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SUR LA FORMATION EXPLICITE

DES

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE,
DONT L’INTÉGRALE GÉNÉRALE EST UNE FONCTION

A UN NOMBRE FINI DE BRANCHES.

PAR M. ARMAND CAHEN.

INTRODUCTION.

1. La théorie des équations différentielles â points cr~itiques fixes a fait l’objet
de travaux récents et nombreux, dont les principaux sont dus à MM. Fuchs ~~ )
et H. Poincaré (2) pour le premier ordre et à MM. E. Picard (3) et P. Painlevé (4)
pour le second ordre.

Généralisant la question, M. Painlevé a étudié les équations différentielles,
dont l’intégrale n’acquiert qu’un nombre fini n de branches, quand la variable
tourne autour des points critiques mobiles (5), sans tourner autour des points
critiques fixes.
On dit alors que l’intégrale générale acquiert seulement n valeurs autour

des points critiques mobiles. ..
Ces équations comprennent, comme cas particulier, celles dont l’intégrale est

( 1 ) FUcHS, Sitzungsberichte der Academie der Wissenschaften zu Berlin; juin 1884.
(’’-) H. POINCARÉ, Sur un théorème de M. Fuchs (Acta mathematica, t. VII).
(3) E. PICARD, Théorie des fonctions algébriques de deux variables (Journal de 

thématiques pures et appliquées; i88g).
(4) P. PAINLEVÉ, Mémoire sur les équations différentielles du premier ordre (Annalesde l’École Normale; IBgI-I$g2). - Leçons sur la théorie analytique des équations

différentielles professées à Stockholm en t8g5. Paris, Hermann ; 1897.
(5) Les points critiques mobiles sont ceux qui varient avec les constantes arbitraires

d’intégration et les points fixes sont ceux qui sont indépendants de ces constantes. Quand
la variable complexe te décrit un contour fermé, on dit qu’elle n’a pas tourné autour du
point x = xo, par exemple, si la variation totale de l’argument du vecteur x0x est nulle.
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une fonction analytique n’admettant que n branches dans tout son domaine
d’existence. 

’

2. Ce travail est consacré à la détermination explicite des équations différen-
tielles du premier ordre dont l’intégrale générale n’admet qu’un nombre fini

. 

de branches ou plus généralement n’acquiert qu’un nombre fini de valeurs
autour des polnts critiques Inobiles. .

Soit

une équation différentielle du premier ordre, où F est un polynôme en y’, y
dont les coefficients sont des fonctions analytiques de x.
On peut se proposer de former toutes les équations (I) de degrés donnés en

y’ et en y, et dont l’intégrale n’acquiert qu’un nombre donné n de valeurs autour
des points critiques mobiles.
Pour fixer les idées, supposons que F soit du premier degré eny’, et soit

l’équation considérée, où A et B sont des polynômes eny de degrés 03B1 et 03B2. Appe-
lons degré en y de l’équation (2) le plus grand des deux nombres + 2 ;

après une transformation homographique quelconque, effectuée est égal
~à ~ -t-- 2 .

Cherchons à déterminer toutes les équations (2) de degré donné q en y
(soit q == 4) dont l’intégraley(x) n’acquiert qu’un nombre donné n de branches
(soit n == 3) autour des points critiques mobiles.

L’intégrale de ( 2 ) peu t alors recevoir la forme

où a et b sont des polynômes en y de degré n.
Si l’on exprime que l’équation (2 ) satisfait à cette condition, on forme évidem-

ment un système de relations différentielles algébriques entre les coefficients
~o(? ’ ’ ’ ? u~, ..., de A, B. Mais il serait très pénible de discuter la compa-
tibilité de ces relations et le degré de généralité de leurs solutions. Enfin il res-

terait à intégrer ces relations pour obtenir les coefficients À, ~, en fonction des

constantes et des fonctions arbitraires qu’ils comportent.
Toute la difficulté du problème consiste donc à déterminer explicitement

toutes les équations (2) répondant à la question, c’est-à-dire à déterminer les 03BB,



p- en fonction ALGÉBRIQUE des FONCTIONS et CONSTANTES ARBITRAIRES dont elles

dépendent.
Ce problème a été entièrement résolu par M. Painlevé pour les équations (2).

3. Mais quand on passe aux équations du second degré en y’, la méthode,
bien que subsistant en principe, se heurte à des difficultés nouvelles.

Je me propose donc de traiter complètement ce problème pour les équations
du second degré en y’. D’une façon précise, soit

une équation différentielle, où L, M, N sont trois polynomes en ~~, de degré l,,
- 

q2, q3 (analytiques en x ). Soit q le plus grand des trois nombres q, + 4, q?-~- 2~
q3. Nous nous proposons de déterminer EXPLICITEMENT toutes les équations ( 3 )
de degré DONNÉ q en y, dont l’intégrale générale n’acquiert qu’un nombre
DONNÉ n de branches autour des points critiques mobiles.

Par le mot explicitement, il faut entendre que les coefficients î~( x~, ... ,
..., v(x~, ... dont dépendent les polynomes L, M, N doivent être déter-

minés en fonction algébrique de constantes arbitraires et de fonctions arbi-
traires de x (et de leurs dérivées ).

4. La méthode que nous employons repose sur certaines propriétés établies
par M. Poincaré et M. Painlevé sur les équations différentielles du premier ordre,
et que nous rappellerons tout d’abord.
En premier lieu, comme l’a montré M. Poincaré, les équations à points cni-

tiques fixes s’intègrent algébriquement, ou par une quadrature, ou se ramènent L
algébriquement à une équation de Riccati.

D’autre part, d’après un théorème de M. Painlevé, si l’intégrale générale
n’acquiert que n valeurs autour des points critiques mobiles, cette intégrale
générale

considérée comme fonction de la constante arbitraire yo (xo ayant une valeur ~M-
mérique, zéro par exemple), est une fonction algébrique de yo.

Painlevé a déduit de ce théorème que, quelle que soit n, l’équation

se ramène algébriquement aux équations à points critiques fixes. Son intégrale
générale s’ohtient, par suite, algébriquement, ou dépend soit d’une quadra-
ture, soit d’une équation de Riccali.



5. Enfin, je rappelle encore les deux théorèmes suivants dus à M. Painlevé : :

l. Étant donnée une équation (A), on sait reconnaître, à l’aide d’un
nombre FINI d’opérations, si son intégrale ne prend qu’un nombre
DONNÉ n de valeurs autour des points critiques mobiles, et, dans ces condi-

tions, l’équation s’intègre ALGÉBRIQUEMENT, ou se ramène algébriquement,
soit à une équation

soit à une équation de RICCATI.

II. Soit une équation donnée

ALGÉBRIQUE en y’, y, x; on sait (à l’aide d’un nombre FINI d’opérations) re-
connaître si l’intégrale générale est une fonction TRANSCENDANTE qui ne
pr~end qu’icn nom~bre fini de valeurs autour des points critiques
mobiles, ou ramener l’équation aux QUADRATURES.

6. Cela posé, considérons d’abord une équation du pr~emier° degré en ~ ,

et cherchons à déterminer explicitement toutes les équations de cette forme, de
degré q donné en y, et dont 1.’intégrale générale acquiert un nombre donné n de
valeurs autour des points critiques mobiles.

. lfT, Painlevé a développé une discussion complète, relative à la compatibilité
des conditions imposées aux coefficients aj, bk dans un Mémoire (2) consacré à
l’étude plus générale des équations (2) dont l’intégrale générale est de la forme

..., ik sont des constantes numériques données, et h, g2, ... , gk

des fonctions inconnues de x.

Je reprends tout d’abord l’exposé de cette méthode, en lui faisant subir cer-
taines rnodifications, et je l’applique à la formation explicite de tous les types

( 1 ) Ce nombre est le niênie pour toutes les intégrales, sauf pour certaines intégrales
exceptionnelles.

( 2) Annales de la Faculté des Sciences de Toulouse, G.1-35; ; I896.



d’équations (2 ) de degrés 3, 4, 5, 6, ;, 8 en y dont l’intégrale générale prend
deux, trois ou quatre valeurs autour des points critiques mobiles (’ ).
Quant au passage des équations du premier degré aux équations du second

degré en y’, Ja méthode montre bien encore que les conditions imposées aux
coefficients de l’équation (1) peuvent recevoir une forme mais la

question de compatibilité entre ces relations algébriques présente des difficultés
nouvelles, où interviennent les intégrales singulières et les lieux des points de
rebroussements des intégrales.
Avant d’exposer en détail la méthode et la discussion à laquelle elle donne lieu,

je voudrais, dans cette Introduction, en indiquer rapidement les principes.

7. Lorsque l’intégrale générale de l’équation

ne prend qu’un nombre fini n de valeurs autour des points critiques mobiles, elle
peut s’écrire

où o~ p, y sont des polynômes en y de degré n, si le genre c? de la relation entre
les constantes intégrales (2) est nul et de 2n, si ce genre est égal à un.
Quant au cas de m> ty il ne peut se présenter ici (~).

C’est pour moi une occasion de comparer les types ainsi obtenus à d’autres types,
formés précédemment par M. Painlevé, à l’aide d’une première méthode développée dans
les Annales de l’École Normale (i8()2). Cette méthode, qui donne lieu à des calculs
assez simples, ne fournit pas explicitement les équations (2), dès que le nombre de branches
de l’intégrale est supérieur à mais astreint les coefficients de (2) à certaines relations
différentielles.

(2) Quand l’intégrale générale est de l’espèce indiquée, il existe une classe de courbes
algébriques de même module, dont la courbe (3) en y’, y est un paramètre quel-
conque) est une transformée rationnelle d’ordre n, et dont le genre m est dit genre de la
relation entre les constantes intégrales. On peut choisir deux intégrales premières ra-

(y’,y) : C = R(y’,y’x), c = r(y’,y,x), telles que C et c vérifient la relation
entre les et que toutes les autres intégrales premières rationnelles
en y’, y, soit y = 03C1(y’, y, x), s’expriment rationnellement en C, c.

(3) En effet, si m > i, il existe au moins deux multiplicateurs algébriques de l’équation
différentielle ’~~ dont le quotient ~~ ~~, , ,~ 
l’intégrale générale, qui correspondrait alors à une équation différentielle du premier degré
en y’. Voir PAINLEVÉ, Annales de l’École Normale, p. 220 et suiv. ; 1892.



Soit d’abord le cas de m = o. Posons

P, Q, R étant trois polynômes de degrés i, j, k liés par la relation

l’équation Q = o (de degré j) désignant, le lieu des points de rebroussement, et

l’équation R = o (de degré k), les intégrales singulières.
La relation (4) est, par hypothèse, irréductible en y et C, sauf pour certaines

valeurs exceptionnelles de C et, en particulier, pour les valeurs C = Cr (néces-
sairement en nombre fini), dites valeurs remarquables de la constante, et telles

que l’équation (4) admet, pour C = Cr, quel que soit x, des racines multiples
y = gr( x), dont les ordres de muLtiplicité ar, br, ..., er sont liés au degré c~ de

l’équation différentielle par la relation 
’

Écrivons que l’équation (3) possède J. courbes y =g(x) lieux de points cle

rebroussement, k intégrales singulières et p solutions nemarquables

respectivement d’ordres aj, a2, ... , ap, avec la condition

nous obtenons

conditions algébriques; et, si toutes ces conditions sont compatibles, l’équation
différentielle dépend de

fonctions arbitraires et de p constantes arbitraires. Par suite, à tout choix des

entiers positifs i, j, k, satisfaisant à l’égalité (6), correspondent un nombre fini
de systèmes de conditions algébriques entre les coefficients de l’équation ~4).

Chacun de ces systèmes définit une équation (4) dépendant de i + 4 fonctions
arbitraires et d’un certain nombre de constantes arbitraires, égal au nombre

des solutions remarquables .

(1) ) P. PAINLEVÉ, Leçons de Stockholm, p. i6;.



Ce nombre atteint son maximum 2n + k - q, quand toutes les solutions re-
marquables sont d’ordre deux.

8, Dans ce dernier cas, qui peut être considéré comme le plus yénéral, nous
faisons la discussion complète des conditions correspondantes, et
nous montrons :

1° Que les conditions précédentes sont COMPATIBLES et DÉTERMINÉES ;
2" Que l’équation (4) ainsi obtenue en y, C est ITtRÉDLTCTIBLE; J
3° Que l’équation différentielle (3) corr°espondante (dont le est ccu

plus égal cè l) est EXACTEMENT DE DEGRÉ j; ;
4° Que le nombre des BRANCHES de permutables autour cle.s

points critiques mobiles, nombre qui est au plus égal èc n, , est BIEN ÉGAL cr ü.

et que, par suite, 

5° Le GENRE 03C9 de lcc relation entre les constantes intégrales est nuL.

La question posée au début est donc résolue dans le cas o, et le type le

plus général des équations (3) dépend de i + 4 FONCTIONS ARBITRAIRES et de

2 n + k - cl - 3 CONSTANTES ARBITRAIRES (’ ) distinctes, i étan t t le nombre des

racines doubles du discriminant M2 2014 LN de l’équation en y’, et k le nombre
des intégrales singulières distinctes.

9. Si l’on passe au cas où le genre 03C9 est égal à uN et si l’on recherche d’abord
directement les équations (3) correspondantes, on remarque qu’il m’y a pas, en
général, de courbe Q = o, lieu des points de rebroussement ( 1), et que l’équa-
tion Il = o (de degré 2p + 2) désignant les intégrales singulières, l’intégrale gé-
nérale est donnée par la quadrature de différentielle totale de première espéce

où ),(x) est une fonction arbitraire de x, et où les polynômes H(y, x), K~~y^, x~), ,

R (y, x) dépendent de p + 2 fonctions arbitraires et d’r,crae constante

(1) nombre 2n + k - q des constantes arbitraires distinctes peut être réduit à

2 n + la - q - 3 ( ce dernier nombre devant être remplacé par zéro, s’il est négatif),
parce que toutes les formes (4) de l’intégrale générale se déduisent de l’une d’entre elles

par Je changement de C en ~~ ~ À, désignant des constantes numériques.
t~+P

(2) ) Dans quelques cas exceptionnels, on peut, cependant, rencontrer des lieu,x de points
de rebroussement, pour lesquels les deux valeurs de y’ deviennent infinies.



arbitraire , module de la différentielle elliptique, dont est une 

formée rationnelle.
Si l’on veut que l’équation différentielle correspondante, dont le degré appa-

rent est 2p + 2, s’abaisse au degré y, il faut introduire, comme plus haut, les
notions de solutions remarquables et de constantes remarquables; d’ou des
relations, qu’on peut écrire sons la forme transcendante (1)

où y03C1 est une fonction algébrique des p + z fonctions précédentes.
Ces relations sont en nombre 2 p + 2 - q pour la solution plus générale.
On trouve ainsi i + 4 fonctions arbitraires et 2p + 2 - q constantes 

traires, en fonction desquelles les coefficients s’expriment algébriquement.
Nous conservons aux relations (7) leur forme transcendante, nous y ajoutons

les conditions transcendantes, exprimant ne l’intégrale H dy R n’a que deux

périodes, qui sont des constantes absolues, et nous montrons que l’ensemble de
ces deux séries de relations transcendantes est compatible et détemtiné (2).

a donc i + 4 fonctions arbitraires, et, comme, d’autre part, les relations

peuvent recevoir une forme algébrique, on en conclut t due les coefficients dé-
pendent algébriquement de i+4 fonctions arbitraires convenablement choisies.

10. Observons, dans ce dernier cas, que, si l’on met l’intégrale générale sous
la forme

il n’y a pas de lieux de points de rebroussement (j=o) et x,, 03B21, 03B31 sont de debné
2 n en y.

Inversement, si une relation (,4)’ de degré 2n définit l’intégrale d’une équation
différentielle (3) de degré q en y, cette intégrale acquiert 2 n valeurs autour des
points critiques mobiles; les coefficients de (3) dépendent de i+4 fonctions ar-
bitraires et de y n + 2p - q - i constantes arbitraires, et le 03C9 est nul.

comme dans le cas de r~ = t, les constantes arbitraires sont au nombre de

2 p + 2 - q, il faut en conclure que, dans le cas de 03C9 == i, les 4 n + 2 p + 2 - q
constantes remarquables, ou bien ne donnent pas lieu chacune à une seule solu-
tion double, ou bien sont liées par 4 n - fi relations algébriques.

(1) Ces relations pourraient, d’ailleurs, être ramenées à des formes algébriques.
(’) Les autres objections, que l’on peut faire au raisonnement, font également ici l’objet

d’une discussion complète, mais rapide, analogue à celle que nous développons à propos
des équations de genre ~ = o. -



Nous montrons qu’il existe alors quatre constantes remarquables telles, que
le premier membre de (4)’ devenant un carré parfait, elles donnent lieu respec-

à un abaissement de degré n. .
Ces quatre constantes ne sont autres, d’ailleurs, les quatre racines du ra-

dical, qui engendre la différentielle elliptique dont il a été question un peu
plus haut.

11. En définitive, nous obtenons le théorème fondamental suivant :

THÉORÈME. 2014 Les entiers q et n étant donnés (4 ~ q ~ 4 n), appelons i, j, k
trois entiers positifs sati.sfaisant à la condition 

’

et aux inégalités

A chacun de ces systèmes d’entiers i, j, h, correspondent une infinité
d’équations (3), dont l’intégrale acquiert EXACTEMENT n valeurs autour des
points critiques mobiles. Ces équations, qui forment deux classes distinctes,

que le GENRE 03C9 de la relation entre les constantes intégrales est égal
à ZÉRO ou à UN, dépendent ALGÉBRIQUEMENT de i + 4 FONCTIONS ARBITRAIRES et
de CONSTANTES ARBITRAIRES, dont le nombre est 2n + %t - q - 3 Oll k - q (1),
selon qu’on se trouve clans l’un ou l’aletl’e cle ces deux eccs.

Le théorème n’est en défaut que si l’entier q étant égal à fi, on a Ia = /, ou
k = 2,,j = o. Dans ces deux cas exceptionnels, l’équation (3) correspondante a
toujours ses points critiques fixes.

12. Un problème intéressant consiste à former les équations différentielles de
l’espèce précédente, dont les coefficients appartiennent à une classe donnée cle
fonctions; nous avons là encore un genre de questions, où le nombre des con-
stantes remarquables joue un rôle des plus importants.

Voici les deux principales questions, que nous résolvons, et qui se rattachent
à cet ordre c1’idées.

I. Former les équations (3) à coefficients ALGÉBRIQUES, Je degré q DONNÉ
en y, dont l’intégrale générale prend un nombre DONNÉ n de valeurs autour
des points critiques mobiles.

Il. Former les équations (3) à coefficients ALGÉBRIQUES de degré q DONNÉ,

( 1 ) Les deux nombres an + k - q et k - q doivent être remplacés par zéro,. s’ils sont
négatifs... ,



dont l’intégrale est une fonction TRANSCENDANTE qui ne prend qu’un nombre
fini (NON DONNÉ) (1) de valeurs autour des points critiques mobiles.

13. Les principes utilisés précédemment et les méthodes correspondantes
s’appliquent à 1.’étude beaucoup plus compliquée des équations du second degré
en y’ et de degré q en y

ayant pour intégrale générale

où l’ sont des expressions de la forme

î,,, 03BB2, ..., ),ni étant des constantes numériques quelconques données, et pour

lesquelles nous établissons une formule (03B1)’, qui peut être considérée comme une
généralisation de la formule (x) du n° 7.
Nous n’avons pas encore résolu complètement la question, qui consiste à

former explicitement les équations (3) de degré q, dont l’intégrale générale est
de la forme (8), mais les quelques développements que nous consacrons à ce

problème suffiront à montrer comment les méthodes précitées perlnettent de le
traiter complètement.

, 
Pour terminer, nous consacrons quelques lignes aux équations (3) qui ad-

mettent un facteur intégrant ALGÉBRIQUE et nous établissons, là encore, une
formule (x)", analogue à la formule (o:) du n° 7, permettant de traiter le problème
de la formation explicite de ces équations.

14. Je rappelle aussi les nombreuses applications développées dans le corps
de ce Mémoire.

Tout d’abord, comme je l’ai déjà signalé plus haut, je forme explicitement
toutes les équations du premier degré en y’, qui correspondent aux valeurs 3, 4,
~, 6, ~, 8 de rentier ~~ et aux valeurs de l’entier rt.

J’insiste longuement sur certains exemples particuliers, afin de bien montrer le
but poursuivi en introduisant la méthode en question.

Je forme ensuite toutes les équations du second degré en y’, dont l’intégrale

(1 ) Ce nombre est toujours supposé le même pour toutes les intégrales, sauf pour des

intégrales exceptionnelles.



n’acquiert que deux branches autour des points critiques mobiles et pour les-

quelles l’entier q prend les valeurs 4, 5, 6, 7 et 8.
Enfin, je forme les types les plus intéressants d’équations du second degré

en y’, dont l’intégrale générale acquiert trois valeurs autour des points cri-
tiques mobiles (~).

CHAPITRE I.
ÉQUATIONS DU PREMIER DEGRÉ EN y’.

I. - GÉNÉRALITÉS ET PROPRIÉTÉS CONNUES.

i. Étant donnée une équation différentielle

où B et A sont deux polynomes en y premiers entre eux pour x quelconque, le
premier de degré q (2), le second de degré q - 2, si l’intégrale générale ne
prend que n valeurs autour des points critiques nl0biles, on peut la mettre sous
la terme

La relation (2) définit, par hypothèse, une fonction y(x), qui, une valeur

quelconque donnée constante C, a ’n valeurs distinctes. L’équation de degré n
en y

ne sera réductible que pour certaines valeurs exceptionnelles de C, et, en parti-
culier, pour les valeurs dites valeurs remarquables, de la constante pour
.lesquelles l’équation (2) admet, quel que soit x, des racines y = g(x),
dites solutions remarquables, et dont les ordres de multiplicité sont liés au

degré q de l’équation par la relation ( 3 ~

(1) Les principaux résultats contenus dans ce Travail ont été résumés dans une Note

présentée à l’Académie des Sciences (séance du 26 décembre 1898 ).
(2) D’une façon plus générale, si pi et qt sont les degrés de B et -1, q est le plus grand

des deux nombres p1, q1 + 2.

(3) ) P. PAINLEVK, Leçons de Stockholm, p. 



2. Inversement pour que l’équation (2) définisse l’intégrale générale d’une

équation (I) de q, il faut et il suffit qu’il existe p solutions remarquables
,Y, ~v), y.~~.x), ..., de multiplicités a,, a~, ..., ap, telles qu’on ait .

Soit donc l’intégrale générale

Si nous exprimons est une racine d’ordre a,.- i de l’équation

et, de plus, qu’elle rend constant le rapport ’? ,

nous formons crr conditions algébriques portant sur les 2 n + i coefficients
de u, ~. Si l’on élimine entre ces conditions, on obtient Or - i conditions

algébriques entre les coefficients xi, 03B2j et la constante C,,.
En opérant ainsi pour chaque solution remarquable, on obtient

conditions algébriques (S). Si toutes ces conditions sont compatibles, l’équa-
tion (2) dépendra algébriquement de q + I fonctions arbitraires et d’un

nombre de constantes arbitraires égal au nombre des solutions remarquables;
ce nombre sera maximum et égal à 2 n - cf, si tontes les solutions remarquables
sont d’ordre deux.

On peut donc dire que la solution la plus générale dépend de q + 1 fonctions _

arbitraires (nombre indépendant du nombre n des branches de l’intégrale géné-
rale) et de 2 n - q constantes arbitraires.

- COMPATIBILITÉ DES RELATIONS (S).

Il. Les conclusions précédentes ne sont rigoureusement exactes que si les con-
ditions (S) sont compatibles et déterminées.
Nous allons démontrer directement que, au moins pour la solution la plus



générale (1), c’est-à-dire pour laquelle toutes les solutions remarquables sont
d’ordre deux, il y a bien compatibilité.
En effet, dans ce cas, les - 

c~ conditions sont de l’a forme

où y, (x), y2(x), ... sont t des fonctions des coefficients
inconnus de x, ~3.

Les constantes C1, C2, ..., étant entièrement arbitraires, le système (S),
qui contient algébriquement les fonctions 03B2j, sera résoluble par rapport
à - q d’entre elles, à moins qu’un des seconds membres de (S), par exemple
le dernier, ne soit identiquement fonction des autres.

Supposons qu’il en soit ainsi, et exprimons que toutes les autres racines ’ 
’

de D, soit .

sont des intégrales de (i), d’où le système

. Pour des valeurs arbitraires données aux 2n 2014 2 constantes G, C’, a fortiori,
les 2n 2014 2 seconds membres de (S) et (S’) ne sont pas distincts, et, par suite,
l’équation ~~)’ correspondant à ces. 2 n - 2 valeurs remarquables de la constante
dépend au moins de quatre fonctions arbitraires; mais c’est une équation dc
Riccati; or, l’intégrale générale d’une équation de R.iccati dépendant au plus de
trois fonctions arbitraires, il ; a contradiction et, par suite, les équations (S)
sont, bien résolubles par rapport à 2 n - q des fonctions 

( 1 ) ) Ci. P. Leçons de Stockholm, p. 15a. - A nnales de la Faculté des Sciences
de Toulouse, loc. cit. 

’



Il résulte de là qu’en faisant abstraction de certaines VALEURS EXCEPTIONNELLES
des constantes c, , les conditions (S) définissent 2n - q des 2n + i 

tions ul, ALGÉBRIQUEMENT à l’aide de q + t cl’erztre elles et de 2 n - q eou- ,

stantes arbitraires.

III. - EMPLOI DE LA TRANSFORMATION HOMOGRAPHIQUE.

4. On peut remarquer que, si l’on effectue sur y une transformation homo-
graphique, dont les coefficients sont des fonctions de x et sur x le changement
de fonction x = 03C6(X), les équations (i) et (2) gardent leur forme et leur 
donc, il toute solution de I~ question, pour un système de valeurs données de u, q,
en correspondent une infinité dépendant de quatre fonctions arbitraires.

()r, nous venons de voir que la solution la plus générale dépendait de q + 1

fonctions arbitraires.

Si q est plus grand que u, nous avons bien un minimum de quatre fonctions
arbitraires; mais si l_= ~, si nous sommes en présence d’ane équation
de Riccati, il semble qu’il y ait contradiction, puisqu’en réalité nous ne dispo-
sons plus que de trois fonctions arbitraires. Cela tient à ce que l’équation de
Riccati admet une transformation en elle-même de la forme

dépendant d’une fonction arbitraire.
En effet, on peut toujours ramener cette équation à la forme y’ = o, an moyen

d’une transformation homographique et, sous cette dernière forme, on voit que
l’équation ne change pas quand on remplace x par c~~X).

Inversement, si une équation (I) admet une TRANSFORMATION en elle-même

dépendant d’une fonction arbitraire, c’est une équation de Riccati.
5. Enfin, on peut se servir de la transformation homographique, suivie du

changement de variable, pour ramener l’équation (i) à des formes canoniques
intéressantes (1), et alors les équations (t) répondant à la question ne dépendront
que_de (q + I) - 4 = q - 3 fonctions arbitraires; par exemple, on peut snpposer
que B est seulement de degré q - 3 et que y’ est de la forme

On peut choisir comme fonctions arbitraires les coefficients bo, h,, ..., b~_3

(1) l’oir P. Annales de l’~’cole p. 2t-3o et I$g2.



du dénominateur, qui dépendent algébriquement des coefficients 03B2j et non de
leurs dérivées; il reste alors quatre fonctions arbitraires, lesquelles ne subsistent
plus, d’ailleurs, si l’on assujettit le degré du numérateur à être égal à q - 3, le

coefficient de étant égal à un. Alors les coefficients ao, a, , ... aq-4 s’ex-
primeront algébriq~uement à l’aide des coefficients b et de leurs dérivées pie-
mières.

IV. - NOMBRE DE BRANCHES DE L’INTÉGRALE.

6. Il resterait à démontrer que, si l’on adopte la solution la plus générale des.
équations (S), le degré q ne s’abaisse pas nécessairement, c’est-à-dire que les

équations (S) n’entraînent pas comme conséquence que d’autres racines y == g(x)
de D=== o soient des solutions remarquables ; car, s’il en était ainsi, une des équa-
tions (S’) serait conséquence des équations (S), ce qui est impossible, comme
nous l’avons vu plus haut.

7. Enfin, montrons que la fonction y(x) ainsi définie a bien Il branches et non
pas un nombre moindre, du moment que q est plus grand que deux.

En effet, supposons que l’intégrale générale ne prenne qu’un nombre v de va-
leurs (v  n). Elle est alors réductible à la forme

où fi, et x, sont des polynomes en y de degré v.

C = ~~~’ ’~) est alors une fonction rationnelle de C’a (,Y, x ) .

Si C~ est une racine multiple de l’égalité (7 ), et il y en aura toujours au moins
une, du moment que v > i, et Co la valeur correspondante de C, l’égalité

admet des solutions y ~ g( x) multiples, et pour qu’elles soient seulement
doubles, il faut que C~ soit racine double de l’égalité 

’

et que, de plus, l’équation

ait ses racines en y siniples.
. Or, du moment que v > r, cette dernière équation à plusieurs solutions



y = g(x), y = h(x), ... correspondant à la même valeur Co de C ; et, comme
ce sont des solutions remarquables, les valeurs de la constante qui leur corres-
pondent n’auraient pas été prises arbitrairement, puisqu’elles sont toutes égales
à Co. Il est donc impossible que, pour la solution (2) la plus générale, le nombre
des branches soit inférieur à ~t.

Le raisonnement n’est ect défaut que si v est égal à tcct, mais on sait que l’équa-
tion (i) correspondante est une équation de Riccatl, par suite q = 2.
Donc, y si l’on suppose q > 2, n est bien le nombre de branches permutables

dcy(x).
Je n’examinerai pas davantage la discussion ni les applications aux ,équations

à coefficients pas plus que d’autres questions intéressantes, me 
nant à renvoyer au Mémoire de M. Painlevé (1), où tous ces problèmes sont
traités avec les développements qu’ils comportent.

CHAPITRE II.

ÉQUATIONS DU PREMIER DEGRÉ EN y’, - APPLICATIONS.

1. - ÉQUATIONS A DEUX BRANCHES.

t. ÉQUATIONS DE DEGRÉ QUATRE. - L’intégrale générale des équations diffé-
rentielles de cette espèce se met sous la forme

et intègre Inéquation de deg~ré q = ~, ,

où les coefficients des diverses puissances dey s’expriment ra.tionnellement àl’aide
des cinq fonctions arbitraires 03BB2, 03BB1, 03BB0, 1, 0 et de leurs dérivées premières.

2. ÉQUATIONS DE DEGRÉ TROIS. - Pour former les équations de degré trois
dont l’intégrale générale acquiert deux valeurs autour des points critiques mobiles,

.( ~ ) Annales de la Faculté des Sciences de Toulouse, lac. cit.



on pourrait exprimer, par exemple, que le numérateur et le dénominateur de ~y’
dans la relation (2) ont un facteur commun y - K, d’où une relation algébrique

qu’il est facile de former, où H est un polynome entier par rapport aux fonc-
tions ~,; y et leurs dérivées premières ; en sorte qu’en supprimant le facteur

commun y - K [K est une fonction rationnelle des ~,, pL, a’, ~’ liés par la rela-
tion (3)], on obtiendrait une équation différentielle, de degré trois en,y, dont les
coefficients son t des fonctions rationnelles des À, , 03BB’, ‘u.’ liés par la relation 
férentielle (3).

L’équation

ainsi obtenue dépend bien de quatre fonctions indépendantes, puisque les coef-
ficients des diverses puissances de y sont exprimés de la façon indiquée plus haut ;
mais comme la relation H = o contient les dérivées premières ~,’, ~,’, ..., on ne

peut dire que l’on a exprime explicitement les coefficients à l’aide de quatre fonc-
tions indépendantes, puisque, pour exprimer une des cinq fonctions î,, ~ en func-
tion des quatre autres, il faudrait savoir intégrer la relation H - o.

Ainsi donc, pour que la question que nous nous sommes posée fût résolue, il
faudrait pouvoir déduire, de la relation H == o, une relation algébrique H1 = o
ne contenant plus les dérivées des fonctions À, UL.

Or, la méthode employée dans ce travail, ayant précisément pour objet de subsii.
tuer à la relation H = o, qui contient les dérivées premières des À, u, une relation

contenant algébriquement les fonctions À, u et une constante arbitraire C,, cette
relation H. = o doit être considérée comme intégrant la relation H = o.

Il suffit d’écrire que les deux équations

ont une racine commune en y, d’où la relation

Quand cette relation est satisfaite, on peut supprimer au numérateur et au



dénominateur de (2) le facteur commun

et l’on obtient l’équation différentielle demandée.

Du reste, on peut supposer 11 1 = o ; cela revient à remplacer

respectivement par

et la relation se réduit alors à

relation qu’on aurait pu d’ailleurs écrire immédiatement ; le facteur commun se

réduit alors à 2y + et après l’avoir supprimé il reste

3. En écrivant que l’équation différentielle s’abaisse au degré deux (auquel cas
c’est une équation de Riccati), c’est-à-dire que ,

est une solution remarquable, on obtient une relation entre 03BB2, 03BB1, 03BB0, 0 soit sous

forme différentielle, en écrivant que le numérateur de (3) s’annule pour y = y,,
soit sous forme algébrique en écrivant que, pour C = C2, on a

et, par suite, l’intégrale générale se met sous la forme

où l’on a posé

et sur cette forme on vérifie bien’ que l’équation différentielle est à points cri-

tiques fixes. C’est le cas exceptionnel q = 2. ,



II. - EMPLOI DE LA TRANSFORMATION HOLOGRAPHIQUE SUIVIE DU CHANGEMENT

DE VARIABLE INDÉPENDANTE.

4. Nous avons vu que la transformation

conservait le degré de l’équation différentielle et le nombre de branches de l’in-
tégrale. 

’

Si l’on suppose que y = o, y = i, y = oo sont des intégrales des équations dif-
férentielles, moyennant la transformation (4), on voit que, dans le cas de q _-_ 4;
l’intégrale générale étant de la forme .

donne lieu à l’équation différentielle

Pour le cas de q = 3, la quantité 03B1 étant nulle, l’intégrale est de la forme

l’équation différentielle correspondante se réduit alors à

Si l’on part des formes (5) et (6) des équations différentielles, on obtiendra
toutes les équations différentielles dont l’intégrale générale a deux branches, en
effectuant dans (5) et (6) sur x et y, la transformation (4), 
b(X), c(X) sont des fonctions arbitraires de X.

- On pourra se reporter au Mémoire (i) déjà cité de M. Pain-
levé, qui contient des types d’équations un peu différents de ceux que nous avons
introduits. Mais la méthode que nous avons employée permet d’obtenir des types
iden tiques, comme nous allons le montrer rapidement.

( i ) Annales de l’École Normale; 1892.



6. ÉQUATIONS DE DEGRÉ QUATRE. - Pour que l’équation différentielle, dont

représente l’intégrale, soit de la forme

il faut et il suffit que l’on ait

d’où

7. ÉQUATIONS DE DEGRÉ TROIS. - Pour soit égal à trois, il faut et il Suffit
que pour C = Ci, y ._-_ o soit solution remarquable, d’où

ou bien encore que pour C = C2, y == 00 soit solution remarquable, d’où

On obtiendra alors les deux formes

qui se déduisent, d’ailleurs, l’une de l’autre par le changement dey en I y.

Dans chacune de ces deux formes, la constante arbitraire introduite figure
d’une façon artificielle, la première de ces deux formes pouvant s’écrire

si l’on pose



il vient

et l’on retombe bien ainsi sur un type très simple obtenu par M. Painlevé.

III. - ÉQUATIONS A TROIS BRANCHES.

8. ÉQUATIONS DE DEGRÉ SIX. - L’intégrale générale étant de la forme

l’équation différentielle correspondante (i) la plus générale est de degré six

Nous disposons des coefficients de la transformation homographique, de façon
. que trois des racines du dénominateur, qui après les réductions est du qua-

triè.me degré, soient o, 1 et oo, d’où les conditions

Le dénominateur D devient alors

et l’on a pour l’équation différentielle

où A et B ont les développements suivants :

les fonctions 03BB,  étant liées par les relations (9) et 



9. ÉQUATIONS DE DEGRÉ CINQ. - Écrivons qu’une des racines de D, par

exemple est intégrale de (7), d’où .

et comme ),3 ne figure que dans la combinaison on peut supposer ),3 = o,
d’où ),2 = o, et l’équation différentielle correspondante est de la forme

où B eL A ont pour expressions

~,o, ),,, u2 et étant liés par la relation

10. ÉQUATIONS DE DEGRÉ QUATRE. =--, Deux cas peuvent se présenter, cal’

l’abaissement du degré de l’équation (8) provient de la présence de deux solu-
tions remarquables doubles, ou d’une solution remarquable triple.

PREMIER CAS : Il existe deux solutions remarquables doubles. - Soient
y = o, y == ce, d’oû

on peut suppose!*

et par sui te, y

avec

DEUXIÈME cAs a une solution remarquable triple. - Soit y = ce, d’où



ÉQUATIONS DE DEGRÉ TROis. - Nous devons distinguer deux cas, suivant
qu’il y a trois solutions remarquables doubles, ou une solution triple et une

solution double.

PREMIER CÀS Il y a trois solutions doubles. - 5oient o, 1, oo. Nous 

qu’à écrire que, pour l’équation (g), y=1 i est en outre une solution remarquable
correspondant à la valeur C = i de la constante, d’où les conditions

et l’équation différentielle prend la forme

dont l’intégrale générale est

DEUXIÈME CÀS : Il y a une solution triple et une solution double. -

Soient y = oo solution triple et y - o solution double, d’où

12. Remarque I. - Si l’on exprimait qu’il y a un abaissement plus considé-
rable, on obtiendrait une équation de Riccati.
On peut vérifier sur les formes correspondantes de l’intégrale générale que l’on

se trouve bien en présence d’une équation à points critiques fixes.
Pour l’équation par exemple, .si l’on exprimait qu’il y a abaissement

d’une unité dans le degré, c’est-à-dire que

est une solution remarquable double, correspondant à une valeur C ~ C, de la
constante, on obtiendrait une équation de Riccati, et, d’autre part, l’intégrale
générale se réduisant à la forme

oÙ «,, 03B21, 03B31, 03B41 sont des constantes numériques, l’équation différentielle cor-
respondante aurait bien ses,points critiques fixes.



De même, si l’on exprime que y = I est solution double pour l’équation ( ~ ~ ~,
il vient

et l’intégrale générale? se réduisant à

ou (X) est une constante numérique, a bien encore ses points critiques fixes.

Remarque II. - Si l’on avait exprimé tout d’abord que = est solution

remarquable, on aurait rencontré des formes d’équations différentielles, identiques
à celles trouvées par NI. Painlevé ~’ ~ à l’aide de sa première méthode.

~13, Signalons enfin les types intéressants d’équations différentielles, obtenus
en écrivant que l’équation différentielle admet y == o, y=== i~ y = oo comme so-
lutions ordinaires pour les valeurs C = o, C = i, C = oo de la constante. Ceci

est toujours possible puisque l’équation différentielle dépend au moins des quatre
fonctions arbitraires a(x), c(x) de la transformation

et que toutes les formes de l’intégrale générale ( ~ ~ se déduisent de l’une d’entre

elles par le changement de C en ~

L’équation de degré six s’obtient en partant de

où A et B sont deux polynômes de degrés trois et quatre.
Écrivons que y = ~o est solution remarquable, d’où l’équation de degré cinq

A et B étant du troisième degré ; et l’on formera de même les équations de degrés

( ~ de Normale, ~ 8g2, loc. cil.



quatrc et trois

IV. - ÉQUATIONS A QUATRE BRANCHES.

14. Dans tout ce qui suit, nous supposerons qu’on a disposé des coefficients de la
transformation homographique, de façon que y = o, y = 1, y - oo soient des
solutions ordinaires de l’équation différentielle. Il suffira alors, dans tous les

types que nous obtiendrons, de remplacer y par 2014"2014*- pour former toutes les
équations différentielles de l’espèce indiquée. Elles contiendront, par con-

séquent, rationnellement les fonctions arbitraires a, ~, ~ et leurs dérivées

premières.
Le degré de ces équations varie entre huit et trois. Je vais passer très rapi-

dement sur les équations de degrés huit, sept, six et cinq dont la formation est
analogue à celles des équations du paragraphe précédent, et j’insisterai plus lon-
guement sur les équations du quatrième et du troisième degrés.

I. ÉQUATIONS DE DEGRÉ HUIT. - générale est de la forme

II. ÉQUATIONS DE DEGRÉ SEPT. - Écrivons oo est solution remarquable
double pour C == oo, d’où

III. ÉQUATIONS DE DEGRÉ SIX. - Deux cas peuvent se présenter :



PREMIER CAS : Il y cc deux solutions remarquables doubles. - Soient y _-__ ~,
y == 0 pour 

DEUXIÈME CÀS Il y a une solution remarquable triple. - Soit y = oc pour

I V. ÉQUATIONS DE DEGRÉ CINQ. - Trois cas peu vent se présenter : .

PREMIER CAS : Il Y a trois solutions remarquables doubles. - Soient y = o,
C.~--’I~ 

L’équation différentielle correspondante est

oii l’on a

d’où



DEUXIÈME CAS : : Il y a une solution remarquable triple et une solution
double. - Soient y = ~ et y ._-_ o,

TROISIÈME CAS : 1 Il y a une solution remarquable quadruple. - Soit y = x
pour C = ao, .

V. ÉQUATIONS DE DEGRÉ QUATRE. - Dans tous les exemples formés jusqu’à
présent, le nombre de valeurs remarquables de la constante n’étant jamais supé-
rieur à trois, on pouvait faire en sorte qu’aucune constante arbitraire ne figurât
dans l’équation différentielle définitive. En effet, toutes les formes de l’inté-

grale, se déduisant de l’une d’entre elles par le changement de C en y

(a,, ~, désignant des constantes numériques), on peut donner à trois des

valeurs remarquables de la constante les valeurs o, 1 et oo.

Nous allons rencontrer maintenant des équations où une ou deux constantes
arbitraires distinctes figureront algébriquement d’une façon ESSENTIELLE.
Nous supposerons toujours qu’on a effectué sur y une transformation homogra-

pliique, telle que o, i, oo soient des intégrales correspondant aux valeurs o, l,

0o de la constante d’intégration.

PREMIER CAS : 1 il y a une solution quadruple (soit y = ~) et une solution
double (soit y = o~; d’où

DEUXIÈME CAS : Il y a deux solutions tniPles. - Soient y - oo et y - o,

TROISIÈME cAs : Il y cr, une solution triple et deux solutions doubles. -



Soient ~y = ~o, y == 0, y = i , on obtient les formes suivantes :

QUATRIEME CAS : 1 Il y a quatre solutions doubles. - Soient y = o, y = r,
~~ les trois premières solutions doubles, correspondant aux valeurs 
(1 _ ~ , C = oo de la constante, l’intégrale générale est de la forme (5).
Pour exprimer qu’il existe une solution remarquable double, pour la valeur

il = y de la constante, il faut écrire que les deux équations

ou, ce qui revient au même, que les deux équations qui s’en déduisent

et que j’écris

aient une racine commune, d’où une relation algébrique

qui permet d’exprimer D, par exemple, en fonction algébrique de A, B et de la

constante arbitraire v

lj’intégrale remarquable a pour expression

où P et Q sont deux polynômes en A, B, D et B, D, Y étant liés par la
relation algébrique H = o. .



Moyennant ces conditions, le numérateur et le dénominateur de l’équation (5)’
s’annulent pour y - y, (x) et l’équation différentielle se réduit à

Remarque l. - Si l’on exprimait directement que le numérateur’ et le déno-
minateur de l’expression (5 )’ ont un facteur commun différent de y et de y - i, y
c’est-à-dire que les deux équations

ont une racine commune, on obtiendrait

relation différentielle algébrique entre les coefficients A, B, D, dont la relation
H = o donne l’intégrale, en exprimant D, par exemple, en fonction algébrique
de A, de B et de la constante arbitraire y.

Remarque Il. - On peut pousser plus loin les calculs et exprimer les coeffi-
cients de l’équation différentielle (I3) en fonction RATIONNELLE de deux fonctions
arbitraires convenablement choisies, de leurs dérivées premières et de la con-
stante arbitraire y. La relation

exprime, en effet, que les deux équations (12) ont une racine commune Pre-
nons cette racine commune T comme fonction nous pouvons alors

exprimer A et B en fonction rationnelle de D, T et y en résolvant les équa-
tions (12) par rapport à A et B.
On obtient alors A et B sous la forme de deux fractions ayant pour dénomina-

teur commun

et pour numérateurs, la première

la seconde



et l’équation différentielle corréspondante’de’vient, après la suppression du facteur
~y - T qui figure au numérateur et au dénominateur de ( 5 ~’,

ou A et B doivent êtne remplacés par les fonctions RATIONNELLES de D, T et y
trouvées précédemment; et A’, B’ par leurs’ dérivées.

ÉQUATIONS DE DEGRÉ TROIS. - Il y a cinq cas à distinguer : 1
PREMIER cAs : ll existe deux solutions triples et une solution double. -

Soient y = o, y = y = 1 , .

DEUXIÈME CAS Il existe une solution quadruple et solutions doubles. -

Soient y = ~, y = 0, y == 1,

TROISIÈME CAS Il existe une solution quadruple et une solution triple. 2014

Soient y == ce, y == o’, 
- . ,

;As : Il existe une solution triple et t!’oLS solutions doubles. -
Soient y = ce la solution triple, y = o, y = i deux des solutions doubles.
Nous partons de la forme d’intégrale générale 

Exprimons qu’il existe une nouvelle solution remarquable double pour la va-
leur G = y de la constante. Cela reviendra, comme dans le § V, à exprimer que
deux équations du second degré .

une racine commune, d’où une relation



permettant d’exprimer B en fonction algébrique de A et de la constante arbi-
traire 03B3; l’intégrale remarquable correspondante sera la racine commune

aux deux équations précédentes, P, et Q, t étant des polynômes entiers en A,
B, y ; l’équation différentielle (io)’ s’abaissera au degré trois par la suppression
du facteur commun y -y, au numérateur et au dénominateur dey’, et il restera

/. 2014 SI l’on écrit que (io/ se réduit an degré en exprimant
2(BA’-AB’)20143B’ . 

, , 
. 

, 
.

une racine du dénominateur, on obtient une

relation différentielle

dont l’intég.rale générale est précisément mise sous la forme algébrique

Remarque Il. - On peut exprimer les coefficients de l’équation différen-
tielle (14) en fonction RATIONNELLE d’une fonction de sa dérivée

première et de la constante arbitraire 03B3.
En effet, quand la condition

est satisfaite, les deux équations

ont une racine commune .T(x) ; on a alors les deux relations

qui, résolues en A et B, donnent A et B en fonction rationnelle de T(x) et de ~; .



!./équation différentielle devient alors

on l’on doit remplacer A et B par les valeurs précédentes, et ~1’ par leurs

dérivées. ’

: Jl existe cinq solutions remarquables doubles. - Nous
avons vu précédemment que, dans le cas de quatre solutions doubles, l’équation
correspondante (I !) était du quatrième degré.
Pour qu’elle s’abaisse au troisième d.egré, il faut et il suffit qu’il existe une

nouvelle solution remarquable pour une valeur v, de la constante, autrement dit
que lcs deux équations 

-~. ---.

(lui ne diffèrent des éclations que par le changements de 03B3 en 03B31, aient éga!e-
ment une racine commune, la relation

qui, jointe à la relation

détermine B et D en fonction algébrique de A et des deux constantes arbitraires 03B3
ct 03B31. De plus, l’intégrale remarquable correspondant à 03B31 a pour expression

et l’équation différentielle ainsi obtenue 

où les coefficients sont des fonctions ALGÉBRIQUES de A et des deux constantes 03B3
et 03B31, ou encore des fonctions ENTIÈRES des quantités A, v; D, 03B3, 03B31 liées par les

deux relations H = o, H’ = o.

Remarque l. - Les deux relations algébriques

donnent précisément l’intégrale des deux relations différentielles algébriques ob-

tenues en écrivant que, dans l’équation (5)’, le polynôme



est divisible par

Remarque Il. - Les coefficients de l’équation différentielle (16), que l’on
vient de former, peuvent encore s’exprimer rationnellement à l’aide de deux

fonctions 0(x), ~I’(x) liées par une relation de leurs dérivées pre-
mières et des deux constantes arbitraires y et ,,, .

En en désignant par T(x) et les deux intégrales remarquables cor-
respondant aux valeurs y et ~~, de la constante, A, B et D vérifient les relations

Ces relations seront compatibles, si le déterminant

est nul; d’où une relation

Alors les trois premières équations (17) donneront A, B, D en fonction 
nelle des quantités T, e liées par la relation f = o, et l’on aura l’équation

oic A, B, D sont remplacés, au moyen des relations (I7), par leurs valeurs en
fonction RATIONNELLE de T, 0, 03B3, 03B31 et D’ pcrr la dérivée de D.

CHA PITRE I II.
ÉTUDE DES ÉQUATIONS DU SECOND DEGRÉ 

I. - ÉTABLISSEMENT D’UNE FORMULE FONDAMENTALE.
~. . Soit t

une équation différentielle algébrique; le premier membre est un polynôme irré-



ductible du second degré en y’ et de degré donné en y, dont les coefficients

sont des fonctions analytiques quelconques de x. Si q,, l~, .q3 désignent les
degrés en y des polynômes L, N, on peut toujours, moyennànt une transfor-
mation homographique effectuée sury et dont les coefficients sont des fonctions
de x, admettre que L, M, N sont de degrés c~ - 4, q - 2 et q en y, en désignant
par q le plus grand des trois nombres q -~- 4, q2 + 2 et q~3.

C’est ce nombre q que nous appellerons désormais le DEGRÉ de l’équation dif-
férentielle.

Nous nous proposons de foun2en EXPLICITEMENT toutes les équations (I) de

DEGRÉ q DONNÉ, dont l’intégrale générale ne nombre DONNÉ n de

valeurs autour des points critiques mobiles.
Il s’agit donc, dans les équations que l’on formera, d’exprimer algébrique-

ment les coefficients des polynomes L, N à l’aide d’un certain nombre de con-

stantes et de fonctions arbitraires de x (et de leurs dérivées).

2. Si l’intégrale y (x) acquiert exactement ca valeurs autour des points cri-

tiques mobiles, elle peut s’écrire, dans le cas où le genre 03C9 de la relation entre

les constantes intégrales est nul (1)

où x, sont des polynômes en y de degré n .
Différentions l’équation (2), il vient

L’élimination de Centre (?) et (3) conduit à une équation différentielle de
~ n,

que l’on peut écrire sous les deux formes suivantes :

( 1 ) Si le genre r~ de la relation entre les constantes intégrales est égal à un, Y sont

de degré 2n. Le cas i ne peut pas se présenter ici. ( Voir l’Introduction.)



Ces deux dernières équations vont nous servir, l’une et loutre, à établir rapi-
dement une formule, qui n’est d’ailleurs qu’un cas particulier d’une formule beau-
coup plus générale, de ll-I. Painlevé ~~ ~, relative aux équations différentielles

de quelconques en y’, y.

3. Si l’équation différentielle (4) se réduit au degré q, c’est que les poly-
nomes L1, M1, N. contiennent un facteur commun H(y, x) de degré 4n 2014 q en y.
Les racines de H jouent, d’ailleurs, un rôle important dans la théorie qui va suivre.

Posons

inéquation R = o de degré k désignant les intégrales singulières et Q = o
de degré j, le lieu des points de rebroussement des courbes intégrales, Soit, de
plus, i le degré de P ; les nombres i, j, h vérifient la relation

Si l’on forme le discriminant 3~ - on a

et le degré m de FI est lié à n, j, k par la relation

De l’égalité (8), on déduit

et la forme (5) de l’équation différentielle devient

( 1 ) Leçons de Stockholm, p. 169, égalité (g),



ce qui montre que entre en facteur dans le premier membre de l’équa-
tion (4) et, par suite, que x) contient les racines multiples du discrimi-
nant 03B22 - 03B103B3 au même degré de multiplicité.

D’autre part, sur la forme (5), on serine que toute 
de (2) pour (~ = (~, (C, = o par exempte) est racine d’ordre j~ - i dans 

tion (5) quel que soit y’. Donc, toute solution remarquable d’ordne p figure
dans H( ~ ~’) au /) 2014 ï. . 

°

inversement toute racine~~ =,,~yx~ de H== o vérifiant simultanément les trois
relations

vérifie

soit la relation

soit la suivante

Donc, toute racine y~ de H est soit une racine du ,

soit une solution (non singulière) de l’équation différentielle.
Le degré 4 Il de H (y, x) est égal , par conséquent à

et comme

on obtient la FORMULE FONDAMENTALE

a,,, b,,, ... , er étant les degrés de m ultiplicité des racines jr # ,grr(àr ) de I’ = o pour
la valeur £,. de la constante C, °et la somme 1 s’étendant à toutes les solutions
remarquables, qui sont nécessairement en nombre fini.
Nous avons posé précédemment L, = LH, L, est le discriminant de r par 

à j., c’est-à-dii,e le résultat fie l’élimination de C entre 1 = = o. Onport a ’ c est-a- Ire e résul tat (e e limination d e entre 0393 == 

d;v 
== o. n

peut donc écrire 
..



et si l’on désigne par ), le degré du diviseur D~~ de D,, telles que toutes les racines
de D2 distinctes ou non soient solutions de l’équation différentielle, la somme

est égale à À,

et ~~, puisque

’ II. - EXAMEN D’UN CAS SINGULIER.

4. Donnons-nous maintenant une équation

Si l’on a posé

C est une fonction rationnelle de y, y’; c’est-à~dire une fonction à deux valeurs
renfermant le radical 

Tout ce que nous avons ditprécédemrnent subsiste.
Il y a toutefois un cas exceptionnel, que l’on peut rencontrer, même elz sup-

posant la relation (2) irréductible. C’est celui oÙ le premier membre de l’équa-
tion en déduite de ( 2), est 
Quand il en est ainsi, soient Ci --_ ~~y, ~y, x~, C: --_ ~~,., (~y, x~ les deux racines

de (? ) correspondant à une même valeur est une fonction de ~~,2, et, par
suite,

sont deux formes de l’intégrale de l’équation (i); autrement di t

définissent toutes deux l’intégrale générale de (i). On voit alors Immédiatement
qu’il existe entre x, ,~3, y une relation de la forme

a, b, c étant des constantes numériques.
Dans ce dernier cas, les racines y = b~(x~ du discriminant

sont des solutions ordinaires de (I), c’est-à-dire qu’elles donnent à la fonction
C (y, x~, définie par ~2~, des valeurs constantes,



En effet, s’il en était autrement, la courbey = g (x) serait soit une enveloppe,
soit un lieu de points de rebroussement, soit un lieu de points doubles des

intégrales particulières. Or pour une équation différentielle du premier degré
en y’, il ne peut exister de tels lieux.

III. - POSITION DE LA QUESTION.

5. Arrivons maintenant au problème que nous nous sommes proposé au com-
mencement de ce Chapitre.
On se donne le degré q de l’équation différentielle (i) et l’on suppose que

cette équation est véritablement du second degré en y’. Choisissons un système
quelconque d’entiers positifs i, j, k satisfaisant à la relation

avec les conditions

Je dis que, dans ces conditions, il y a une infinité d’équations (1) correspon-
dantes.

En effet, prenons arbitrairement quatre polynomes 03B2, fi, Q, R de degrés n, ni,
en y, avec la condition

~ 

La différence

est un polynome de degré 2n en que je puis toujours décomposer en un

produit de deux polynômes de degré Il, que j’appelle x et y. Les coefficients
de ces derniers polynômes sont ainsi déterminés en fonction algébrique des
nz -~-~ + k + n + 2 coefficients arbitraires ~~(x~, u(x~, ... de fi, I1, Q, Il.

Pour que l’équation (i) dont (2) définit l’intégrale générale soit de degré c!, il

faut et il suffit qu’il existe  solutions remarquables y1 (x), y2 (x), ..., 
de

multiplicités a1, a2, ..., telles que l’on ait

Exprimons que y = est une intégrale remarquable d’ordre al" autrement
dit que y = est une racine de D, = o d’ordre ar - I et que, de plus, c,. dé-

signant une constante numérique, on a



nous obtenons ar égalités, qui, après l’élimination de donnent lieu à ar 2014 t

conditions algébriques dépendant de la constante G,.,
Si maintenant je désigne par cc, 2014 i? c~_~ -1, ... , , ct~ - un système d’entiers

positifs (moindres que dont la somme c~, -1-~-- ~e.~ -1-~-... -E- crN,- ~ i est

égale à 2 n + k 2014 q, et si j’exprime qu’il existe  solutions remarquables

de multiplicités a1, a2, ..., a , j’obtiens

conditions algébriques dépendant de constantes Cr, en nombre égal au nombre u
des solutions remarquables.

Il reste donc

fonctions arbitraires... 
’

Pour i, j, k choisis, comme nous l’avons fait plns nombre des con-

stautes C,. est maximum si tous les a,. sont égaux à 2 ; on a alors 2n + Il - q cun-

stantes G,., 2 n + cl - 4 - 2 i -,j. Si j = o, le nombre des con-stant.es
est égal à 2 n + q 2014 4 - 2 i; on peut dire que c’est la solution la plus générale.
Nous voyons dunc que, à chaque choix des entiers hositifs i, j, h assujettis

h la condition 2 i + j + h = 2 q - 4 (avec les restrictions indiquées) correspond
un nombre FINI de systèmes de conditions ALGÉBRIQUES entre les coefficients de

l’équation (2).
Chacun de ces systèmes définit une équation (2) dépendant de i + 4 fonc-

tions arbitraires et d’un cer7tain nombre de constantes arbitraires, égal au
nombre des solutions remarquables. Ce nombre atteint son maximum 2 ct 

quand toutes les solutions remarquables sont d’ordre deux.

IV. 2014 RÉSOLUTION DES OBJECTIONS QUE PEUT FAIRE A lA. THÉORIE 

6. Plusieurs objections peuvent être faites à la discussion précédente : :

1° Les conditions imposées sont-elles COMPATIBLES et 
2° Quand elles sont remplies, n’entraînent-elles pas rcn ABAISSEMENT plus

considérable dcc DEGRÉ q cle l’équation (I)?
3° Quand elles sont remplies, l’ÉQUATION (2) est-elle IRRÉDUCTIBLE?
4° La relation (I) correspondante ne se réduit-elle pas acc PREMIER DEGRÉ?
5" Enfin, le nombre de BRANCHES de permutables autour des



points critiques mobiles, est-il BIEN ÉGAL à n et ne peut-il pas être INFÉ-

RIEUR cr .

Nous allons montrer que toutes ces objections sont en défaut dans le cas, que
l’on peut considérer comme le plus général, oÙ toutes les solutions remarquables
sont d’ordre deux.

Nous traitons en même temps les trois premières objections portant sur l’in-

compatibilité, l’abaissement de q et l’irréductibilité de l’équation (2),

7. OBJECTIONS I, II ET III. - Les conditions qui portent 
fonctions arbitraires ~~x), ... peuvent si tous les ar sont égaux
à deux,

les fonctions y, _ ~’~ (x ), ye = ;~~ (x), ... , 
= (x) désignant

racines de D, = o.
Les seconds membres de (5) sont donc des fonctions algébriques connues des

coefficients ~,(x), (x), ... de ~, II, Q, R.
Tout d’abord les constantes Cr étant entièrement arbitraires, pour x = xo

les fonctions ),(xo), (xo), ... coefficients de ~, II, Q, R sont arbitraires, et,

par suite, il en est de même des polynômes

On peut donc toujours supposer que pour x = xo la relation

est irréductible et. que, de plus (pour ce = xo), les polynomes Il, Q, R ont leurs
racines en y simples et distinctes; par suite, pour x=xo, D, a toutcs ses racines

simples.
Ceci posé, si les équations (S) ne sont pas compatibles et déterminées pour

des valeurs des Cr arbitrairement choisies, c’est qu’un des seconds membres
de exemple le dernier, est identiquement fonction des autres; autrement



dit, que les 2 n + k - i premières racines de v, ne peuvent donner à la fonction

des valeurs constantes, sans qu’il en soit de même pour la racine suivante de D,,
et, par suite, pour toutes les autres par raison de symétrie.

8. Nous allons voir que cette conclusion est impossible ; nous allons démontrer
en même temps qu’il est impossible que les relations (S), distinctes ou non,
entraînent comme conséquence que d’autres racines de D1 = o, distinctes do
celles qui figurent dans (S), rendent nécessairement constantes les valeurs
correspondantes de x).

Admettons, en effet, que p équations (S) (~ ~ 2 n + k - q) entraînent comme
conséquence qu’une racine suivante de D, et, par suite, toutes les autres soient
solutions ordinaires de l’équation (i). Dans ces conditions, le degré irréduc-
tible cJ, de (I) est nécessairement à 4. Ceci n’est possible que si le ra-

dical QR que renferme y’ porte sur un polynôme du quatrième degré, c’’est-

à-dire si J - donc j + k 2 est égal soit à 2, soit à i.

Observons tout d’abord que, si l’entier q donné est égal à 4, ou bien

p = 2 n -~- k - 4, et alors, toutes les racines de D, t sont épuisées dans ce système
des p relations (S), ou bien AC2n-~-k-4, et alors, si j-~-h=~, le système (S)
laisse au moins cinq des fonctions ),, u, , . , arbitraires; et si j + k = 2, il laisse
au moins six fonctions arbitraires.

Enfin, si q > 4, les p équations (S) laissent au moins cinq fonctions arbitraires
si j + k = /{ et six fonctions arbitraires si j + k - z. .
Deux hypothèses sont alors possibles :
PREMIÈItE HYPOTHÈSE. 2014 L’équation en y’ correspondant à (2) est bien dcc

.second degré en y’.
Dans cette hypothèse, si j -f- k == 4, exprimons qu’une des racines

rend constante la fonction C(y, x), autrement dit, est une solution ordinaire
de (I), y - doit figurer, comme l’on sait, en avant du radical dans l’équa-
tion(i) résolue en ~~’

. 

Le radical étant du quatrième degré, ceci est impossible, à moins que l’éyta-
tion (i) ne se réduise au premier degré.

Mais comme cette équation du premier degré est nécessairement une équation



de Riccati et due, d’autre part, il reste au moins quatre fonctions arbitraires, il

~yr a contradiction.

Si, maintenant, y + k == 2, il reste au moins six fonctions arbitraires; si nous

disposons de deux de ces fonctions de façon que deux racines de QR = o soient
solutions ordinaires de (I), c’est-à-dire donnent à C(y, x) une valeur constante,
il reste quatre fonctions arbitraires. D’autre part, l’équation (y en y’ ne peut
rester du second degré, car dans Inéquation résolue on aurait le facteur du

second degré

en avant du radical, ce qui est impossible puisque q = 4. I)onc, l’équation se
réduirait au premier degré, et serait, par suite, une équation cle Riccati, ce
qui est absurde, puisqu’elle dépendrait, dans le cas actuel, de quatre fonctions
arbitraires.

SECONDE HYPOTHÈSE. -- Le premier membre cle l’équation clic second degré
en y’ est carné parfait .

C’est, par suite, une équation de Riccati, puisque ~l, _ ~ ; or nous aurions au
moins cinq fonctions arbitraires, ce qui est absurde.

9. l’assons, maintenant, aux deux dernières objections :
OBJECTION 1V. - L’équation différentielle ( i ) qui correspond à l’équa-

tion (2) lcc plus générale, est-elle bien du second degré? autrement dit, les

conditions (S) portant sur les fonctions 03BB(x), (x), ... n’entraînent-elles pas
comme conséquence que l’équation (y en y’ est carré parfait:’

S’il en est ainsi, toutes les solutions y = de 03A0QR = o sont des inté-

grales ordinaires, c’est-à-dire donnent à C(y, x) une valeur constante.
Si nous posons

la relation

est une conséquence des relations (S ), que nous récrivons sous la forme

Ceci exige que le second membre de (E) soit une fonction des seconds

membres de (S) f, (x), f2 (x), ..., 



Inversement le dernier second membre de (S), est une fonction

des seconds membres précédents et du second membre de (E). On peut donc

remplacer le système (S) par un système (S’) comprenant Inéquation (E), où C’ est
une constante arbitraire, et les 2 n - fi + h - i premières équations (S )

la dernière équation (S ) est alors une conséquence du système ( S’).
Le système (S’) entraîne donc comme conséquence, à cause du rôle symétrique

des racines restantes de D, = o, que toutes les racines de

D, = o non employées dans (S’) rendent constant C(y, x).
Donc l’équation différentielle (t) réduite à son degré minimum serait t de degré

et comme son premier membre est un carré parfait, ce serait une équation
de Riccati, ce qui est en con tradiction avec ce fait que le système ( S’ ) laisse arbi-
traires au moins quatre des fonctions ~(x), a (x), ....

10. OBJECTION V. - Je dis tout d’abord que dans le cas le plus général, le

GENRE 03C9 de la relation entre les constantes intégrales est égal à ZÉRO.

En effet, tout d’abord si j + k > 4, pour x = xo le radical QR est le radical
le plus général de son degré, et, par suite, la courbe

n’est pas la transformée rationnelle d’une courbe de genre un, ce qui a lieu né-
cessairement si 03C9 = r . .

Si, maintenant, j + k == 4, le genre de la courbe

est égal à un. Or, nous savons que si w ~ r~ ~ 1, l’équation (r~ a ses points cri-
tiques fixes (1). Alors j = o, k = 4 et le degré irréductible de l’équation (I) est
égal à quatre.

Inversemen t si l’on a à la fois

( 1) ) P. PAINLEVÉ, Annales de l’École Normale, p. m I ; ; I89I.



l’équation a ses points critiques fixes, m est égal à un, et, par conséquent, le

nombre v des branches de y(x) est égal à un, quel que soit n.
Enfin, si j --~- h = 2, on a ~ == o et, par suite, m = o.
On voit donc que, si on laisse de côté le cas de q=4, j=o, Il == 4, le genre 03C9

correspondant à l’équation la plus générale est égal à 

11. Je dis, maintenant, que la fonction ;y(x) définie par ( 2) prend bien, en

général, n valeurs.
En effet, si elle en prenait seulement un nombre v  n, on pourrait mettre

’ 

l’intégrale générale sous la forme

où x,, 03B21, 03B31 sont des polynômes en y de degré v, ce qui est toujours possible
puisque m = o.
On sait que C est nécessairement une fonction rationnelle de C = 

Soit d’abord v > i , et C~ une racine multiple de l’égalité

et C,, la valeur correspondante de C, qui existent toujours, puisque n’est pas
du premier degré. Comme les ordres de multiplicité des solutions remarquables
sont égaux à deux, la multiplicité de C’r est seulement égale à deux et les v solu-

tions y= g,.(x) correspondant à la valeur C’r dans (2’) sont distinctes.
Dans ces conditions, les valeurs de Cr correspondant aux v solutions remar-

quables y = de (? ) seraient égales, ce qui est absurde, puisqu’on les a

prises arbitrairement.
Le raisonnement n’est en défaut que si v = j ; mais alors, si v = r, p = met,

comme m = o, p est nul; j + Il = 2, il faut que j soit nul, h = 2 et q = 4.
Inversement si j = o, k = 2, q = ~, v est égal à un, quel que soit n.

12. Nous pouvons donc énoncer les résultats suivants :

Laissons de côté les deux cas

cas où l’équation différentielle a toujours ses points critiques fixes .

Dans toics les autres cas, les conditions imposées aux coefficients de (2)
pour des valeurs de n, q DONNÉES et les choix de i, j, k les restr7ictions

indiquées) sont COMPATIBLES .et DÉTERMINÉES et définissent une équation (2)



dépendant de i + 4 FONCTIONS ARBITRAIRES et de ~ n -~-k- q = ~ n+q - 4-- ~ i j
CONSTANTES ARBITRAIRES.

L’équation (2) la plus générale, satisfaisant à ces conditions, est IRRÉDUC-
TIBLE en y et C et intègre une équation différentielle (I) vraiment du SECOND
DEGRÉ EN y’ et de DEGRÉ irréductible en y, ÉGAL CL q.

De plus, la fonction y(x) définie par (2) prend EXACTEMENT n VALEURS
autour des poinls critiques niobiles et, par suite, le GENRE 03C9 de la relation

entre les constantes intégrales est égal à ZÉRO.

13. Les propositions que nous venons de démontrer ne sont vraies, bien
entendu, que si l’on a choisi d’une façon tout à fait arbitraire les fonctions et les
constantes arbitraires dont dépend l’équation ~2~. Pour des choix particuliers de
fonctions ou de constantes, le nombre des branches de l’intégrale peut être un
diviseur de n et le genre m peut être égal à un.

Les deux types exceptionnels correspondant aux deux cas q = 4, j = o,
k= 4, 2, qui expriment au fond que l’équation (I) a ses points critiques fixes,
se ramènent par la transformation homographique effectuée sur y et le change-
ment de x en 03C6(X) aux deux équations ,

oÙ u~= est une constante; et alors, quel que soit n, on ne trouve que ces deux types
d’équations et leurs transformées homographiques.

. - NOMBRE DE CONSTANTES ET DE FONCTIONS ARBITRAIRES

DONT DÉPEND L’ÉQUATION DIFFÉRENTIELLE.

14. L’équation (2), nous venons de le voir, dépend de i + 4 fonctions arbi-
traires et de 2 n + k - q constantes arbitraires distinctes; mais en sera-t-il de
même pour l’équation (i)~ Quel sera le nombre de fonctions et de constantes
arbitraires dont dépendra cette équation ? .

Je dis que l’équation différentielle (1) dépendra de i + 4 fonctions arbitraires
et de 1 constantes arbitraires, l désignant le nombre 2 n + k - q - 3 si ce der-

nier nombre est positif et étant égal à zéro dans tous les autres cas. Il suffit, pour
le démontrer, de nous appuyer sur la proposition suivante :

. Quand l’intégrale d’une équation (1) prend EXACTEMENT n valeurs autour
des points critiques mobiles, et que le genre 03C9 de la relation entre les con-

stantes intégrales est NUL, on peut mettue l’intégrale sous la forme (2) et



toutes les formes (2) s’obtiennent en effectuant sur C une transformation
homographique à coefficients constants.

On pourra donc se servir de cette transformation de façon à donner à trois des
valeurs remarquables Cr de la constante des valeurs particulières, soit o, 1, ~,
et il restera seulement 2 n + k - q - 3 constantes arbitraires. 

’

Si le nombre des valeurs remarquables de la constante est seulement égal à

deux, on donnera à ces constantes les valeurs o et ~ par exemple ; si ce nombre
est égal à un, on donnera à la constante correspondante la valeurs; enfin, s’il

a pas de constante remarquable, on ne fera rien.
D’autre part, les i + 4 fonctions arbitraires et les l constantes arbitraires fIgu-

reront bien dans (i) d’une façon indépendante.
En effet, considérons une équation (2) où l’on ferait varier d’une certaine

manière les i -f- 4 fonctions arbitraires et les L constantes arbitraires; s’il lui

correspondait toujours la même équation (i), on devrait, d’après la remarque
précédente, passer d’une de ces formes (2) à une autre par une transformation
homographique continue, puisque la forme (?) varie d’une façon continue; ce
qui est impossible, cette transformation devant conserver les valeurs o, i, ce.

15. Remarque 1. - Dans l’équation (I) les racines y = de L = o et les

racines de QR = o sont données algébriquement à l’aide des fonctions indéter-
minées ),(x~, u~x~, sans que les dérivées figurent; par conséquente on pourra,
par exemple, prendre comme ~-{-4 fonctions arbitraires, i + 4 des coefficients
de L, Q, R, et les autres coefficients de (i) s’exprimeront algébriquement en
fonction de ceux-là et de leurs dérivées.

Remarque ll. - On pourra se servir de la transformation homographique
pour abaisser, par exemple, au degré q - 3 le coefficient N de (1 ).

CHAPITRE IV.

FORMATION DES ÉQUATIONS DU SECOND DEGRÉ DONT L’INTÉGRALE
A DEUX BRANCHES.

Voici tout d’abord le Tableau des diverses circonstances qui peuvent se pré-
senter dans cette étude (03BB désigne ici le nombre de solutions remarquables, k le .

nombre d’intégrales singulières et j le degré en y de la courbe, lieu des points



de rebroussement, q le degré de l’équation différentielle.

1. - IL I’ A QUATRE INTÉGRALES SINGULIÈRES.

i. . j = o, k = 4. L’équation la plus générale correspondante est de degré fiuit.
C’est en même temps l’équation la plus générale dont l’intégrale acquiert deux
valeurs autour des points critiques mobiles.
Pour la former, il suffit de partir de la relation

Si l’on suppose que y = o, y = t, j/ sont intégrales ordinaires correspon-
dant à C = o, C = t, G = on aura entre les ai, i, ~’i les relations

L’équation différentielle demandée s’écrira

ou encore

ou L, M, N sont des polynômes de degrés 4, 6 et 5, dont je me dispense d’écrire
les développements,



2. Si l’on avait voulu mettre en évidence les quatre intégrales singulières, on
aurait pu se servir de la transformation homographique et du changement
x = ~ (X) de façon que ces intégrales fussent y = o, y = ~ y = ~o, y ._-_ x, en
nosant

avec les conditions

mais il vaut mieux, pour ce qui va suivre, s’en tenir à l’équation (3).

3. ÉQUATIONS DE DEGRÉ SEPT. - Si nous exprimons maintenant qu’il y a une
intégrale remarquable y par exemple, pour G = ~c, nous obtenons une
équation différentielle de degré sept, qu’on déduit de (i) en faisant x2= o ; d’ou

L,, ~1,, N, étant de degrés 3, 5 et 4 .

4. ÉQUATIONS DE DEGRÉ SIX. - Pour ces équations, il y a intégrales re-
marquables, soient y = ~o, y = o pour G == 00 et C = o, par exemple; il suffit
de poser, dans ( 2 ~, ~~ = o ; d’oû

ou bien encore

5. ÉQUATIONS DE DEGRÉ CINQ. - Il y a ici trois valeurs remarquables de la

constante, soient C = C = o, C = I avec y = ~, y = o, y = I , par exemple,



comme solutions remarquables correspondantes ; ’d’où

L’équation différentielle de degré cinq, que l’on obtient, s’écrit

. 

où .l’on doit remplacer 03B20 par 03B22 + I 2014 03B32 2 et 03B21 par 03B32 2014 2 i- .,.

6. ÉQUATIONS A POINTS CRITIQUES FIXES. -- Il est impossible d’avoir un abaisse-
ment plus considérable, sans .que l’équation correspondante ait ses points c/’/-

Pour vérifier cette remarque sur l’exemple que nous venons de former, expri-
mons que, pour la valeur C, de la constante, y1 = 03B20 03B22 __-_ I + 1 2014 03B32 203B22 est une 

grale remarquable. L’expression 
2 2 2

devient un carre parfait quand on y remplace C par Ci et y par ~~, .
Posons

l’intégrale générale s’écrit alors

Écrivons que, pour C = C,, l’équation admet la solution remarquable

Comme pour C = C,, le premier membre de (3) étant carré parfait, y, f a égale-
ment pour expression



et, par suite, on obtient successivement

L’équation ( 3 ~ peut donc s’écrire

C’est une équation à points critiques fixes, dont la relation entre les constantes

intégrales, primitivement du ZÉRO, s’écrit maintenant

Elle est donc devenue de genre UN (’ ), par suite de l’existence de quatre solu-
tions remarquables.

Inéquation différentielle s’écrit, d’ailleurs, 
’

11. 2014 IL Y A DEUX INTÉGRALES SINGULIÈRES.

7. ÉQUATIONS DE DEGRÉ SIX. - Dans ces conditions, le degré maximum de

l’équation différentielle est égal à C’est le cas ou il n’y a pas de solution re-

marquable. Disposons des coefficients de la transformation homographique~ de

façon que les deux intégrales singulières soient y = o, y = ~, et que, dans

p2__ il se réduise à l’unité.

L’intégrale générale

(1) Sur le passage du genre ZÉRO au genre UN, voir les n°g 12 et 13 du Chapitre VI.

(2) Ci désigne, comme nous l’avons dit, une constante arbitraire.



peut s’écrire actuellement

les coefficients 03B22, 03B21, 03B20, x?, x,, 03B10 sont liés par les relations, qui expriment que

est divisible par

Soit ~2y~’ + ~, y + Yo le qnotient, on calcule facilement les coefficients ~o

les étant liés par les deux relations

L’équation différentielle s’écrit alors

on les Y,, v2 doivent être remplaces par tes valeurs (4), les ai, , ~~ étant liés

par les relations (5).

8. ÉQUATIONS DE DEGRÉ CINQ. - Il suffit d’exprimer qu’il y a une solution

remarquable pour C =oo exemple; d’oÙ 03B121 _ 4 03B1203B10. On vérifiera que le facteur

o x~,~r + x, figure dans le premier de l’équation différentielle f’ormée pré-
cédemment. C’est là une vérification un peu longue, mais qui ne présente aucune
difficulté. On supprimera ce l’on obtiendra l’équation de

degré cinq demandée.

9. ÉQUATIONS A POINTS CRITIQUES FIXES. - Si nous exprimons que l’abaisse-



ment est. plus considérable, c’est-à-dire qu’il y a deux solutions remarquables, le
degré de l’équation différentielle ainsi obtenu est égal à quatre. Mais, comme
il y a deux intégrales singulières, sans lieux de points de rebroussement (j = o),
nous avons affaire à une équation à points critiques fixes. Vérifions qu’il en est
bien ainsi.

Pour cela, écrivons l’intégrale générale sous la forme

étant les deux solutions remarquables pour C = o et C =00.
Soit ~y~ - i~2 le carré parfait IIz figurant’dans le discriminant ~32- Si

est divisible par (y - y~, on aura entre les ai, ~i les relations

et, par suite,

Il en résulte que l’intégrale générale

qu’on peut écrire

devient

L’équation a donc bien ses points critiques fixes.

III. - IL Y A UNE SEULE INTÉGRALE SINGULIÈRE.

40. ÉQUATIONS DE DEGRÉ CINQ. - Dans ces conditions, le degré de l’équation
de différentielle est au plus égal à cinq. Soienty= I l’intégrale singulière, y=o
le lieu des points de rebroussement. Supposons, de plus, que ; = oo soit solution
ordinaire pour C .- d’où a2 _-__ o,

l’intégrale générale prend alors la forme (où ~2 _--_ I ~



les coefficients sont ai, ao, sont liés par la relation

qui exprime que

est divisible par + 

On déduit de là

et l’équation différentielle correspondante s’écrit

oÙ ~z, Y,, Yo ont les valeurs ~~~, et czo, x,, ~3,, ~,, sont liés par les relations 
Dans le cas actuel, nous pouvons exprimer les coefficients de l’équation diffé-

rentielle, en fonction RATIONNELLE de trois fonctions arbitraires A, B, T, et de
leurs dérivées A’ B’, T’. 

,

En effet, de la relation (6) on tire

Posons

il vient

Il suffira de remplacer dans (8) y par les valeurs que nous venons de
calculer. 

’



il. ÉQUATIONS DE DEGRÉ QUATRE. - Dans ce cas, y ==oo est une solution re-

marquable (soit pour C = ~); d’oii, en tenant compte des calculs précédents,

l’équation (8) devient

ou bien, en remplaçant ~o et Y, en fonction de ~3o et (x~~

Ici les coefficients sont des fonctions RATIONNELLES de ao, 03B20 et de leurs

dérivées.

CHAPITRE V.

ÉQUATIONS DIFFÉRENTIELLES DU SECOND DEGRÉ EN y’ DONT L’INTÉGRALE
GÉNÉRALE EST UNE FONCTION A TROIS VALEURS, LE GENRE m DE LA
RELATION ENTRE LES CONSTANTES INTÉGRALES ÉTANT ÉGAL A ZÉRO.

~ . Voici le Tableau des difl’érentes circonstances qui peuvent se présenter
dans cette étude; j désigne, comme précédemment, le degré en y du lieu des

points de rebroussement et k le nombre d’intégrales singulières :

Comme il serait beaucoup trop long d’exposer, dans ses moindres détails, la

formation des soixante-quatre types différents, auxquels donnent lieu les six



classes d’équations figurant dans le Tableau ci-dessus, je me hornerai, sans

pousser, d’ailleurs, jusqu’au bout certains calculs, à former tous 1 es types de la

première et de la sixième classe. Ces derniers types correspondent aux deux cas
ou !’équation différentielle possède six intégrales singulières oll n’en possède
aucune. Le premier cas nons fournira des exemples d’équations renfermant
algébriquement et d’une façon ESSENTIELLE, une, deux, trois on quatre con-
stantes arbitraires 

I. - IL y A SIX INTÉGRALES SINGULIÈRES.

2. Dans ces conditions, nous supposerons qu’on a disposé des coefficients
de la transformation homographique de façon ym, soient des

intégrales ordinaires correspondant aux valeurs C = o, C = r, C = ~ de la

constante d’intégration; en sorte que l’équation différentielle (’) correspondante
sera toujours de la forme

ou la, N sont des polynomes de degrés respectivement égaux à 8, ro et g.

ÉQUATIONS DE DEGRÉ DOUZE. - L’équation ]a plus générale dont l’intégrale
possède trois branches est de degré clou~e; L, Ile, N seront alons de degrés 8, o
et g; et si a, désignent trois polynomes en y de la forme

avec la condition suivante, qui exprime que y = I est intégrale pour C - 1 ,

l’équation différentielle (i) s’écrit de la façon suivante :

et les coefficients de L, M, N sont, par suite, des , fonctions rationnelles des 7t,
03B2i, 03B3i et de leurs dérivées.

(1) Pour obtenir toutes les équations répondant à la question, il suffira de remplacer
clans chacun des types obtenus y par y + l(x) 

et y’ par la dérivée de cette expres-
sion ; la nouvelle équation renfermera alors rationnellement les trois fonctions arbitraires
c~(x). b(x), l(x) et leurs dérivées premières.



Remarque. - L’intégrale et le terme indépendant de y’ pouvant s’écrire

également

le facteur y- i se met aussitôt en évidence dans ce dernier, en vertu de l’identité

3. ÉQUATIONS DE DEGRÉ ONZE. - En écrivant que par exemple, est une
intégrale remarquable double, d’oïl 03B12 = o, on obtient une équation (I) où L,

N sont de degrés 7,9 et 8.

ÉQUATIONS DE DEGRÉ DIX. - Deux cas peuvent se présenter, suivant que
l’abaissement du degré provient de deux solution; doubles on de la présence
d’une solution triple. Dans l’ éq ua tion (I) correspondante L, M, N sont de degrés

1. . Il y a deux intégrales remarquables doubles. . - Soient y = y - u,

d’où = o. Après suppression du facteur y, il reste une équation (I) du
degré Indiqué.

II. Il y a une intégrale remarquable triple. - On partira de la forme de
l’intégrale 

,~ - - ~ - - . ~

et l’on obtiendra une équation (t) de même forme que tout à l’heure.

ÉQUATIONS DE DEGRÉ NEUF. - Ici encore, il y a deux cas à distinguer : 1

I. cc trois solutions remarquables doubles. - Soient y= o, y = I, y= ocpour C = o, I, ~. On partira de l’intégrale générale et des conditions ==i,y==oc

en remarquant que la relation suivante, conséquence des deux précédentes,

permet de mettre en évidence le facteur y - i dans les coefficients de ~~’2 et y’ et



le facteur (y - 1)2 dans les autres fermes en sorte qu’après la suppression du
facteur y(y - i), il restera l’équation (1) demandée.

IL J l y a une solution triple et une solution double. - Soient y = ~, y == 0,
on partira de

£. ÉQUATIONS DE DEGRÉ HUIT. - Il y a trois cas à distinguer :

i. Il y a quatre solutions doubles. - Quand y = o, y sont deux solutions

doulhes pour C = o, C = oo, l’intégrale générale prend la forme

y = T, sont deux nouvelles solutions remarquables doubles pour
C = i et G = Ct , les fonctions y:;, 03B23, 03B22, 03B2 1 s’expriment en fonction rationnelle
de Tt, ~~z et de la constante Ct, au moyen des relations linéaires

et le premier membre de l’équation différentielle correspondante, après suppres-
sion du facteur y(y - I) (y - T, ), est de la forme (1), où L, N sont dcs

polynomes de degrés 4, 6 et 5, dont les coefficients s’expriment RATIONNELLE-
MENT à l’aide de lcc constante arbitraire C,, des trois fonctions arbitraires x, ,

03B32, T, 1 et de leurs dérivées 03B1’1, Yz et T’1.

IL . Il y fi une solution triple (y = ~) et deux solutions doubles (y=o, y = i).
On partira des formes suivantes de l’intégrale générale et dans le résultat final on
supprimera le facteury(y - I)

]11. Il y a deux solutions triples (y - ~, y - o). - Dans le résultat final,
on supprimera le facteur y2, après être parti de la forme de l’intégrale générale.

5. ÉQUATIONS DE DEGRÉ SEPT. y a trois cas à distinguer : 1

I. 11 existe cinq solutions remarquables doubles. - Soient y _-_ o, y - r, .,
~r = T 2 pour les valeurs o, 1, C 2 de la constante. 



gralc générale s’écrira

et les fonctions 03B20, 03B21, 03B22, 03B23, 03B32, 03B33 s’expriment en fonction rationnelle de 
’l’.., ~, et des constantes arbitraires CI, Cl, au moyen des relations 

L’équation différentielle correspondante, après suppression du facteur

est de la forme (I), où L, N sont des polynomes de degrés 4,6 et 5, dont
coefficients s’expriment RATIONNELLEMENT (l l’aide des constantes arbitraires

, C2, (les trois fonctions arbitraires 03B11 , , T2 et de leurs dérivées pre-

I)2lC’l’eS 03B1’1 , T’1, T’2.

6. IL Il existe une solution remarquable triple et trois solutions renzcri’-
quables doubles. - Soient)’ - ~ la solution triple pour C et y = o, y = i,

y = j pour (â = o, 1, C, . générale est de la forme

Les coefficients 03B23, 03B22, 03B21, 03B33 s’exprinlent rationnellement u l’aide de ’!’,, 03B32
et de la constante arbitraire C,, au moyen de relations linéaires qui se déduisent
des relations (2) en y faisant L’équation différentielle qu’on obtiendra,
après suppression du facteur J (,y - 1) sera de la forme (t) et ses coef-
licients seront des fonctions rationnelles de CI, T, 1~.~, y~.

III. 1l existe deux solutions triples (y = o, y = et une solution double

(y= y. - L’intégrale générale est de la forme

et donne lieu à une équation différentielle qui, après la suppression clo facteur

y2 ( y - y, est cle la forme (I).



7. ÉQUATIONS DE DEGRÉ SIX. - Il y a quatre cas à distinguer : I

1. ll existe six solutions remarquables doubles. - Soienty = o, y= r , y=oc,
y = T1, y = T2, y = T3 pour C = o, r, oo, CI, , C,, C3. On peut partir cle lu

forme

et si l’un pose

les sept coefficients xi, sont liés par les huit relations linéaires

qui ne seronL compatibles flue si le déterminant 0394 ~ F(T1, T2, T3, C1, C2,
est nul.

d’où la relation (où F est un polynome en T1, T2, T3, C1, C2, C3)

qui permet d’exprimer T3, par exemple, en fonction algébrique des fonctions
arbitraires T,, T2 et des constantes arbitraires CI, C2, C3.

Dans ces conditions, on pourra résoudre les sept premières équations (5) par
ralyort aux 7l, qui seront exprimés ainsi rationnellement à l’aide de T.,, T3,
C,, C3, liés par la relation (6). L’équation différentielle correspondant à la
relation (/) (où les fonctions xl, 03B2j sont exprimées au moyen des l’ et des C), après
suppression du 2014 T1)(y 2014 T2)(y 2014 T3), est de la forme (1),
oa les coefficients des polynomes L, N sont expnimés RATIONNELLEMENT

à l’cci.le des trois constantes arbitraires distincles C, C2, C3, des trois f ône-
tions ’l’,, T3 liées par la relation ALGÉBRIQUE (6) (et cle leurs ou



bien encore où les coefficients sont exprimés ALGÉBRIQUEMENT Cc l’aide des trois
constantes arbitraires C, , C2, C3, des deux fonctions arbitraires T,, T.> et

de leurs dérivées .

IL Il existe quatre solutions remarquables doubles et une solution triple.
Soient y = ~ solution triple pour C = ~, et y = o, , y = I, y = T,, y = T2

solutions doubles pour C .= o, C -_- I, C = CI, C = On part de

avec des relations qui se déduisent de (3 ) en faisant t (il = o. Ici L, X sont L de

degrés 3, 5 et £, mais les conclusions son t identiques à celles du premier cas
d u n> 5.

8. III. Il existe deux solutions triples (y = o, y = et deux solutions

doubles ( y = i , y = Tj ). - On a l’intégrale générale (j) avec les relations (8),

difl’érentielle correspondante, après suppression du facteur

est de la forme (I), où L, N sont des polynomes en y de degrés 2, 4 et 3,

dont les coefficients sor2t des fonctions RATIONNELLES de la constante arbi-
traire C,, des deux fonctions arbitraires T, et po, et de leurs dérivées T’1, y;,. .

IV . Il e.xiste trois solutions remarquables triples. - Soient y = o, y = I,
y = ~ pour C = o, (1 = I, C = oc. L’intégrale générale est de la forme

et i’équation différentielle correspondante; après suppression du facteur

~~~’ (~~~ - 1 )2, est de la forme



Ici les coefficients sont des polynomes entiers par rapport aux deux f onc-
tions arbitraires A et B et leurs dérivées premières A’ et B’.

9. ÉQUATIONS DE DEGRÉ CINQ. - Nous avons quatre cas à distinguer, suivant
le nombre et la multiplicité des solutions remarquables.

I. ll existe sept solutions doubles. -- Soient o, r, ~, T,, T3, T, pour les
valeurs o, 1, oo, C,, C.~, C3, C~ de la constante C. Dans l’intégrale générale

les coefficients sont liés par les dix relations linéaires § 7)

qui ne seront compatibles que si trois conditions écrites sous forme de détermi-
nant

sont satisfaites, auquel cas les coefficients seront des fonctions 

des et Ci liés par les relations algébriques (6), ou encore des fonctions
algébriques de T1, par exemple, ctdeC, C2, ~3, C4. Après suppression du
facteur y (y - 1) ( y - 2014 T2)(y 2014 T3)(y 2014 T4), l’équation différentielle
correspondante est de la forme (i), où L, M, N sont des polynômes en y de
degrés un, trois et dont les coefficients sont des fonctions RATIONNELLES
des Ci, liés par les relations algébriques ( ï) et de leurs dérivdes.

11. Il existe une solution triple et cinq solutions doubles. Il suffit dans

le calcul fait an 1 du § 7 de supposer 03B11 = 0, d’où deux relations

qu’on écrit sous forme de déterminant. On a, par exemple,



On arrive à des conditions analogues à celle do paragraphe précédent, les nela-
tions algébriques (I2) étant ici au nombre de deux.

III. ll existe deux solutions triples et trois solutions doubles. - Il suffit de
~ se reporter au 11 du § 7 et d’y faire ~~2 = o.

IV. Il existe trois solutions triples et une solution double. - Nous avons vu

que, lorsque l’équation possède les trois solutions triples y --_ o, y =1, y = ~

pour C = o, C =1, C = cette équation prenait la forme (1) ou L, N

avaient les expressions (g).
Écrivons de plus que y - T, i est solution double pour C = C,, d"on

les polynômes L, M, N, après suppression du facteur commun de-

viennent

II. - IL N’Y A PAS D’INTÉGRALES SINGULIÈRES.

Nous pouvons toujours disposer des coefficients de la transformation homogra-
phiql1e de façon que les courbes y = lieux des points de rebroussement
des intégrales, qui dans le cas actuel sont an nombre de deux, soient y = o,

,y = 1 , et que de plus y = oc soit solution ordinaire pour C = ce. 
’

ÉQUATIONS DE DEGRÉ six. - Dans ces conditions, l’équation différentielle cor-
respondante est en général de degré six. Les coefficients eli, fii, dans l’intégrale
générale

sont liés par les relations



résultant de l’identité suivante relative aux lleic.x des points de rebroussement

et l’on a, pour l’équation différentielle correspondante, après suppression du 
fac-

1)3,

qui, en tenant compte des relations (13~, est de degré six et de 
la forme

Les polynômes L, M, N ont les développements suivants :

on les ai, Yi sont liés par les relations (i3).

ÉQUATIONS DE DEGRÉ CINQ. - L’équation s’abaisse au degré cinq, s’il existe une

solution remarquable double, soi t y = oe pour C -- d’où

avec l’identité

Les relations qui en résultent

permettent d’exprimer 03B33, 03B32, 03B31, 03B30 eu fonction rationnelle des N,, 03B10, 03B11

de T., ?e S., I,



liés par les relations

L’équation différentielle a la forme (I3) avec

v,, 03B32, 03B33 doivent être remplacés par les expressions (I6), 03B3’0, 03B3’1, 03B3’2, 03B3’3 par
leurs dérivées; les coefficients de 1 équation différentielle sont donc des fonctions
rationnelles des quantités 03B20, 03B21, 03B23, x, liées par la relation algébrique (I5) (et
de leurs dérivées), ou bien encore si l’on exprime a.1 algébriquement à l’aide de
03B20, 03B21, 03B23, ces coefficients sont des fonctions algébriques des fonctions 
pendantes 03B20, N,, 03B23 et de leurs dérivées. 

’

ÉQUATIONS DE DEGRÉ - L’abaissement au degré quatre peut provenir,
soit de l’existence de deux solutions remarquables doubles, soit de l’existence

d’une solution remarquable 
1. Il existe deux solutions doubles. - Soient y = x et y = T pour C = oc

et G = o. Aux relations (14) et (i~)? il faut ajouter les relations

qui expriment que y =T est solution double pour C = o. Alors, après suppres-
sion du nouveau facteur y 2014 T, il reste une équation (i) ou

les ai, 03B2i, 03B3i étant liés par les relations algébriques ( r 5 ), (1 6), (I7),



If . Il existe une solution triple. - Soi t y - ~ pour C --_ oc. 
s’écrit

on a, comme précédemment

et, en posant 03B20 = A, on met l’intégrale générale sous la forme

qui donne lieu à une équalion différentielle qu’on peut écrire successivement
après suppression du facteur ~~3 (y - I~~3,

CHAPITRE VI. ’

FORMATION DES ÉQUATIONS DU SECOND DEGRÉ EN y’ POUR LESQUELLES
LE GENRE m DE LA RELATION ENTRE LES CONSTANTES INTÉGRALES EST
ÉGAL A UN.

I. - DÉMONSTRATION DE PROPRIÉTÉS GÉNÉRALES DE CFS ÉQUATIONS.

i. Je vais établir deux théorèmes relatifs à la forme de l’intégrale générale et
au rôle des racines du discriminant.

, THÉORÈME I. - Quand le de la relation entre les constantes inté-

grales est à UN, l’équation différentielle se naet sous la fornre

oic H et K sont des polynomes en y de degrés respectifs p - I et p + 1 au plus,
en désignant par 2p + z le degré de QR, et J, une fonction arbitraire cle x.

En on sait que, dans les conditions de l’énoncé, l’inlégrale générale peut



se mettre sous la forme

où Je second membre est une intégrale de différentielle totale exacte. De

plus, l’intégrale de première espèce (où H est de degré p 2014 I),

n’a que deux périodes, qui sont des constantes absolues (1).
Les périodes de J( y, x) étant des constantes, l’int.égrale

une fonction algébrique de y, et, par suite, dans la différentielle totale exacte

!a fonction G(y, x) est déterminée à une fonction d’addition près 03BB(x), et

comme 2014 ~ .__ ~ change de signe avec on en déduit immédiatement
~ ’ 

_

que la fonction G, convenablement choisie, change de si~ne avec 
Posons

Gomme K ne peut devenir infini, sans que H le devienne en même temps,
K est un polynome de plus, comme cette dernière remarque s’applique aux
valeurs infinies dey, il faut que K soit au plus de degré p -~-1. Il en résulte que

l’équation différentielle prendra bien la forme annoncée.

2. THÉORÈME II. - Quand le 03C9 de la relation entre les constantes

intégrales est égal à uN, les RACINES d’ordne IMPAIR du DISCRIMINANT de

l’équation du second degré en y’, définissent en général des INTÉGRALES sm-
GULIÈRES, ou, dans certains cas exceptionnels, un lieu de points de rebrousse-
ment oic y’ est INFINI.

En ellet, soit y = g(x) une racine de Q qu’on peut toujours supposer égale à

(1) PAINLEVÉ, Leçons de Stockholm, p. . t I6-1 I 7.



zéro, en changeant y supposons que y = o n’annule pas K, on

pourra, d~ans le voisinage de y = o, développer F et G de la façon suivante

On en déduira

ce qui est impossible, puisque

Doncy = o annule K, et l’équation

étant vérifiée pour y = o, y== o est solution singulière.

3. Remarque. - Nous ac-ons supposé implicitement que H (y, a) ne s’annulait
pas pour y = g (x). Si H(y, x) s’annule poury = g(x), on peut toujours sup-
poser que y(x) et le raisonnement précédent montre que K s’annule pour
y = o; y est donc en facteur dans H, K, QR, et figure dans QR nécessairement
au premier degré. Si donc on forme l’équation (1), on voit aussitôt que les deux

valeurs de y’ sont infinies pour y = o.

II. - FORMATION EXPLICITE DES ÉQUATIONS DE L’ESPÈCE INDIQUÉE,

4. PROBLÈME. - Cherchons à former les équations du second en y’,
de degré q DONNÉ en y, telles que n BRANCHES de l’intégrale se permutent
autour des points critiques mobiles, et pour lesquelles le GENRE 03C9 de la nela-

tion entre les constantes intégrales est égal à 

Nous nous donnons un nombre pair 2p + 2, degré de S = QR, avec les iné-
galités 2p -~- 2 ~ 2g - 4, p ~c~ - 3, et nous cherchons, parmi les intégrales de
première espèce, 

TT’ ...



tontes celles qui se laissent déduire, par une transformation n, d’une

différentielle elliptique, par exemple de

2 désig.nant une constance numérique.
Étant donne le radical

si nous posons

M et N étant des polynômes de degré n, pour qu’une telle ébalité définisse
une correspondance avec un radical de degré 2p + 2, il et il suffit {ue

l’expression

renferme en facteur un carré parfait en y, de degré 4 n - - ~, d’où 2 ~ 2014/~ 2014 i

conditions portant sur les mt + 1 coefficients inconnus de ~~(~~). Donc, une
fois 2 donné, il reste p + 2 coeflicients indéterminés, à J’aide desquels les

coefficients .r) s’expriment .

D’autre part, la différentielle abélienne de première espèce

correspondant, à la différentielle elliptique

et qui est connue, une fois qu’on s’est donné ~.~ ~y~, dépend algébriquement de

p + 2 fonctions arbitraires de x et de la constante arbitraire UL.
Il en résulte que la différelltielle totale exacte

on ), est une fonction arbitraire dépend algébriquement de p + 3 fonc-
tions arbitraires.

5. Le degré de l’équation différentielle, mise sous forme entière



étant + 2, pour qu’il se réduise à q, il faut et il suffit que les deux polynomes

aient un facteur commun de degré 2j~ -~ z - q ; et comme H est de degré p - i ,
il en résulte que, pour une correspondance avec un radical de genre p, le degré q
est acc plus égal à 2p + 2 et au moins égal à p + ,i.

Supposons d’abord que H et K n’aient aucun facteur commun, alors tout fac-
teur commun à H et K2 - h2 S est une solution remarquable de l’équation diffé-
reutielle, c’est-à-dire qu’il annule les coefficients de (ly et dx dans la différen-
tielle totale

De plus, si y est un zéro (Tordre x commun à H et K2 - À2 S, ,y = y(xJ)
est un zéro + i de l’égalité

(~~ étant une constante convenable.

Donc, dans ce cas, pour qu’il y ait abaissement du degré de l’équation (i), il

faut qu’il y ait des solutions remarquables, et le degré q de l’équation (I) est lié
au degré 2p -~-~ du radical S et au nombre ? des solutions remarquables de multi-
plicité par la relation

Toutes ces proposions s’établissent par le même procédé que celui que nous
avons employé au Chapitre lll. Il suffit de répéter presque identiquement 1es
mêmes raisonnements.

Mais dans le cas ou H et S ont s solutions communes, ces s solutions ne sont

pas, en généra!, intégrales remarquables de 1’équation, et, pourtant, d’après une
remarque faite plus haut, leur présence abaisse de s unités le degré de l’équa-
tion.

il est clair qu’on aura la solution la plus générale en supposant que 
sement provient uniquement de l’existence de solutions remarquables d’ordre
deux. Car on aura ainsi autant de conditions qu’il y a de degrés dans l’abaisse-
ment, chacune de ces conditions introduisant une constante arbitraire.
De plus., dans ce cas, comme il n’y a pas de lieu de points de rebroussement,

Q === i et, par suite, S ~ R; on aura de cette façon 2p -~- ~~ - q relations de la

forme



~~~ étant une racine de H~~y, x ~ _-__ o ~c~ >_ p -E- 3~. On trouve ainsi 2p -~- 2 - c~
constantes arbitraires.

6. En définitive, n et q étant donnés, pour avoir les équations, (1) les plus 
nérales correspondant au cas r, on prendra successivement tous les sys-
tèmes d’entiers positifs L, p satisfaisant à la relation

Soit i, p un de ces systèmes, les équations (i) correspondantes dépendront de

fonctions arbitraires et de 2p -- 2 - q constantes arbitraires.
Il y aura autant de types d’équations (i) qu’il y a de modes de décomposition du

nombre ~ - 3 en une somme de deux entiers positifs ~ 

III. - RÉSOLUTION RAPIDE DES OBJECTIONS QU’ON PEUT FAIRE A LA THÉORIE
PRÉCÉDENTE.

7. Nous avons dit que et la de passage
~/ B/R 

.

03B3 = 03C6(y) = N(y) M(y) dépendaient algébriquement de p + 2 1’onctions arbitraires.
et nous avons admis implicitement que, dans le cas le plus gênerai, H a ses ra-
cines que H et R n’ont pas de facteur commun et enfin que les condi-
tions (S) étalent compatibles et déterminées.
Examinons successivement ces différents points.

8. OBJECTIONS 1 ET II. - Le polynome H a toutes ses racines SIMPLES et les

deux polynomes H el R N’ONT PAS de FACTEURS COMMUNS.

Voici une démonstration rapide de ce fait qui rentre dans l’étude de la réduc-
tion des intégrales hyperelliptiques.

Si nous laissons arbitraire le n de la transformation, il faut et il suffit

que les premiers membres des relations (r),



où , n, , n2, ..., m2p, sont des nombres rationnels quelconques,
soient des fonctions indépendantes de 3p -~- ~ coefficients distincts.

Pour x = xo, choisissons arbitrairement les valeurs de ces coefficients et, par
suite, des seconds membres, et soient ..., 03B12p les valeurs des seconds

membres. Nous pouvons toujours disposer des nombres rationnels nk de

façon que les quantités m~ c~, + n,, c~,, m2 w, + n2 ... , , m2p w. + c~z dif

fèrent aussi peu que l’on veut de a,, ..., 

Donc, pour x = xo et pour ces valeurs des nk, les conditions (~) sont vé-
rifiées par un choix des coefficients de H et R aussi voisins que l’on veut des

valeurs initiales choisies arbitrairement; et, par conséquent, pour x = xo, H
et R satisfaisant aux conditions (r) ont des racines simples et n’ont pas de

racines communes, a fortiori pour x quelconque (sauf pour des valeurs 
tionnelles de x).

9. OBJECTION III. - Les relations (S) SOnt COMPATIBLES et DÉTERMINÉES.

Pour écrire.. qu’il existe 2~p -~- 2 - g solutions remarquables d’ordre deux,
il suffit d’exprimer que pour les 2p -i- 2 - g fonctions distinctes y. (x),

..., y.~ p+2_q(x)~ on a

Les Ji(X) sont des fonctions transcendantes de p + 3 fonctions arbitraires.

Si les relations (S) ne sont pas compatibles et déterminées, c’est qu’un des
seconds membres de (S), par exempte le dernier, est identiquement fonction
des autres, autrement dit que les 2p -f- 2 - ~ -1 i premières racines de H ne
peuvent donner à J(y, x) de valeur constante, sans qu’il en soit de même de la
racine suivante, et, par suiLe, de toutes les autres par raison de symétrie. Alors
le degré irréductible de l’équation est nécessairement égal à p + 3.

D’autre part, Inéquation différentielle primitive de degré 2 p + 2 s’écrivant

et son intégrale générale étant de la forme

on voit que si l’on écrit qu’une racine de R - o est une intégrale ordinaire,
Fac. de T., 2e S., I.



l, == o. et, par suite, Inéquation se réduit à

C’est une équation de Riccati, qui dépendrait ici d’au moins quatre fonctions
arbitraires. Il y a donc contradiction et, par suite, les conditions imposées sont t

compatibles et déterminées.

10. OBJECTION IV. - Le DEGnÉ CIe l’équation différentielle correspondant
 l’intégrale précédente est bien, en général, ÉGAL à y, et non moindre que q.

lin effet, s’il s’abaissait, c’est qu’il existerait d’autres solutions remarquables,
car, pour x = xo, les constantes C étant quelconques, H et R n’ont pas de solu-
tion commune en y; il n’existe donc pas de fonction y = g(x) annulant idenli-

quement H et R.
Il suit de là que, si les 2 p + 2 - fi conditions (S) entraînent comme consé-

quence qu’une nouvelle racine de H est solution remarquable, il en est de même
de toutes les autres racines de Il, et le raisonnement s’achève comme dans le

cas de m = o. (Chapitre III, ~ 8.)

OBJECTION V. - L’équation en ,y’ est bien IRRÉDUCTIBLE, du SECOND et

de a >_ r . Autrement la différentielle abélienne 
H dy s’exprimerait ration-I_ ~ 
~ R 

1

nellement à l’aide cl’une constante d’intégration, ce qui est absurde.

OBJECTION VI. 2014 L’llZlé,yrccle cc bien EXACTEMENT I?. BRANCHES permutables
autour des points critiques mobiles, et non un nombre

En effet, supposons que le nombre de branches, au lien n, s’abaisse

o ut’(n’ en supposant rz’> I.
raisonnement fait dans le cas o montre alors que les constantes

remarquables ne seraient pas distinctes, ce qui est contre 
D’autre part, si n’= I, l’équation est nécessairement de degré fi = 4 et tontes

les racines du discriminant sont des intégrales singulières.
Si donc on excepte ce cas de q = !~, h = !~, on est certain que n est bien le

nombre des branches de permutables autour des points critiques mobiles.

Si, au contraire, q = 4, k = 4, l’intégrale obtenue plus haut se réduira à une

intégrale à points critiques fixes, quel que soit l’entier n.

Nous arrivons donc aux conclusions suivantes :

CONCLUSION. 2014 Si, dans l’intégrale que nous avons appris à former, on donne



aux constantes des valeurs arbitraires distincte,s, et si l’on remplace les fonctions
par des fonctions arbitraires quelconques, l’intégrale ainsi définie vérifie une
équation différentielle du second degré en y’, de genre p ? 2, prend exac-
tement n valeurs autour des points critiques niobiles et correspond acc cccs

.

L’équation différentielle correspondante est de degré q > 4, dépenc!
cle i + 4 fonctions arbitraires et de 2p + 2 - fi constantes arbitraires, err.

comptant la constante N car on peut toujours supposer qu’une des constantes
remarquables est o, en observant qu’on peut toujours effectuer sur C une trans-
formation algébrique dépendant d’une arbi traire et d’une seule, et qui conserve
la courbe

Remarquons enfin que si p = 1, comme 03C9 est égal aussi à l’équation a
nécessairement ses points critiques fixes et, par sui te, fi = 4, k - 4.

Inversement, si nécessairement égal à un (à moins qu’il ne soit
nul, auquel cas cj serait l nul également) l’équation a encore ses points critiques
fixes, et R est égal à !. .

Nous voyons donc que, si l’on prend l = y, le cas de m .= i ne peut se pré-
senter que si Il == ï. Si, au contraire, q > 4, on formera une infinité d’équations
correspondant à 7n== i , n étant quelconque et plus grand que et ces équa-
tions dépendront, comme nous l’avons dit, de i + 4 fonctions arbitraires et
2/) + 2 - q constantes arbitraires.

Si toutefois 2 p + 2 - q = o, on aura une seule constante arbitraire, la con-
stante ~JL.

IV. - COMPARAISON AVEC LA FORME 03B1C2 - 203B2C + 03B3 = o DE L’INTÉGRALE
GÉNÉRALE.

12. Revenons maintenant à la forme .

de l’intégrale générale, on 03B2, 03B3 sont de degré n en y.
Dans le cas de 03C9 _-_=1, n est toujours pair, soit n = 2v. Cherchons donc, fi étant

donné, ainsi que n pair et égal à 2v, parmi les équations (/) la généralité cle
celles qui correspondent cc 03C9 _ 1 .

Tout d’abord ces dernières équations ne peuvent se rencontrer que dans la
classe qui correspond à j = o et, par suite, à A pair, .soit k = 2p + 2. Nous savons
que les équations (4) de cette classe dépendent de i + ~~ fonctions arbitraires
et 2 n -- q + h = 2 n + q - 4 - 2 i constantes arbitraires, qn’i faut t diminuer



de 3 si ce dernier nombre est supérieur à 3, et remplacer par o dans le cas

contraire.

Nous venons de voir, d’autre part, que fi étant donné, ainsi que p, le cas de

m == i nous a conduit à une forme d’équation différentielle, dépendant de i -~- ~
fonctions arbitraires et 2p + 3 - q constantes arbitraires.

Nous avons donc, dans le premier cas, 2 n - q - 3 - ( 2 p -~- ~ - q + y
constantes de plus que dans le cas comme k = 2~ -~- 2,
2 n - 4 constantes de plus.
On voit donc que, pour la solution générale, on comme nous le

savions, et, pour que m soit égal à iin, il faut que les constantes arbitraires, qui
figurent dans chaque solution correspondant à j = o, soient l liées par 
conditions. 2 n - 4 > o, à moins que n, qui est pair, ne soit égal à 2.

Si ra = 2, on trouve le même nombre de constantes qu’en 
le cas qui correspond aux équations èc points critiques fixes; on a, en

effet, q = 4 avec quatre solutions singulières.

12. Étudions de plus près la nature des 4 n - 4 relations dont nous venons de
parler, en formant directement l’équation (4) correspondant à une relation de
genre cen.

L’intégrale générale, en remplaçant snC par C et 

prend la forme

on a donc

Formons l’équation différentielle correspondante



°n a (en Posant X’= §t)

De même



On obtient ainsi l’équation difiérentielle

Le facteur indépendant de y’ peu t s’écrire

11 résulte de ce calcul l que -E- l, -1, + I , - I  sont des valeurs oe;ncrn-

quables de la constante, rendant carré parfait le premier membre de l’équa
lion (4), et donnant lieu, par conséquent, à un abaissement total de degré

L’équation différentielle correspondante, de degré 4n au plus ,

n’est autre que l’équation formée au début de ce Chapitre et pour laquelle

13. Ces conditions, qui son nécessaires pour que m soit égal à un, sont 
’

santes en gênera!, pourvu qu’aucune des Intégrales remarquables

correspondant aux valeurs 2014i, -~-t, + -? 2014 - de la constante en’ ’ 

~ ~
même temps le ~2014 (xv.
En effet, considérons l’expression

et, supposons qu’on y remplace C en fonction de y, c’est-à-dire, si l’on veut, C~
en fonction rationnelle de y’, y (x figurant comme paramètre).

Je dis que le radical ainsi formé est une fonction rationnelle dey’, y.
S’il en était autrement c’est que p, considéré comme fonction de y, admettrait



un point critique y = ~ ~x~, tel que, (â fût égal à -i- ~ ( on -±- I , soit,

par exemple, C = i .
Posons C - i == C’; l’équation entre C’ et y étant carré parfait pour C’= o, on

peut l’écrire sous la forme

s’annule pas pour y - g(x), sans quoi la solution remarquable
y - annulerait en même temps le discriminant 03B22 - xY de l’équation

Dans le voisinage la racine C’, qui s’annule avec ~r - y, est de la

forme

et, par suite,

l3 étant holomorphe dans le voisinage de y = y.
p est donc rationnel en ( y, y’); le de la. relation entre les constantes in-

tégrales est donc au moins égal à un, et, comme il ne peut dépasser un, il est

EXACTEMENT ÉGAL à UN.

V. - FORMATION EXPLICITE DES ÉQUATIONS A DEUX BRANCHES = I).

14. Partons de la différentielle elliptique

On peut toujours, moyennant une transformation honlographique effectuée
sur y, admettre que la transformation d’ordre deux est de la forme

Nous avons deux cas à distinguer, suivant que l’équation différentielle possède
huit ou six intégrales singulières.

I. IL Y A HUIT INTÉGRALES SINGULIÈRES. - Les équations correspondantes
sont de degrés 8, 7 ou 6.

1° Équations de degré huit. - Les fonctions A., B et ), étant arbitraires,



l’équation différentielle de degré 8 a pour intégrale générale

ou encore, si l’on fait le changement simultané de fonction et de constantes

d’où

On obtiendra l’équation la plus générale de degré 8, en remplaçant y par

hY + h1 Y + k1, où fi, h1, kj sont des fonctions arbitraires de x, et les coefficients de

cetle équation seront ainsi exprimés RATIONNELLEMENT à l’aide de six fonctions
arbitraires de x, et de leurs dérivées.

2° Équations de degré sept. - Écrivons que y = cxJ (qui est une des racines
du coefficient de y’2 dans l’équation précédente) est solution remarquable, pour
C = o, d’où

Dans l’équation (3) te terme indépendant de y’ s’abaisse au septième degré,
et l’équation différentielle devient 

.

et se réduit au degré sept.

3° Équations de degré Si.T. - Écrivons, en outre, que y = o est solution
remarquable pour la valeur C, de C (où Ci de C’= snC), d’où



L’équation devien t alors

... étant des coefficients dont je n’écris pas les expressions développées et
qui contiennent rationnellement A, B et leurs dérivées A’, B’ ; A doit être rem-

placé, en fonction de B, au moyen de la relation (5). Lorsque, dans (6), on remplace y

par h, h, k étant des fonctions quelconques de x , on obtient 

tion la plus générale de degré six avec huit intég’rales singulières. Elle con-
tient rationnellement les trois fonctions arbitraires h, Iz,, k et algébrique-
ment la fonction arbitraire B et la constante arbitraire Cj .

II. IL Y A SIX INTÉGRALES SINGULIÈRES. ---~ Les équations différentielles cor-

respondantes sont de degrés fi et 5. .

1° Équations de degré six. - Dans ces conditions, l’expression

contient, en facteur, le carré d’une fonction linéaire, d’où

Soit, par exemple, $ _ -~- 1.
L’équation différentielle devient

et l’équation la plus générale de cette espèce contient rationnellement les deux
fonctions arbitraires A, ~, les trois fonctions arbitraires h, h,, k de la transfor-
mation homographique, et les dérivées A’, h’, A’,, k’.

2° Équations de degré cinq. - Écrivons que y=~ est solution remarquable
pour C = o, d’où 

- - -

L’équation la plus générale, où l’on a remplacé y par sa transformée homo-
graphique, contient rationnellement les trois fonctions h, h., k, leurs dérivées
premières et contient algébriquement A et A’.



CHAPITRE VII.
ÉQUATIONS A COEFFICIENTS ALGÉBRIQUES. - ÉQUATION ADMETTANT

UN FACTEUR INTÉGRANT ALGÉBRIQUE.

I. - ÉQUATIONS A COEFFICIENTS ALGÉBRIQUES.

1. . Dans le cas oic la relation entre les constantes intégrales est de genre
zéro, l’équation

se ramène à une équation de Riccati

au moyen de la transformation

~x,, ~~,, ~~, étant des polynomes de degré n en y, dont les coefficients, ainsi que L,
1I, N, sont des fonctions algébriques des coefficients de (3) et, par suite, des
fonctions algébriques, si les coefficients de ( 3) sont algébriques.

Soit donc à déterminer EXPLICITEMENT toutes les équations ( 3 ) de DEGRÉ q
DONNÉ en y, et à coefficients ALGÉBRIQUES dont l’intégrale générale ne prend

qu’un nombre DONNÉ n de valeurs ja > q 4) autour des points critiques mobiles.

2. Nous devons distinguer quatre cas, suivant que le nombre de valeurs re-
marquables de la constante est au moins égal à 3, égal à 2, 1 ou o. 

’

I° Ily a ail moins trois constantes. - L’équation de Riccati (4), ayant trois
intégrales particulières algébriques, a son intégrale générale algébrique et, par
suite, dans

les coefficients sont eux-mêmes algébriques. Il suffira donc, dans le problème
général résolu au Chapitre III, d’astreindre les i + 4 fonctions arbitraires à être

algébriques,. l’intégrale générale de l’équation (3) est alors elle-même algébrique.

2° deux constantes remarquables. - On peut ’toujours admettre que



ces valeurs remarquables soin o et 00, et que l’équation (4) se réduit à

On a la relation

k désignant le nombre des intégrales singulières, /2 le nombre d’intégrales
distinctes y = g~(x) pour C = o et C = ~.

L’intégrale générale a pour expression

par suite

avec

Les nombres

sont deux systèmes d’entiers quelconques positifs vérifiant la condition

de plus, 11e, Il, g,, g2, ..., gt, ..., gq_k et les coefficients de 03B2 sont des
fonctions algébriques. Les coefficients de II, Q, Il sont donc eux-mêmes des
fonctions algébriques, d’après (6).
On pourra exprimer, par exemple, que le polynome de degré 2 n

admet q - k racines g, de multiplicités e,, e2, ..., et, et+,, ..., eq-k, d’où

conditions algébriques qui réduisent à

le nombre des coefficients arbitraires. Les fonctions g s’expriment algébrique-



ment, à l’aide de ces coefficients arbitraires ; et, si l’on désigne par M une fonction
algébrique quelconque, on pourra. poser

et l’équation correspondante dépendra de

fonctions algébriques arbitr~aires,
Si j > k, on pourra prendre comme fonctions algébriques arbitraires les

q - k + 2 fonctions g, M, h et j-k 2 ._ des coefficients de Q, R par exemple, et
les coefficients restants s’exprimeront algébriquement à l’aide de ceux-là et de
leurs dérivées.

3° Il y a une seule valeur remarquable. - Soit C = L’équation de
Riccati ramène alors à une équation linéaire; soit

De plus

1 désignant le nombre de racines distinctes en y de 0~ == o. On a

Ici

et par suite

On exprimera que le polynome de degré 2n

admet que q - k - n = 1 racines distinctes g1, g2, ..., gl de multiplicités

on posera



et les équations cherchées s’obtiendront en remplaçant dans

ic par

.K et P étant algébriques.
On prendra comme fonctions algébriques g1, g2, ... , gi, K., P et 11 + 

k-j

2

au tres fonctions parmi les coefficients de Q, R, et les autres coefficients s’expri-
tueront algébriquement à l’aide des précédents et de leurs dérivées.

£° Il n’y a pas de valeur remarquable. - La formule fondamentale se ré-
duit à

Soit

l’intégrale générale de l’équation de Riccati (4), on a

Les coefficients de fI, Q, R sont des fonctions algébriques. On décomposera
le polynôme

dont les ~a -~- j -~- k -~- n -~- 2 coefficients sont algébriques, en un produit de
deux facteurs Y, de degrés n, dont les coefficients sont des fonctions algé-
briques des m -f- j + k + n + 2 fonctions algébriques précédentes, et l’on rem-
placera dans Inéquation

ainsi obtenue, il par l’intégrale générale de (4), où H, K, P sont algébriques.

3. Dans les trois derniers cas que nous menons d’examiner, le nombre des
valeurs remarquables étant inférieur à 3, l’intégrale générale est TRANSCENDANTE,
quand on prend au hasard les fonctions ALGÉBRIQUES, coefficients de l’équation
de Ricca ti ( 4 ~.

Ainsi, dans le cas où il y a deux valeurs remarquables, pour que l’intégrale
soit transcendante, il faut que la fonction u x , définie par = K(x), ne soit

pas algébrique, ce qui a lieu si K(x) est pris au hasard.

4. Proposons-nous maintenant le problème suivant :



Former toutes les équations (3) de degré fi donné, NON INTÉGRABLES ALGÉBRI-
QUEMENT, dont l’intégrale générale est une fonction qui ne qu’un
nombre fini (NON DONNÉ ) de valeurs autour des points critiques mobiles.

lci le nombre des valeurs remarquables de la constante est nécessairement
à trois.

La relation

montre que n satisfait aux conditions

1 ° ll n a pas de constante remarquable. - Dans ce cas il n’y a pas de
solutions remarquables ; par suite 03BB = o, et n est limité par les conditions

on est donc ramené au problème suivant, déjà résolu : :

Former toutes les équations de DEGHÉ q (q _> 4), possédant q - 2n1 INTÉ-
GRALES SINGULIÈRES et dont l’intégrale.prend n, valeurs autour des points
critiques mobiles, n, étant l’icn quelconque des entiers vérifiant la condi-
tion ( ~ ~.

Par exemple, dans le cas de q = 6, on voit immédiatement que n, ne peut
prendre que les valeurs 2 et 3, et l’on est ramené, par suite, aux deux problèmes
suivants :

que nous traitons, d’ailleurs, tout au long dans nos applications (Chap. IV et V) .

2° Il y a une seule valeur remarquable. - Soit C = Considérons un

système quelconque d’entiers positifs l,, n,, k, satisfaisant à l’égalité

Le problème revient à former les équations de DEGRÉ q possédant q - l, - n1

solutions SINGULIÈRES, et dont l’intégrale a n, branches.
Posons

On obtiendra toutes les équations correspondant à ce choix particulier d’en-



tiers, en donnant aux entiers a,, a2, ..., all toutes les valeurs positives possibles
vérifiant l’égalité précédente; on obtiendra ensuite toutes les équations possibles
correspondant à ce cas, en épuisant les systèmes d’entiers l,, nt, k, en nombre
fini vérifian Inégalité , .

Dans l’hypothèse où la constante remarquable correspond à une seule
solution remarquable d’ordre deux, l’égalité précédente se réduit à

Par exemple, si q == 6, on se trouvera dans l’un des trois.cas suivants :

3° Il y a deux valeurs remarquables. - On ne peut plus déterminer d’avance
de limite supérieure de n, sauf dans le cas que nous allons considérer tout

d’abord, où, à chaque valeur remarquable de la constante, correspond une seule
solution remarquable d’ordre deux. Dans ce cas, de la relation

on déduit

et l’on est ramené à un nombre fini de problèmes connus.
Dans le cas où les solutions remarquables sont en nombre quelconque et de

multiplicités quelconques, n peut prendre des valeurs aussi grandes qu’on veut.
Il suffit de se reporter à ce que nous avons dit pour les équations à coefficients
algébriques, quand il y a deux valeurs remarquables de la constante, pour avoir
une solution quelconque du problème. ,

5. Enfin, il est bien évident que nous venons de résoudre en même temps le

problème suivant :

Former toutes les équations de degré q DONNÉ, à coefficients ALGÉBRIQUES,
dont l’intégrale est une fonction TRANSCENDANTE gui lle prend qu’un nombre
fini (NON DONNÉ) de valeurs autour cles points critiques niobiles.



II. - ÉQUATIONS ALGÉBRIQUES EN 

DONT L’INTÉGRALE GÉNÉRALE EST DE LA FORME

a, ~, y ÉTANT DES PRODUITS DE LA FORME

03BB1, À2, ... , 03BBn ÉTANT DES CONSTANTES NUMÉRIQUES DONNÉES.

6. On peut toujours supposer que l’on a divisé le premier membre par x et,
par suite, que ce _--_ J ; soit donc l’intégrale générale .

L’expression

peut s’écrire

où H est une fonction rationnelle de y’, y, puisque Inéquation différentielle
dont (i) représente l’intégrale générale est algébrique eny~y.
De plus, la fonction H ( y, .c), qui possède les ~ pôles

~(~)? ~2(~)? ’ . ~ est racine d’une équation du second degré, dont les
coefficients sont des polynômes de degré m’ en y.
Formons cette équation. Posons

S est un multiplicateur de dy - y’ dx.
De plus, en différentiant par rapport à y, on obtient

d’où les deux équations



Par suite, S est racine de l’équaLion

qui, résolue en S, peut s’écrire

Pour que S soit algébrique, il faut eL il suffit que y2 soit rationnel en y, c’est-
à-dire que si y = figure dans y à la puissance 7, et dans fi à la puissance ,
la différence 2 ~ 2014 ). soit un entier positif ou négatif; en sorte que l’on voit
immédiatement que l’intégrale sera de la forme

),, , ).2? ’ ’ ’? )’n étant des constantes numériques et A, B, H des polynômes en y.
Si A est de degré/? + 1, remploi de la transformation homographique montre

que l’on peut toujours supposer

7. Inversemen t, si l’on se propose de former toutes les équations de DEGRÉ cl
en y, du second degré en y’, dont l’intégrale générale est de la forme ( 2 ),
où 03BB1, 7,2, ..., a" sont des constantes numériques DONNÉES, on remarquera que
ces équations admettent un multiplicateur rationnel en y~, ~/H de la forme

On peut toujours vérifier algébriquement si une telle équation admet un mul-
tiplicateur ALGÉBRIQUE de cette forme, où n et p sont donnés.

S’il en existe au moins DEUX, leur quotient est une intégrale première de
l’équation différentielle et, par suite, l’intégrale générale acquiert icn nombre
FINI de valeurs autour des points critiques mobiles. C’est le cas que nous avons
étudié dans les Chapitres précédents.

Pour se trouver dans le cas où l’intégrale générale est de la forme (2), mais



N’EST PAS RÉDUCTIBLE A LA FORME RATIONNELLE, il faut qu’il n’y ait qu’un seul
multiplicateur, et, par suite, toutes les formes (2) de l’intégrale s’obtiendront en
remplaçant C par lCb, l et b désignant des constantes numériques.

8. Donnons seulement une idée rapide du problème actuel, qui se traite abso-
lument de la même façon que .les problèmes précédents. Supposons B == I pour
simplifier les calculs.

L’équation différentielle correspondante est

Mise sous forme entière, elle est de degré ~ p + 2 n + 4.
Pour qu’elle s’abaisse au degré q, il faut que 4p + 2n + 4 - q racines de

l’équalion

soient intégrales de (i), c’est-à-dire vérifient, les relations

y~ (x), y2(x~, ..., étant des racines de (E).
On a, par suite, la relation

la somme 1 étant étendue à toutes les solutions remarquables de multiplicité ar.
De plus, en désignant par y~ ~x~, y2 ~x~ j . , . ~ y~ p+?,~ ~x~ les 4. p + 2 n racines

de (E), on peut écrire l’identité

qui permet d’obtenir n relations résolues par rapport aux constantes ~~,, ?,2, .,., j,,l.



On trouve, par exempte :

Si, de plus, on ’écrit qu’il y a 4p + 2 n .-- q solutions remarquables, il en

résulte 4 p + 2 n - q relations de la forme

En général, ces relations sont compatibles et déterminées, si les constantes Cj
sont quelconques et si les constantes numériques DONNÉES Xi 03BB2, ..., ne vé-

rifient pas certaines conditions exceptionnelles ; et, par suite, elles définissent les
coefficients de l’équation différentielle en fonction connue de

III. - ÉQUATIONS DIFFÉRENTIELLES POSSÉDANT UN FACTEUR INTÉGRANT
ALGÉBRIQUE.

11. Supposons que l’équation différentielle

possède un multiplicateur algébrique â un nombre qccelconque de branches,
et soient M, et M2 deux quelconques d’entre elles.

Si le quotient M1 n’est pas une constante ABSOLUE, l’intégrale générale crc-
quiert un nombre fini de valeurs autour des points critiques mobiles. G’est

un cas déjà étudié précédemment.

Sinon, le quotient M‘ est une constante ABSOLUE et, par suite, une racine en- ,q M~ p

tière de l’unité. Le multiplicateur algébrique est donc de la forme

où P est rationnel en y’, y et n un nombre entier positif.
Bornons-nous ici au cas de /~= i.

Posons

où B et D sont de degré ~ en,y, R de degré 2p -~- 2 et A de degré § -{-/~ + 1 .



Ecrivons que les périodes de l’intégrale

sont des constantes.

Gomme il y a 2 â + i périodes polaires clistinctes et 2 p périodes cycliques,
nous obtenons 2p + 2 ô + i relations transcendantes (T), résolues par rapport à
des constantes arbitraires.

D’autre part, si l’on désigne par x) la fonction de y et de x, telle que

soit une intégrale de différentielle totale exacte, l’expression

est algébrique, puisqu’elle n’a plus de périodes.
111 est donc déterminé en fonction algébrique des coefficients ç(x), 03BB(x),

... de ~4, B, R, D, ces coefficients étant liés par les relations transcen-

dantes (T ).
Soit

On voit immédiatement que les S -~ p quantités

sont des constantes, et que, de plus, w.,, ... , ws désignant de nouvelles con-
stantes, on a

La quantité ~1 étant de la forme

~~x~ étant une fonction arbitraire de x, l’intégrale générale s’écrit



a, fi éLallt de degrés ô -~-l~ + 3 et â + 2 ; et l’équation différentielle correspon-
dan te est

ou

Le degré

de cell e équation s’abaissera, si les deux polynomes eny

ont des facteurs communs : ces facteurs communs, annulant, en général, les coef-
ficients de dy et dx dans la différentielle totale (4), sont intégrales remar-
quables. On aura, en définitive, la formule

en désignant par ap le degré de multiplicité de la racine y03C1 de A2 2014 B? R, dans
l’égalité

Cette formule (a) permet inversement de former explicitement les équations
de degré q donné ayant un multiplicateur rationnel eny, R et de degré â eny.


