par les relations algébriques (15), (16), (17).
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1. Il existe une solution triple. — Soit y = oo pour C=oc. L’intégrale
s’éerit
F=2(Ba)? + Boy?+ By + Bo) C 4 737+ 127+ 1y + 7= 0;
on a, comme précédemment,
(Bod+ By’ + Bryy =+ Bo) = 130 — 1202 — 11y — yo= Biy* (y —1)?
et, en posant 3, = A, on met l'intégrale générale sous la forme

2=2(8y*— 12y’ + 3y +A)C+16(A—8)y*+3(3—8A)y +6Ay +A’=o0

qui donne licu a une équation différentielle qu'on peut écrire successivement,
aprés suppression du facteur y? (y — l')3,

64 < 9y (y—1) (2y — 1)y — 4[24y — 24y + 3) y'+A']*=o,
9y +6(8y'—8y +1)A'y'+A”=o,

y=A [3(—8.72"“8}’_‘):2(2.7_')\/.7(4‘)’_:5].

CHAPITRE VI.

FORMATION DES EQUATIONS DU SECOND DEGRE EN y' POUR LESQUELLLES
LE GENRE © DE LA RELATION ENTRE LES CONSTANTES INTEGRALES EST
EGAL A UN.

I. — DEMONSTRATION DE PROPRIETES GENERALES DE CFS EQUATIONS.

1. Je vais établir deux théorémes relatifs a la forme de Pintégrale générale et
au role des racines du discriminant.

Tutorive 1. — Quand le genre w de la relation entre les constantes inté-
grales est égal a vx, Uéquation différentielle se met sous la forme

H(J’,J’) r K(}’,J«")
var 7 " VAR

+(x)=o,

ot H et Ksontdespolynomes en y dedegrésrespectifs p— 1 et p+ 1 au plus,
en désignant par 2p + o le degré de QR, et h une fonction arbitraire de z.

Ln effet, on sait que, dans les conditions de I’énoncé, I'intégrale générale peut
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se mettre sous la forme

_ Uiy, x) ,
c_/[ e dy+L<y,x>dx],

ot le second membre est une intégrale de différentielle totale exacte. De
plus, I'intégrale de premiére espéce (o H est de degré p — 1),

H(y, z)d

n’a que deux périodes, quisont des constantes absolues (V).
Les périodes de J(y, ) étant des constantes, 'intégrale

J H
s0= [ e (gam)

une fonction algébrigue de y, et, par suite, dans la différentielle totale exacte

Hiy, =)
VQR

la fonction G(y, x) est déterminée a une fonction d’addition prés A(x), et

dy + G(y, z) dz,

) H . YT T
comme —— I/ﬁ change de signe avec {/QR, on en déduit immédiatement

que la fonction G, convenablement choisie, change de signe avec /QR.
Posons

, K
(I = o
VQR
Comme K ne peut devenir infini, sans que H le devienne en méme temps,
K est un polynome en y; de plus, comme cette derniére remarque s’applique aux
valeurs infinies de y, il faut que K soit au plus de degré p + 1. Il en résulte que
I'équation différentielle prendra bien la forme annoncée.

2. Tutorime II. — Quand le genre w de la relation entre les constantes
intégrales est égal a un, les racines d’ordre impaiv du piscrIMINANT de
Uéquation du second degré en y', définissent en général des iNTEGRALES SIN-
GULIERES, ou, dans certains cas exceptionnels, un lieu de points de rebrousse-
ment ot y' est INFINI.

En eflet, soit y = g (z) une racine de Q qu’on peut toujours supposer égale a

(1) PAINLEVE, Legons de Stockholm, p. 116-117.
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zéro, en changeant » en y + g(x); supposons que y =o n’annule pas K, on
pourra, dans le voisinage de y = o, développer I et G de la facon suivante

G:—I%[oc(x)—i—...] (254 0),

Y
F=5[8(2)+...] (B=o)
),2
On en déduira
G _ —4i,
a‘- ju— % . y
e ¥
oF ,
%:%[@ (z)+...],
y?
ce qui est impossible, puisque
oF  0dG
dxr T~ dy

Donc y = o annule K, et I'équation
(1) Hy +K-+23/QR =o

étant vérifiée pour y = o, ¥ = o est solution singuliére.

3. Remarque. — Nous avons supposé implicitement que H (y, &) ne s'annulait
paspour y = g(z). St H(y, z) s’annule pour y = g(x), on peut toujours sup-
poser que g(x)=o et le raisonnement précédent montre que K s’annule pour
¥y =o0;y estdonc en facteur dans H, K, QR, et figure dans QR nécessairement
au premier degré. Si donc on forme I’équation (1), on voit aussitét que les deux
valeurs de »/ sont infinies pour y = o.

II. — FORMATION EXPLICITE DES EQUATIONS DE L’ESPECE INDIQUEE.

4. Prosrime. — Cherchons a former les équations du second degré en y',
de degré q poxnt en y, telles que n srancues de U'intégrale se permutent
autour des points critiques mobiles, et pour lesquelles le cenve w de la rela-
tion entre les constantes intégrales est égal & ux.

Nous nous donnons un nombre pair 2p + 2, degré de S = QR, avec les iné-
galités ap +2 <29 — 4, pSq — 3, et nous cherchons, parmi les intégrales de
premiére espéce,

H(J’, z)dy

L,

VS(y, )



306 A. CAHEN.

toutes celles qui se laissent déduire, par une transformation d’ordre n, d’une
différentielle elliptique, par exemple de
s
b
V=) (t—p2y?)

u2 désignant une constante numérique.

Ftant donné le radical

_ V=79 — ),
51 nouas l)OSODS

N
M(y)

7=90)= ]
M et N étant des polynomes en y de degré n, pour qu'une telle égalité définisse
une correspondance avec un radical de degré 2p —+ 2, il faut et il suffit que

I'expression

(M2 — N2) (M2 — p2N?)

renferme en facteur un carré parfaiten y, de degré 4n —a2p —oa,d’ottan—p—1
conditions portant sur les 2n -+ 1 coefficients inconnus de (7). Donc, une
fois p* donné, il reste p 4 2 coeflicients indéterminés, a I'aide desquels les
coefficients de S(y, x) s’expriment a/gébriqguement.
D’autre part, la différentielle abélienne de premiére espéce
Hd

- ——

VS

correspondant a la différentielle elliptique

dy
V=9 —p2y?)

el qui est connue, une fois qu'on s’est donné o (y), dépend algébriquement de
p -~ 2 fonctions arbitraires de z et de la constante arbitraire u.
I en résulte que la différentielle totale exacte

MK + <l§-_ + ) dx,
VS )

ou Xk est une fonction arbitraire de z, dépend algébriquement de p + 3 fonc-

tions arbitraires.

3. Le degré de I'équation différentielle, mise sous forme enticre

H2y? + oHKy' + K? — 328 = o,
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étant 2p +- 2, pour qu'il se réduise d ¢, il faut et il suffit que les deux polynomes
H et K*—3i%8

aient un facteur commun de degré 2p + 2 — ¢5 et comme H est de degré p —1,
ilen résulte que, pour une correspondance avec un radical de genre p,le degré
est au plus égal & 2p +- 2 et au moins égal a p + 3.

Supposons d’abord que H et K n’aient aucun facteur commun, alors tout fac-
teur commun & H et K2— 28 est une solution remarquable de'équation diffé-
rentielle, c¢’est-a-dire qu’il annule les coefficients de dy et dr dans la différen-

L:f[%é — <% + x) dx] =J(y, ).

De plus, si y = g () est un zéro d’ordre = commun a H et K2 — 228, y = g(«)

telle totale

est un zéro d'ordre o + 1 de I'égalité

COWJ()/I‘”)J

C, élant une constante convenable.

Donc, dans ce cas, pour qu’il y ait abaissement du degré de I'équation (1), il
faut qu’il y ait des solutions remarquables, etle degré q de Péquation (1) est lié
au degré 2p +2 du radical S et au nombre g des solutions remarquables de multi-

plicité ay, par la relation
s=p

q::zp—i—z—Z(ocs—l).

5=

Toutes ces propositions s’élablissent par le méme procédé que celui que nous
avons employé au Chapiwe I 11 suffit de répéter presque identiquement les
mémes raisonnements.

Mais dans le cas ot H et S ont's selutions communes, ces s solutions ne sont
pas, en général, intégrales remarquables de I'équation, et, pourtant, d’aprés une
remarque faite plus haut, leur présence abaisse de s unités le degré de 1'équa-
lion.

Il est clair qu’on aura la solution la plus générale en supposant que l'abais-
sement provient uniquement de I'existence de solutions remarquables d’ordre
deuz. Gar on aura ainsi autant de conditions qu'il y a de degrés dans labaisse-
ment, chacune de ces conditions introduisant wne constante arbitraire.

De plus, dans ce cas, comme il n’y a pas de liew de points de rebroussement,

=1 et, par suite, S =R; on aura de cette fagon 2p + 2 — ¢ relalions de la
forme

() Co =T (yp ),
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Y étant une racine de H(y, ) =0 (¢2p—+3). On trouve ainsi 2p +2 — ¢
constantes arbitraires.

6. En définitive, n et ¢ étant donnés, pour avoir les équations_(l) les plus gé-
nérales correspondant au cas de w =1, on prendra successivement tous les sys-
temes d’entiers positifs [, p satisfaisant a la relation

(2) 2 — 4 =20+ 2p+2 ou qg=1i+p—+3.
Soit ¢, p un de ces systémes, les équations (1) correspondantes dépendront de
p+3—(e2p+2—q)=qg+o2—p—1=i+}

Jonctions arbitraires et de 2p -+ 2 — q constantes arbitraires.
Il'y aura autant de types d’équations (1) qu’il ya de modes de décomposition du
nombre ¢ — 3 en une somme de deux entiers positifs ¢ et p.

I1I. — RESOLUTION RAPIDE DES OBJECTIONS QU'ON PEUT FAIRE A LA THEORIE
PRECEDENTE.
- . . Hd . .
1. Nous avons dit que l'intégrale " et la transformation de passage
J VR °
N() ,, . P . . .
y=r9(y)= W; dépendaient algébriquement de p —+ 2 fonctions arbitrairves,

et nous avons admis implicitement que, dans le cas le plus général, H a ses ra-
cines simples, que H et R n’ont pas de facteur commun et enfin que les condi-
tions (S) étaient compatibles et déterminées.

‘xaminons successivement ces différents points.

8. Osmecrions 1 ex II. — Le polynome H a toutes ses racines siuvLes et les
deux polynomes H et R noNT rAs de FacTEURS coMMUNS.

Voici une démonstration rapide de ce fait qui rentre dans I'étude de la réduc-
tion des intégrales hyperelliptiques.

Si nous laissons arbitraire le degré n de la transformation, il faut et il suffit
que les premiers membres des relations (),

le( | l .)/ =—miw;+
191 1 W2y
yilax) V R

f\'slil') H dJ’
=R 10 e a2 YOT
(O') ya () \/R

Yg,,(\l') H d)/
f T‘ =My 0y = Ny Wap,
- \ Yep(X) y R
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Ol My, Ny, My, Ngy .., Map, Nap sont des nombres rationnels quelconques,
soient des fonctions indépendantes de 3p -+ 2 coefficients distincts.

Pour # = x,, choisissons arbitrairement les valeurs de ces coefficients et, par
suite, des seconds membres, et soient a;, o, ..., dsp les valeurs des seconds
membres. Nous pouvons toujours disposer des nombres rationnels mj, ny de
fagcon que les quantités my w, + nywy, MW+ Ny, ...y Mapw, - Nypw, dif-
ferent aussi peu que I'on veut de oy, oy, ..., %yp.

Done, pour & = z, et pour ces valeurs des mj, nz, les conditions () sont vé-
rifices par un choix des coefficients de H et R aussi voisins que I'on veut des
valeurs initiales choisies arbitrairement; et, par conséquent, pour z = xz,, H
et R satisfaisant aux conditions () ont des racines simples et n’ont pas de
racines communes, a fortiori pour x quelconque (sauf pour des valeurs excep-
tionnelles de x).

9. Owmecrion Ill. — Les relations (S) sont coMpATIBLES e! DETERMINEES.

Pour écrire. qu’il existe 2p + 2 — ¢ solutions remarquables d’ordre deuz,
il suffit d’exprimer que pour les 2p + 2 —gq fonctions distinctes y,(x),

72(®), -y Yapra_g(2), ona

C, =J(y:, x) =J,(2),
(S) S C, :J()’a,x) = Jy(x),
.............. ey
( Copra—g = (Yopra—g ) =Jsp1a—q(2).

Les J;(z) sont des fonctions transcendantes de p -~ 3 fonctions arbitraires
de x.

St les relations (S) ne sont pas compatibles et déterminées, c’est qu'un des
seconds membres de (S), par exemple le dernier, est identiquement fonction
des autres, autrement dit que les 2p 4+ 2 — ¢ — 1 premiéres racines de H ne
peuvent donner & J(y, ) de valeur constante, sans qu’il en soit de méme de la
racine suivante, et, par suile, de toutes les autres par raison de symétrie. Alors

le degré irréductible de I'équation est nécessairement égal a p -+ 3.
D’autre part, 'équation différentielle primitive de degré 2p - 2 s’écrivant

(Hy' +K)?— 2R =o,

et son intégrale générale étant de la forme

11‘\14—8‘)) =sn [f)\(x)dx—l-C],

on voit que si 'on écrit qu’une racine de R = o0 est une intégrale ordinaire,
Fac. de T., 2¢ 8., 1. /|0 A
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k= o, et, par suite, I'équation se réduit &

Clest une équation de Riccati, qui dépendrait ici d’au moins guatre fonctions
arbitraives. 11 y a donc contradiction et, par suite, les conditions imposées sont
compatibles et déterminées.

10. Ossecrion 1V. — Le peeri de 'équation différentielle correspondant
a l’intégrale précédente est bien, en général, ¥caL & q, et non moindre que q.

En effet, s’il s’abaissait, ¢’est qu’il existerait d’autres solutions remarquables,
car, pour z = z,, les constantes G étant quelconques, H et R n’ont pas de solu-
tion commune en y; il n’existe donc pas de fonction y = g () annulant identi-
quement H et R.

Il suit de la que, si les 2p + 2 — ¢ conditions (S) entrainent comme consé-
quence qu’une nouvelle racine de H est solution remarquable, il en est de méme
de toutes les autres racines de H, et le raisonnement s’achéve comme dans le

cas de w = o. (Chapitre III, § 8.)

Ouwrction V. — L'équation en y' est bien mrepucriBLi, du skconp degré et
b S
dy

de genre p21. Autrement la différentielle abélienne s’exprimerait ration-

nellement a 'aide d’une constante d’intégration, ce qui est absurde.

Ossecrion VI. — Lintégrale a bien exacteMent n sranxcues permulables
autour des points critiques mobiles, et non un nombre moindre.

En effet, supposons que le nombre de branches, an lieu d’étre n, s’abaisse
an'(n'<<n), en supposant n' >1.

Le raisonnement fait dans le cas de w = o0 montre alors que les constantes
remarquables ne seraient pas distinctes, ce qui est contre I’hypothése.

D’autre part, si n/ =1, I'équation est nécessairement de degré ¢ = 4 et toules
les racines du discriminant sont des intégrales singulicres.

Si donc on excepte ce cas de ¢ = 4, k = 4, on est certain que n est bien le
nombre des branches de y (z) permutables autour des points critiques mobiles.

Si, au contraire, ¢ = 4, k = 4, I'intégrale obtenue plus haut se réduira a une
intégrale & points critiques fizes, quel que soit I'entier n.

11. Nous arrivons donc aux conclusions suivanles :

Coxcruston. — Si, dans 'intégrale que nous avons appris a former, on donne
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aux conslantes des valeurs arbitraires distinctes, et si 'on remplace les fonctions
par des fonctions arbitraires quelconques, I'intégrale ainsi définie vérifie une
équation différentielle du second degré en y', de genre p2 o, prend exac-
tement n valeurs autour des points critiques mobiles et correspond au cas
dew=1.

L’équation différentielle correspondante est de degré ¢ > 4, dépend
de i+ 4 fonctions arbitraires et de 2p + 2— q constantes arbitraires, en
comptant la constante p.; car on peut loujours supposer qu'une des constantes
remarquables est o, en observant qu’on peut toujours effectuer sur C une (rans-
Jormation algébrigue dépendant d’une arbitraire et d’une seule, et qui conserve

la courhe
C=(1—c*)(1— p2c?).

Remarquons enfin que si p =1, comme wm est égal aussi & un, 'équation a
nécessairement ses points critiques fixes et, par suite, ¢ = 4, k = 4.

Inversement, si ¢ =4, p est nécessairement égal & un (i moins qu'il ne soit
nul, auquel cas @ serait nul également) I'équation @ encore ses points critiques
Sixes, et R est égal 4 4.

Nous voyons donc que, si I'on prend ¢ = 4, le cas de ® =1 ne peut se pré-
senter que sin = 1. Si, au conlraire, ¢ > 4, on formera une infinité d’équations
correspondant & w =1, n élant quelconque et plus grand que un, et ces équa-
tions dépendront, comme nous 'avons dit, de i + 4 fonctions arbitraires et
2p —+ 2 — ¢ constantes arbitraires.

Si toutefois 2p + 2 — ¢ = o, on aura une seule constante arbitraire, la con-

slante - : .

IV. — Cowraraisox AvEc LA FORME otC?— 2B C+ y =0 DE L'INTEGRALE
GENERALE.

12. Revenons maintenant a la forme
(4) aC*—2BC+y=0

de I'intégrale générale, ot a, B, v sont de degré n en y.

Dans le cas de @ == 1, n est toujours pair, soit 2 = 2v. Cherchons donc, ¢ étant
donné, ainsi que n pair et égal a av, parmi les équations (4) la généralité de
celles qui correspondent a s —=1.

Tout d’abord ces derniéres équations ne peuvent se rencontrer que dans la
classe qui correspond & j = o et, par suite, & pair, soit k= 2p + 2. Nous savons
que les équations (4) de cette classe dépendent de { + 4 fonctions arbitraires
eton—q+k=2n+q—4— 2i constantes arbitraires, qu’il faut diminuer
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de 3 si ce dernier nombre est supérieur & 3, et remplacer par o dans le cas
contraire,

Nous venons de voir, d’autre part, que ¢ étant donné, ainsi que p, le cas de
w =1 nous a conduit a une forme d’équation différentielle, dépendant de 7 -+ 4
fonctions arbitraires et 2p ++ 3 —q constantes arbitraires.

q-+1)
conslantes de plus que dans le cas de w =1, c’est-a-dire, comme A= 2p —+ 2,

Nous avons donc, dans le premier cas, 2n —q +hk —3 —(2p + 2

2n — 4 constantes de plus.

On voit donc que, pour la solution générale, on a =0, comme nous le
savions, et, pour que w soit égal a un, il faut que les conslantes arbitraires, qui
figurent dans chaque solution correspondant a j = o, soient liées par an — 4

Iy

conditions. 2n — 4 >> 0, 4 moins que 7, qui est pair, ne soit égal a 2.
Si n =2, on trouve le méme nombre de constantes qu’en supposant ©=1.
C’est le cas qui correspond aux équations a points critiques fizes; on a, en

effet, ¢ = 4 avec quatre solutions singuliéres.

12. Fiudions de plus prés la nature des 4 — 4 relations dont nous venons de
parler, en formant directement I’équation (4) correspondant & une relation de
genre un.

I’intégrale générale, en remplacant snC par G et sn[ [l(x)dxw par — X,

prend la for me

MN V(1 —X2) (1 — 22 X2) -+ X /(N2 — M?) (N2 p2 M2)
N2 — Hzszz

C=

ou

(N2 p2M2X2) €2 — 2/(1 — X?) (1 — 2 X7) MNC + N2 — M2X? = o;

on a donc

oo = N>— p2M2X2,

5=MNY(1— X*)(1 — 2 X5),

7= N — M2 X,

Formons I’équation différentielle correspondante

0y 0a 0 da?
[(=55 =5 )+ =iz

(i o)z e[ (0 i)y gt o=
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On a <en posant X' = ﬁ)

dx
1 0y do
dx 7V ox

(M oN B TN 2 M
_M1\< o de>(1—;ﬁX)~XX(N——;LM)
oM
:MN(N() M_->(1_ 25— (N'— e M)V = X (1 — X,

93 da
“9e  Por

:V(I—-Xg)(l—yﬁxi)<1\ﬂ——-M )(‘V.[ —|—y.‘NX)

— (14 p) XX+ 2 p2X3X!

—+ (N2 — p2M2X?)MN
Vie—X3) (1 — p2X?)

(T =X (1 — pEXT) MN 2 2 M2 XX
:\/(l——Xf)(l———HZX2)<N(3)—M——MdV>(M"—l—yt N2X?)
4+ AMNX[(N2— p2M2X2) (22 X2 — 1 — p?) + (1 — X2) (1 — p2X2) 22 M,
s 07 B -
‘3_0:’;'_/01'
:\/(,_xz)(,_“'ZX?)(\IgL“ M-«)(M + N2X2?)
—:».MN@—xz)(l—wxz)Nﬁxx'-mN(M’ N X )(“””‘“'—2“ XX
V=X (1 —pX?)
== XA X (NG - M) O NeX)
— MNAX[N2(1r—X?) (l—yﬁX“)—t—(M?——N‘X-)(z‘u'-’X*—l——;ﬂ)i[.
De méme

! dy —\ axiy [ % (_)_§
(o) oo -0

a%%_53_;:V/(1_x2)(1_p2x2)<1\1%g—\I—>(Mz p2N2X2),
dﬁ M oN 2 V2 X 2 2 22
@ 15y = <N7y———Md—),>(M—|—I\X)\/(:——X)(x——y){).
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On obuent ainsi I’équation différentielle

O =X2[M2(r—p2X2) + N3(X2— )] [ p* (1 — X)) M2+ (p2X2—1)N?]

(x5 —MQE>}-'+NQM~M1’E]'

|
< dy dy dx ox

f
X/'2
TS oS ol

(Nz_Me)(Nﬁ_ml\m]:.

Le facteur indépendant de ' peut s’écrire

XE(NYT =X My 1 — 2 X2 (N1 — XE— My 1 — p2X2 )’
< (NVI— 22X 4 p My 1= X)) (NY T — 22X — p My 1 — X2 )%,

, 1 1
Il résulte de ce calcul que —+1, —1, + ;, — [— sont des valeurs remar-
[ L

quables de la constante, rendant carré parfait le premier membre de I’équa
tion (4), et donnant lieu, par conséquent, & un abaissement total de degré jn.
L’équation différentielle correspondante, de degré 4n au plus,

. OM oON\ , oM TANE

. b &
(r—X¥) (1 — p2X2)

[(N2— M) (N*— p2X?] = o,

n’est aulre que 'équation formée au début de ce Chapitre et pour laquelle

()
3o dx

S OIS O

13. Ces conditions, qui sont nécessaires pour que w soit égal a un, sont suffi-

santes en général, c’est-a-dire, pourvu qu’aucune des intégrales remarquables
) ) q q

1 1
correspondant aux valeurs —r1, 1, + Al de la constante n’annule en

méme temps le discriminant 3* — ay.
En effet, considérons l'expression

p=V(1—C)(1—p2(?),

et, supposons qu’on y remplace C en fonction de y, c’est-a-dire, si 'on veut, C
en fonction rationnelle de y', y (x figurant comme paramétre).

Je dis que le radical ainsi formé est une fonction rationnelle de y', y.

S’il en était autrement, c’est que o, considéré comme fonction de y, admettrait
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. .. N ra. . I .
un point critique y = g (), tel que, pour y = g, C fat égal & =1 ou == o soit,
par exemple, C=1.

Posons C — 1= (C’; I'équation entre C’ et y étant carré parfait pour /= o, on

peut 'écrire sous la forme
o, G2 — 28,0+ (y —g)¥yi=o  [yvd(g)#ol

Bi(y,x) ne sannule pas pour y = g(z), sans quoi la solution remarquable

7

)= g(x) annulerait en méme temps le discriminant 3% — ay de I'équation
aC?—2BC+y=o.

Dans le voisinage de y = g, la racine C/, qui s’annule avec y — g, est de la

forme

C=(y—g)»A+...
et, par suite,

p:(y—g)“B—f——,

B étant holomorphe dans le voisinage de y = g.
o est donc rationnel en (y, y'); le genre de la relation entre les constantes in-
tégrales est donc aw moins égal & un, et, comme il ne peut dépasser un, il est

EXACTEMENT EGAL ¢ UN.

V. — FORMATION EXPLICITE DES EQUATIONS A DEUX BRANCHES (@ —1).

14. Partons de la différentielle elliptique

du

Vii— uﬂ)(l—pﬁu‘-’).

On peut toujours, moyennant une Llransformation homographique effectuée
sur ¥, admettre que la ¢ransformation d’ordre deuz est de la forme

Ay + B
}’2—!—1

u =

Nous avons deux cas & distinguer, suivant que I’équation différentielle posséde

huit ou six intégrales singuliéres.

[. I. v A HUIT INTEGRALES sINGULIERES. — Les équations correspondantes

sont de degrés 8, 7 ou 6.

1° Equations de degré huit. — Les fonctions A, B et ) étant arbitraires,
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I’équation différentielle de degré 8 a pour intégrale générale

(1) M:sn[fk(x)dx—t—C],

Yt
ou encore, sil’on fait le changement simultané de fonction et de constantes

snC=C, sn[fl(:c)dw]:——x,

Ar+B _ Xya—0%0—pC?) + OV —X) (1— p?X?)

(2) Y 1— pX2(02 ’
d’ott
(3) [2(A—=B)yy' + (y*+1)(A'y*+ B

=R[(*+1)— (A + B2 [(y*+ 1) — p*(Ay*+ B)*],
ou
(3Y 4(A—B)Yy2y 2+ (A —B)y(y*+1)(Ay*+B)y' +...=o.

On obtiendra I’équation la plus générale de degré 8, en remplagant y par
LY + Iy
Y + Ay
cetle équation seront ainsi exprimés rATIONNELLEMENT @ ’aide de siz fonctions

you h, hy, k, sont des fonctions arbitraires de z, et les coefficients de

arbitraires de x, et de leurs dérivées.

2° Equations de degré sept. — Ecrivons que y = oo (qui est une des racines
du coefficient de y'2 dans I'équation précédente) est solution remarquable, pour
C=o, dou

4) B:sn[f}.(x)]:x.

Dans I'équation (3) le terme indépendant de »’ s’abaisse au septieme degré,
et ’équation différentielle devient
[4(A=B)yy' +(y*+ 1) (A y*+ B
V=B - By

et se réduit au degré sept.

(2412 — (A -+ B2][(p*+1)*— p*(Ay*+ B)*],

3> Equations de degré sixz. — Kcrivons, en outre, que y = o est solution
remarquable pour la valeur C, de C (ot C| de C'=snC), d’ot

(3) A= sn[f)\(x) d + c,—J—_—W(‘ —CH0— “ic_'f)ijE'(lm(‘ —B)(—p* By
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L’équation devient alors
(6)  4(A —B)yy (A — B) (¥ + ) (A2 By + y(ay'+ By +...) =o,

a, B, ... étant des coefficients dont je n’écris pas les expressions développées et
qui contiennent rationnellement A, B et leurs dérivées A’, B’; A doit étre rem-

placé, en fonction de B, au moyen de la relation (5). Lorsque, dans (6), on remplace y
ar ————Il“{{::', h, hy, k étant des fonctions quelconques de z, on obtient 1'équa-

tion la plus générale de degré six avec huit intégrales singulié¢res. Elle con-
lient rationnellement les trois fonctions arbitraires &, Ay, k et algébrique-
ment la fonction arbitraire B et la constante arbitraire C,.

II. T v A six INTEGRALES SINGULIERES. — Les équations différentielles cor-
respondantes sont de degrés 6 et 5.

1° Equations de degré six. — Dans ces conditions, 'expression
[+ 12— (Ay*+ BYF(p*+ 1) = (A + B
contient, en facteur, le carré d’une fonction linéaire, d’ou
(1 —A) (= A (1 —=B*) (1 — B*p?) =o.
Soit, par exemple, B=+-1.
L’équation différentielle devient
A=Y+ + AP == M)y (1+A) +2 (1= ][y +1) — p2 (A y2+1)],

et équation la plus générale de cette espéce contient rationnellement les deux
fonctions arbitraires A, A, les trois fonctions arbitraires %, k,, k& de la transfor-
mation homographique, et les dérivées A/, A/, I, K.

2° Equations de degré cinqg. — Ecrivons que y = est solution remarquable
pour C=o, d’ol
A=sn [fl(x) a’m],
!

VO— A — Ay
GAA—D)y*+4(A— D)y (¥ + 1)y +...=o.
L’équation la plus générale, ot I'on a remplacé y par sa transformée homo-

graphique, contient rationnellement les trois fonctions &, h,, k, leurs dérivées
premiéres el contient algébriguement A et A’.

Fac.de T., 2¢S., 1.
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CHAPITRE VIL

EQUATIONS A COEFFICIENTS ALGEBRIQUES. — EQUATION ADMETTANT
UN FACTEUR INTEGRANT ALGEBRIQUE.

I. — EQUATIONS A COEFFICIENTS ALGEBRIQUES.

1. Dans le cas ot la relation entre les constantes intégrales est de genre
zéro, I'équation

(3) Ly?—2aMy'+N=o
se raméne & une équation de Riccati

du . )
(4) . %_Hu +Ku-+P,

au moyen de la transformation
(3) uut—2Bu+y,=o,

%y, By, y4 étant des polynomes de degré n en y, dont les coefficients, ainsi que L,
M, N, sont des fonctions algébriques des coefficients de (3) et, par suite, des
fonctions algébrigues, siles coefficients de (3) sont algébriques.

Soit donc a déterminer exeLICITEMENT toutes les équations (3) de peert ¢
DONNE en y, et a coefficients ALcisrIQuEs dont U'intégrale générale ne prend

qu’ un nombre voxni n de valeurs (nz %) autour des points critiques mobiles.

2. Nous devons distinguer guatre cas, suivant que le nombre de valeurs re-
marquables de la constante est au moins égal & 3, égal & 2, 1 ou o.

1° Il y a au moins trois constantes. — L’équalion de Riccati (4), ayant trois
intégrales particulieres al/gébrigues, a son intégrale générale algébrigue et, par

suite, dans
aC2—23C+y=o,

les coefficients sont eux-mémes algébrigues. 1l suffira donc, dans le probléme
général résolu au Chapitre 1II, d’astreindre les i +- 4 fonctions arbitraires a étre
algébriques; 'inlégrale générale de l’équation (3) est alors elle-méme algébrique.

2° 1l ) a deux constantes remarquables. — On peut toujours admettre que
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7

ces valeurs remarquables sonl o et o, et que I’équation (4) se réduit a

du _
dz

K u.

On a la relation
g=hk+ UL+ 1,

k désignant le nombre des intégrales singuliéres, Z,, /» le nombre d’intégrales
distinctes y = g(x) pour C=o0 et C=10.
L’intégrale générale a pour expression

aC?—2B8C+y=o,

avec
a=oa,f, B =08, Y= Zj_‘, [ = eSNdz,
par suite
(6) B2— oy, = B*— ay =12Q°R,
avec

o= () — &) (Y — Gr—q)i-g

Hn=h(y — gy — 8% () — 8%

(12t<n—1).

Les nombres

! / ’
€1y Cay  .avy €5 Cuqy Crpgy oes €gyy

sont deux systémes d’entiers quelconques positifs vérifiant la condition
n=ei eyt e €

de plus, M, &, g1, 821 -y 8ty Septs -ovy Zq—k €t les coefficients de (§ sont des
fonctions algébriques. Les coefficients de II, Q, R sont donc eux-mémes des
fonctions algébriques, d’aprés (6).

On pourra exprimer, par exemple, que le polynome de degré 2n

g2 — I Q*R
admet ¢ — k racines g, de multiplicités ey, s, ..., ey €y, -y €, 4, d'0U
E(ei—x):2/z+qf k,
conditions algébriques qui réduisent a

(g—k+n+ L8

le nombre des coefficients arbitraires. Les fonctions g s’expriment algébrique-
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ment, dl'aide de ces coefficients arbitraires; et, si 'on désigne par M une fonction
algébrigue quelconque, on pourra poser

o = efMdx (}’ — &t+1 )e’H" (Y= gt[-k)c;’—ka

y = he=IMaz(y — oy . (¥ — &)

et I’équation correspondante dépendra de

. —k
z+4:(q~/:—|—2)+‘/ 5
SJonctions algébriques arbitraires.
Si j >k, on pourra prendre comme fornctions algébrigues arbitraires les

q — k + 2 fonctions g, M, A et / _; k

des coefficients de Q, R par exemple, et

les coefficients restants s’exprimeront algébriguement i 1'aide de ceux-la et de
leurs dérivées.

3° Il y a une seule valeur remarquable. — Soit C=c. L’équation de
Riccati raméne alors 3 une équation linéaire; soit
du

a;:Ku—FP.

De plus
g="It+n+k,

{ désignant le nombre de racines distinctes en y de « = 0. On a

u=Cf+ o, <f:ef"d”, q):ff?dx)

Ie1
_Bi—ao 71— 2319 + oy 9%

;1= 7

Bt—ay=32—a,y,=12Q°R.

et par suite

On exprimera que le polynome de degré an
B — Q'R
admet que ¢ — k — n = [ racines distinctes gy, g3, ..., g de multiplicités

ey, €3y, ..., € (e;+ey+...4+e=mn);
onposera
ou=(y—&1)o...(y — &)«
_ pi—IIQ*R
LA ¢ e PR (e A TN
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et les équations cherchées s’obtiendront en remplagant dans

. ayut—2B8u+vy,=o,
u par
Ceﬂidx_,'_edefoe—dex dz,
K et P étant algébriques.
. I : k —
On prendra comme fonctions algébriques gy, g2, «+., g1, K, P et n + —2—]

autres fonctions parmi les coefficients de Q, R, et les autres coefficients s’expri-
meront algébriguement a 'aide des précédents et de leurs dérivées.

4° Il v’y a pas de valeur remarquable. — La formule fondamentale se ré-
duit a
g=2n-+ k.
Soit

_cf+o .
=Ty (fr—o=1)

U'intégrale générale de ’équation de Riccati (4), on a
Pr—uy=(fy— b)) (B} —a1y1) =Bi— uy, =112 Q%R.

Les coefficients de II, Q, R sont des fonctions algébrigques. On décomposera

le polynome
B2 —II2Q3%R,

dont les m + j + k + n + 2 coefficients sont algébrigues, en un produit de
deux facteurs a,, v, de degrés n, dont les coefficients sont des fonctions algé-
brigues des m + j + k + n+ 2 fonctions algébriques précédentes, et 'on rem-
placera dans I'équation A

aut—2Bu+y,=o

ainsi obtenue, u« par I'intégrale générale de (4), ou H, K, P sont algébrigues.
) p g g ? b ) g q

3. Dans les trois derniers cas que nous venons d’examiner, le nombre des
valeurs remarquables étant inférieur a 3, I'intégrale générale est TrRANSCENDANTE,
quand on prend au hasard les fonctions ALcEBRrIQUES, coefficients de I'équation

de Riccati (4).
Ainsi, dans le cas ou il y a deux valeurs remarquables, pour que I'intégrale

. . . oo du .
soit transcendante, il faut que la fonction u(z), définie par - = K(z), ne soit

pas algébrique, ce qui a lieu si K(z) est pris au hasard.

4. Proposons-nous maintenant le probléme suivant :
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Former toutes les équations (3) de degré ¢ donné, NON INTEGRABLES ALGEBRI-
QueMmENT, dont Uintégrale générale est une fonction qui ne prend qu'un
nombre fini (vox ponnt) de valeurs autour des points critiques mobiles.

lci le nombre des valeurs remarquables de la constante est nécessairement
inférieur a trois.

La relation

gq=2n-+hk—12

montre que n satisfait aux conditions

q+)‘§n§q+)‘-

4 2

1° Il 7’y a pas de constante remarquable. — Dans ce cas il n’y a pas de
solutions remarquables; par suite A = o, et n est limité par les conditions

(7)

IR

1A
S
A
RN

on est donc ramené au probleme suivant, déja résolu :

Former toutes les équations de veeri g (g24), possédant ¢ — 2n, intE-
GRALES SINGULIERES el dont Uintégrale.prend n, valeurs autour des points
critiques mobiles, n, étant U'un quelconque des entiers vérifiant la condi-

tion (7).
Par exemple, dans le cas de ¢ =6, on voit immédiatement que n, ne peut
prendre que les valeurs 2 et 3, et 'on est ramené, par suite, aux deux problémes

suivants :
n—oa, k=n-2, J=o,

n—3, k—=o, J=2,
que nous traitons, d’ailleurs, tout au long dans nos applications (Chap. 1V et V).

2° Il y a une seule valeur remarquable. — Soit C = . Considérons un
systéme quelconque d’entiers positifs /,, ny, k, satisfaisant a 1’égalité

q:ll—-l—nl—}—k,.

Le probléme revient a former les équations de pecrt ¢ possédant ¢ — I, — n,
solutions sincuLiERES, et dont U’intégrale a n, branches.

Posons
a=(y—g)" - (¥y—gu)"
avec
a+ay+...+a, =n,.

On obtiendra toutes les équations correspondant a ce choix particulier d’en-
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tiers, en donnant aux entiers @, @,, . . ., @, toutes les valeurs positives possibles
vérifiant I’égalité précédente; on obtiendra ensuite toutes les équations possibles
correspondant a ce cas, en épuisant les systémes d’entiers /y, n,, k, en nombre

Jini vérifiant Iégalité
g=1+n+ k.

Dans 'hypothése ol la constante remarquable C =0 correspond a une seule
solution remarquable d’ordre deuz, 1’égalité précédente se réduit a
g=2n+ k —2 si n,>2
et

g=4+hk —1 si oy ==2 (ky24).

Par exemple, si ¢ = 6, on se trouvera dans l'un des trois.cas suivants :

/1:3, l_—_l, k:2, /':O, nmn—3:,

(
3

p =1, k=1, J=1, m =2,
n—igj
[ {—=2, k—o, J=o, m=—r1.

3° Il y a deux valeurs remarquables. — On ne peut plus déterminer d’avance
de limite supérieure de n, sauf dans le cas que nous allons considérer tout
d’abord, ou, a chaque valeur remarquable de la constante, correspond une seule
solution remarquable d’ordre deux. Dans ce cas, de la relation

qg=2n+k—2
on déduit

qg+2 . 2

(s "Il:_(]—*— )

4 T T e

et 'on est ramené & un nombre fini de problémes connus.

Dans le cas ot les solutions remarquables sont en nombre quelconque et de
multiplicités quelconques, n peut prendre des valeurs aussi grandes qu’on veut.
Il suffit de se reporter & ce que nous avons dit pour les équations & coefficients
algébriques, quand ily a deuz valeurs remarquables de la constante, pour avoir
une solution quelconque du probléme.

5. Enfin, il est bien évident que nous venons de résoudre en méme temps le
probléme suivant :

\

Former toutes les équations de degré q ponnt, & coefficlents ALGEBRIQUES,
s . .
dont Uintégrale est une fonction TrRANSCENDANTE qui ne prend qu'un nombre
fini (NoN DONNE) de valeurs autour des points critiques mobiles.
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II. — EQUATIONS ALGEBRIQUES EN ', y,

Ly?—a2My 4+ N=o,
DONT L'INTEGRALE GENERALE EST DE LA FORME
aC?—2BC+y=o,
o, (3, y ETANT DES PRODUITS DE LA FORME
") [y — g (@) [y — g2 (@) .. [y — gu(2)],

Ay Ay - ..y Ay ETANT DES CONSTANTES NUMERIQUES DONNEES.

6. On peut toujours supposer que 'on a divisé le premier membre par 2 et,
par suile, que o = 1; soit donc l'intégrale générale

(]) Cz_Zhl(x)(.y—Gl)pvl'"(y——G”l)y’mC_‘—h(x) ()/_gi)v""(y'—'o‘vn,')v’”':O'

L’expressio_n
dC(y, x)
C(y,x)
peut s’écrire
H(y',y, z)(dy — y'dx),

ot H est une fonction rationnelle de y', y, puisque I'équation différentielle
dont (1) représente I'intégrale générale est algébrigue en y', y.

De plus, la fonction algébrigue H(y, y, z)=H (y, z), qui posséde les m' poles
gi1(2), g2(x), - -+, gm (&), est racine d’une équation du second degré, dont les
coefficients sont des polynomes de degré m' en y.

Formons cette équation. Posons

1= 1 dC

S est un multiplicateur de dy — y' dz.
De plus, en différentiant par rapport a y, on obtient

? 0.)/ 0.)’ 2( ) d)’ ’
d’ou les deux équations

€*—28C— y=o,

9B 9 _
scz—<g35+2 @>C+ % =o.
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Par suite, S est racine de I'équation

O ol RS )

IY' 498 (%8 g0
S (32) + a5 (15 —85t) .
v oy 7(y —£%) -

ou

Pour que S soit algébrigue, il faut et il suffit que é soit rationnelen y, c’est-
a-dire que si y = f(z) figure dans y & la puissance X et dans 3 4 la puissance p,
la différence 2. — A soit un entier posilif ou négatif; en sorte que l'on voit

immédiatement que 'intégrale sera de la forme
Ci=(y =g -.(y — g (A +BVH),

My A2y o vy Ay étant des constantes numériques et A, B, H des polynomes en y.
Si A est de degré p + 1, I’emploi de la transformation homographique montre
que ’on peut toujours supposer

M+d+...4+d,+p+1=0.

7. Inversement, si l’on se propose de former toutes les équations de prcrk ¢
en y, du second degré en y', dont l'intégrale générale est de la forme (2),
0lt My gy + .y Ay SONL des constantes numériques PONNEES, On remarquera que

ces équations admettent un multiplicateur rationnel en y, \/H de la forme

On peut toujours vérifier algébriquement si une telle équation admet un mul-
tiplicateur arcisriQue de cette forme, ou n et p sont donnés.

S’il en existe au moins peux, leur quolient est une intégrale premiére de
I'équation différentielle et, par suite, I'intégrale générale acquiert un nombre
FINI de valeurs autour des points critiques mobiles. C'est le cas que nous avons
étudié dans les Chapitres précédents.

Pour se trouver dans le cas ou 'intégrale générale est de la forme (2), mais

Fac. de T., 2* S., 1. 42
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N'EST PAS REDUCTIBLE A LA FORME RATIONNELLE, il faut qu’il n’y ait qu'un seul
multiplicateur, et, par suite, toutes les formes (2) de I'intégrale s’obtiendront en
remplagant G par [C%, /et b désignant des constantes numériques.

8. Donnons seulement une idée rapide du probléme actuel, qui se traite abso-
lument de la méme facon que les problémes précédents. Supposons B=1 pour
simplifier les calculs.

L’équation différentielle correspondante est

0N OH O an

e N A . dy dr_|_ ay dv] ,
),_gl )’*‘é’n Z(AZ—H) 2\/H(A2—H) .}'
JA JH JH oA

[ g 2 A0 "o oz My

+ (= . 4 9r Y —o.
k Y — &1 Y —8n Q(A‘—}[) sVH Az__}l)
(

Mise sous forme entiére, elle est de degré 4 p 4+ 2n 4 4.

Pour qu’elle s’abaisse au degré ¢, il faut que 4p + 2n -+ 4 — ¢ racines de
I’équation

YL L B
| A dy dy dy dy
=] — ' 4. 4= -+ -

J— &1 Y —8n 2(A*—H) 4H(A2—H)

o,
soient intégrales de (1), c’est-a-dire vérifient les relations
Co= (o= g - (o= g [A (s @)+ V(g @) | = F (30 ),
(p=1,2, ..., 4p+2n—p),

yi(z), y2(x), ..., étant des racines de (E).
On a, par suite, la relation

(') g=h4p~+2n+ 4 — Z(a,—1),

la somme X étant élendue a toutes les solutions remarquables de multiplicité «,.

De plus, en désignant par y, (), ¥a(x)y ooy Yapgan(x) les 4 p 4+ 21 racines
de (E), on peut écrire I'identité

NG AL L B
M e __01_‘_;‘1] _ 9y 9y
V=8 Y=g 2(AP—T) GH(A*—H)

=Y ) = 2) e (= Yapean)
Wy — 81 (y — gn)*H(A2— H)?

qui permet d’obtenir n relations résolues par rapport aux constantes Ay, hg, ..., hy.
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On trouve, par exemple :

(2) W= ! \/<é’f—m>-~<é'f—_,y_w,g).
[A*(gs,2) — Hgs, 2)](gi— 1) -($i— &n] 4

Si, de plus, on ‘écrit qu'il y a 4p + 2n — q solutions remarquables, il en
résulte 4 p + 2n — ¢ relations de la forme

(3) Co=(Yp— 8 M- (Yo— &M [A(ypr @) +VH(yp, 2) |.

En général, ces relations sont compatibles et déterminées, siles constantes G,
sont guelconques et si les constantes numériques pONNEES Ay, Ay, «.., Ay NE Vé-
rifient pas certaines conditions exceptionnelles; et, par suite, elles définissent les
coelficients de I’équation différentielle en fonction connue de

n—+3p—+5=¢g-—p-+1—n=1i-+ 4 fonctions arbitraires.

III. — EQUATIONS DIFFERENTIELLES POSSEDANT UN FACTEUR INTEGRANT
ALGEBRIQUE. '

11. Supposons que I'équation différentielle

Ly?—2My+N=o

posséde un multiplicateur algébrigue & un nombre quelconque de branches,
et soient M, et M, deux quelconques d’entre elles.

Si le quotient BT' n’est pas une constante AssoLuk, 'intégrale générale ac-

quiert un nombre fini de valeurs autour des points critiques mobiles. Cest
un cas déja étudié précédemment.

.. . M . .
Sinon, le quotient &' est une constante AssOLUE et, par suile, une racine esn-

2

tiére de 'unité. Le multiplicateur algébrique est donc de la forme

/\L/-szl’y’ ),

ou P est rationnel en y', ¥ et n un nombre entier positif,
Bornons-nous ici au cas de n=1.
Posons
A+ByVR
P(y’,')/, .L‘):——:\_/— )
DVR

7

ou B et Dsont de degré & en y, R de degré 2p + 2 et A de degré 3 + p + 1.
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Ecrivons que les périodes de I'intégrale

[,
‘ DVR
sont des constantes.

Comme il y a 28 + 1 périodes polaires distinctes el 2p périodes cycliques,
nous obtenons 2p + 283 + 1 relations transcendantes (T), résolues par rapport a
des constantes arbitraires.

D’autre part, si 'on désigne par M( y, z) la fonction de y et de z, telle que

/[lﬂ-\@—{ dy +M(y, x) dx]

soit une intégrale de différentielle totale exacte, 'expression

) A»{—B\/E\ (oM o
fa§<_l)\/ﬁ_) dy,f?)—)—/ dy =M

est algébrique, puisqu’elle n’a plus de périodes.
M est donc déterminé en fonction algébrique des coefficients o(x), A x),
(=] q ) ’
w(z), ... de A, B, R, D, ces coefficients étant liés par les relations transcen-

dantes (T).

Soit
orior i B
% = k(@) M (x)y 4o Dy () yP + TE%T()—»’U) R %)
On voit immédiatement que les 3 + p quantités
Aps Pis Par -ees DB
sont des constantes, et que, de plus, w,, w,, ..., ws désignant de nouvelles con-
stantes, on a
= VR($1), p2= 02 VR(52), ceey pe=wsVR(g3).

La quantité M étant de la forme

oc—|ﬁ\/R M
DYR + A(x),

X(z) étant une fonction arbitraire de x, 'intégrale générale s’écrit

A-+ByR x+BYR —
(%) <—/[ DR y+< N +7>dw]_F<y,x>,
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a, B ¢lant de degrés 6 +p -+ 3 et 8+ 2; et 'équation différentielle correspon-
dante est

(A+BYR))y' +a+8yR+21DYyR=o
ou

(Ay'+a)—R(By'+p+2aD)*=o.

Le degré
gir=20+2p—+6

de celte équation s’abaissera, si les deux polynomes en y
A2—B*R et o — (B+2D)*R

ont des facteurs communs : ces facteurs communs, annulant, en général, les coef-
ficients de dy et dx dans la diflérentielle totale (4), sont intégrales remar-
quables. On aura, en définitive, la formule

(a") q=20+2p+0c— X(a—1),
en désignant par a, le degré de multiiplicité de la racine y, de A? — B2R, dans
I’égalité

Co=F(y, z).

Cette formule (a) permet inversement de former explicitement les équations

de degré g donné ayantun multiplicateur rationnel en y, VR et de degrédeny.



