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ESSAI

LES SERIES DIVERGENTES,

PAR M. M. SERVANT.

INTRODUCTION ET ANALYSE DES PRINCIPAUX RESULTATS OBTENUS.

1. Les séries divergentes ont de tout temps attiré U'attention des géomeétres;
d’abord, ceux-ci les employérent sans se préoccuper de leur convergence; ils
arrivaient ainsi souvent a des résultats exacts, mais cette méthode ne présentait
évidemment aucune rigueur.

Sous l'influence d’Abel et de Cauchy, cet emploi des séries divergentes cessa
complétement et c’est seulement depuis une quinzaine d’années que celte question
vint de nouveau préoccuper les géométres. Nous cilerons d’abord les Mémoires
de Stieltjes (') et de M. Poincaré (2) qui montrérent 'importance que pouvaient
acquérir en Apalyse les séries asymplotiques, employées jusqu’alors en Astro-
nomie seulement. Dans une voie différente, plusieurs mathématiciens [Halphen (),
Laguerre (*), Stieltjes ()] avaient rencontré des exemples singuliers ou, une série
entiére étant divergente, la fraction continue correspondante était convergente;
M. Padé (¢) reprit cette question et établit la possibilité de définir, dans certains
cas, une fonction par une série divergente enticre. Il faut rattacher a ces ve-
cherches sur les séries divergentes le Mémoire de M. Hadamard (7), sur le calcul
des points singuliers d’une fonction définie par une série de Taylor et celui de
M. Fabry (#) sur le méme sujet.

(1) SrievLties, Thése de Doctorat; 1886.
(2) PoIiNCARE, Sur les intégrales irréguli¢res (Acta mathematica,; 1886).
(3) HALPHEN, Fonctions elliptiques.
(%) LAGUERRE, OFuvres, t. I.
(%) STIELTIES, Mémoire sur les fractions continues (Annales de Toulouse; 1894-18g5).
(%) PADE, Acta mathematica; 1894.
(7) Hapamarp, Thése de Doctorat; 1892.
(8) FaBRY, Arnales de I’Ecole Normale; 1896.
Fac. de T., 2 S., 1. 16



118 M. SERVANT.

Le premier de ces Travaux renferme, du reste, un résultat important, au point
de vue de la sommation des séries divergentes; en effet, 'auteur donne une mé-
thode pour caleuler la valeur de la fonction sur le cercle de convergence dans des
cas étendus.

Dans ces derniéres années, M. Borel (*) a été plus loin; il est parvenu a
sommer une fonction donnée par un développement de Taylor dans une aire plus
étendue, comprenant le cercle de convergence; et la méthode employée est sus-
ceptible de beaucoup d’applications.

2. Dans ce Mémoire, nous nous proposons d’étudier le probléme suivant :

Une fonction analytique étant définie par une série convergente dans une
certaine aire, étudier les propriétés de cette fonction dans tout son domaine
d’existence; calculer ses points singuliers, ses zéros et la valeur numérique
de la fonction en un point quelconque.

3. Nous étudierons d’abord les séries de Taylor et, dans le premier Chapitre,
nous chercherons a déterminer leurs points singuliers, & I'aide des coefficients du
développement. Nous établissons d’abord une formule pour le calcul des pdles,
des points critiques algébriques, des p.oints logarithmiques, etc., puis ensuite,

Fig. 1.
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une formule générale qui donne, dans tous les cas, les points singuliers, situés
sur le cercle de convergence.

(1) Bonkvr, Journal de Liouville; 1896.
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Considérons, en effet, une série de Taylor de rayon de convergence fini non nul

(1) f(z):chz".

Supposons que ses points singuliers a,, @, ... soient disposés sur le poly-
gone de sommabilité, comme Pindique la fig. 1.
Formons alors 'expression

E(az)._:Elﬁ"_“_"_:"f. .

n!

Si le point 5 est dans P’angle w,, on aura
2
d‘—aE(aa>

Xy

L 3 .
Partie réelle. .. (—) =lim ;:—w—mz—),
formule qui permettra de calculer le point a.

On peut ainsi calculer, en particulier, tous les points singuliers, situés sur le
cercle de convergence, et, par conséquent, par la méthode du prolongement ana-
lytique, on pourrait calculer de proche en proche tous les points singuliers de la
fonction définie par la série (1).

Nous donnons, ensuite, diverses propositions qui permettent, dans bien des
cas, d’abréger les calculs et d’éviter le prolongement analytique.

Nous monlrons ensuite comment, par une généralisation facile d’un théoréme
de M. Hadamard, on peut utiliser les résultats obtenus dans le cas des séries
entiéres pour le calcul des points singuliers d’autres développements. Cette géné-
ralisation est la suivante :

Si les points singuliers de la série

2 (),

o N est un paramétre, sont donnés par

Z:(Pv()\) [V:(';Z;"')]’

les points singuliers dans le plan de la fonction

(1) Dicnunls),

seront donnés par la formule



120 M. SERVANT.

ot les o sont les points singuliers de la fonction

2 c,t".

Dans le cas particulier d’'un développement en série de polynomes de Legendre,
on a la formule simple pour les poinls singuliers

‘4. Dans le second Chapitre, nous nous occupons de calculer la valear numé-
rique d’une fonction donnée par un développement de Taylor en un point o la
série diverge, en nous servant seulement des valeurs numériques u, = a, s, des
termes de la série en ce point, et nous étudions, & ce point de vue, des fonctions
particuliéres.

Nous donnons d’abord plusieurs méthod:s pour sommer dans tout le plan une
Jonction rationnelle, puis nous étendons la méthode aux fonctions ayant des
points critiques algébriques, des points logarithmiques, elc.; une proposition,
déduite du théoréme de M. Hadamard déja cité, permet d’étendre encore ces ré-
sultats; nous montrons enfin comment, par une méthode analogue, on pourrait
étudier les séries non entiéres.

5. Les méthodes développées dans le premier Chapitre permettent de calculer
facilement les zéros d’une fonction rationnelle ou méme d’une fonction uniforme :
par conséquent, si la fonction dont on a & sommer le développement de Taylor
est la fonction inverse d’une fonction de cette nature, on aura avantage a calculer
d’abord le développement de la fonction inverse, puis, ensuite, les zéros de
celle-ci.

C’est cette question que nous étudions dans le troisi¢éme Chapitre, el nous
montrons que l'on peut faire ce calcul en connarssant seulement la valeur
numérique des termes de la série donnée; quand la fonction donnée est I'in-
verse d’une fonction rationnelle, on pourra ainsi calculer toutes ses déter-
minations en un point donné, sans employer la méthode du prolongement
analylique; cette méthode permet aussi, dans certains cas, de sommer des fonc-
tions de plusicurs variables.

6. Dans un quatri¢me Chapitre, nous reprenons la méthode de sommation
donnée par M. Borel el nous montrons dans quelle aire elle permet de sommer;
nous donnons ensuite plusieurs expressions analytiques de la fonction conver-
geant dans celte aire. Pour certaines fonctions uniformes particuliéres, on peut
étendre beaucoup la région de sommabilité; nous arrivons & ce résultat en mo-
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difiant 1égérement la méthode de M. Borel, c’est-a-dire en faisant tendre le para-
métre a vers -+ oo avec un argument quelconque.

7. Dans un cinquié¢me Chapitre, nous cherchons a sommer les développements
de Taylor a l'aide de la représentation conforme; cette méthode permet de
sommer la fonction en tous les points ot elle peut étre prolongée analytique-
ment, et elle n’exige, comme les précédentes, que la connaissance des valeurs
numériques des termes de la série.

8. Enfin, dans un sixiéme Chapitre, nous montrons comment ces résullats
peuvent s’élendre a des séries plus générales et, en particulier, aux séries de
polynomes. '

CHAPITRE L

CALCUL DES POINTS SINGULIERS D'UNE FONCTION DONNEE
PAR SON DEVELOPPEMENT DE TAYLOR.

Dans ce premier Chapitre, nous nous proposons de donner une méthode pour
le calcul des points singuliers d’une fonction définie par son développement de
Taylor. Cette question a déja été traitée dans des cas particuliers par MM. Hada-
mard (') et Fabry (2); nous la traiterons d’une autre maniére en employant une
expression analytique introduite par M. Borel (*) et dont nous allons d’abord
rappeler quelques propriétés.

1. Soit une fonction
J(5)=co4c 54+ cy52+4.. .,

ol nous supposons le rayon de convergence fini et non nul.
Considérons 'expression

C allz”
E(as) :Z S,

n!

que M. Bovel a appelée la fonction entiére adjointe; ¢’est une fonction entiére
de a de genre o ou 1 telle que I'expression e"*E(a3) tende vers o quand @ tend

(1) Hapamarp, Thése de Doctorat; 189r.
(2) FaBRY, Annales de 1’Ecole Normale; 1895.
(%) BoreL, Journal de Mathématiques; 1896.
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vers l'infini par valeurs réelles et positives, toutes les fois que le point 5 est dans
une certaine région nommée polygone de sommabilité. Cette région se déter-
mine de la facon suivante :

On joint l'origine O aux différents points singuliers a,, d, ... de f(z) et en
ces points on éléve des perpendiculaires aux droites O«,, Oay, ...; on supprime
ensuite les régions du plan, limitées par ces droites, qui ne contiennent pas
P'origine; la portion du plan restante est le polygone de sommabilité.

De méme, si nous considérons la fonction

Cpp PP
Ep(asz)= 2 pr -,
pn!
on voit, de suite, que l'expression E,(az) tend vers o pour @, inséré quand s
est dans un certain polygone analogue au précédent, mais dont les cotés sont des
arcs de courbes que nous étudierons plus loin.

2. Supposons, en premier lieu, que la fonction f(s) n’ait que des pdles sur le
cercle de convergence et dans une certaine aire G comprenant celui-ci : on peut
alors écrire la fonction

S(s )_2(%_,),”, +9(3),

©(z) étant holomorphé dans I'aire C'; on a alors, de suite, les coefficients ¢, du
développement de Taylor (*)

Ao A
— E;%q(n—kl)...(n—i—m)—l— :)H_m (n4+1)...(n+m—1)+...
A,

+F:_-m—+l(n+l)+ +b,,,
1

ot b, est le coefficient d’ordre n du développement de ©(z) en série de Taylor

qui converge, par conséquent, dans un cercle de rayon plus grand; on aura alors
facilement

A ~m A 0 z A
m’OD,n—e a"-!— —ll—-’—'—Dm_.i—m—_—le ““—!— o+ m’D ——e a.+ —|—E’(az),
%o oy %o % %y af

E(az)=

ou E'(a3z) estla fonction entiére adjointe de o(z).
Or, on a évidemment

(1) DaRBoUX, Mémoire sur les fonctions (Journal de Mathématiques, 3° série, t. II).
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©p désignant un polynome de degré p; on peul alors écrire simplement

E(az)= Y Amrg, (%;) ‘% 4 B (as).

ay

3. Considérons alors la limite pour @ =+ o de 'expression
t
E(asz)s,

et supposons pour cela que « soit tel que, dans 'aire G, on puisse déterminer sz,
de telle sorte que 'on ait les inégalités

z P

22

<< 0.

(1) Partie réelle de . ..

-
<

— — 1

o)

> o.

(2) » »

z
Je dis que la limite cherchée est alors [*; en effet, on peut écrire

1
a

1

: Z Ao as pAmv as ﬂs(—l——-— —aZ
E(as)'=en| ¥ =i, (= )+ W =g, (=2)e @m0 "R E (ax)
v v
v=t

oy o,

Or, a cause de (1), le second terme de la parenthése tend vers o; de méme, on
sait que e *E(az) tend vers o dans l'aire C; il en sera de méme a fortiori de

as
—alZ . . .
e % E(az)acause de (2); il ne reste donc que le premier terme de la paren-
. . . . , , . . . , .
thése; mais on voit de suite qu’élevé a la puissance P il devient égal 4 1 (quand @

est trés grand); on a donc I'égalité

1 3
lim [E(az)]¢= e*. .

a=owo

Il est a remarquer que cette égalité subsiste indépendamment de l'inéga-
. az
lité (2); c’est évident si 'on remarque que e * E(az) est homogéne en a et 3;
la limite ne dépend que de I'argument de z et nullement de son module.

4. Cherchons maintenant & interpréter géométriquement les inégalités (1); on
les écrit de suite en séparant la partie réelle

(1") Aiicos(e—al)—ls—ocos(e——ao)<o,

ou l'on a posé
z=pel, ;= Ael%,
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Pour avoir les lignes limitant les régions, il suffit de résoudre 1'équation ob-
tenue en égalant & zéro l'inégalité précédente; ce sont des droites passant par
Uorigine qu'il est facile de construire; en effet, on voit de suite qu’il suffit de
joindre lorigine aux sommets du polygone de sommabilité de f(z); si le

Fig. 2.

/

point 5 (fig. 2) est dans I'angle @, on obtiendra le point «,; dans I'angle Q,, le

point a,, et ainsi de suite.

On pourra ainsi obtenir les points situés sur les cotés du polygone de
sommabilité ou sur leurs prolongements, et ceux-la seuls.

5. La formyle devient indéterminée quand on a, pour une ou plusieurs valeurs

de v,

%y %o

= 0.

Ceci arrive quand le point 5 est sur une des droites limitant les angles Q.

On voit alors que 'argument de la limite devient indéterminé et 'on ne peut
plus calculer que le module; on voit que ceci revient & connailre le cercle pas-
sant par lorigine et les deux points singuliers pour lesquels U'égalité a
licu.

On pourrait éviter cette indétermination en employant la fonction

C,,aPmzpn
E (az) =S 577
P(A“ nl
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11 est facile de voir que I’on aura

1 P
lim[E,(az)]"=e%.

Le point o, étant situé sur une des courbes composant le polygone de som-
mabilité, et z étant dans un des angles, convenablement choisi, défini par I'équa-
tion

I I
AT cosp(f—oay) — R—gcosp(6~ao) =o,

on obtiendra par la formule précédente tous les points singuliers situés sur

le polygone de sommabilité, et ceux-la seuls ; du reste on n’aura pas ces points
eux-mémes, mais leurs puissances pmes.

6. Par les formules précédentes, on a une méthode pour calculer les podles
situés sur le polygone de sommabilité; soient ay, a, ..., 2, ces pdles, la fonction

n’aura plus ces points pour poles, si les m ont été convenablement choisis, et
alors, en opérant de la méme fagon, on obtiendra de nouveaux péles de f(z); il
est bien évident que I'on pourra ainsi obtenir tous les péles situés dans le do-
maine de sommabilité de f(z) relatif aux points singuliers qui ne sont pas
des pdles; on généralise ainsi un peu le résultat obtenu par M. Hadamard, qui
calculait seulement les péles contenus dans un cercle concentrique au cercle de
convergence et ou la fonction est réguliére.

On peut évidemment procéder de méme si I'on considére une fonction de la
forme E,(az), et 'on a alors de suile la propriété suivante : on peut calculer les
puissances pimes de tous les pdles situés dans le domaine de sommabilité
d’ordre p de f(z) relatif aux singularités non polaires de cette fonction.

On peut encore arriver a ces résullats par une autre méthode qui nous fera
connaitre en méme temps des éléments importants de la fonction : a savoir les
coefficients A et les degrés de multiplicité des poles.

Supposons que le point a, soit le pole de degré de multiplicité le plus élevé
situé sur le cercle de convergence et que, de plus, il soit le seul de son degré; les
formules données précédemment pour les coefficients donnent alors immédia-
tement

0 S YRRy ¥
nmwl(0 1) (R +m) as,  alt?
on posera ensuite

m,

A
SAERTT (n+1)...(n+4+m),
[

’ ——
a,=a,—

Fac. de T., 2 S., 1. 17
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el I'on trouvera de méme

m—1 52
2 a, . -Am—l.')

lim — =
(n+1)...(n+m—1)a,, ayt

si tous les poles situés sur le cercle de convergence ont un degré de multiplicité
inférieur a m. Si a4 était seul pole sur le cercle de convergence, on pourrail cal-

m
acn—l

culer ainsi de proche en proche tous les ainsi que le coefficient m. Pour

ce dernier, on peut le déterminer directement. On trouve, en effet, de suite, la
formule '

m — lim 2 ]Ogl an ‘ _ lOgl Aap | — lim IOgl a, |
n=v logn ney logn

ui a été donnée par M. Hadamard.
q [
On voit immédiatement, d’une facon analogue, que I'on a

———2
2’"E((l) A"’m;/)z
st S 3
=" E(2a) o2t

si le point z est dans I'angle Q,, correspondant & «,; si nous posons alors

E'(a)=E(a) — Amos™ am,

2m+ |
%y

on aura

—2
o (@) mA st A et
lim 1R/ = am
w=ut@™'E (2a) o)

21 ?
.
"Al)

m

. A
N : M . ? o o N
et ainsi de smle, on voit que 1 on pourra calculel de proche en proche les poyraardd

pour le degré de multiplicité m ; on aura de suite la formule

m=lim 2logE(a) —logk(2a) — lim logE(a)
a== loga a=w log(’

De ces formules, on peut déduire une méthode pour calculer les poles situés
extérieurement au polygone de sommabilité; en cffet, la fonction E'(a) de plus
haat ne donne plus le pole 2, qu'au degré m; la fonction E’(«), formée d'une
facon analogue, ne le contiendra plus qu’au degré m — 1, et ainsi de suite, on
pourra former des fonctions E(?’(a) qui ne contiendront plus aucun des points
singuliers o9, «.., %, et 'on aura alors ainsi une expression analylique propre &
calculer les poles situés extérieurement au polygone de sommabilité.

On aurait évidemment des formules et des résultats analogues si ’on considérait

une fonction de la forme E, (@).
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7. La formule
< 1
ev=1lim[E(az)]"
a—=
; on voit, en effet, de suite que I'on

=

0

5]

E[(a+ 1D
E(az)

n'est pas la seule qui permette de calculer
aura les formules

e*=lim
==

Lo
=lim - logE(asz),

Z“_Ov (==
dE (asx)
da

Z = lim —
Oy a=w E(asz)

dont les deux derniéres sont d’une application plus simple.

8. Nous allons maintenant considérer d'autres cas ot les points singuliers ne
sont plus des poles et nous allons montrer comment on peut généraliser les for-

Considérons I'expression donnée par M. Hadamard dans sa thése :

mules précédentes.
1

o(s)=1{[ V(¢)f(=zt)de,
!

on sait que la fonction ¢(3s) a les mémes points singuliers que la fonction /()

(sauf peut-étre des coupures rectilignes qui n’influent pas ici). Si I'on pose

.l
@,,:f V(¢)tr de,
0 -

on aura
9(3) =, cn®, 3",

si le développement de f(z) est
JS(z) :E (-1

il est alors bien évident que, si I'on désigne par ¢(a ) I’expression

m ~m
m a”s

m!

e(az) :E Ome

e(as) :fEV(t)E(a;t) Je.

on aura
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Nous allons d’abord démontrer le théoréme suivant :
Silon a
1
(1) limmod |E(as)|*= e,
M=o
on aura également
1
(2) s lim mod |e(az) |[*=e=.
a=x
En effet, si I'on a I'égalité (1), on peul évidemment poser
E(az)={(az)er=+iay,
¥ étant une fonction telle que
1
lim|{§(az)[*=s,
a=®
on aura alors

1
e(as) :f V() Y(aszt) elart eaxe,
0
On peut appliquer ici la formule de M. Darboux et 'on aura de suite
e(az) = AV (E)Y(ask) e2wi(ewr — 5),
et I'égalité (2) devient alors évidente. Si la fonction f(z) n’a que des péles sur

Fig. 3.

le cercle de convergence, on aura évidemment dans les diverses régions Q des
égalités telles que (3) et 'on voit que la formule (2) nous fournira alors les quan-
tités

xr = —p—cos(e— o).
1 .

Cette équation en A, et «, représente le cercle de la fig. 3; pour avoir une
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autre égalité permettant de déterminer complétement le point «, il suffit de con-

sidérer la limite
1
e* = lim [(aei® 5)]¢,
N a—owm

ou, ainsi qu’on le voit de suite, on a

x' = -P—cos(e—&— 0 — o),

1
ce qui donne un autre cercle analogue au précédent, sur lequel se trouve égale-
ment le point A, e et qui achéve par conséquent de le déterminer; on voit donc

ue ’on peut énoncer la proposition suivante :
q

Si Uon peut calculer les points singuliers de f(z) situés sur le polygone
de sommabilité, on peut aussi calculer les points singuliers de la fonction
©(z) définie par la formule

ga(s):f V(1) f(st)du.

On aurait évidemment un résultat analogue, si 'on considérait une fonction
E,(az); on verrait de méme que 'on pourrait obtenir les puissances péme des
points singuliers de ¢(z) si Uon peut les obtenir pour f(3).

9. Ilserait facile de voir, en appliquant la formule précédente, que 'on obtien-
drait ainsi les points singuliers de la forme

ainsi que les points logarithmiques et leurs intégrales; il serait également bien
aisé de voir que les formules du n° 6 qui permettent de calculer les A et les m
subsistent ici; seulement, dans le premier cas, on trouvera pour @ un nombre
fractionnaire, et dans le second un nombre négatif; nous pouvons donc de suite
formuler une conclusion analogue a celle que nous avons donnée dans le cas ou il
n’y avait que des poles :

On peut calculer les points logarithmiques, ceux qui en dérivent par inté-
gration; les points critiques de la forme

situés dans I'aire de sommabilité relative aux autres points singuliers de la fonction.
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10. Examinons quelqixes autres cas rentrant dans la formule générale de plus
haut, et ot lon peul pousser 'étude de la fonction aussi loin que dans le cas ol

il y a des poles seulement.
Considérons, en effet, une fonction ayant des-points singuliers de la forme

1
o(s)= —Vl%dl,
I — —

[ «
ou l’on a
V(t)=as+at +ayt> +...+ a,t"
b

on aura

p=n \

~1),

p=n

1 ast Loast af a
E(az) :/ Vt)e* ::2I a,,f the :Z apocl'l)‘;”)?<e
0 0 p=0 ~

p=0

Ria

ou encore, en développant,

y=n
as P =1

FEER N poa . pp—net o Ay (—1)P

-\ — o : p 41 P .

E(as) = as€ 2| all[l as © a’s? xf Z‘ap—H;lH—l
p=0

1l est facile de voir que 'on aura, en module et argument,

1
lim [E(asz)]“=¢%

Rin

(= o
et de méme
. p=n - 2
. as E(a)
Clp:]lm—-— = 9
2 a=n20 E(2a)
I):O

sil'on pose alors

Qlu

PR N a
E'(a)—a—_Za,,e ’
on aura d’une facon analogue

p=n —_—2

. a*s* E(asz
Epa,,: lim (@s)
==

2a)? E(za:)’

p=0

p=n as a-+1 )

2/)(1)—1)...(/)—(/)a — lim o E('T’(a:)-'
(g+1) P e\ 2as E7(2a)

= 2

On voit que l'on aura ainsi un systéme d’équations qui permettra de déter-
miner les a, et, par conséquent, la fonction V(¢); on aurait eu un résultat ana-
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logue si la fonction f (3) avait été une fraction rationnelle quelconque, et I’on voit
de suite que dans le cas o la Jonction n’a, dans une aire de sommabilité, que

des points singuliers de cette forme, on pourra les calculer comme précé-
demment.

11. Supposons encore que la fonction V(¢) soit de la forme

V(¢) :E a,,emnt,

on aura
a
A —
V() O ¢ —1
e(as)= :td[— a,, ek
— — m 4 —
o4

0

On voit de suite que 'on a, en module et argument,

1

li_m [E(as)[“=e*.

D’autre part, on peut écrire ¢(az) sous la forme

3
X o « 1
elas) = — E a,e"— E a,e”+...le *— — .
( ) <az m a’z? e m . as

m 4 —
24

RIn

On voit alors de suite que l'on a

2
as
—&las

Se(as)

lim = —2 a, lm,
a=w 245

—a—~£(2a) B

Si 'on pose ensuite

’ a "I+(lu
¢'(as :e(a:)—-ﬁZa,,,l y

on aura

2 2
as
— ) ¢'(as)
1 - l/n
hm—/z—_—:-— ma,, ",
4

et ainsi de suite; on voit que 'on pourra former un nombre suffisant d’équations
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pour déterminer les a,; elles seront de la forme

2 a,ln =B,

m a,l"=B,
Z [m=(,...,p)]

E mPa, " =8B,
s

On en tirerait de suite en résolvant

oy B, o
1 2 B, p
1 2%

1 22 32 m?
L2 . mP };I’
On sera assuré que 'on a un nombre suffisant d’équations en écrivant que le

déterminant des équations est nul

1 opr+l 3p+1 Pp-H Bp+1

On aurait évidemment un résultat analogue en prenant pour f(z) une fonction
rationnelle quelconque et I'on voit que, encore dans ce cas, on peut calculer les
points singuliers dans le polygone relatif aux autres singularités.

12. Considérons plus généralement une fonction

CP(Z):E([,,G"’,

et supposons qu’il existe une fonction V(¢) telle que si ’on pose
PP q q p

1
(-),,:f V(¢)roe,
0
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la fonction
an
Sf(3)= 0,

soit dans une certaine aire une fonction n'ayant que des points singuliers de la
nature de ceux envisagés précédemment. On pourra évidemment calculer, pour
cette fonction ¢(z), les points singuliers situés sur le polygone de sommabilité,
et, de plus, si l'on peut déterminer V (t), tous les points singuliers situés dans
I’aire oti I'on peut calculer les points singuliers de f(z).

En résumé, on voit que Von peut, par les méthodes qui précédent, calculer
rousours les points singuliers des fonctions de la forme

cp(z)::f V() f(st)ot

[ou f(z) est une fonction n’ayant que des pdles, dans une certaine aire compre-
nant le polygone de sommabilité], qui sont situés sur les corts de ce polygone
de sommabilité et dans des cas étendus calculer des nombres qui permettent
de calculer, de proche en proche, d’autres points singuliers de la fonction;
en tous cas, la détermination de ces derniers points se ramene a la recherche
de la fonction V(t).

13. Nous nous proposons maintenant de calculer les points singuliers situés
sur le cercle de convergence dans le cas général.

Dans le Mémoire déja cité, M. Borel a démontré que la condition nécessaire et
suffisante pour que le point z =1, situé sur le cercle de convergence, soit sin-
gulier était que I'on ait
0 tim sup-e=e 3] LS

# 0,

¢ étant un nombre positif aussi petit que I'on veut.
Soit alors e* la limite supérieure pour @ infim,

1
(2) _ e* = lim sup.[E(az)]“
Remarquons d’abord que 'on aura évidemment

1
P ]im[E(apz)];,
a=w
o étant une quantité réelle.

Donnons alors a z, dans I'égalité (2), une valeur réelle et positive z, et sup-
posons que l'on trouve alors A = . Je dis que le point x =1 est point singulier
(le rayon de convergence de la série étant I'unité). En effet, puisque ce point est

Fac. de T., 2* S., 1. 18
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sur le cercle de convergence, il faut et il suffit que I'inégalité (1) soit satisfaite;
or, a cause de (2), pour les valeurs trés grandes de @, E(az) se comporte
comme e%* et la proposilion est alors évidente.

Inversement, je dis que si le point x =1 situé sur le cercle est singulier,
on a ) ==z; en effet, supposons qu’il n’en soit pas ainsi et que lon ait Ak=pu;
supposons d’abord p > 1; on peutalors évidemment trouver un nombre ¢ tel que
Pon ait

p(i—eg)—1>o,

ce qui est absurde, car alors le rayon de convergence serait plus petit que 1; de
méme si p <1, on peut trouver un nombre ¢ tel que

pli+e)—1<o,

ce qui est contraire a I'inégalité (1).

Si, le rayon de convergence étant toujours égala 1, c’est le point e qui est sin-
gulier, on aura un résultat analogue; en effet, pour qu’il en soit ainsi, il faut et il
suffit évidemment que 'on ait

lim sup.e~*E(aeie)£ o,

a—ow

= étant positif et plus grand que 1; on démontre alors absolument, comme précé-
demment, que I'on a

1
¢t = lim sup.[E (ae¢)]".

Supposons maintenant que, 1 étant point singulier, nous cherchions la limite

1
lim [E(as)TF,
M=o
ot l'on a
5 = ¢eld,

Uangle § étant petit.
Pour que le point 1 soit singulier, il faut et il suffit évidemment que I'on ait
(1) lim sup. e~*E(ace®)# o,

quand
gcosf —1>o0, &> o,

et pour les petites valeurs de 8, ainsi qu’on le voit de suite en se reportant au
Mémoire de M. Borel. Or on voit facilement, en utilisant une remarque faite au
début de ce paragraphe, que la limite cherchée doit étre nécessairement de la

forme

Ae,
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A étant indépendant de ¢; d’autre part, évidemment a cause de (1), il faudra que

Ae —1,
soit de méme signe que
gcosf —r1.

On en conclut de suite que
A = cosf.

Par un raisonnement absolument analogue, on montrerait que si le point sin-

gulier est ef®, on aura
A=cos(f—w).

Donc, d’une facon générale, on voit que la formule

0700 i sup.[E(az)]%
a=w
permettra de calculer les points singuliers situés sur le cercle de conyer-
gence et méme, ainsi qu'il est bien facile de s’en rendre compte, tous les
points singuliers situés sur les cétés du polygone de sommabilité : les régions
ou doit se trouver z pour obtenir les différents points singuliers sont les angles Q
définis dans le cas des poles.
On pourra également appliquer les formules

€ - .1 __
K;COS(@'—O(,')—llggzl'logh(au),

iE(az)
£ cos(0— a) =1im 2%,
Ai ¢ ~(l:uo E((ZZ)

qui sont d’une application plus pratique.
14. De méme, si nous considérons la limite
ip
lim[E,(az)]*",
a==w
nous verrions de méme qu’elle est égale & e* avec

er
= 15 cosp(0— a),

A = partie réelle A

oy
o étant un point singulier situé sur le polygone de sommabilité relatif a la
fonction .

E,(az);

cette formule permet aisément de déterminer les p sommets de la courbe de som-
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mabilité relative au point o;, c’est-a-dire, en somme, que cette formule nous
permet de calculer af.

En résumé, on voit que I'on peut, par cette méthode, calculer les points sin-
guliers situés sur le cercle de convergence et sur le polygone de sommabilité
relatif a E(a) et les puissances piémes des points singuliers situés sur les poly-
gones de sommabilité relatifs aux fonctions Ep(a).

15. Un résultat donné par M. Hadamard (') permet encore de calculer les

points singuliers dans quelques cas ouils ne seraient pas fournis par la méthode
précédente. Ce résultat est le suivant :

f(z)= E cn3",
9(s)= 2 d,5".

F(s)= Z Ccn0,5"

Soient deux séries de Taylor

La fonction

a pour points singuliers les points que 'on obtient en multipliant un point sin-
gulier de f(z) par un point singulier de (z).

Par conséquent, pour calculer les points singuliers d'une série

(1) D s,

on pourra commencer par décomposer le coefficient @, en deux ou plusieurs fac-
teurs ¢}, ¢i, ..., et la recherche des points singuliers de (1) sera alors ramenée

a celle des points singuliers des diverses séries

E chzn,

ce qui peut étre plus simple.

16. Nous allons maintenant chercher a étendre les résultats obtenus dans le
cas des séries entiéres, a des séries plus générales.
Considérons d’abord une série de la forme

(1) F(s)= Y eal(3) ,

ou I'on a posé

Z=f(s).

(1) Comptes rendus; 1897.



ESSAI SUR LES SERIES DIVERGENTES. 137

Soient ag, o, %3, ..., a les points singuliers de la série

E cpu™.

Les points singuliers de (1) seront les racines des équations
f(‘;):a‘l [‘J:(l,z,,..)],

et 'on voit alors comment on parviendra a les calculer.

17. Plus généralement, considérons une série de fonctions

(2) Eun(z),

(ue nous supposons uniformément convergente dans une certaine aire connexe
et formons la fonction de deux variables

F(z,t)::z u,(s)er.
Une telle fonction a pour singularités des lignes (')

(3) ' Sv(z,t)=o0 [v=(1,2,..].

Si I'on donne & z une valeur fixe z,, ces égalités déterminent les points sin-
guliers de la série entiére F(z,¢) en ¢ ainsi formée; si, au contraire, on donne
a ¢ une valeur fixe ¢,, on aura les points singuliers de la fonction F(z,¢,) en ré-
solvant les équations précédentes par rapport 4 5; et en posant ensuite £ =1, on
aura ainsi les points singuliers de la série (2). Supposons alors les équations (3)
résolues par rapport a ¢,

t=9y(3) [v=(1,2,..)]

Si z a une valeur fixe z, cette formule fournira les points singuliers de la série

2 u,(3,) ",
Considérons alors la série

(4) ‘ ch”n(zo)‘n’

o les ¢, sont tels que la série
(3) Z eny"”

(1) Ge qui suit serait en défaut, dans le cas ol les £ ne contiendraient que I'une des
variables.
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ait un rayon de convergence fini non nul, d’aprés le théoréme de M. Hadamard
cité précédemment, cette série (4) en ¢ aura pour points singuliers les quantités

o Py (%) [v, i=(1,2,...],

ou les 2 sont les points singuliers de (5).
On voit alors de suite que la fonction de z et ¢,

Fi(z, 0= eaun(a)er,
a pour singularités les lignes

. t:dlCPV(Z) [V,i:(l,Q,...)],
ou bien encore

en particulier, si 'on fait £ =1, on voit que I'on a le théoréme suivant :

Si les singularités de la série

2 up(z)

sont données par les équations
S(s1)=0 [v=(1,2,..],

les singularités de la série

chu,,(z)

sont données par les équations

ow les o sont les points singuliers de la série

Z cpy”.

Ce théoréme permetira, dans beaucoup de cas, de calculer les points sin-

guliers d’une fonction définie par une série. Nous allons en donner quelques
exemples.

18. Considérons une fonction définie par un développement de la forme

X enXa(s),

ou les X sont les polynomes de Legendre et supposons que cette série ne soit pas
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toujours divergente, et cherchons les points singuliers de la fonction F(z) ainsi

définie. On sait que 1'on a
i
(1 — 2tz + %) 2:2){.,,(:)!”;
les équations (3) se réduisent donc ici a

1-— 203+ *=o,

Yoo

si les points singuliers de

sont oy, ayy « .+, %, .... On voit donc que I'on aura
25 1 .
I]— — + — =0 L= (1,2, ...
e+ (=02 )
ou

1 1
sg=-—\o;+ — )
2 oy

Ce sont la les points singuliers du développement donné ; donc :

Les points singuliers du développement

(1) zcnxn(z)

sont donnés par la formule
1 1
F=—(d;+— ]
2 oA;

out les o sont les points singuliers de

E cpyt.

Cette formule nous améne 4 une remarque; on sait (') que si les coeffi-
cients ¢, de la série précédente sont quelcongues et assujettis seulement 4 la con-
dition que la série ait un rayon de convergence fini non nul r, ce cercle de con-
vergence sera une coupure, ou, en d’autres termes, tous les points

Yy = reiﬁ

seront singuliers; on en conclut immédiatement que la série (1) aura pour points

singuliers tous les points
I . e—i0
5= —(re’e—{— ———>,
2 r

(1) BorgL, Comptes rendus; 1896. — Fabry, Annales de I’Ecole Normale et C omptes
rendus; 1896.
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c’est-a-dire que la fonction représentée par cette série aura comme coupure la

1 1

X = —(l‘—l—- —>COS@,
2 r

y= —;—<r—- %)sin@,

qui est précisément P'ellipse dans laquelle converge le développement (1). Or

courbe

cette proposition est évidemment générale et s’applique a tous les développements
considérés précédemment et 'on peut, par conséquent, énoncer le théoréme sui-
vant :

Si les ¢, sont assujettis a la seule condition que lu série

2ot

ait un rayon de convergence fini non nul, la série

2 Cplty(2)

admettra son domaine de convergence comme coupure.

Toutefois ce théoréme n’est pas aussi général que celui de M. Borel relatif aux
séries de Taylor, car le théoréme de M. Hadamard, ainsi que cela est évident,
donne les points singuliers possibles de la fonction

F(s)= Z cpd, s

il peut arriver que les points ainsi trouvés soient des points ordinaires pour F(z).
Néanmoins M. Borel a démontré tout derniérement que tous les points fournis
par P'application de la méthode de M. Hadamard étaient, en général, des points
singuliers, ce qui justifie donc notre proposition. 11 serait facile, en particulier
(en s’appuyant sur les résultats donnés par M. Borel dans le Mémoire cité), de
montrer que le théoréme est exact pour les séries de polynomes de Legendre.

19. Considérons maintenant une série de fonctions uniformes

2 u,(3).

Si les fonctions u,(z)n’ont aucun rapport entre elles, on verra facilement, par
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des considérations analogues aux précédentes, que la série admet son domaine de
convergence comme coupure; donc, en général, une série de fonctions uniformes
définit une fonction uniforme qui n’existe que dans son domaine de convergence,
si 'on se borne au point de vue de Weierstrass. Ce fait, bien évident, augmente
encore I'intérét des tentatives faites par M. Borel et, tout derniérement, par

MM. Fabry et Picard, pour prolonger une fonction au dela d’une ligne singuliére.

20. Les méthodes exposées précédemment peuvent encore étre employées a la
recherche des singularités des séries de plusieurs variables. En effet, si I'on or-
donne une telle série par rapport aux puissances croissantes d’une des variables,
les autres élant considérées comme des paramétres, les formules données précé-
demment donnent une expression implicite des singularités, et, en tout cas, on
peut obtenir autant de points que I'on veut de celle-ci; de plus, le théoréme de
M. Hadamard peut permettre, dans un grand nombre de cas, de ramener les sin-
gularités de deux séries les unes aux autres signalons, en particulier, les exemples
sulvants :

f(z9t) :chl""”tn’

ol 3 esl imaginaire, el ¢ réel; on voit de suile que la série converge a l'intérieur
de la surface de révolution engendrée par une hyperbole ayant les axes des x et
des z comme asymptoles et tournant autour de cet axe des 5; on voit aussi que les
singularités de cette fonction sont des hyperboles équilatéres ayant I'origine pour
centre.

On trouverait de méme les singularités de la fonction

P

il ty= Y e, Xu(0)sn (¢réel),

ou les X, sont les polynomes de Legendre; ce sont également des coniques.
Le théoréme de M. Hadamard permet de ramener le calcul des points singu-

liers de la série
) P, (¢)

ol les P sont des polynomes de degré fini, a celui du calcul des points singuliers
de séries de la forme

. W 12
iz
L — o,

ce qui est facile dans beaucoup de cas; en particulier, si o, = n, ou «,=an.
Fac. de T., 2¢ S, 1. 19
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On pourrait, comme dans le cas des séries de Taylor, chercher & pousser plus
P ) Y ) |

loin cette étude, en particulier étudier la nature des singularités de la série; on y
parviendrait par des méthodes analogues qui exigeraient, du reste, des développe-

ments étendus.

CHAPITRE II.

Dans ce Chapitre, nous allons appliquer les résullats obtenus précédemment au
calcul de la valeur numérique d’une fonction donnée par un développement de
Taylor.

1. Considérons une série
f(s)= Ea,,:-",

et supposons qu’elle n’ait que des pdles dans un certain cercle concenlrique au
cercle de convergence de rayon g. Dans sa These, M. Hadamard a donné une
méthode permettant de calculer les coefficients A d’un polynome

P,(s) =14+ AWz 4+ A® 24 4 A0z,
tel que le produit
P,,(:)f(:.)
soil holomorphe dans le cercle de rayon p.
La série

P,(z)f(5s) :2((1,14— NMa,_y+...+A%,_,)3"

est donc convergente dans le cercle de rayon o, et, par conséquent, on voil que
Fon pourra calculer la valeur de f(s) en un point intérieur & ce cercle de
rayon p.

On peut remarquer que, pour faire ce calcul, il n’est pas nécessaire de con-
naitre les coefficients @, et la valeur de =z, mais seulement les valeurs numériques
tp=a,s". En eflet, on voit de suite que, si, dans les [ormules de M. Hadamard,
on remplace partout a, par u,=a,3", on trouvera, au licu de AV A®
A7 les quantités

T ey

A, =AMz, Ay=A®z2, L, A, =AWz

On aura, par conséquent,

P,(3) f(3) :Z(u,,+ Ajtyo .o+ Aqtayg);
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d’ott on aura de suite

N (g +Ayupy +.. .+ A,,u,,_,,).
f(~«)—2 T+ A+ A+ .. A,

Ainsi done, on a le théoréme suivant :

On peut calculer la valeur numérique d’une fonction donnée par une série
de Taylor dans tout cercle concentrique au cercle de convergence oit cette
Sonction n’a que des pdles.

2. Nous allons maintenant reprendre cette question par une autre méthode qui
nous conduira & un résultat un peu plus général (fig. 4).

Considérons la fonction f(5); marquons dans le plan ses points singuliers et
élevons en ces points des perpendiculaires aux droites qui les joignent a l'ori-
gine.

Considérons le point M de la figure; il est bien évident que, si les points sin-
guliers o, a,, % et 2; n’existaient pas, le point M serait a 'intérieur du poly-
gone de sommabilité relatif a cette fonction, et 'on pourrait, par la méthode de
M. Borel, calculer sa valear en ce point.

Supposons alors que les points a, @y, ..., 24, a7 solent des poles, et formons
I'expression
. E'(as
(1) , lim,—. El(as,) )
E(a:O)

ol 3, est 'affixe du point M. On voit de suite qu’elle est égale a

o

oy

On pourra également, par les formules données précédemment, calculer le
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degré de multiplicité du pole et les coefficients A; si nous considérons alors la

fonction

f‘(‘“'):f(S)«E(_M_

a — ;)m’

elle ne contiendra plus le podle o;.

En procédant de la méme facon sur f,(z), on trouvera une fonction f,(z) qui
n’aura plus o, pour péle, et, en continuant ainsi, on parviendra & une fonction
Jn(2) qui n’aura plus aucun des points o, a5, +.., o et a; comme poles; on
pourra alors sommer cette fonction au point M, et on aura alors la valeur de f

au point z, par la formule

S(50) =/u(5,) +E<°<A——>"

On a donc immédiatement le théoréme suivant :

On peut calculer la valeur numérique d’une fonction donnée par son dé-
veloppement de Taylor dans le polygone de sommabilité relatif aux points
singuliers de la fonction qui ne sont pas des péles.

11 est, d’ailleurs, bien évident que, pour faire ce calcul, il n’est pas nécessaire
de connaitre la forme analytique de la série, mais seulement la valeur numé-
rique u, des termes.

Si le point M était sur une des droites @ définies dans le premier Chapitre, la

formule (1) ne donnerait que la partie réelle de =; pour achever de déterminer
o

2

cette quantité, il suffit de considérer la limite

. E(ae'®s,)e®
S IO

qui est évidemment égale a

z,et®

%y

3. On peut encore employer une autre méthode analogue a celle de M. Hada-
mard et qui n’exige pas la connaissance des coefficients A.

Remarquons d’abord que, si E(a) est la fonction entiére adjointe de f(z), la
fonction entiére adjointe du produit P(z) f(z) sera

P(D-1)E(az).

Calculons, comme précédemment, la quantité = et faisons la méme opération
%

relativement a la fonction f(z)<l — -;—'), et ainsi de suite; il arrivera un moment
. i
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ou la fonction ne contiendra plus le pdle «,, et la formule (1) donnera alors comme

limite i‘l; en continuant ainsi, on parviendra a une fonction P(z)f(s) qui ne
6

contiendra plus aucun des péles qui empéchent la fonction f(z) d’étre som-
mable aw point M; on pourra alors calculer sa valeur en ce point a Paide de la
méthode de M. Borel, et I'on en déduira de suite la valeur de f(3).

4. Cette derniére méthode se généralise immédiatement au cas ou l'on emploie
les fonctions entiéres adjointes de genre p, et ou I'on a

. 1 Zo \P
llmﬁlogE,,(az): <07°> )

~1
et 'on a alors le résultat général suivant :

On peut calculer la valeur numérique d’une fonction f(s) définie par son
développement de Taylor dans tout polygone de sommabilité d’ordre p re-
latif aux points singuliers de la fonction qui ne sont pas des pdles.

Il est, d’ailleurs, bien évident que, dans ce calcul, on n’emploie que la-valeur
numérique des termes de la série.

5. Supposons maintenant que nous ayons a sommer le développement de
Taylor d’une fonction f(z) qui, dans une certaine aire C, comprenant le cercle de
convergence, puisse s'écrire sous la forme

8 » P

Ah) V]
S =X+ o),

(oty

¢(z) étant holomorphe dans 'aire C. On pourra raisonner absolument comme

au n° 2 dans le cas des poles, calculer les =, les

oy

va

)

w+-1
ay?

On formera alors, de proche en proche, les fonctions

Apy
Si=f— (o= 2y’

D et

et 'on parviendra ainsi &4 une fonction f,(z) sommable dans le polygone de
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sommabilité relatif aux points singuliers qui ne sont pas de la nature des
précédents, et U'on pourra, par conséquent, sommer f(s) dans ce polygone.

6. De méme, considérons une fonction de la forme

NOED Y ANOEEIOH

ot 'on a posé

by(5) =D

b
oy — 5

le symbole D~V désignant une intégration répétée v fois, et ©(s) une fonction ho-
lomorphe dans une aire comprenant les a. Dans ce cas, on pourra également ap-

pliquer la méthode précédente, on calculera les -0—:—, les A, et l’on pourra sommer
v

la fonction f(z) dans le polygone de sommabilité relatif aux points singu-
liers de f(z) autres que les .

7. Considérons encore une fonction dont les points singuliers dans une certaine
1
3 V()
W)= Y,
o st

V(t) =ay+a;+...+ aptr.

aire soient de la forme

ou

Nous avons précédemment donné les formules permettant de calculer les a; et

le nombre p; on calculera les al par la formule ordinaire, et P'on voit que 'on
v

peut ainsi sommer dans toute aire de sommabilité olv il n'y a que des points

singuliers de cette forme. On aurait une conclusion absolument analogue si ’on

V()= Zane”‘,

et il serait facile de multiplier ces exemples.

avait

8. D’une facon plus générale, si 'on sait, par 'un quelconque des procédés
précédents, sommer la fonction f(z), on pourra sommer dans la méme aire la

fonction

(p(z):f V(t) f(st)de.

o(3) :ZC,,Z,,

En effet, soit
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le développement de cette derni¢re fonction; on pourra trouver une fonction V(¢)
telle qu’en posant

1
G"Zf V(¢) e ade,
0

Cn
PR

soit le développement de f(z). On voit donc que, s l’on peut, par un procédé

la série

quelconque, déterminer V(t), on calculera facilement l’intégrale
1
e()= [ Vs
“0
pour toul point = ot 'on sait calculer f(3).

9. Le cas traité dans le numéro précédent n'est qu’un cas particulier du suivant :
Soit
-
f(5) =X Cus",
v(s) :Z 0, 3"

F(z):EC,,(),,:";

et

solent oy, ..., o, ... les points singuliers de f(z); 81, ..., 3, ... ccux de v;

en partant de la formule de Cauchy, on démontre de suite la formule

v = [L86(F) o

ol ¢ est un conlour simplement connexe comprenant l'origine et le point z, et

tel que les points
= a; [E=(1,2,...)],

N

soient & 'extérieur de ce conlour. Par conséquent, on voit de suite que, si lon
salt trouver un contour répondant aux conditions indiquées et tel que 'on

z

puisse sommer tout le long de ce contour, les fonctions f(t) et v <t ); on pourra

calculer la valeur de ¥ (z) au point z considéré.
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10. Ces diverses propositions pourraient se généraliser facilement pour les
séries non entiéres, et, a 'aide des propositions démontrées dans le Chapitre
précédent, on obtiendrait, pour ces séries, des résultats semblables aux précé-
dents et une méthode de sommation analogue.

CHAPITRE IIL

LES RACINES DES EQUATIONS ALGEBRIQUES ET DES FONCTIONS
ANALYTIQUES.

1. Considérons une fonction algébrique u(z) définie par 'équation
Slu, z)=ogo(s)u™+ o (5) " +...+ 9,(5) =0,

1

S

et développons la fonction — en série par rapportaux puissances croissantes de

«; on aura

(1)

Ful,—z) =a,+a u+ aut 4. ...

Considérons une valeur fixe z, de 5, et soit u,(3,) celle des déterminations de
u(2) qui a le plas petit module au point z,. Si nous supposons que la détermi-
nation u,(2') soit la seule de son module, la suite
converge vers u,(s). Nous avons donc ainsi formé une série qui représente la
plus petite détermination de u(2) quand celle-ci est seule de son modale. Or il
est facile, connaissant les a,, de calculer les autres déterminations de ©(z) au
point 3z, ; il suffira de calculer les poles de la série (1), ce que nous savons faire.

Nous voyons donc que nous pouvons toujours sommer la suite (2) a laide
des valeurs numériques des termes de (2), et nous avons ainsi un exemple
remarquable de sommation de fonction non uniforme.

9. 1l en serait absolument de méme si la fonction f(u, ) était une fonction
uniforme quelconque réguliére a Uorigine; la suite
Qo ay Qp—y

— — .o

)
ay as ap
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représenterait la détermination de u(z) de plus petit module (supposée unique),
et, pour avoir les autres déterminations, il suffirait de calculer les poles de la
série

(3) QG+ a U +...+a,u+....

Si cette fonction n’a que des péles a distance finie, on peut les calculer tous
par les méthodes données précédemment; si cette fonction a des points essentiels,
on parviendrait a trouver tous ces péles en se servant de la méthode donnée et de
celle du prolongement analytique.

Il en serait encore de méme si la série (3) n’était pas uniforme dans tout le plan;
par prolongements analytiques, on parviendrait & calculer tous ses infinis, c’est-
a-dire toutes les déterminations de u«(z).

3. On est alors amené a la remarque suivante :
Considérons une fonction

u=f(s).

Calculer les diverses déterminations de « pour une valeur déterminée z, de =
revient a calculer les zéros de la fonction

50— D (u),

ou 5= @ (u) est la fonclion inverse de

u=f(s).

Considérons alors un développement de Taylor

(1) u:f(z)_—zc,,z”,
et cherchons le développement

(2) z::(l)(u):anu".

On le calcule aisément, a 'aide de la méthode des coefficients indéterminés.

Supposons ¢, =0, ce que 'on peut évidemment toujours faire; car, s’il en était
aulrement, on poserait

ol —
S=z—°C.

On a alors immédiatement

5:21),,(0.,:-1'—02:2—{-...+c,,z"_+. S L

Fac.de T., 2¢ S, 1. 20
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d’ou, en identifiant, en supposant ¢, 3£ o,

by=o,
b‘cl:‘:l,

bic,+ byei=o,

équations qui permetlent de calculer les b de proche en proche et d’une fagon
unique.

Faisons de suile une remarque; on peut déterminer le développement (2) sans
connaitre la forme analytique de (1), mais seulement les valeurs numériques

U, —c, "
au point considéré. En effet, considérons le systéme d’équations

by =us=o,
biu, =1,

b u,+ byu? =o.
11 est bien évident que I'on aura d’une facon générale

b,

b{:—.
2z

{
Or, il est bien évident qu’au point de vue de la recherche des zéros, les fonc-

tions
et

sont équivalentes.
Si la fonction

O] z=®(u)

est uniforme et n’a que des péles a distance finie, on peut calculer tous ses zéros,
ainsi qu'il a ét¢ montré plus haut, et, par conséquent, toutes les déterminations
de la fonction

u=f(3s);

si la fonction (2) était uniforme, mais avait des points essentiels ou des lignes
singuliéres, la fonction

. 1
(3) 3y —®(u)

\

=dy+diu+...+~dyut+...
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aurait ces mémes singularités; dans ce cas, a l'aide du prolongement analytique,
on pourra également parvenir a connaitre tous les poles.

De méme, si la fonction ®(u) n’était pas uniforme, on pourrait également par-
venir & calculer ses zéros en prolongeant analytiquement la série (3). On peut
donc énoncer le théoréme suivant : ,

Le calcul des diverses déterminations d’une série de Taylor se raméne au
calcul des infinis d’une fonction définie également par une série de Taylor;
pour former cette série, il suffit de connaitre les valeurs numériques des Lermes
de la série primitive. o

Toutefois, il faut remarquer que ce calcul n’est guére pratique que quand la
fonction (2) est uniforme : on pourra donc ainsi sommer les séries de Taylor
qui développent les intégrales elliptiques, les fonctions inverses des fonctions
de Schwartz, etc.

4. Plus généralement, considérons une série de Taylor a plusieurs variables
. . n
(]) u :f(xoxl e x,,) T—‘Ean,nﬂ...n,,‘fg"x'f'1"’2"' . ‘xpp'

Pour avoir toutes les déterminations de la fonction « en un point donné
Zo, X1, Za,e + - Zp,, il suffit évidemment de calculer tous les zéros de la fonction

(2) ; xy, = @i (&), Lo, . . Xp, U)

oblenue en résolvant I'équation (1) par rapport & x,. Supposons donc que la
série (1), étant ordonnée par rapport a x,, ait pour coefficients des séries conver-
gentes ou que l'on puisse sommer; si la fonction « s’annule avec z; et si le coef-
ficient de z; est différent de zéro, on sait que la fonction implicite (2) existe et
est holomorphe aux environs de #= 0. On est, par conséquent, ramené, pour
sommer la série (1), 4 sommer des séries & (n —1) variables (les coefficients
des z;) et & calculer les infinis d’une série de Taylor; on voit donc facilement'que
I'on peut énoncer d’une fagon générale le théoréme suivant :

Le calcul des déterminations d’une série de Taylor a plusieurs variables
se raméne au calcul des zéros de séries de Taylor & une variable.

Comme dans le cas d’une variable, ce calcul n’exige que la connaissance des
valeurs numériques des termes.
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CHAPITRE 1V.

SOMMATION D'UNE SERIE DE TAYLOR A L’AIDE DE LA METHODE
DE M. BOREL GENERALISEE,

Dans ce Chapitre, nous nous proposons de calculer la valeur numérique d’une
fonction en un point du plan, a I’aide des valeurs numériques des termes de son
développement de Taylor et cela dans des régions du plan aussi étendues que
possible.

1. La méthode de M. Borel repose sur la considération de l’expression sui-
vante

6(a) :e—“z ﬁ'—’:

n!

ou S, est la somme des n premiers termes de la série & sommer et @ un para-
métre réel; on démontre que la limite pour @ = o de celle expression coincide
avec la limite de S,, quand celle-ci exisle, et avec son prolongement analytique
dans le cas contraire. Le domaine de sommabilité, c’est-a-dire la région ot §(a)
converge, se forme de la facon suivante :

On joint 'origine aux différents points singuliers de la fonction et 'on éléve
des perpendiculaires & ces droites a leurs extrémités; on supprime ensuite la
partie du plan déterminé par chacune de ces droites qui ne contient pas l'origine ;
en faisant cette opération pour les différents points singuliers, on forme un poly-
gone convexe a l'intérieur duquel () converge.

2. Considérons de méme ’expression
P

bp(@)=e 32, .

n!

Elle jouira de propriétés analogues a la précédente ; seulement son domaine de
sommabilité sera différent; on voit de suite, en employant la méme méthode ('),
que I'aire de sommabilité se déduira de la précédente, en remplacant les droites

p

Lcos(f0—w)=1
[24

(1) BoreL, Journal de Mathématiques; 1896.
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par les courbes

PP
oF cosp(f—w) =1,

ol & et w sont les coordonnées d’un point singulier.
On peut encore prendre comme fonction de sommabilité une fonction entiére

2 A\, e“v“,
Z A, e%a?

pv

de la forme

ou, plus généralement,

Paire de sommabilité est encore fournie par les courbes précédentes.

On peut aussi prendre la fonction
eve 4 e-va,

On a alors, comme aire de sommabilité, un polygone curviligne limité par les

1
<B)2cos (———9 ——w> =,
a 2

c’est-a-dire par des paraboles ayant leurs sommets aux points o, et leurs foyers

courbes

a origine.
Plus généralement, on peut considérer des fonctions de la forme

v=p .
2%
v=0

Cl —a?=o.

ou l'on a
Le polygone de sommabilité est alors formé par les courbes

(%)

On voit que ce cas comprend tous les précédents et est plus général puisque

IR

q :
cos L (6 —w)=1.
P( )

I’on peut donner a p et ¢ toutes les valeurs entiéres. On peut trouver encore des
fonctions de sommabilité donnant d’autres polygones, mais ce serait de peu
d’intérét.

3. Voyons quelle est la forme de quelques-unes de ces courbes et particuli¢re-
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ment des courbes

(%)pcosp(9~—w)::l.

Si p =1, on a une droite; si p = 2, on a une hyperbole équilatére de centre O
et de sommet (=, w) (fig. 5).

Fig. 5.

p=2

Si p =3 ou p = 4, on a les courbes dont les formes sont ci-contre (fig. 6), et
I'on se rend alors facilement compte de la forme générale de ces courbes.

4. Cherchons maintenant dans quelles régions du plan les fonctions 9, (a),
f8a(@), «o+, B,(a), «» . permettent de sommer la fonction.
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Considérons les inverses de ces fonclions

I I I

6,(a)’ G(a) 7 G,(a)

et soient T'y, Ty, ..., I', leurs polygones de sommabilité.
Si le point z est dans aire I',, on aura évidemment
lim :
im,—— = z-
a=w Op(a) S
Si 5 esten dehors de Ty, cette limite est nulle, il y‘a indétermination si le

point 3 est sur le polygone limite.
Considérons alors I'expression

lim 07" (a) + 67" (@) +...+ 9,‘,‘([1).
a== 077 (a) -+ 6,2 (a) +...+0,*(a)

On voit de suite que, si le point s est a 'intérieur d’un ou plusieurs des poly-
gones I', cette limite sera précisément égale a S si, au contraire, 5 est sur une
des courbes limites ou a P'extérieur de toutes ces courbes, la limite sera indéter-
minée. Nous avons donc ainsi formé une expression analytique qui converge, si
seulement un des § converge.

Il suffit d’examiner la forme des courbes I' pour voir de suite que expression
précédente convergera dans tout le plan, sauf dans une aire limitée par ceux des
arcs de I';, qui passent par les points singuliers ainsi que sur les courbes T'. On
voit de suite, a l'aide de celte proposition, que 'on peut sommer dans tout le
plan, sauf sur un ensemble de lignes, une fonction n’ayant que des points singu-
liers isolés; en effet, & cause de la forme des courbes I'p, on pourra toujours dé-
terminer p de telle sorte que 'expression précédente converge au point z; il n’y
aura exceplion que si 5 est sur les droites qui passent par l'origine et les points
singuliers de la fonction ou sur une des courbes T'. (On pourrait éviter le dernier
cas d’exception en prenant d’autres fonctions de sommabiljté qui aaraient, par
conséquent, d’autres courbes limites. )

3. La formule précédente subsiste si 'on prend une infinité de fonctions 6,, 4
la seule condition de multiplier chaque terme par le terme correspondant d’une
série convergente, la série e, par exemple; on aura donc ainsi
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Si la fonction f(z) n’a que des points singuliers isolés, cette expression conver-
gera dans tout le plan, sauf sur les courbes I'. On a donc ainsi le théoréme
suivanl :

Si une fonction Wa que des points singuliers isolés, on peut trouver une
expression analytique la représentant et qui converge dans tout le plan sauf
sur un ensemble dénombrable de courbes.

Sila fonction admettait des lignes singuliéres, il y aurait des aires ot 'expres-
sion précédente divergerait. Il peut encore arriver que les points singuliers de la
fonction forment un ensemble parfait discontinu, il y aurait lieu d’¢étudier & part
ce cas.

L’expression précédente peut évidemment se metire sous la forme du quotient
de deux séries doubles; il suffirait de poser

U,.= ;I!— [9[“,' (n+1)—48-1(n)],

V,,,,,:[% [0,2(n+1)—6,2(n)],

et 'on aurait évidemment

2 U,
S5y =2

> Vo
rn

6. Nous allons maintenant montrer que I’on peut d’une fagon analogue trouver
une expression analytique qui converge aussi sur les courbes T'; en effet, consi-
dérons I'expression

lim O+ 03+ O
a=w P

p=w

11 est facile de voir que cetle limite est égale a 5 (k étant un facteur numérique

compris entre o et 1) quand le point 5 est & 'intérieur des courbes I'y; si tous
les §,, sauf un nombre fini d’entre eux, convergent au point z, on aura kA =1; si
tous divergent, sauf un nombre fini, on aura k= 1. Si le point z est sur une
des courbes T, la fonction correspondante 0, est infinie ou indéterminée; dans
le premier cas, il n’y a rien a dire, car 'expression (1) est convergente; dans le
second cas, il est facile de voir qu’il en est de méme, car on ne change évi-
demment pas la limite de (1) en modifiant un nombre fini des §. On a donc le
théoréme suivant :

L'expression (1) est convergente dans tout le plan, sauf : 1° sur les droites v
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2° aux points ok il passe une infinité de courbes I'; 3° aux points o il n'y
a qu’un nombre fini de § qui convergent.

Il serait aisé d’éliminer le dernier cas.

7. On peut aussi considérer 'expression

lim e-”z b = k.
b= n!, S
a=w

Elle jouira exactement des mémes propriétés que I'expression (1) et con-
vergera dans le méme domaine, on le voit en se reporlant au Mémoire de
M. Borel.

Il est facile de s’assurer que le nombre £ est le méme dans les deux cas; ce
nombre dépend uniquement de la position des points singuliers de la fonction, et
il exprime en quelque sorte (ainsi qu’on le voit de suite par la premiére défini-
tion) la probabilité pour qu’une fonction § prise au hasard dans I'ensemble de
ses analogues converge au point z considéré. On voit ainsi qu'a lintérieur
du cercle de convergence k=1; aux poinls singuliers et sur les droites (2),
k=o,....

Si, au lieu de la suite 0,, ou les p sont des entiers, on prenait une autre suite,
on aurait une définition analogue du coefficient 4 relatif & cette suite. De la for-
mule (1) il est facile de déduire & et S : il suffit, en effet, de former 'expression
analogue :

lim 672+ 0,2 ...+ 0,2 :i,
a=w P S

p ==

on pourra alors calculer S et 4.

8. La méthode qui vient de nous servir pour former, aI'aide des fonclions §,,
une expression analytique convergeant dans une région élendue du plan, peut
s'appliquer dans bien d’autres cas pour former des expressions analytiques qui
convergent dans des aires étendues.

Ainsi, on peut, par exemple, appliquer cette méthode au cas d’une fonction
analytique définie par ses éléments.

Considérons, en effet, une fonction analytique (définie par ses éléments) f(z)
que nous supposerons d’abord uniforme dans tout le plan; on sait que I'on peut
la définir par ane infinité dénombrable d’éléments P(z — /5, 4, .. 4,), OU oy,
%2, « .., %, sont des indices entiers prenant toutes les valeurs possibles et ot n
tend vers I'infini. Cet ensemble d’éléments étant dénombrable, on peat le réduire
a un ensemble a un seul indice P (z— 4).

Fac. de T.,2¢ S., L. 21
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Considérons alors 'expression
P

“1 (/|
lim 3 B0

r=w

ou P, (s —14) désigne la somme des n premiers termes de la série. On voit de

suite que cette limite est égale a ~.—l\-:— quand le point 5 est & I'intérieur de un ou
5

de plusieurs des cercles des éléments, et elle estindéterminée si le point = est sur

un de ces cercles.

On a donc le théoréme suivant :

On peuttrouver une expression analytique représentant une fonction uni-
Jorme qui converge en tous les points du plan qui peuvent étre compris a
Uintérieur d’un élément, et qui est indéterminée sur les cercles de convergence
de ces éléments, c¢’est-a-dive sur un ensemble de courbes qui sera dénombrable;
il suffira pour cela de former I'expression

Pz —=6)
Al
. b
() =Hlm ey,
ASY = P2 (s —4)
n=-—auow )\‘!
A
qui peut aussi se mettre sous la forme d’un quotient de deux séries doubles.
On peut également considérer des expressions de la forme

v=2x
. 1 _
tm 3 b,
n=w v=0

. . , .k . . ; .
expression qui est égale af(—z) (k étant un coeflicient réel compris entre o et 1
analogue a celui que nous avons déja défini), pour tout point compris & I'inté-
rieur d’une infinité d’éléments et qui converge méme s’il passe par le point con-

sidéré un nombre fini de cercles d’éléments.

9. La méthode donnée précédemment permet de sommer une fonclion uni-
forme dans des régions trés étendues, quand celle-ci n’a que des points singu-
liers isolés, mais si la fonction a des lignes singuliéres, il y a des aires qui
peuvent étre considérables ol celte méthode ne permet pas de sommer la série.
Nous allons voir comment, pour certaines fonctions uniformes particulié¢res, on
peut sommer dans ces régions.

Considérons d’abord une progression géométrique

. - =i s+,

posons
S, —=145+4...4 3571
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La limite généralisée de la suite S, sera la limite de I’expression

0(as) = ! [1—eaz—1]

I— 3

pour @ = —+ . On asupposé, pour établir la notion de limite généralisée, que «

Fig. 7.

(=]

était réel et posilit; supposons maintenant que « tende vers l'infini suivant un
certain argument et cherchons ce qui arrive en ce cas; soit donc

a=p(cosa + isina), s =r(cosf+ isinf),
pour que O(a s) ait une limite finie; il faudra que I'on ait
Partie réelle de  [pe(rel® —1)]<<o
ou
cosa(rcosf—1) —sinarsinf <o,
ce qui donne comme courhe séparatrice la droite
cosa(x —1)—sinay <<o.

C’est une droite qui passe au point s et qui fait I'angle « avec la tangente; la

Fig. 8.

o
>

| e

région de sommabilité est, comme on le voit de suite, celle ou se trouve 'origine
dans le cas de la fig. 7, c’est celle ou n’est pas l'origine dans le cas de la fig. 8.
En particulier, si o ==, on voit que la région de sommabilité est définic par
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la tangente au point A du cercle et qu’elle est précisément la région ou diverge
6(az) dans le cas ol @' croit positivement. On voit donc que, par ce procédé, on
peut sommer la progression géométrique en tout point du plan; nous allons

Y

chercher a voir cc que donne cette méthode pour des séries plus générales.

10. Remarquons d’abord que nous aurions absolument le méme résultat pour

la fonction
1

.U — 3 )IIL >
ou méme pour une fonction de la forme

Anl

(l w;)m

Considérons maintenant une fonction ayant deux points singuliers de la
forme

w=F e B
=)

B8 v

l.e domaine de sommabilité, quand @ est positif, est 'angle BAy; si @ = pei,
c’est 'angle BA’y de la figure, et on voil aisément dans ce cas que I'on peut
sommer en tous points du plan, sauf sur I'arc de cercle BA’Ay.

En effet, soit B un point de cette aire; on peut toujours déterminer B de telle
sorte qu'un point M donné & I'avance soit dans 'angle 3By ou dans son opposé
par le sommet; on prendra alors P'angle « ou l'angle « + = correspondant et
§(az) convergera au point considéré. Par conséquent, on peut sommer le déve-
loppement en série de Taylor d’une fonction de la forme précédente dans
tout le plan, sauf sur Uaire de cercle YA B.

On voit de suite que le raisonnement n’est nullement changé s’il y a d’autres
poles sur I'arc de cercle YAB3; on en déduit le théoréme suivant :

Si une fonction de la forme
o(s) __E Ay
T (av—‘ Z)’"

(satisfaisant aux conditions exprimées par M. Borel dans sa Thése) a tous ses
pointssinguliers sur un arc de cercle passant par l’origine, on peut sommer
la série de Taylor qui développe cette fonction dans tout le plan sauf sur
cet arc de cercle. Les points singuliers peavent étre isolés ou former une ou
plusieurs lignes singuliéres.
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Si I'on a, d’une facon générale, une fonction

Am,v

Y=L =

2

les résultats ne sont pas si complets; d’une facon générale, on pourra sommer
dans le polygone curviligne ( fig. 9) formé par les arcs de cercles passant par

deux points singuliers et le sommet du polygone de sommabilité correspondant,
ainsi qu’il est facile de s’en assurer.

Dans le cas ou tous les points singuliers de la fonction sont du méme coté
d’une droite passant par I'origine, on peut sommer dans tout le plan, sauf dans
une aire curviligne limitée par des arcs de cercle passant par I'origine et deux

Fig. 10.

"R\

des points singuliers. La fig. 10 ci-jointe est faite pour le cas de trois points
singuliers. Rien ne serait évidemment changé si, a l'intérieur de I’aire « A 3By C,

il y avait des points ou des lignes singuliéres ou méme des espaces lacunaires.

11. Si, au lieu de la fonction e~2, on employait, pour sommer la série, une
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fonction e=¢", on pourra sommer les fonctions ©(z) dans des aires différentes des
précédentes; considérons, en particulier, la sommation obtenue en prenant e®;

on aura
I — e?*(33=1)

Oy(as)= s

pour que cetle expression converge, il faudra que l'on ait
Partie réelle de a?(3*—1) <o,
c’est-a-dire
r2cos2 (8 + w)— cos2wm <0,
ot 'on a, comme précédemment,
5= red, a=rpev.

La courbe de séparation est I'hyperbole équilatére (fig. 11) et recouverte de

hachures. On verrait, de méme que dans le cas précédent, que I'on peut ainsi
sommer dans tout le plan.

Si la fonction de la forme 9 () avait plusieurs points singuliers, on pourrait
sommer dans une airc limitée par des aires de la lemniscate ayant leurs points
doubles a 'origine et passant par deux points singuliers.

Il est facile de voir que si

p=Acos(a+0)

est I'équation du cercle qui passe par deux points singuliers et I'origine, I'équa-
tion de la lemniscate correspondante sera

"pr=Acos2(a+ ).

Plus généralement, si I'on prend la fonction de sommabilité e#’, les courbes



ESSAI SUR LES SERIES DIVERGENTES. 165
limites seront de la forme

rkcosk (0 + o) —coskw =o,

(1) pF=Acosk(a-+ o).

En particulier, si la fonction ¢(z) a tous ses points singuliers sur la
courbe (1) on pourra sommer dans tout le plan, sauf sur un arc de cette
courbe.

Dans tous les cas, la région de sommubilité sera formée par des arcs de courbe
tels que (1); cette région pourra étre fermée ou bien s’étendre a I'infini.

Considérons un systéme de & droites passant par I'origine et faisant entre elles

. N .
des angles égaux a —; supprimons les angles de deux en deux comme sur la
n

Jig. 125 si en faisant tourner tout le systéme autour de I'origine on peut trouver

Fig. 12.

une position de celui-ci pour laquelle tous les points singuliers sont dans les
angles non ombrés de la fig. 12, le domaine de sommabilité s’étendra a V'infini;
dans le cas contraire ce sera un polygone fermé simplement connexe.

12. A Pl’aide des principes précédents, il est trés facile de sommer une fonction
®(z) en un point quelconque du plan; en effet, considérons la suite

01(_‘“)’ 62((1), 93(_0)’

qui s’obtient simplement en remplacant, dans la suile considérée plus haut, @ par
— a; il suffit alors d’examiner la forme des courbes I' pour avoir le théoréme

suivant :

St la fonction o(s) n’a pas deux points singuliers sur une droite quel-
conque passant par lorigine parmi les fonctions de la suite précédente, il y
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en a toujours une qui converge en un point arbitraire M qui n’est pas un
point singulier de ¢(z).

Si, sur une droite, passant par I'origine et du méme c61é de ce point, il y avait
deux points singuliers, on ne pourrait sommer la fonction sur le segment de
droite joignant ces deux points.

Par la méme méthode que précédemment on pourrait trouver une expression
analylique convergeant dans tout le plan et représentant la fonction; il suffirait
d’appliquer la formule donnée précédemment en changeant partout ¢ en — «.

Si la fonction a sommer était de la forme

F(z)=/(s)+9(s),

‘ol f(z) est un polynome en z, on ne pourrait plus sommer pour les valeurs né-
gatives de @, mais il est facile, dans ce cas, de tourner la difficulté; il suffit,
2 étant, par exemple, un des points singuliers de o¢(3), de considérer la
fonction

e ¥ __JG) e

Z\"® z\"» z n’
11— = I— =  Qe——
o o o
qui sera alors une fonction de méme forme que ¢(z) et que I'on pourra, par con-
séquent, calculer comme précédemment; on déduira ensuite facilement F(z)
de F,(z). Par celte remarque, on voit que 'on peut sommer les fonctions uni-

formes représentables par I’expression de M. Mittag-Leffler, chaque fois que le
point a l'infini ne sera pas un point singulier essentiel.

13. Considérons la fonction. définie par I'égalité

Y(s)= 'V(nyde

, 1—3 ¢
que nous avons déja considérée; si 'on désigne par J(az) la limite généralisée
de son développement de Taylor, on aura de suite

1 1
3(az)_—_—_f _m).z[l_ea(:t-»i)]dt:q,(;)_ }Y—_E_%ea(zl—l)dt.

el
~

0 ! 0

11 est facile de voir que si e#(==") tend vers

pOllvl‘ a = n, sulvant un argu-

I—23

ment quelconque compris entre

T T
ant— — el 2nm+4 —
2 2
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J(az) tendra vers (z); en effet, on aura dans ce cas
cosw(x —1)—sinwy <o,
et si cosw >> o, on aura évidemment
(coswx — sinwy )t — cosw <o,

¢t étant compris enlre o et 1; par conséquent, I’é/ément différentiel est nul et la
proposition est démontrée.
Par conséquent, si I'on considére une fonction de la forme

F(s)=Z (f)

on voit de suite, par ce qui précéde, que I'on peut, en faisant varier w entre
T T , . e,

— - el + —» sommer son développement de Taylor dans un polygone limité par
2

des arcs de cercle passant par deux points singuliers et I'origine. Dans le cas ou
tous les points singuliers sont du méme coté d'une droite passant par 'origine,

Fig. 13.

laire s’étend & 'infini et affecte la forme représentée par la fig. 13 : les raison-
nements que ’on étendrait sans peine aux fonctions de la forme ¢* ne nous per-
mettent pas de sommer la fonction dans des régions nouvelles, mais ils peuvent
apporter quelquefois des simplifications au point de vue du calcul numérique.

CHAPITRE V.

METHODE DE SOMMATION DES SERIES TIREE DE LA REPRESENTATION
CONFORME.

1. Soit A une aire simplement connexe mais pouvant du reste se recouvrir par-
‘tiellement ou totalement elle-méme; on sait que I'on peut toujours trouver une
fonction analytique

(1) Z:.[(Z)’

Fac. de T., 2¢ S., L, 22
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qui réalise la représentation conforme de P'aire A sur le cercle de rayon I ayant
I’origine comme centre. La fonction inverse

(2) z=/1(L)

réalisera alors la représentation conforme du cercle de rayon 1 sur aire A.
Considérons alors la série de Taylor

(o) (p(z):zaﬂz”

et faisons le changement de variable défini par (2). Si nous supposons que la
formule (2) fait correspondre le point o & lui-méme, on s’apercoit de suite que la
fonction

oL/ (Z)]

est réguliére dans le voisinage de l'origine; si on la développe en série de Taylor,
(3) o(3)=g[fi()]= X eul,

cette série convergera dans un certain cercle du plan des 5. Si dans l'aire A il n’y
a aucun des points singuliers de % (), mais seulement sur le contour, on voit que
ce cercle serale cercle de rayon 1; remplacons alors s par sa valeur ticée de (1) et
I'on aura

(4) @(z):chmn;

et I'on voit que I'on a ainsi oblenu un développement en série de (z) qui con-
verge dans 'aire A si cette aire ne contient pas de point singulier. Si I'aivre A con-
tenait des points singuliers, le rayon de convergence de la série (2) serait plus
petit que (1) et la série (4) convergerait dans une aire intérieure a A; si, au con-
traire, il n’y avait pas de points singuliers a 'intérieur et sur le contour de A, la
série (4) convergerait dans une aire comprenant A. On voit donc que I'on peut
¢énoncer le théoréme suivant :

Une fonction analytique étant définie par une série de Taylor, on peut
trouver un développement de la fonction qui converge dans toute aire con-
nexe comprenant Uorigine et aucun point singulier de la fonction.

Cette proposition, bien connue dans des cas particuliers, peut servir & sommer
la fonction dans des aires ou la série ne converge pas.

2. On peut calculer les coefficients de (4) d’une fagon plus simple que celle
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indiquée précédemment; en effet, on devra avoir identiquement

2 a,s" = Z cnf(_zin,

dans la portion commune au cercle de rayon 1 et a I'aire A; si 'on a

(5) S(3)= 0,3+ 0,52 +.. .,
on devra donc avoir

@y == Cy,

a, =c;dy,

équations qui permettent de calculer de proche en proche les c.

Faisons ici une remarque importante ; si nous multiplions les deux membres de
la premiére équation par 1, la seconde par z, la troisiéme par z2, et ainsi de suite;
on ne changera nullement la valeur des quantités ¢ (5 étant supposé différent
de 0), on pourra donc écrire

Uy =c,,
Uy=¢V,
Up=¢c,V2+¢,V,,
ot I'on a posé
Un =a,s",

V/z == dn 3",

et 'on voit ainsi que pour calculer les ¢, cest-a-dire le développement (4)
en un point, il suffit de connaitre les valeurs numériques des termes des
séries (a) et (5).

La sommation de la série () est alors ramenée a la sommation des séries (b)
et (4), ce qui peut étre plus simple ou méme immédiat si les deux séries sont con-
vergentes.

3. Supposons que I'on donne aux coefficients de (5) toutes les valeurs pos-
sibles, en assujettissant seulement cette série & converger dans un cercle de rayon
non nul. Si 'on forme toutes les séries (4) correspondantes, il est bien évident
que, parmi celles-ci, il y en aura toujours au moins une qui convergera en un
point donné arbitrairement, ainsi que le chemin qui y conduit, pourvu toutefois
que I'on puisse prolonger analytiquement la fonction jusqu’en ce point. .

L’ensemble des séries ainsi formé ala méme puissance que I'ensemble des fonc-
tions analytiques, mais il est bien évident que I'on peut trouver un ensemble



168 M. SERVANT.

énumérable jouissant des mémes propriétés au point de vue qui nous occupe;
ainsi on pourrait prendre, par exemple, toutes les séries (5) dont les termes sont
rationnels; il serait sans doute aisé de montrer que, dans’ensemble des séries (4)
obtenues, il y en a au moins une qui converge en un point donné quelconque.

On peut encore, d’'une maniére simple, former un ensemble dénombrable de
séries telles que (4), telles qu’il y en ait au moins une qui converge en un point
arbitrairement donné.

En effet, considérons un point M ( fig. 14) et un chemin C y conduisant; con-

Fig. 14.

sidérons une chaine quelconque d’é/éments ayant leurs centres sur la courbe C,
il est bien évident que si’on prend pour aire A I'aire indiquée en gros traits sur
la figure, la série (4) convergera au point M. On voil ici de suite que 'on peut
ainsi former une infinité dénombrable de séries (5) telles qu’il y en ait au moins
une convergeant en un pointarbitrairement donné. En effet, M. Poincaré a dé-
montré que l'on peut définir une fonction analytique par un ensemble dénom-
brable d’éléments (en écartant quelques points particuliers) et la proposition est

alors évidente.

4. Nous voyons ainsi que 'on peut, de plusieurs maniéres, définir un ensemble
de séries telles que (4), qui définissent la fonction en tout point de son domaine
d’existence (a quelques exceptions prés). Or on remarque facilement que I'on
peut [ormer ces séries sans connaitre la forme analytique de la série donnée, mais
seulement la valeur méme de ses termes; on y parviendrait, par exemple, en
prenant pour les séries (3) toutes les séries dont les termes sont rationnels (on ca-
ractériserait de méme facilement les séries numériques que donne le développe-
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ment en un cerlain point des fonctions qui représentent P'aire définie plus haut).
Soient
Sn ’ Sn,’ RS S/z

o

P

les sommes des n premiers termes de ces diverses séries; parmi ces suites, il y en
a au moins une qui converge au point considéré; on pourra alors raisonner abso-
lument, comme au Chapitre précédent sur les §(a) et former des expressions
analytiques représentant la fonction dans des aires étendues; si la fonction est uni-
forme, on pourra trouver une expression analytique qui la représente dans tout
son domaine d’exislence, sauf sur un ensemble de lignes (les courbes de conver-
gence des diverses séries) formant un ensemble énumérable; si la fonction n’est pas
uniforme, on pourra facilement former des expressions qui permettraient de cal-
culer ses"diverses déterminations en chaque point du plan.

CHAPITRE VI.

GENERALISATIONS DIVERSES.

Dans les Chapitres précédents, nous avons considéré presque uniquement des
séries de Taylor; nous allons maintenant chercher & montrer briévement com-
ment les principaux résultats obtenus peuvent s’étendre a des séries de fonctions

uniformes. /

1. Considérons une série de fonctions uniformes (*)

(1) f(z):Eu,L(:-).

Dire que la série précédente converge au point 5 = 3z, c’est dire que la série
(2) ACHES WACSIE
converge au point ¢ =1, c’est-a-dire que le rayon de convergence de celte série

est supérieur ou au moins égal a 1. D’aprés la méthode générale donnée par
M. Hadamard, on sait calculer le rayon de convergence de (2); soit R(z,) ce

(') Nous supposerons qu’elle converge dans une certaine aire connexe.
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rayon de convergence ; si
[R(z0)|>1,

la série (1) converge et I'équation
(G) [R(z)] =1

définit la courbe de convergence ¢ de cette série; en dehors de cette courbe, elle
diverge et sur la courbe elle peut converger ou diverger; c’est un cas que nous
examinerons plus loin.

Considérons maintenant la fonction adjointe

E(a):Z—.”"(s)“".

n!

La fonction entiére adjointe de (2) sera E(at).
Cette fonction permet de calculer les points singuliers de la fonction de ¢ définie
par I'équation (2). Soient
% (%),

0(1(5),

ces points. Pour que la série (1) soit sommable en un point z = 3z, il suffit que la
série (2) soit sommable au point ¢ =1 ('); or, il faut pour cela que ’on ait

Partie réelle |ag'(5)—1| <o,

Partie réelle |oay!(z,)—1]<<o;
par conséquent, les égalités

(3) Partie réelle |oaj!'(5)—1'=0 (v=r1,2,3,...)

il

définissent la région de sommabilité de la série (1).

Si le point z, était sur une des courbes (3), la série (1) pourrait étre sommable
ou non en ce point.

Plus généralement, si 'on considére une fonction de la forme Ej(a), on verra
de suite que le domaine de sommabilité sera un polygone convexe formé avec les
arcs de courbes

—p
Partie réelle Iav(z) —1|:o (v=r1,2,3,...),

disposés comme dans le cas des séries de Taylor.

(1) Quand z varie dans une aire a un seul tenant ayant une partic commune avec'le do-
maine de convergence.
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Posons, d'une facon générale,

1

ay(5) =Xv(z, )+ Yo (2, ),

la courbe de convergence de la série (1) sera donnée par I’équation
(€) Xi+Yi=1,

ot I'on suppose que le premier membre est le plus petit de ses analogues.
Le polygone de sommabilité relatif a la fonction E(a) sera limité par les arcs
des courbes

(DY) Xy(z,0)=1 (v=1,2,3,...);

d’une fagon analogue, on trouve que le polygone de sommabilité relatif a la fonc-
ton E,(a) est limité par les arcs de courbes

(D3) Xz, )= Yz, y)=1  (v=1,2,3,...);

b

de méme on aura pour la fonction E2(a)
(D3?) Xy(X2—3Y2)=1 (v=1,2,3,...),

et ainsi de suite.
Les diverses courbes D comprennent toutes, a leur intérieur, la courbe C et

Uaire qu’elle renferme; d’une facon plus générale, la courbe D” renfermera a

n
son intérieur la courbe D?; du reste, toutes ces courbes sont tangentes entre
elles et 2 C aux points définis par les équations

Xp(zy y) =1,

Y,(z, y)=o,

les p étant les indices pour lesquels expression X, + Y, a le plus grand modaule.

Les fonclions E, (@) permettent de sommer la série (1) dans des aires ou elle
ne converge pas; d'une fagon générale on pourra sommer la série (1) au point z,
st 'on peut sommer la série

o (¢t) :2 wn(3g) ",

au point £ =1. Or, on déduit facilement des propositions démontrées précédem-
ment que, pour qu’il en soit ainsi, il suffit que la fonction ¢(¢) n’ait pas de point
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singulier sur le segment o1 ( fig. 15). Soient

oy (3) (v=u,2,..

les points singuliers. Posons
ay(50) = Ay+ By 1.

11 faudra que 'on ait
B, o,

ou bhien

B,=o (v=1,02,..

Ay,>1 ou A,<o.

Les équations
B,(5)=o,

o0<<AV(s) <1,

-

définissent un ensemble de lignes sur lesquelles on ne pourra pas sommer la

série (2) par ce procédé.

Par conséquent, on voit que, dans des cas trés généraux, on pourra sommer

la fonction (1) sauf sur un ensemble de lignes.

Faisons quelques applications; considérons en particulier une série de poly-

nomes de Legendre
(1" F(z)=Y c,X,,

on sait que I'on a
1
(1— 25+ £2) 2:2 X, tn.

Par conséquent le rayon de convergence de cette série sera la plus petite en mo-

dule des deux fonctions
2

R(z) =5 = \z*—1,

et le rayon de convergence de (1') sera

rR(s),
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ot 7 est le rayon de convergence de la série

E cpth.

La courbe de convergence de (1’) s’obtient en posant
Q) rR(zs) =1

et 'on trouve facilement pour I'équation de cette courbe

1
(l‘ -+ ;) Cos @,

(SR

N |-

ou bien

y:

8

Il

SRR
AN TN /~
~ N -

+

Y N~
N—" N N——"

S

[ 7]

;e

SRR

résultat bien connu.
Les points singuliers de la série

E cp X, th

By =a(z+Vai—1),
Baver == av(z - \/52“‘ 1 ),

seront

ainsi qu'il ressort de suite du théoréme de M. Hadamard (oﬁ les o sont les points
singuliers de E Cn t">. Posons
' z==te'?+

) g
hEex’
il vient de suite

By=z2ay8e?®?=12A,¢[cos(9 + o) + isin(¢ -+ ay)] (oty == Ay ei%),

62\0:

aye~® A,
2t 52

écrivons que B = o, il vient

[cos(ey— @) 4+ isin(eay— @)];

ayt @ =km.

Les courbes correspondantes seront données par

et (kT—at,)
s =fexthm—a) 4 = ",

4¢

Fac. de T., 2¢ S., 1. ' 23
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Ou voit de suite que ce sont des trajectoires orthogohales de (C), c’est-a-dire des
hyperboles ayant mémes foyers que C. On verrait facilement de méme la signifi-
cation des inégalités

o< A, <1,

- et on voit que Von a le théoréme suivant :

On peut sommer, par la méthode de M. Borel, une fonction donnée par
une série de fonctions sphériques dans tout le plan, sauf sur des arcs d’hy-
perbole.

Considérons maintenant la série de Lagrange

ou

ol z est racine de
5—x—af(z)=o.

On sait que, pour que la série converge, il faut que I'on ait sur le contour S

af(s)
—x

. b
g

<
1

2 étant A 'intérieur de S; il vient de suite

noapn - a __/_‘fj_
e"’“E(aa):E S. 7_1_OC__,_0£_ e _I__f ,lt_(_:_)_ e [a;—‘-l 1];

nl T aom) s—a

pour que cette expression tende vers zéro pour @ = oo, il faut et il suffit que 'on

ait sur le contour C

<o,

[ 3
Partie réelle loff;(_mz —1

ce qui permettra de calculer la valeur de la série dans une aire plus étendue.
Plus généralement, si ’on considére la fonction E,(a), on voit qu’elle tendra

vers zéro dans toute aire ou 1’on aura

N af(3)\?
Partie réelle [< _Jj(—~)> — 1] <o.
11 serait facile de montrer que, a Paide de ces diverses fonctions, on pourrait
calculer la valeur de la série donnée dans tout le plan, sauf sur un ensemble de

lignes.
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Nous avons supposé que le rayon de convergence R(z) de la série (2) était
fonction de (z); il n’en est pas Lloujours ainsi; il peul se trouver qu'il soit constant;
trois cas peuvent alors se présenter : si R est constant el plus grand que 1, la
série (2) sera convergente au point £ =1 quel que soit z et, par conséquent, la
série (1) sera convergente dans tout le plan; si, au contraire, R <1, la série
sera (') toujours convergente, quel que soit z;si R=1, il y a doute; le point 1
est alors sur le cercle de convergence de la série (2), et, pour savoir si la série
converge en ce point, il faudra étudier L’ordre (') de la fonction sur le cercle.
De méme, les points singuliers de (2) peuvent ne pas dépendre de z et les mémes
circonstances que précédemment se présentent; il en est ainsi, en particulier,

Zs)=y ’%

Pour traiter ces cas, il faudrait définir et étudier, d’une facon analogue a celle

pour la série de Riemann

qu’a employée M. Hadamard, I'ordre de la série sur une courbe limite du domaine

de sommabilité.

(') HapamArD, Thése de doctorat.



