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SUR LA

DEFORMATION INFINITESIMALE

D’UNE SURFACE FLEXIBLE ET INEXTENSIBLE

ET SUR

LES CONGRUENCES DE DROITES,

PAR M. E. COSSERAT,

Chargé d’un Cours complémentaire & la Faculté des Sciences de Toulouse.

Le présent Mémoire estrelatif, en grande partie, & des problémes qui se
ramenent aisément a celui, posé par M. Moutard, de la transformation par
orthogonalité des éléments et qui, depuis quelques années, ont été étudiés
surtout par MM. Bianchi, Darboux, Ribaucour et Weingarten. Les indi-
cations auxquelles s’est borné jusqu’a ce jour M. Darboux, soit dans son
Mémoire sur la représentation sphérique des surfaces, soit dans la partie
publiée de ses Lecons, font prévoir 'importance du sujet dans la recherche
de toutes les surfaces applicables sur une surface donnée. Je me bornerai
ici a 'exposition de résultats qui se rattachent surtout aux travaux de Ri-
baucour et de M. Bianchi; je développerai, en particulier, les propositions
que je n’ai fait qu'énoncer dans les Comptes rendus de I’ Académie des
Sciences, du 26 décembre 1892.

La premiére Partie est consacrée, & peu prés entiérement, au dévelop-
pement de certains points du Chapitre XII du Mémoire sur la théoric gé-
nérale des surfaces courbes de Ribaucour. La seconde traite du probléme
de la déformation infinitésimale d’une surface flexible et inextensible; la
solution est basée sur 'emploi des formules (A) et (B) du Livre V des
Legons de M. Darboux; on remarquera que l'inconnue auxiliaire z, & la
recherche de laquelle on peut ramener la question n’est pas autre chose que
la Verchiebungsfunction ¢ de M. Weingarten; d’autre part, si 'on sup-
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pose que les courbes (u), (¢) tracées sur la surface sont orthogonales,
z, devient I'inconnue Z de Ribaucour; il nous a semblé qu'ily avait intérét
a effectuer ce rapprochement et 4 montrer, en somme, I'identité des solu-
tions données par Ribaucour et par M. Weingarten.

Je dois ajouter que j’emploierai constamment les notations et les résul-
tats que l'on trouve dans les Lecons de M. Darboux; en particulier, les
formules (A) et (B) du Livre V serviront de base d tout ce qui va suivre.

I. — FORMULES RELATIVES AU PASSAGE D UNE SURFACE A UNE SURFACE
INFINIMENT VOISINE. RESULTATS DIVERS.

1. Variations premiéres des courbures — RR’ et = <%{ + %) quand on

passe d’une surface & une surface infiniment voisine. — (A) étant une
surface quelconque, déterminons une surface (A’), infiniment voisine
de (A), de la facon suivante : faisons correspondre & chaque systéme de
valeurs u, ¢ des paramétres qui fixent la position du point A sur (A) le
triedre trirectangle habituel (T') dont I'axe des z est normal en A & (A) et
construisons le point A’ dont les coordonnées par rapport au triedre (T')
sont ex, ey, €3 (x, ¥, z étant des fonctions de « et de ¢ et ¢ désignant une
quantité infiniment petite indépendante de « et ¢). Le point A’, qui se dé-
duit ainsi du point A correspondant en imprimant a ce dernier un dépla-
cement infiniment petit dont les projections sur les axes de (T) sont e,
ey, €3, décrit, lorsque u et ¢ varient, la surface (A").

Proposons-nous de trouver les variations premiéres des courbures —— Rl{’

; <Ili -+ —RI—,> lorsqu’on passe du point A de (A) au point A’ de (A").
Les coefficients directeurs U, V, W, par rapport au triedre (T'), de la

normale en A’ a (A’) sont, en vertu des formules (B) des Legons de
M. Darboux, définis par les équations

dx . dy . _ 03 . _—
[E—;— <07+q..——-7‘)/>]U—|—[n +5<—0—;+1x—p‘.>]\7+s<d—u+[{} — qx>W'_o,
I +e(ZE —r U+ “+e Q-}—I‘x— --V+s Qf—i—) c—qyx )W=o0
Ei+e q13 1Y My Je 1 P15 v Pr) 91 .

Sil’on néglige les puissances de e supérieures & la premiére, on peut adop-
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ter pour U, V, W les valeurs suivantes :

U:—S}’n
V=c¢a,,
W =1+:¢K,

en posant
2 (52 nr )
Sl ge TPy —az) =G TPy —i®
Eny—né, ’

03 0z
_m<5; +Py—qx>—n((;; +p1y—q1:v)
Fr= Eny— n%, ’

a‘l—_—

dy 0 ox . dx
(= +rax—pia)—& —i—/x pil+ml{—+gs—ry)—n(—+qgs—ry
K— dy Jdu __dv

Eny—né,
c’est-a-dire

9 ;

Ju +PY —gX =Ly — Ny,

23 _

Jv +P1Y — @1 =5)1— 0%,

_0¢y—mz) dy—mx)
(Eny—ng) K = —=—r—— — ou +(p&

—pié+gni—qim)a.

Les coordonnées d’un point P de la normale a (A’) en A’ sont alors don-

nées par les formules

X"—‘S(x_lj’n),
(1) Y:-E(}’-i-lxl);
Z—c¢s -I-l,

en désignant par {2 le carré de la distance du point P au point A’ et en né-
gligeant toujours les puissances de ¢ supérieures  la premiére.

Posons
9z —ry=2» d_a_r,:+ z—ryy=2»
")—d'*‘qz Y =4 v 94 1Y = A,
ady oy

Jdu

+rer—pz=ugy, E}-—l—rlx—p.z:p.,.

Si nous considérons, d’une facon générale, la droite qui, rapportée au
triedre (T'), est définie par les équations (1), ou / est un paramétre variable

b



E.4 E. COSSERAT.

ct ¢ une constante, cette droite engendre quand (T) varie une congruence;
les valeurs de ! correspondant aux points focaux sont déterminées par -
une équation qui peut, en négligeant les puissances de ¢ supérieures a la
premiére, se mettre sous la forme

I
(im—ﬂii)ﬁ

| g —pE+pli—qim—e (qn’ﬁp’z+p£'_g,',:‘_)_(i}g—&“ﬁ%'l_%)

dx,
el =P phE( St —
v ox ay 1
"’“(7)%*"“’”1>_5‘<TJ‘"”)*"(ij“‘x‘],7

(Pqi—qp) (G — Ep+m )k —ndy) +q(0r, . >
Eny— i,

+l’71“—9P1+5[—
-+ %—i-rw —p %—1—1"@ —q %—ry =o
Pl\du ! P\ 90 e '\ ou ! ’

Sil'on examine la suite des calculs que nous venons d’effectuer, on recon-
nait immédiatement que la somme et le produit des racines de cette der-
I

R

1 I 1
5(ﬁ+ W)’ 5(?@)'

Si donc nous remarquons que I'on a

1 1 .
+ = et de == des varia-

niére équation en ; différent respectivement de ; ;
q 7 P R RR

tions premiéres

K:£H1—E:H+ﬂl)\—ﬂ)\1,
E"h_‘ﬂgi

il vient les formules cherchées

t r 1 _ K dpiyri—aqiz)  0(pyi—qa)
g(Em—mi)aﬁR,——R—R,—l— o 5

! £ MY k(L
E-(Em-—n:,1)5<ﬁ+R,>_ K<R+R’)

d((x +ny d(kizi+mny
Gt — g p A —phy— (E.xldp . 1)_|_ (& 1du 1Y1)

H

2. Déformation infinitésimale de (A). Conséquence analytique du
théoréme de Gauss. — Considérons le cas particulier oil, en négligeant les
puissances de e supérieures & la premiére, (A’) est applicable sur (A). Les
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projections, sur les axes de (T), de 'arc élémentaire de (A"), étant

(& +eh) du+ (E +¢ehy)de,
(n +ep)du +(n+epy ) dv,
ey y—nay)du+e(E y—nxy)dy,

la variation premiére du ds* de (A) sera

2e[(EX 4+ np) du++(Ehy + 0y ) do® - (Ehy + B d -0y + 0y p) dedo].

Ecrivons qu’elle est nulle quels que soient du, do et il vient le systéme

)+ np=o,
Edy+nipy=o,
Eb+&h + g+ p =0,

qu’on peut remplacer par le suivant
1 p

P E_h

5 - Ny - Ex
N~ . .
Nous avons donc, dans le cas actuel, K = o, et il vient

I v L_d(Pl"r—fhxi)_d(P.V:—(/JL‘l)
E(Em—m")aﬁﬂ’ - du Jdy '

1

D’aprés le théoréme de Gauss, la variation premiére de pr

E.5

doit étre

identiquement nulle. Cette remarque a été faite par Ribaucour (') qui
ajoute quela vérification de ce fait permet de réduire a une forme canonique
le probléme de la déformation infinitésimale. Nous avons cherché a effec-
tuer cette vérification; exposons synthétiquement le résultat de cette re-

cherche.
Introduisons 'inconnue auxiliaire z, définie en posant

ho_

K2

Sk p
S

_
&

Le systéme qui détermine «, y, z se met sous la forme

Jx _ Jdx
—gzz—l-qZ—l‘y—ne,:O, d—v+q1z—l',y——mz,:—.o,
/) ay ,
d—z—!—l'x—pz—l-ia:o, 7“;+r,x—p,z+g,z1:o.

(1) A. RiBAucOUR, Mémoire sur la théorie générale des surfaces courbes, n° 114, p. 243.



E.6 E. COSSERAT.
En vertu d’un calcul bien connu, qui consiste & écrire que les deux va-

Jeurs de 22 Sude 0 déduites du systéme précédent sont égales, ainsi que les deux

valeurs de -2 ——; les inconnues x, y, z sont déterminées par les équations
du dv

,  Ox
£+E+qz—r}/:09 E,x +q15—nryy =0,

ox

v
n-}—d—}/—]—r.r—pz:o ny + 9y +7r"Mxr—p;3=0

du s d 1 1 ’
C’—%—%—!— y—qxr—o0 i+ 9 + — q1xT=0

Ju P qx =0, 0 J2v4 g1 =0,

auxquelles il faut adjoindre les relations

g=—mns, L=—n5,

n'=Es, ny =& 31,
a9  dE , ,
0_(%)_0—%‘:‘1{1_91?—"“1“‘"1711, \
dgn' d , /
dV dnL: _”51 —"15'— Pcl_“Pltl’
¢ dC,

o0 T 9n =PMi— P’ — a8 + ¢:E

qui déterminent &, v/, ¢, &, 0}, {, et l'inconnue auxiliaire z,.
Celles des équations précédentes qui renferment les dérivées de z peuvent
s'écrire, en remplacant {’ et {, par leurs valeurs en fonction de z,,

ds ° ER Jz Js dz
(l"/l_qpl)(b‘u“*“P)"“qx):]?<ﬂldu d;) (Eldul £ l>’

dz 93 J 93, ]
(Mn—f//h)<5; + Py — > m(m g " ;,‘)— qn(& Ja & '>’

d’ou, en résolvant par rapport a %% et %>

03, : 03
ouw +PY1— gX=0, 0—; +Pr1Y1— 1 X1 =0

. ' 25 , . ' *
SiI'on égale les deux valeurs de :u 5; déduites de ces deux équations, on

a bien la vérification demandée.
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Nous reviendrons au n°® 7 sur I’emploi de I'inconnue auxiliaire z, dans le
probleme de la déformation infinitésimale.

3. Le probléeme de M. Christoffel et les surfaces isothermiques. — Le
probleme de M. Christoffel est, comme on sait ('), relatif & la recherche
des cas dans lesquels la correspondance par plans tangents paralléles entre
deux surfaces (A), (A,) peut donner une représentation conforme ou un
tracé géographique de I'une des surfaces sur autre.

Le Tome 1I des Legons de M. Darboux renferme une solution trés élé-
gante de la question; elle est basée sur I'introduction, comme variables
indépendantes, des paramétres des deux familles conjuguées qui se corres-
pondent sur les deux surfaces. On peut, en partant de la méme idée pre-
miére, parvenir & un assez grand nombre de résultats en raisonnant de la
facon que je vais indiquer.

Considérons les développables de la congruence engendrée par AA, et
écartons les solutions correspondant aux hypothéses particuliéres suivantes :
1° les droites AA, sont paralléles & une méme direction; 2° elles passent
par un méme point; 3° les développables de la congruence engendrée
par AA, se confondent; 4° ces développables découpent (A) et (A,) sui-

“vant des lignes de longueur nulle. Ces solutions particuliéres, bien connues,
étant écartées, remarquons que les développables envisagées découpent (A)
et (A,) suivant les deux familles conjuguées qui se correspondent sur ces
surfaces. D’autre part, donnons 8 AA, un déplacement infiniment petit, de
facon a lui faire décrire un élément de développable; le quotient des dé-
placements respectifs du point A et du point A, sera égal &

FA
FA,’

en désignant par F le point focal qui correspond & la développable consi-
dérée; le quotient considéré devant étre le méme, lorsqu’on considére
successivement les deux développables qui passent par AA,, il en résulte
que les points focaux I et I de la droite AA, doivent étre conjugués har-
moniques par rapport a A et A, (le cas ou I et I sont confondus est, en
effet, écarté). D’ailleurs, les déplacements infiniment petits de AA, qui lui
font décrire un élément de développable doivent étre tels que I'angle des

(1) DiarBoux, Legons sur la théorie générale des surfaces, t. 11, p. 23g.
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déplacements de A soit égal a 'angle des déplacements de A,; comme ces
angles sont manifestement supplémentaires 'un de l'autre, ils sont droits.
Nous trouvons donc les conditions suivantes :

Les points focauxr de AA, doivent étre conjugués harmoniques par
rapport a A et A,; les développables de la congruence engendrée par
AA, doivent découper (A) et (A,) suivant leurs lignes de courbure.

Les conditions que nous venons de trouver sont, on le voit immédiate-
ment, nécessaires et suffisantes. D’ailleurs, en vertu d’un théoréme de
M. Keenigs, la premiére condition, en vertu de la seconde, peut étre rem-
placée par la suivante :

Les lignes de courbure de (A) et de (A,) doivent étre isothermes.

Nous allons maintenant rappeler et compléter la solution donnée par
Ribaucour de la méme question.

Lcartons le cas dans lequel les surfaces seraient des développables cir-
conscrites au cercle de 'infini et rapportons (A) a ses lignes de courbure
en lui adjoignant le triédre (T) ou Azyz habituel; x, y, z désignant les
coordonnées de A, par rapport a ce triédre, nous avons d’abord les rela-
tions

r=19 —_ 10
Tgod YT T o

qui expriment que la correspondance entre les points A, A, de (A)et (A,)
est établie par plans tangents paralleles.
Posons

1 pa
p:1+c —v—t—rlg)?—]),.,),
[0 DAY dy _0°z  1dq 93 1 dp, ds
9*‘/(’@7“"9>—“1"<a—u+’”>—auap g dv du  p, du o

Le carré de I'élément linéaire de (A,) a pour expression

) 2
(A?)Lﬂ_l_ 6,,>du'3+ 2<ﬂ — 9E>9du dV—l—(ii +'C21J~2> dy?,
25 q Pt q
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et il faudra que 1'on ait, en désignant par & une fonction de u et de ¢,

3 2
<A27ﬁ+ -9—2> du®+ 2<£\ — EILL>9du dv —|-<€—2 +C2‘u?> dv*= k*(A% du?+ C* dv?).
P q P q

Nous obtenons donc les trois relations suivantes

(a2 i;) — ke AT=o,
p

1
9 P
2
(e &) koo,

qui devront étre vérifiées toutes les trois.
Les différentes solutions de ce systéme de trois équations simultanées

appartiennent & I'un des types suivants :

2 : 2
1° ’l—\l—%:m A‘-‘).z—l——ev,—sz‘l:o, C‘lp.‘t’-s-?_z-_kz(]?:o;
P1 Pi q
2° f=o, b= p==k;
3 fH=o, A=—p==k.

Dans la premiére solution, (A) est une sphére ou une surface minima et
(A,) est une surface minima.

Dans la seconde solution, (A) et (A,) sont homothétiques.

Il nous reste donc & examiner la derniére solution qui est caractérisée par

les conditions
0= o, A+ *=o.

La premiére § = o exprime que les lignes de courbure de (A) et de (A,) se
correspondent.

On peut donner de la seconde différentes interprétations géométriques.

Les lignes de courbure se correspondant, AAdu et — CAdo sont les
éléments de ces lignes tracées sur (A,) qui correspondent respectivement
aux éléments A du, Cdo de (A); par conséquent, si R, R’ sont les rayons
de courbure principaux de (A), R, et R ceux de (A,) au point correspon-
dant, la condition peut s’écrire

|

-~

R
—{-—-R—;:O.

Fac. de T. — VIIL. E.2
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On peut encore considérer la congruence engendrée par la droite AA,;
si I, I sont les points focaux situés sur AA,,ona

N YV
AR TR T

et la condition s’écrit
1 I 2

AF TAF T AA

L’interprétation précédente peut se transformer, en vertu du théoréme de
M. Keenigs; c’est a quoi I'on arrive également par le calcul suivant qui ne
constitue d’ailleurs, en somme, qu'une démonstration de ce théoréme.

Les inconnues , y, z, qui déterminent la surface (A,) dés que (A) est
connue, sont définies par le systéme

(1—7\)A+3—i+qz—ry:o, %?——r,y:o,
%ﬁ—rx:o, (l—!—l)C—i—%—i—r,x——p,::o,
dz ds
5;—(].27:0, E;—i“piy:O.

On sait que, sice systéme admet une solution, il en admet une triple infi-
nité qu’on obtient en prenant les coordonnées d'un point fixe de Pespace
par rapport a un triédre mobile dont les axes sont constamment paralléles
a ceux de (T); pour qu'il en soit ainsi, on a les conditions nécessaires et
suffisantes

)
"[(I‘(’)‘“u)c_] = (1—MAr,
QRI—;M =—(1+21)Cr,

c’est-a-dire
dlogh _ dlog(*

Jdu du
dlogh _ dlogA*
dv Jdv

Ces deux équations de condition déterminent A et, pour qu’elles soient
compatibles, il est clair qu'il faut et qu'il suffit que la surface (A) soit iso-
thermique.

On peut déduire de ce qui précéde une proposition relative 4 un systéme
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de deux équations linéaires aux dérivées partielles du second ordre. Intro-
duisons z comme inconnue auxiliaire; nous aurons pour la déterminer
deux équations linéaires aux dérivées partielles du second ordre dont la
considération nous donne la proposition suivante :

A, C, p,, g étant des fonctions qui satisfont aux équations de Codazsi
relatives a une surface (A) rapporiée a ses lignes de courbure, la con-
dition nécessaire et suffisante pour que les deux équations linéaires aux
dérivées partielles du second ordre

’z 1 dq 03 1 dp, 05
dudv q dvdu  py du dv

Jd (A 0z d /C 0z (9 pi\]_
W<a(m>—az<zm>+f‘c[”‘<x f)]—O

aient une solution commune est que la surface (A) soit isothermigue.

Si cette condition est vérifiée, les deux équations considérées admettront
une solution commune dépendant de quatre constantes arbitraires.

Remarquons que les coordonnées d’un point fixe de ’espace par rapport
au triedre (T) satisfont aux équations qui définissent les inconnues x, y, =3
le z d’un point fixe de 'espace par rapport au triédre (T), c’est-a-dire la
distance d’un point fixe au plan tangent de (A), satisfait donc aux équa-
tions précédentes en z; introduisons comme nouvelle inconnue auxiliaire la
distance { d’un point fixe de '’espace au plan tangent de (A,) et I'on a la
proposition suivante :

A, G, p,, q étant des fonctions qui satisfont aux équations de Codazzi
relatives a une surface (A) rapportée a ses lignes de courbure, la con-
dition nécessaire et suffisante pour que les deux équations linéaires aux
derivées partielles du second ordre

0%¢ 1 ()l] J% I dP: 8 .

dudv q dv du  p, du 0v =
9 (AXN_ 9/C o q _ P\,
5 (7 )= 3 (G o) Ac({ = )e=o

aient une solution commune est que la surface (A) soit isothermique.
Si cette condition est vérifice, les deux équations considérées admettront
une solution commune dépendant de quatre constantes arbitraires. .
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Remarquons que la seconde des équations en {, que nous venons de for-
mer, n’est pas autre chose que 'équation & laquelle satisfait 'inconnue
auxiliaire z, du n°® 2, lorsque la surface (A) est rapportée & ses lignes de
courbure. Nous donnerons au n° 5 une interprétation géométrique de cette
remarque a propos de la question des surfaces limites de Ribaucour.

4. Le probléeme de Ribaucour. — Les considérations développées au
commencement du numéro précédent n’auraient évidemment qu’un intérét
trés secondaire si elles ne s’appliquaient qu’au probléme de M. Christoffel;
mais il suffit de leur apporter quelques modifications dans la forme pour
parvenir & des résultats assez importants et relatifs & différents problemes,
parmi lesquels je me contenterai, pour le moment, de signaler le suivant,
envisagé par Ribaucour :

Considérons une correspondance établie entre deux surfaces (A),
(A)) et telle qu'il existe une sphére tangente & ces surfaces respective-
ment aux deux points A et A, qui se correspondent; quels sont les cas
dans lesquels cette correspondance peut donner une représentation con-
Jorme ou un tracé géographique de I’une des surfaces sur Uautre?

Pour énoncer ce probleme sous la forme méme donnée par Ribaucour,
on peut dire :

Quelles sont les enveloppes de sphéres telles qu’on puisse faire un
tracé géographique, avec conservation des angles, de I'une des nappes
de Uenveloppe sur I'autre (la correspondance étant établie entre les
deux points de contact d’une méme sphére)?

Les Legons de M. Darboux nous fournissent une solution particuliére du
probléme; considérons des sphéres dont le rayon @ est constant et dont les
centres décrivent une surface dont la courbure totale est constante et égale

a aiﬁ; les deux nappes de I'enveloppe de ces sphéres sont des surfaces dont

I} I .
la courbure moyenne est égale a — et qui (Darsoux, Legons, t. 11, p. 245)

satisfont a la question.

Les raisonnements faits au commencement du numéro précédent s’ap-
pliquent ici sans modifications essentielles et fournissent immédiatement
des résultats intéressants.

Laissons de coté les solutions qui correspondent aux hypothéses parti-
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culiéres suivantes : 1° les droites AA, sont paralléles a une méme direction;;
les sphéres ont alors leurs centres dans un méme plan; 2°les droites AA,
passentpar un méme point; les sphéres sont alors orthogonales a une méme
sphére; 3° les développables de la congruence engendrée par AA, sont
confondues; 4° ces développables découpent (A) et (A,) suivant des lignes
de longueur nulle.

On arrive alors immédiatement aux conditions suivantes, nécessaires el
suffisantes :

Les points focaux de AA, doivent étre conjugués harmoniques par
rapporta A et A,; les déceloppables de la congruence engendrée par AA,
doivent découper (A) et (A,) suivant des systémes orthogonauz.

Ces conditions se transforment en vertu d’un théoréme de Ribaucour et
I'on peut dire :

Les points A et A, sont les centres des spheéres de rayon nul qui pas-
sent par un cercle engendrant un systéme cyclique; les développables
de la congruence cyclique engendrée par AA, doivent découper les sur-
Jaces (A) et (A,) suivant des systémes orthogonaux.

On voit, par ce premier point de vue auquel on peut se placer, I'intérét
du probléme posé par Ribaucour; la question mérite, évidemment, d’étre
traitée & part; nous nous contenterons donc de remarquer que Pexistence
de la solution particuliére que nous avons puisée dansles Legons de M. Dar-
boux entraine le théoréme suivant qui est bien connu :

Les normales d’une surface a courbure totale constante forment une
congruence cyclique.

5. Les surfaces limites de Ribaucour (*). — Etant donnée une surface,
il est clair qu'on peut la déformer d’une infinité de maniéres sans altérer la
longueur des ¢léments linéaires ; mais, sil'on considére, par exemple, une
portion de surface, on congcoit bien une limite & la déformation. Cette con-
ception conduit naturellement 4 se poser des problémes dont quelques-uns
constitueraient une application intéressante du calcul des variations.

Parmi les différentes formes que peut prendre une surface, lorsqu’on la
déforme sans altérer la longueur des éléments linéaires, on en concoit une

(1) A. RiBAvcour, Mémoire sur la théorie générale des surfaces courbes, note du n°116
p. 245 et 246.
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qui est, si 'on peut s’exprimer ainsi, la plus gonflée; on peut encore la dé-
signer en disant que sa courbure est maximum, le mot courbure étant pris
dans un sens général; en adoptant pour la courbure les différentes défini-
tions qui ont été proposées, on serait conduit & des propositions correspon-
dantes.

_ Ribaucour a été ainsi amené & introduire la forme limite pour laquelle
la courbure moyenne est maximum. Une condition nécessaire pour qu’une
forme (A) soit limite est alors que la variation premiére

I I

que nous avons calculée au n° 1, soit nulle pour toute surface infiniment
voisine de (A) et applicable sur elle.
Si donc nous nous reportons au n° 2, les valeurs de x, y, s tirées des
équations
Eh+np=o,
Eh+np=o,
E+E5 A +np+ nyp=o,

doivent vérifier identiquement la relation

d(Ex 4+ ny,) . d(E 2 +ny,)
Jv Ju -

Introduisons I'inconnue auxiliaire z, du n° 2; elle devra satisfaire aux
deux équations linéaires aux dérivées partielles du second ordre
g IZ, .
2 2 (—pE - pyE— -+ 5=o0
90 " gn TEPEEPE—gm+qim)si=0,

0(Exi+nyy) . 0k xy+niyy)
v du

:’0,
oul,C,, 2, y, sont déterminés en fonction de z, par les relations

0z ds
(g&a—pn) 5.0 —(gE—pn) 5]

= )
Pq1— 4P
0z 0s
” ((1151"1)1711)07;—(Chi'—]’m)‘dj,l
- b

! P91— 9P

924 + —qgqx,=o0

Ju PV q Ty —0,

034

W +p1)/,—q1x1:o.
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Si I'on rapporte (A) a ses lignes de courbure, les deux équations aux
dérivées partielles précédentes sont identiques aux deux équations en { du
n° 3; on pecut donc énoncer la proposition suivante :

Les surfaces limites de Ribaucour sont des surfaces isothermiques.

Nous pouvons é¢galement énoncer la proposition suivante qui généralisc
celle dun® 3 :

& 50 M Ny Py §5 Py @4 €lant des fonclions qui satisfont aux équa-
tions (A) de M. Darboux et qui se rapportent ¢ une surface (A), la con-
dition nécessaire et suffisante pour que les deux équations linéaires au.
dericées partielles en z, qui viennent d’étre écrites aient une solution
commune est que la surface (A) soit isothermique. Si celle condition
est vérifice, les deux équations considérées admetiront une solution
commune dépendant de quatre constantes arbitraires.

Cette derniére proposition n'est d’ailleurs, ainsi qu’on le voit en se re-
portant au n® 12, qu’une traduction analytique de la suivante :

Pour qu’une surface (A) soit isothermique, il faut et il suffit qu’il
existe une congruence de Ribaucour admettant (A) pour surface
moyenne et dont les développables découpent cette surface suicant ses
lignes de courbure.

On peut en donner également une autre interprétation géométrique, au
moyen des surfaces associées de M. Bianchi, ainsi que nous le verrons
au n° 15.

II. — DEFORMATION INFINITESIMALE. THEORIE DES COUPLES DE SURFACES APPLICABLES .
TRANSFORMATION PAR ORTHOGONALITE DES ELEMENTS.

6. Les trois problemes se raménent & Pun d’eux. — (A) étant une
surface quelconque, soit (A’) une surface infiniment voisine dont chaque
point A’ se déduit du point A correspondant en imprimant 4 ce dernier un
déplacement infiniment petit dont les projections sur trois axes rectangu-
laires fixes sont ¢X', €Y’, ¢Z’, en désignant par ¢ une quantité infiniment
petite indépendante des paramétres qui fixent la position du point A sur(A)
et par X, Y’, Z' trois fonctions de ces mémes paraméLres.

La condition pour que la surface (A’) soit applicable sur (A), en.négli-
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geant les puissances de ¢ supérieures & la premiére, est que ’on ait I'iden-
tité

dX dX'+dY dY'+ dLdl' = o,
en désignant par X, Y, Z les coordonnées du point A de (A).

Le probléme de la déformation infinitésimale est ainsi ramené a celui de
la correspondance par orthogonalité des éléments.

D’autre part, considérons deux surfaces (M,) et (M,) applicables I'une
sur l'autre; rapportons ces surfaces a trois axes rectangulaires fixes; soient
Xy, Y, Z, les coordonnées du point M, de (M,) et X,, Y,, Z, les coor-
données du point correspondant M, de (M, ); désignons également par X,
Y, Z les coordonnées du milieu A de M, M,. La relation identique ’

dX? + dY}+dl}=dX2+dY?: +dlL2,

qui exprime que (M,) et (M, ) sont applicables I'une sur I'autre, se trans-
forme immédiatement dans la suivante

(dX1 -+ dXz)(dXii— ng) -+ (dY1 -+ de)(in — dYg) -+ (dZ1 -+ ng) (dZ, —_ dZQ) =0,
c’est-a-dire dans la condition

dX dX'+dY dY' + dLdl = o,
en posant
X——————I*XQa Y= =) 7 = Z——~'_Zz-

2 2 2

X'=

On peut résumer les considérations précédentes, qui sont connues de-
puis bien longtemps, sous la forme suivante :

Soit (A) la surface lieu du milieu A du segment M\M, qui joint les
points correspondants M, et M, de deux surfaces applicables Uune sur
Uautre; e désignant une quantité infiniment petite indépendante des
paramétres qui fixent la position des points A, M,, M,, la surface (A")
lieu de Uextrémité du segment AN, équipollent a ¢ AM,, est applicable
sur (A); lasurface (a), liew de Uextrémité du segment O a, équipollent
a AM,, et dont Uorigine est un point fixe O, correspond a (A) par or-
thogonalité des éléments; la connaissance de (A) détermine, inverse-
ment,une déformation infinitésimale de (a), définie par le couple de
surfaces applicables (M,) et (My), M, étant le symétrique de M, par
rapport & a ou de M, par rapport a 0.
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7. Recherche des couples de surfaces applicables, en supposant con-
nue la surface lieu des milieux des cordes qui joignent les points corres-
pondants. — Rapportons la surface (A), lieu des milicux des cordes (ui
joignent les points correspondants M, et M,, & un systéme («, ¢) auquel
nous associons le trieédre ordinaire de référence (T). Soient x, y, 5 les
coordonnées de M, par rapport a ce triédre; celles de M, seront — i, — y,
— 53 les projections de I'arc élémentaire, décrit par le point M,, sur les
axes de (T), sont

dr =(£ + 1) du—+ (5 +2,)dy,
3y = (1 + ) du 4 (ny + ) dv,

3

— f)—:——|—» —qx)du—+ d——&—py—qar)dw
N du YT av ! ! ’

Qo

en pOSEll’lt

7-—()—x—|—r'——rr )—-()‘?4—( S—ryy
LT ()ll /" Jor *1-—&_ /l~’ L)?

p) 7}
#—_-0—‘-3:—1—1‘1‘———1)3, Hl:*d%‘j+l'1£_l)15‘

On a pour le point M, des formules qui se déduisent des précédentes en
remplacant x, y, z par — x, — y, — .

Pour que les surfaces (M,) et (M,) soient applicables 'une sur I'autre,
il faut que leurs ds* soient identiques, c’est-a-dire que I'on ait

Eh+np=o,
i+ mp=o,

Eli—+E b 4y 1y o =o.

Nous retrouvons, ainsi qu'il fallait s’y attendre, d’apreés ce qui a été dit
au numéro précédent, les équations déja rencontrées au n° 2, dans le pro-
bléme de la déformation infinitésimale.

Introduisons I'inconnue auxiliaire z, qui, ainsi que nous Pavons vu, est
définie par 'équation linéaire aux dérivées partielles du second ordre
P (f/Ewpm)%—(f/E_-pﬂ)%

J¢ PI— ap

(2) 03 0z,
9 (@&—pin) 5o —(iE—pin) 57

! Jdu PY— gpy
Fac. de T. — VIIL E.3

+(—pEi+piE—qgn+qyn)s,=o.
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Sil’on pose

E_,:_WZU E,l'—_—'fh:‘n
n'=E£3, 'y, =E& 5,
Js ds 03 dJs
e (6151—[17)1)0—[: _(CIE—I’W) d_v' o (9131_]’1"11)5(% —(q:1&—pin) m‘
- Pqi— qp: ’ 1 Pgi— qps ’

les inconnues x, y, z seront définies par le systéme

dx Jd

P4+ = 4+ ¢gs —ry=o, B X V5 — 1y =o,
Ju ! J =1 Jdy q J
Jdy . ady
(3) *n’—l—D%—i—rx—ps:o, 771“'(7; + 1 —p3=o0,
’ d; , ();
€+(ﬁ+1)y*—qx:0, St gy TPy — e =0,

ce qu’on peut énoncer de la fagon suivante, en remarquant que &, v/, I, &/,
1), ¢, sont les translations d'un triédre ('T") dont les axes sont, & chaque
instant, paralléles a ceux de (T) :

Les inconnues x, y, z sont les coordonnées d’un point fixe de Uespace
par rapport au triédre ('T").

A Tégard de I'inconnue auxiliaire z,, il est bon de présenter quelques
remarques.

Sil'on suppose que le systéme (z, ¢) tracé sur (A) est orthogonal, cette
inconnue devient celle que Ribaucour désigne par la lettre Z (*). D’autre
part, z, est identique a la fonction ¢, introduite par M. Weingarten (2)
dans la solution qu'il a donnée de la question que nous venons de traiter.

C’est un point que ’on vérifie immédiatement en remarquant que 'on a

(9% ., I ., .
-\ Jv + 13 '1}’)"‘“’1 W“" 1Z— P13
.ﬁ‘nl——ﬂil

Sy=

(1) A. RiBavcour, Mémoire sur la théorie générale des surfaces courbes, p. 245.

(2) J. WEINGARTEN, Ueber die Deformationen einer biegsamen unausdehnbaren
Fldche (Journal de Crelle, t. 100).
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11 en résulte, en effet, pour z, la valeur suivante :
X oX"  9Y oY 07 IV

_o0u ov " du o0 " 9u ov
- Eni— 0% ’

34

X, Y, Zet X, Y, Z ayant la méme signification qu’au numéro précédent.
A chaque solution z, de 'équation (2) ne correspond en réalité qu'un seul
couple de surfaces applicables; car les inconnues x, y, z étant les coor-
données d’un point fixe de l'espace par rapport au triédre (T"), il en ré-
sulte que les différents couples qui correspondent a une méme fonction z,
se déduisent de I'un d’eux en imprimant aux éléments de ce dernier des
translations paralléles, égales et de sens contraires.

On peut dire encore, pour s'exprimer autrement, qu’a chaque solution z,
de I'équation (2) correspond une seule déformation infinitésimale de (A);
nous dirons, d’aprés M. Bianchi, que z, est la fonction caractéristique
de cette déformation.

Ribaucour a énoncé (') un certain nombre de propositions qui résultent
bien aisément de ce qui précéde. Nous allons les développer et les com-
pléter.

On vérifie immédiatement tout d’abord que :

Les caractéristiques de ’équation en z, sont les asymptotiques de (A).

Les équations (3) sont linéaires par rapport a , ¥, z; si 'on en connait
une solution (x, y, z), on en déduira une nouvelle solution (mx, my, ms),
en désignant par m une constante; si I'on en connait deux solutions
(z,y,z)et («/,y',z), on en déduira une nouvelle solution

(mx+m'a',my +m'y', ms+ m'z"),

en désignant par m et m’ deux constantes; nous pouvons, en conséquence,
énoncer les propositions suivantes :

Soient deux surfaces (M,) et (M,) applicables U'une sur Uautre; si A
est le milieu de la droite M,M, et st l’on porte de part et d’autre de A
surladroite AM, une longueur AM, =AM, proportionnelle a AM,=AM,,

(1) A. RiBavcour, Notice sur ses travaur mathématiques, p. 21.
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les surfaces (M) et (M) lieux des points M, et M, sont aussi applicables
Pune sur Uautre.

Soient deux couples (M), (M,) et (M), (M},) de surfaces applicables
Pune sur Uautre et symétriques par rapport ¢ une méme surface (A);
les surfaces (M) et (M) lieux des points M et M qui divisent dans le
méme rapport constant les segments M, M, et M, M, sont aussi applicables
Uune sur Uautre.

Les projections de I'arc élémentaire décrit par le point M,, sur les axes
de (T), s’écrivent

s S

o= (& — E)du—+ (& — &) dv,
y=(n—mun")du—+(n —mn\)ds,
—du—1¢\ do,

Q.

[«%

I

3

d’ot I'on déduit
0xt4- 0y = (1 + 52)(Eduw+ 2 F du dv + G dv?).
On a donc cette proposition :

Quelle que soit la direction suivie sur (A), chacune des projections
(égales) des éléments linéaires de (M,) et (M,) sur le plan tangent en A
a (A) est proportionnelle a U élément correspondant de (A).

Le rapport du carré d’une de ces projections au carré de I'élément li-
néaire de (A) est égal a 1 + z7, la fonction z, étant I'inconnue auxiliaire
introduite qui définit a elle seule le couple de surfaces applicables.

8. Congruences formées par les paralléles M, m,, Mym, menées par
M, et M, a la normale en A & (A). — Considérons la congruence formée
par la paralléle M, 2, menée par M, & I'axe des z du triedre (T); définis-
sons le plan tangent & une surface élémentaire de cette congruence en un
point de M, m, de cote z + =" par le coefficient angulaire tang0 de la trace

de ce plan sur le plan des 2y de (T); on a alors, en vertu des formules (B)
des Lecons de M. Darboux,

(n—n'—pz)du~+(n—mny—ps)de

tang6 — . .
° (E—E8+gz')du—+(&—E +q.153)de

Les points focaux et plans focaux sont définis par le systéme

n—un'—ps’ 0, —ni—pa

tang 6 — f— . .
© E—E+qs b—E+q=
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Considérons d’abord les points focaux I et F’; les valeurs de z" qui leur
correspondent sont les racines de I'équation du second degré
(7 —qp) =+ lg(n—0) =pi(E = &) — g1 (n— ")+ p(&—&)]s’
+(E=)m—n)— (L= ) (n—n")=o,
c’est-a-dire de I'équation

(Pgr— gp1)+ (g0, —pii— qi +P£1)3l+(£n1—‘051)(1 +z})=o.

On a donc, en désignant par R, R’ les rayons de courbure principaux

de (A)en A,
M,F+M,FF=R-+R,

M F. M F = RR' (1 + 32).
La premiére de ces relations fournit le théoréme suivant de Ribaucour :

Si l’on considére, pour chacune des paralléles M, m,, M, m, a la nor-
male de (A) en A, le milieu des points focaux, les deux points obtenus
et le milieu des centres de courbure principaux de (A) relatifs au
point A sont sur une méme paralléle a M, M,.

Considérons maintenant les plans focaux; ils sont définis par I’équation

n—n'— (£ —') tang _ 'nl——n’,—(E,——E_;)langG’

p -+ gtang0 pPi1—+ q,tangd

c’est-a-dire par I’équation

[78— q1& +(gn1—qyn)3,] tang?d
+[7n—pi— g+ pé+(— ¢ E—pin—+ gk + pn,)z ] tang g
+pin—pn—(p§—pk)s=o.

La condition pour que les plans focaux soient rectangulaires est
(70— qin — piE+pé)zi=o.

Si z, est nul, le segment M, M, a une grandeur constante et une direction
fixe. Si z, n’est pas nul, la condition s’écrit

R+ R'=o.
On a donc la proposition suivante :

St Uune des congruences engendrées par Mym,, M,m, est formée de
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normales & une surface, il en est de méme pour l’autre congruence; ou
bien les deux surfaces (M,) et (M,) sont identiques et se déduisent
l’une de Uautre par une translation, ou bien la surface (A) est minima.

Inversement :

Si la surface (A) est minima, les congruences engendrées par M, m,
et Mym, sont formées de normales & des surfaces et leurs surfaces
moyennes sont respectivement (M,) et (M,).

L’équation en tangf permet également d’établir le théoréme suivant :

Si la surface (A) est une sphere, les congruences engendrées par
M, m, et Mym, sont isotropes.

Appliquons la formule donnant tangf au point M,; il suffit de faire
s'=o et il vient
_ndu—+n do—(Edu+Edr)s, )

tang by, = Edu-+E dv+(ndu—+n,do)s

Introduisons 'angle w que fait avec I'axe Az du triédre (T) la tangente a
I’arc élémentaire décrit par A et correspondant aux accroissements du, dv;
la formule précédente se transforme dans la suivante

s, =tang(» — Oy,),

d’ou résultent une nouvelle interprétation de z, et la proposition suivante
de Ribaucour :

Si lon suit sur (A) deux directions rectangulaires, les plans menés
parallélement ¢ la normale de (A) en A et par les directions correspon-
dantes sur les surfaces (M,) et (M,) sont, pour chacune de ces surfaces,
toujours rectangulaires.

9. Cas o la surface (A) est rapportée a ses asymplotiques. — Sup-
posons que les lignes () et (¢) soient les asymptotiques de (A) et soit

ds?=FEdu?*+ 2Fdudy + Gdo?

la formule définissant son élément linéaire. On sait que, sil'on pose

1
k:\/_ﬁ'ﬂ‘"
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on a (Darsoux, Legons, t. 111, p. 283, 284)

9 __ 94

p =K, %—-%:nr,—rm,
. dn  Odny . o
(/—‘I‘TI, b_‘j—'é—lz—rsl E’h
Pir=— kila
g1 =— kny,
et les équations de condition
dlogk ) oG
Jdu (EG —F )—F()_V_E()u’
ologk o 1.90G L OE
(EG — F*)=F 9z —(;5(_).

dav

Les équations du probléme sont encore les équations (3) ou &, v/, {, &,

7,, ¢, ont les valeurs suivantes :

g'=—mnz, Bl =—m,3,
n'= 5,51, ﬂ;: 515’1’
o 1 d3, ¢ — 1 d3,

— k% ou’ 17Tk

L’inconnue auxiliaire z, est définie par I’équation

5, dlogyk 95, dlogyk 95, ks —
ou gy dv  du du  dv 1=,

qui a ses invariants égaux entre eux et &

24 /1
/i
Vk + k2F.

du dy

Introduisons les éléments de la représentation sphérique ; I’équation en z,

s'écrit

s, dlogyk 05, dlogyk 0,

du dv Jv Ju Jdu dy +fa=o

Elle admet comme solutions particuliéres les cosinus des angles que
Jait la normale & la surface (A) avec trois axes fizes rectangulaires.
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10. Cas oit la surface (A) est & courbure lotale constante. — On re-
marquera que la condition nécessaire et suffisante pour que les dérivées
premieres n’apparaissent pas dans I’équation en z, écrite au numéro pré-
cédent est que & soit une constante. Placons-nous dans ce cas particulier;
on sait que le carré de I'élément linéaire d’une surface a courbure totale
constante rapportée a ses asymplotiques peut se mettre sous la forme

ds? = du*+ de¢* + 2 cosadudy,

et 'on a
O _ - sine
dudey — RR' ’
c’est-a-dire
' Jd*o .
— k?sino.
Jdu dv °

L’équation en z, esl ici

——— — A*cos .5, =0,

11. Cas ot la surface (A) est minima. — Supposons la surface
minima (A) rapportée & ses asymptotiques et prenons pour axe des x du
triedre ('T) la tangente a la courbe (¢).

Une premiére solution du probléme se déduit du n° 9 en y faisant
& =o, n=o, pP1=o0, q =o.

Mais on peut, dans le cas actuel, résoudre la question autrement.

Nous avons vu au n° 8 que, la surface (A) étant minima, les congruences
engendrées par les droites M,m,, M,m, sont formées de normales & des
surfaces; cette proposition résulte aussi de ce que, si (A) est minima,
I'équation qui détermine z, est

a' g

o ou ¥

Introduisons 'inconnue auxiliaire z’ définie en posant

dzl ;/
9% r__ Y=
o= ou’ 1= 990’
c’est-a-dire
05, 95 95 _ 9z

o =Ko T o
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Cette inconnue sera définie par ’équation

J 3! J s\

On pourrait aussi remarquer que, dans le cas actuel, on peut déterminer
séparément x, y par le systeme

dx

Ja =0 g‘g-i—r;p:o.

On peut, par exemple, effectuer cette détermination de la maniére sui-
vante; on a

0 0
Z)—u(’hﬂﬂ)—l- 3(53’)—0-
Introduisons 'inconnue auxiliaire 0 par les formules

PR -
—1)1 dV’ Y=

el =
Q.l%
INRESS)

0 sera définie par I’équation

70 10200 1 om0 _
dudv £ dvodu my du dv

12. Nouvelle interprétation de z,. Congruences de Ribaucour. —

Introduisons, comme nous l'avons fait aux n® 1 et 5, les auxiliaires x, et
y, définies en posant

& —=aT _nfi—nZ
1= E,Yt't _‘715.1’ I1= &ny— WEI ’

c’est-a-dire par les relations
% -+ — qx; =0
du P q 74 ’

03,+ ri—o
o0 PiY1— q1Z1=0.

Construisons, pour chaque position du triedre (T), le point A, dont les
coordonnées sont z,, ¥,, z,; la surface (A,) lieu de A, et la surface (A) se
correspondent avec parallélisme des plans tangents.

Menons par un point fixe O de’espace un segment O @ équipollent a AM,
Fac. de T. — VIIL E.4
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etrapportons le point a4 trois axes menés par O parallélementa ceux de (T);
les coordonnées de a par rapport & ces axes seront x,y, s et les projec-
tions de I'arc élémentaire décrit par ce point sur les axes considérés ou sur
les axes de (T) seront

—(&du+ & dv),

— (0 du + 0’ dp),

— (% du~+ ¢ dv).

La normale & la surface (@), en @, a donc pour coefficients directeurs
G =0, L=, Eni—a'g
ou
2 (85— &1, 5 (nf) —m &), (&ny—mné,) s},

ou encore
Zyy Y1y 2i.

M. Bianchi a donné le nom de congruence de Ribaucour i toute con-
gruence qui s’obtient de la fagon suivante : étant données deux surfaces (A)
et (@) qui se correspondent point par point et avec orthogonalité des élé-
ments, on méne par chaque point de I'une d’elles, (A ) par exemple, la pa-
rallele a la normale au point correspondant de Vautre; (@) est dite la sur-
Sface génératrice de la congruence; nous verrons que (A) en est la surface
moyenne.

Le résultat que nous venons d’obtenir peut s’énoncer de la fagon suivante :

Considérons le plan paralléle au plan tangent de (A) en A et situé
une distance z, du point A, z, désignant une solution quelconque de
Uéquation aux dérivées partielles (2); soit A, le point de contact de ce
plan avec son enveloppe; la congruence des droites AA, est une con-
gruence de Ribaucour dont (A) est la surface moyenne et dont la surface
génératrice est une surface (a*, correspondant & (A) par orthogonalité
des éléments, et déterminée par la déformation infinitésimale dont s,
est la fonction caractéristique.

I nous est bien facile également d’établir les propriétés connues (') des
congruences de Ribaucour.
Considérons, en effet, le tricdre dont le sommet est a et dont les axes

(1) A. RiBaucouR, Etude des élassoides, p. 230.
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sont paralleles & ceux de (T); étudions la congruence formée par l'axe
des z de ce triedre; le plan tangent en un point de cote z 4 une surface élé-
mentaire de la congruence sera défini par la formule

(=n'—p3)du—+(—n\—pz)dy

tang?= " Etqs)du+(—E+q5)dv’

qui donne le coefficient angulaire tangf de la trace de ce plan sur le plan
des xy.

AR <1 du . .
Ecrivons que tang0 est indépendant du rapport 7,5 1l nous vient les

équations suivantes, qui déterminent les points focaux et les plans focaux,

—n'—ps_ —n\—ps
tangf—= ——"— = —— .
° —E&+gs —E8+q.s

Les cotes des points focaux sont donc les racines de I'équation
(Pg1—qp)3*+ (P& — g0 —pEi+qun')s +Ea— n'E =,

c’est-a-dire de I'équation

en posant

k:\/_ P71 =Py :\/_ o
gnl_nsl RR’

La congruence de Ribaucour déterminée par la paralléle menée para
a la normale de (A) en A admet la surface (a) pour surface moyenne;
les points focaux sont & des distances de a qui sont

Donc

et  — L.

|

Si nous nous reportons & la congruence de Ribaucour engendrée par la
droite AA, et sinous remarquons que les plans tangents en A et A, aux
surfaces (A) et (A,) sont paralléles, nous pouvons énoncer la proposition
suivante, due & M. Guichard :

Toute congruence de Ribaucour découpe, par ses développables, sa
surface moyenne suivant un réseau conjugué.
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Considérons maintenant les plans focaux; ils sont définis par I'équation

(g10 — qny)tang?0 +(pyn +¢,£ — pny— q&y) tang 0 + p, £ — p& =o.

Donc :

Les plans focaux de la congruence de Ribaucour dont (a) est la sur-
Jface moyenne et dont (A) est la surface génératrice sont perpendicu-
laires aux asymptotes de Uindicatrice de (A) en A.

Il en résulte que :

Les développables de la congruence de Ribaucour dont (a) est la sur-

face moyenne et dont (A) est la surface génératrice correspondent aux
asymptotiques de (A).

C’est ce que 'on peut, d’ailleurs, vérifier directement; si I'on écrit, en
effet, que tang0 est indépendant de z, il vient I’équation

Fdu+Edv  qdu+q,dv
nde+a,dv pdu—+p,dv

qui définit I'image des développables de la congruence et qui n’est autre
que I'équation

ndu+n,dv _ gdu—+q,dv

Edu+Et dv — pdu—+p,dv

des asymptotiques de (A).

On voit que :

Toute congruence de Ribaucour admet pour représentation sphérigue
de ses développables celle des asymptotiques d’une surface.

Cette propriété est caractéristique des congruences de Ribaucour et peut
leur servir de définition.

On remarquera que, si I'on effectue sur I'équation en z, la transforma-
tion

z,=kp

I'équation qui définit p est, d’aprés le résultat obtenu dans le numéro actuel,
celle a laquelle satisfait la demi-distance focale d'une congruence de Ribau-
cour admettant pour représentation sphérique de ses développables celle
des asymptotiques de (A).
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Donc :

Le probleme de la déformation infinitésimale d’une surface (A) se
rameéne a la détermination des congruences de Ribaucour qui admet-
tent pour représentation spherigue de leurs développables celle des

asymplotiques de (A).

13. Transformation par orthogonalité des éléments. — La proposi-
tion que nous venons d’énoncer pourrait s’obtenir bien aisément par Iap-
plication des formules de M. Weingarten. On peut aussi, ainsi que je l'ai
déja indiqué dans un Mémoire inséré au Tome VII de ces Annales, leur
substituer les résultats que je vais rappeler.

Oa désignant toujours le segment qui a pour origine un point fixe O et
qui est équipollent au segment AM,, cherchons 4 déterminer directement
les coordonnées a, 3, v du point @ par rapport au triedre (T) adjoint
a (A);nous écrirons a cet effet que deux éléments linéaires correspondants
de (A) et (@) sont toujours rectangulaires, c’est-a-dire que l'on a, quels
que soient du, dv,

do

(Edu+ gid")[(£+%+q7 —rﬁ) du+<£1+w+q,y——r(3>dv]

+(ndu+n,dv) [(n -+ g?—l +roz——py> du —I—(m-f— (3)_% +1‘,a——p,y> d‘)]: 0.

Nous obtenons ainsi les équations du probleme

E(E—I—%%— qy — rﬁ)—i— n<n—i—g—§—|— ra ——py):o,
O’

I

Jd J
‘21(51‘*‘ d——f}( +91}‘_"1ﬁ>+“’11<‘ﬂ1+ 5% +"10‘—P|7>

d .
R T R G )

(2 v ra—py ) rm( 1+ % ra— py)=o
T 0e ! iy ! Ju pPy)=0-

Ces ¢quations sont satisfaites par les coordonnées, par rapport a (1), d’un
point fixe de 'espace; si z,, ¥,, 5, sont les coordonnées de O par rapport
a (T), et si nous prenons comme inconnues auxiliaires

L — & — Ty, y=B8—yo =7 — %o
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nous retombons, conformément aux considérations du n° 6, sur les équa-
tions du probléme de la déformation infinitésimale.

Nous sommes ainsl conduit a introduire l’inconnue auxiliaire z,dun® 7
1 1)
pOSﬂﬂt

E=t+t, B=E& -+,
n"'=n -+, ny =1+ 0,

C//t CI’ ”1 - :,1 ’

a, B, v seront déterminés par le systéme

da ” d
&+ 5, Tar—rg=o, £,+d—i+qay—"15:0,
" 05 . ” 06
1)—|—(7[—t+lo(—py:0, ‘nl—|—a—;—|—/-la—p,y:0,
% .0
&+ gf;ﬂ’B—qazo, 1+d—f,+p15—-q1a=0-

Quant & I'inconnue auxiliaire z,, elle sera définie par I'équation (2).

Ceci posé, si I'on suppose que le réseau (u, ¢) soit celui des asympto-
tiques de (A), les équations du probléme ne différent pas de celles qui dé-
terminent une congruence admettant pour représentation sphérique de ses
développables celle des asymptotiques de (A); I'équation qui définit la
demi-distance focale p se déduit de I'équation en z, par la transformation

zy= kp.

14. Quelques cas particuliers. Cas o (A) est une quadrique, une
sphére, une surface minima. — Les résultats des deux numéros précé-
dents permettent, dans des cas particuliers, d’énoncer des propositions
intéressantes relatives au probléme de la déformation infinitésimale.

Dans le cas ou (A) est une quadrique, on retrouve immédiatement la
solution donnée par M. Moutard; une surface (@), correspondant & (A)
par orthogonalité des éléments, est, en effet, la surface moyenne d’une con-
gruence de Ribaucour dont (A) est la surface génératrice et dont les plans
focaux sont, par conséquent, perpendiculaires aux génératrices rectilignes
de (A). Les deux nappes de la surface focale de cette congruence de Ribau-
cour sont donc des développables dont les cones directeurs sont identiques
au cone supplémentaire du cone asymptote de la quadrique (A).
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Si la quadrique (A) se réduit a une sphére, on a la proposition sui-
vante (') :

Toute surface correspondant par orthogonalité des éléments a la
sphére est la surface moyenne d’une congruence isotrope, et récipro-
quement.

On peut encore dire (*) :

Si les extrémités d’un segment de droite de longueur constante dé-
crivent deux surfaces applicables Uune sur ’autre, la droite engendre
une congruence isolrope, el réciproguement.

Dans ce cas ol (A) est une sphére, prenons comme plan des yz du
triedre (T) le plan qui passe par les points M, et M, ; les coordonnées du
point M, sont O, y, 5; on trouve immédiatement, enrapportant la sphére a
un réseau orthogonal («, ¢) tel que la courbe (¢) soit tangente & I'axe des x
du triedre (T),

dlogy _ dlogC

du du
dlogy _ dlogA,
Jdv Oy

Les fonctions A et C sont, suivant les notations de M. Darboux, celles qui
interviennent dans le ds? de la sphére; le réseau coordonné est donc iso-
métrique et il est clair que I'on peut toujours, en choisissant « et ¢, mettre
le ds* de la sphére sous une forme

ds*=2 (du?+ dv?),
telle que I'on ait
y=h
A chaque réseau isométrique tracé sur la sphére, nous faisons ainsi cor-
respondre un couple de surfaces applicables; d’ailleurs, si 'on se reporte
au n° 8, le théoréme qui y est énoncé prend alors la forme suivante donnée
par Ribaucour (*) :

Soit tracé, sur une sphére, un réseau isométrique arbitraire pour

(1) A. RiBsucour, Etude des élassoides, p. 63.
(2) Ibid., p. 6o.
(3) Ibid., p. 33.
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lequel le ds* de la sphére ait pour expression
ds? =22 (du+ dv?),

porlons sur les tangenles aux courbes de une des familles, a partir
des points de contact, des segments é gaux aux valeurs de \ en ces points;
par les extrémités des segments, menons des droites paralléles aux nor-
males de la sphére; ces droites engendrent une congruence isotrope.

Nous venons, en supposant que (A) est une sphére, d’examiner le seul
cas ol une congruence de Ribaucour est isotrope.

Considérons maintenant le cas ot une congruence de Ribaucour est for-
mée de normales a une surface; il résulte immédiatement des propositions
des deux numéros précédents les suivantes (1) :

St une congruence de Ribaucour est formée de normales ¢ une sur-
Sace, elle admet pour surface génératrice une surface minima, et
réciproguement.

Les surfaces dont les normales appartiennent ala congruence admet-
lent, pour représentation sphérique de leurslignes de courbure, un sys-
téme isotherme, et réciproquement.

15. Surfaces associées de M. Bianchi. — M. Bianchi dit que deux
surfaces (A) et (A,) sont associées (*) lorsqu’elles se correspondent point
par point, avec parallélisme des plans tangents, de facon qu’aux asympto-
tiques de la premicre correspondent sur la seconde des courbes formant un
systéme conjugué (et alors, inversement, aux asymptotiques de la seconde
correspondent sur la premiére des courbes formant un systéme conjugué).

Remarquons tout d’abord que, sil'on considére une congruence de Ri-
baucour admettant A pour surface génératrice, ses développables corres-
pondent aux asymptotiques de (A) et aux courbes formant un systéme
conjugué sur (A,); donc :

Les asymptotiques de (A) et les courbes qui leur correspondent sur
la surface associée (A)) ont, aux points correspondants des tangentes

(1) A. RiBavcour, Etude des élassoides, p. 231.
(2) L. BiaxcHi, Sulle deformaszioni infinitesime delle super ficie flessibile ed inesten-
dibile (Rendiconti della R. Accademia dei Lincei, 17 juillet 1892).
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paralléles, en comparant naturellement les courbes qui ne se correspon-
dent pas.

On a vu au n°® 9 que I'équation en z, admet comme solutions particuliéres
les cosinus des angles que fait la normale a la surface (A) avec trois axes
fixes rectangulaires; il résulte d’un théoréme général de M. Darboux sur
les systémes conjugués (Darsoux, Lecons, t. I, p. 122) que la solution la

r ' "1 . ' . b :
plus générale de I'équation en z, sera donnée parla distance d’un point fixe
de I'espace au plan tangent d’une surface quelconque (A ) associée a (A);
nous pouvons, en conséquence, ¢noncer le théoréme suivant de M. Bianchi :

Dans un couple de surfaces associces (A) et (A,), la distance d’un
point fixe au plan tangent de Uune des surfaces est fonction caracté-
ristique d’une déformation infinitésimale de l’autre.

Considérons en méme temps que la surface (A,), associée a (A), et dont
le plan tangent est mené, parallélement & celui de (A), & une distance d’un
point fixe O égale a z,, la surface (A,) du n° 12; les plans tangents aux
surfaces (A)et (A,) en A et en A, sont paralleles et leur distance est égale
a z,; les segments OA, et AA, sont équipollents; la droite AA, engendre
une congruence de Ribaucour dont les développables découpent la surface
moyenne (A) suivant un réseau conjugué a invariants égaux, conformé-
ment a un théoréme général de M. Kceenigs. Les plans tangents aux sur-
faces (A), (A)), (A,), aux points correspondants, étant paralléles, il en
résulte, d’aprés un théoréme bien connu (Darsoux, Lecons, t. 11, p. 235,
236), que les développables des congruences engendrées par AA, et par AA,
découpent (A) suivant le méme réseau conjugué a invariants égaux.

Nous pouvons ainsi compléter les résultats que j’ai établis a la page 61
du Mémoire inséré au Tome VII de ces Annales, et énoncer, en particulier,
le théoréme suivant (*) :

Pour que deux surfaces (A) et (A,), se correspondant point par point,
avec parallélisme des plans tangents, soient associées, il faut et il suffit
que, si on considére la congruence des droites AA,, ses développables
découpent (A) et (A,) suivant des réseaux conjuguds & invariants égaux

(1) Y’ai énoncé, pour la premiére fois, cette proposition dans une Note insérée aux Comptes
rendus de I’ Académie des Sciences du 26 décembre 1892.

Fac. de T. — VIIL. E.5
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ou encore que les points focaux de AA, sotent conjugués harmoniques
par rapport a A et A,.

Si l'on se reporte au n° 3, on voit que 'on a, en particulier, la proposi-
tion suivante :

Les surfaces isothermiques, qui se correspondent dans le probléme de
M. Christoffel, sont associées, en sorte qu’aux asymplotiques de l'une
correspondent sur I’autre des courbes formant un systéme conjugué.

16. Recherche des couples de surfaces applicables, en supposant con-
nue la surface enveloppe des plans menés perpendiculairement et en
leurs milieux aux cordes qui joignent les points correspondants. —
Nous nous proposons la recherche d'un couple de surfaces applicables (N,),
(N,) dont les points correspondants N,, N, sont, & chaque instant, symé-
triques par rapport aux plans tangents d'une surface donnée (A).

x', y', 7’ désignant les coordonnées du point N, par rapport au triedre
(T) que nous adjoignons a chaque point A de (A), les projections, sur les
axes de (T), de I'arc élémentaire décrit par le point N, sont

4 1 !
8x’:[(£+ %z- — ry'> du—i—(’c:'—i- 0—();2— —1‘1‘)/’) dv] +(qdu—+ q,dv)s',

8y’:[<n -+ %)L/Z -+ ra:’> du —|—<m—|— %)% -+ I'1:L"> dv] —(pdu—+ p,dv)s,

, , 0z 05
d=[(py'—qz")du+(py'— q12") dv]+ -t%du + 55 4

Les projections de I'arc élémentaire décrit par le point N, se déduisent des
précédentes en remplacant z° par — z'. Les surfaces (N,) et (N,) seront
applicables I'une sur ’autre, si I'on a, quels que soient du et dp,

[<£ —+ %ﬂi — ry’> du +<£1—|— (i)iv — 7‘1y’> dv](qdu -+ q, dy)
! !
— [(n . % + rx’) du +<m~+ %’;— -+ rlx’> dv] (pdu—+ p,dv)

! Zl
+py'—qz")du+(py — qw’)dv](; % du + f %; dV)Io.

Nous obtenons ainsi les trois équations suivantes qui définissent les in-
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connues xz’, y', ',

ay' 1 0J35
p( du—l—lx)—i—(py—qx) —= o,

3’ du

Jz’ 2 1 as'
q'<5’+W“”y —pi(m Gy e >+(p:y——q1 )7 o0 =

o )l B

1 03
+ e > +(py'— qw) +(p:y—qxx);m=0-

1

a
—p<ﬂx+ d}’

Ces équations restent vérifiées si 'on remplace z’ par az’, a élant une con-
stante quelconque; il en résulte le théoréme déja énoncé au n° 7.

Il nous est bien aisé de transformer le systéme précédent, en nous aidant
des indications données par Ribaucour ('). Substituons, en effet, aux in-
connues z’, ¥’ les inconnues auxiliaires

Le systéme définissant x, y, 2’ est le suivant

EL ) +f’_~”_, —
N7 ™ 9u P Jdu V)=

q4 (él,+5—+r1x>+pl

3

3
(3G
-

e
_I_

wp(=n %2 Ny
Pi\— gy Y

Il est linéaire par rapport a x, y et ;; il en résulte la proposition suivante :

Soient deux couples (N,), (N,) et (N), (N,) répondant a la question;
désignons par B, B’ les points ow le plan tangent a (A) est rencontré
par N, N, et par NN, ; joignons N,B" et N\ B qui se coupent en N et
N, B, N,B qui se coupent en N,; les surfaces (N, (N}) lieux de N et

(1) A. RiBavcotr, Notice sur ses travaur mathématiques, p. 21; Etude des élassoides,
p. 229.
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de N, sont applicables Uune sur Uautre et, d’ailleurs, a chaque instant,
les points N’ et N sont symétriques par rapport au plan tangent de (A).

Le systéme auquel nous venons de parvenir se met sous une forme bien
simple; il suffit, en effet, de le comparer a celui que nous avons rencontré
aux n® 2 et 7 pour étre amené immédiatement & lui donner la forme sui-
vante

&Y _n_ 9 g oy m o, dz
A T s ron T Tt T T a e T
& — _— -—_ —_— 2

P —q P — 1

ou j'introduis I'inconnue auxiliaire z égale & la valeur commune des rap-
ports.

x,y, 3, 3 sont alors déterminées par le systéme suivant :

n Jdx N o E dy L
_27_*—'0_&'*_9‘_")—-09 2'7+d—u+rx_p"_o’
“‘T:Tll"“gi""%z“’”:)’:% £—1+gl+r1x~p1z:o.

-~

4

dv

(2]

Nous avons la, aux notations preés, les équations rencontrées aux n° 2
et 7 dans le probléme de la déformation infinitésimale de (A) et nous pou-
vons énoncer le théoréme suivant :

Désignons par xz, y, z, %, un systéme de valeurs des inconnues intro-
duites aux n** 2 et7 et constituant une solution du probléme de la dé-
Sormation infinitésimale de (A); construisons, par rapport au triédre (T)

. , X 1 . )
le point N, dont les coordonnées sont _1, — =5 —; ce point et son symé-
~1 <1 1

trique N,, par rapport au plan des xy du triédre (T), décrivent deux
surfaces applicables 'une sur autre.

17. Propriéetés relatives aux doubles couples de surfaces applicables
Uune sur ’autre. — Nous avons, au numéro précédent, établi le théoréme
de Ribaucour qui permet de déduire d'un couple de surfaces applicables un
autre couple intimement li¢ au premier. Ces deux couples jouissent de
nombreuses propriétés dont quelques-unes ont été mises en évidence par
Ribaucour (*). Nous allons développer un certain nombre d’entre elles.

(1) Etude des élassoides, p. 229, § 187.
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Les deux couples (M,), (M,) et (N,), (N,) sont réciproques, conformé-
ment au théoréme suivant :

Les surfaces (A) et (B), lieux des milieux A et B des cordes M, M, et
N, N, sont les deux nappes de la surface focale de la congruence des
droites ABj; les cordes M, M, et N, N, sont paralléles respectivement aux
normales de (B) et de (A) en B et Ajon a, de plus, la relation

(4) 4LAB =M;M,x< N,N, < sinV,

V désignant I'angle des cordes M;M,, N, N,, c'est-a-dire 'angle des nor-
males a (A) et (B) en A et B, ou encore I'angle des plans focaux relatifs
a AB.

Cette proposition est une conséquence immédiate des équations vérifiées
par x, y, 3, 3,, ainsi que des formules

qui déterminent les coordonnées «', ', z’ du point N,.

Si I'on égard a ce fait que, pour chacune des surfaces (A) et (B), les
asymptotiques sont les caractéristiques de I'équation aux dérivées partielles
de laquelle nous avons fait dépendre le probléme de la déformation infini-
tésimale, la réciprocité que nous venons d’indiquer rend trés vraisemblable
le théoréme suivant de Ribaucour :

Les lignes asymplotliques se correspondent sur les deux nappes (A)
et (B) de la surface focale de la congruence des droites AB.

On peut, avec M. Bianchi, énoncer cette proposition de la fagcon sui-
vante :

Considérons une déformation infinitésimale quelconque d’une sur-
Jace(A) et par chaque point A de (A) menons, dans le plan tangent en
ce point a celle surface, la droite perpendiculaire au déplacement que
subit le point A dans la déformation; les droites ainsi construiles for-
ment une congruence lelle que les asymploliques se correspondent sur
les deux nappes de la surface focale.

On peut établir de bien des maniéres le théoréme de Ribaucour; un pre-
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mier procédé consisterait & s’appuyer sur la proposition suivante énoncée,

en partie, par M. Bianchi (') :

Pour que les asymptotiquesse correspondent sur les deux nappes (A)
et (B) de la surface focale de la congruence des droites AB, les points
correspondants étant A et B, il faut et il suffit que le produit des quatre
rayons de courbure principaux des deux nappes (A) et (B) aux points
A et B soit égal a la quatriéme puissance du quotient de la distance de
ces deux points par le sinus de Uangle des plans focaux relatifs ¢ AB.

Cette proposition résulte immédiatement des formules que j’ai données
aux pages 20 et 21 du Mémoire inséré au Tome VII de ces Annales; si
Pon désigne par R,, R les rayons de courbure principaux de (A)en A,
par R,, R les rayons de courbure principaux de (B) en B, et par V I'angle
des plans focaux relatifs & AB, 1l suffira donc de vérifier la relation

, , AB \*
(5) R1R1R2R2:<m>;
pour avoir établi le théoréme de Ribaucour.

Je n’effectuerai pas cette vérification qui est facile et je m’attacherai sim-
plement & la conséquence suivante : comparant les relations (4) et (3), on
en déduit

—
R,R’,RQR;:<—M‘M2 N__'M> :
2 2

Supposons que les paramétres u, ¢ soient ceux des asymptotiques de (A)

et de (B) et ramenons chacune des équations en z,, relatives a (A) et & (B),

a la forme canonique

LD
par la transformation
2= Wk,

On peut alors énoncer la proposition suivante :

L’équation en '\ dont dépend le probléme de la déformation infinité-
simale de (B) se déduit de celle relative a (A) par la transformation

de M. Moutard.

(1) Annali di Matematica, »° série, t. XVIII, p. 328.
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Cette proposition ne différe pas de celle que M. Guichard (*) a rencon-
trée dans ses recherches sur les congruences de droites pour lesquelles les
lignes asymptotiques se correspondent sur les deux nappes de la surface
focale.

Le théoréme de Ribaucour peut étre rattaché a un certain nombre de
propositions relatives a la déformation infinitésimale et que nous allons
maintenant développer.

Conservant les notations déja employées, nous désignerons par @ I'extré-
mité du segment O ayant pour origine le point O et équipollent au seg-
ment AM, et par M, le symétrique de M, parrapport au point @, ou encore
le symétrique de M, par rapport au point O. Soit également b P'extrémité
dusegment O b ayant pour origine le point O et équipollent au segment BN,.

Considérons la surface (4) licu de b; les projections sur les axes de (T),
de ’arc élémentaire décrit par le point b, sont

gz du+q,3" dv,
—ps'du—p,z'dy,

-l dz’
()—udlt -+ W

dy.

La normale en b & (b) a donc comme coefficients directeurs

d3' 03’ 95’ 03

B - T
ou encore
051 ()51 051 051
P'd“—}—PxW’ 7'(_);_91$7 (Pg1— qp1) 21,
ou enfin

L1y _}’1’ By

Si l'on se reporte aux n° 12 et 15, on peut alors énoncer la proposition
suivante :

Les plans tangents aux surfaces (a) et (b), aux points corres-
pondants a et b, sont paralléles; la surface (b), qui est polaire réci-
progue de (A,), par rapport & une sphére de centre O, est associée a (a)
dans la déformation infinitésimale de (a), définie par le couple de sur-

Saces applicables (M,) et (M,).

(1) Comptes rendus des séances de I’Académie des Sciences, t. CX, p. 126.
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Tirons d’abord quelques conséquences de cette proposition, que les plans
tangents aux surfaces (@) et (), en a et b, sont paralléles.

Si par le point @ on méne la paralléle &4 Ob, en vertu d’un théoréme
connu que nous avons déji appliqué au n° 15, cette paralléle détermine une
congruence dont les développables découpent sur (@) un réseau conjugué
et ce réseau correspondant & un réseau conjugué de (4) n’est autre que le
réseau conjugué découpé par les développables de ab. Nous retrouvons
donc le théoréme de M. Guichard et nous pouvons énoncer le suivant :

Les développables de la congruence engendrée par ab correspondent
aux asymplotiques de la surface (A).

Si on remarque qu'il y a réciprocité entre (A) et (B), il est clair que les
développables de la congruence engendrée par ab correspondent aussi aux
asymptotiques de (B); d’ou résulte le théoréme de Ribaucour :

Les asymptotiques se correspondent sur les deux surfaces (A) et (B).

Il résulte du théoréme que nous avons énoncé au commencement de ce
numéro qu'aux asymptotiques de (b) correspondent sur (@) des courbes
formant un systéme conjugué; c’est un point que nous allons développer et
qui est li¢ aux résultats élégants obtenus par M. Bianchi (') a'égard du
probléme de la déformation infinitésimale. Nous énoncerons, en effet, le
théoréme suivant :

Considérons le réseau conjugué de (A) qui reste conjugué dans la dé-
Sformation infinitésimale qui transforme (A) en (A"); il lui correspond :
1° le réseau conjugué commun a (M,), (M,), (M,) et, par conséquent,
le réseau conjugué de (a) qui reste conjugué dans la déformation infi-
nitésimale correspondante de (a); 2° les asymptotiques de (b) et de (A,),
conformément aux résultats de M. Bianchi; 3° un réseau conjugué ¢
invariants égaux sur (B).

La premiére partie de la proposition résulte immédiatement de ce que, si
I'on rapporte les surfaces (M,) et (M,) a trois axes fixes rectangulaires, les
coordonnées des points M, et M, satisfont & une méme équation linéaire
aux dérivées partielles du second ordre sans second membre. 1l suffit d’¢ta-

(1) L. Biancui, Sulle deformaszioni infinitesime delle super ficie flessibile ed inesten—
dibile (Rendiconti della R. Accademia dei Lincei, 17 juillet 1892).
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blir la seconde partie & I'égard de I'une des surfaces (b) et (A,) puisque,
ces surfaces étant polaires réciproques par rapport a une sphére de centre O,
leurs asymptotiques se correspondent. Or, I'équation des asymptoliques

de (A)) est
dxi ()x

1 = —
Pd“‘*'l’ljf_(%' +q51—l‘y1>dlt+<7)“; + g5 r,}q)dv
gdu—+ g,dv ™ [(dy,
du

+ ra, ——pz,) du + <%};—' ~+ ryx;— p, z,) dy

Cela résulte immédiatement de 'application des formules des Legons de
M. Darboux a un triédre dont les axes sont paralleles a ceux de (T) et
dont l'origine est en A,.

On vérifie immédiatement que I’équation précédente est identique a celle
qui détermine les courbes se correspondant sur (A) et () et formant sur
ces surfaces des systémes conjugués.

Il résulte de ce qui précéde que le probléme de la déformation infinitési-
male d’une surface (A) revient a la détermination des réseaux conjugués
tracés sur cette surface et qui ont, soit leurs invariants égaux, soit une
représentation sphérique identique a celle, considérée par M. Dini, des
asymptotiques d'une surface; on peut ajouter la remarque suivante, d’une
vérification facile : '

Dés que Uun de ces réseaux conjugués est donné, la déformation in-
finitésimale correspondante de (A) se détermine au moyen de quadra-
lures.

18. Cas de deux surfaces applicables égales ou symétriques. — Nous
avons supposé implicitement, dans ce qui précéde, que les surfaces (A)),
(A,) n’étaient ni égales ni symétriques.

Si ces surfaces sont symétriques, la surface (A) est un plan.

Si elles sont égales, la surface (@) est un plan; la fonction caractéristique
correspondante est de la forme lc + mc + nc”, en désignant par [, m, n
trois constantes et par ¢, ¢/, ¢ les cosinus des angles que fait la normale &
la surface (A) avec trois axes fixes rectangulaires. On déduit de 1a une con-
struction simple des congruences de Ribaucour dont la surface moyenne
est un plan.

19. Cas particulier du probléme des couples de surfaces applicables.
La surface (A) est applicable sur une surface de révolution. — Ribau-
Fac. de T. — VIIL E.6
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cour a cherché si la construction du couple (M,), (M, ), par rapport a la
surface (A), peut étre indépendante de la forme de cette surface. Pour
qu’il en soit ainsi, il faut que 'on ait

s —=0.

On trouve cette méme condition en cherchant dans quel cas les droites AB
sont normales a une méme surface.

Particularisons le triedre (T) de facon que son axe des x soit dirigé sui-
vant AB et supposons que le réseau (u, ¢) tracé sur (A) soit orthogonal, la
courbe (¢) étant tangente & AB. Dans ces conditions, les équations (3), eu
¢gard a 'hypotheése z = o, se réduisent &

ry=o,
dy
a0

Q2 _
—Alu—l—Caz_o,

ry
By = E‘}"

A, C désignant les fonctions qui entrent dans la formation de I’élément li-
néaire de (A).
y estune fonction de la seule variable « ainsi que A.
. , . C .
La troisitme équation montre que le rapport > est une fonction de la
seule variable ¢. Donc :

La surface (A) est applicable sur une surface de révolution ct les
courbes (v) sont les transformées des méridiens.

Inversement, supposons la surface (A) applicable sur une surface de ré-

volution et soit
ds? = U? du? + w? do?

la formule qui définit son élément linéaire, en sorte que « a une significa-
tion géométrique bien connue.
Les ¢quations précédentes donnent alors

y = mu,

en désignant par 7 une constante.
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On en déduit

puis

2'=—Uu, y'=o, = —-

On remarquera que 1’on a

z'=— Pgos
en sorte que, sil’on déforme (A) de fagon qu’elle devienne la surface de ré-
volution, le point B sera situé sur l'axe de cette derniére; cela résulte,
d’ailleurs, également de ce que le point B est un des points focaux de AB.
Sil'on remarque que

et si 'on a égard a la signification géométrique de u, on voit qu’on peut
énoncer la proposition suivante de Ribaucour (') :

Soit une courbe plane (A) et une droite D de son plan; menons a (A)
en un point A la tangente AB jusqu’a la rencontre de D en B élevons
en B la perpendiculaire a AB et portons sur cetle perpendiculaire, de
part et d’autre de B, une longueur BN, = BN, telle que sa projection
sur D soit constante : 1° les courbes (N,) et (N,) lieux des extrémités N,
et N, des segments BN, et BN, ont leurs arcs correspondants égaux;
2° st l'on fait tourner (A) autour de D ainsi que les courbes (N,) et
(N,), les surfaces de révolution engendrées par ces deux derniéres
courbes sont applicables I’une sur Uautre; 3° si Uon déforme (A) d’une
maniére quelconque, chaque plan tangent entrainant les points N, et N,
qui lui correspondent, les surfaces (N,) et (N,) transformées des sur-
Sfaces de révolution sont toujours applicables une sur Uautre.

Dans le cas ot1 la courbe (A) est une parabole admettant D pour axe, les
courbes (N,) et (N, ) sont aussi des paraboles admettant D pour axe.
Remarquons enfin que les différentes positions de la droite AB sont les

(*) A RiBsvcour, Notice sur ses travaux mathématiques, p. 22.



.44 E. COSSERAT.

normales d’une surface W les théorémes généraux dun® 17 deviennent les
suivants qui sont bien connus :

Les lignes asymptotiques se correspondent sur les deux nappes de la
développée d’une surface W.

En chaque point M d’une surface W, le produit des quaire rayons
de courbure principaux des deux nappes de la développée aux centres
de courbure principaux correspondants A et B est égal a la quatriecme
puissance de la distance de ces deux points.

20. Cas particulier du probléme de la correspondance par orthogo-
nalité des éléments. La surface (A) est applicable sur une surface spi-
rale. — Ribaucour, en cherchant si la construction de (a), par rapport
a (A), peut étre indépendante de la forme de cette derniére, a été amené (*)
a considérer le cas particulier ol le point @ se trouve constamment dans le
plan tangent en A 4 (A).

Rapportons (A) & un réseau orthogonal (u, ¢) tel que la tangente Ay
a (u) passe par le point a; Ay sera I'axe des y du triedre (T) et, en nous
reportant au n° 13, nous aurons

L’inconnue § sera définie par le systéme

A—rB=o —rfB—Cs=o,
93 _ 9B _
d—u—i—Az,_o C—I—W_o.

Cherchons donc s'il peut exister une fonction § satisfaisant aux équations
A—rf=o, C—l—(—)—?:o, C%—Ar,ﬁ:o.

L’une de ces équations prouve que % doit étre une simple fonction de ¢;
cette fonction n’¢tant pas nulle, nous pouvons la supposer égale a 1, en

particularisant la variable ¢; nous avons alors

g=¢,

(1) A. RiBAUCOUR, Notice sur ses travaux mathématiques, p. 22.
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et les relations suivantes nécessaires pour la possibilité du probleme :

dlogA _
50 T1=0

dlogC _
oo +1=o0.

Donc, en désignant par U, et U, deux fonctions de la seule variable «, on

doit avoir
A=e"U, C=¢e"U,.

En particularisant la variable u, on peut faire en sorte que U, =1 et il

vient
g=0G,
A=c¢e", C=e"U.

L’élément linéaire de (A) étant défini par la formule

ds*= e~ (du?+ U2 dv?),
on en conclut que :

La surface (A) est applicable sur une surface spirale.
Si l'on effectue le changement de variable défini par

du
— = du,,

U

on a la proposition suivante :

Pour que le point a soit constamment dans le plan tangent & (A) au
point correspondant A, il faut que la surface (A) soit applicable sur une
surface spirale; (A) étant rapportée a un réseau (u, v) pour lequel son
ds® est de la forme

ds*=e~2*U?(du?+ dv?),

les coordonnées du point a par rapport au triédre (T) adjoint a (A)
seront

a=o, B=e"U, Yy =o.

Un cas particulierement intéressant est celui ou le ds® de (A) peut étre
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mis sous la forme
ds? = e 2+ (du? + de?).

Il est clair que, dans ce cas, on a en évidence deux solutions du probleme,
les positions du point @ étant situées respectivement sur les axes Az, Ay
de (T); par suite de la forme linéaire des équations qui déterminent «, B,
il y aura une infinité de solutions, les positions du point @, correspondant
a des valeurs particuliéres de u et v, étant toutes en ligne droite.

Toulouse, 15 janvier 189j.



