G. KOENIGS
La géométrie réglée et ses applications

Annales de la faculté des sciences de Toulouse 1'° série, tome 7,1n°4 (1893), p. 1-55

© Université Paul Sabatier, 1893, tous droits réservés.

L’acces aux archives de la revue « Annales de la faculté des sciences de Toulouse »
(http://picard.ups-tlse.fr/~annales/) implique 1’accord avec les conditions générales d’utilisa-
tion (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AFST_1893_1_7_4_1_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

ETUDE BIBLIOGRAPHIQUE.

LA

GEOMETRIE REGLEE
ET SES APPLICATIONS,

PAR M. G. KOENIGS,

Professeur suppléant au Collége de France.

CHAPITRE V.

COORDONNEES DE KLEIN. — GEOMETRIE ANALLAGMATIQUE.

Coordonnées tétraédriques. — Forme caractéristique de w (2); réciproque. -— Forme de
M. Klein. — Systéme de six complexes linéaires en involution deux a deux, — Configu-
ration remarquable qu’ils forment. — Propriétés des quinze congruences C;j. — Notation
particuliére pour leurs directrices. — Les demi-quadriques Q;jz. — Les dix quadriques
fondamentales. — Les tétraédres fondamentaux. — Relations remarquables entre les qua-
driques et les tétraédres. — Digression sur une configuration offerte par trois complexes
linéaires en involution deux a deux.— Groupement des sommets et des faces des tétraédres.
— Propriétés des permutations de six lettres. — Les tétraédres desmiques. — Distribu-
tion sur une conique des six poles d’un méme plan. — Configuration des seize points ot
des seize plans. — Transformations qui font revenir sur elle-méme la forme fondamen-
tale. — Quelques généralités sur les espaces 4 n dimensions. — Représentation d’une
quadrique sur un plan. — La projection stéréographique. — Correspondance entre Ia
Géométrie projective sur une quadrique et la Géométrie anallagmatique dans un plan. —
La Géométrie de I'espace réglé est identique & la Géométrie anallagmatique d’un espace a
quatre dimensions.

T4. Nous avons défini au n° 3 un systeme particulier de coordonnées 4 de Ia
ligne droite, dont la notion se trouve lide a celle d'un certain tétraédre de coor-

données.

Fac. de T'. — VII. I
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Nous avons indiqué ensuite comment on pouvait substlituer a ces coordonnées
de nouvelles coordonnées au moyen des formules de transformation

i = A X1+ Aig g Za+. .. Air s X6,
dans lesquelles le déterminant de la transformation n’est pas nul. Les équations
xr; =0

représentent chacune un complexe linéaire, el ces six complexes ne font pas évi-
demment partie d’'un méme systeme a cinq termes.
Les variables r;; vérifient la relation

Tya gy =+ I'13 N2+ 'y ez = 0,

et, si on leur substitue les variables z;, le premier membre de celte équalion
devient une forme quadratique en z,, z,, ..., Zs,

w(z).

La forme de la fonction  (z) caractérise les coordonnées. 1l y a deux types
particuliérement importants et qui ont, d’ailleurs, entre cux les liens les plus
étroits. Le premier est le suivant

T4 Ly, = X X5 -+ T3 Xg,s

et le second, qui a été considéré par M. Klein en premier lieu, et qui est la base
des recherches de ce géométre, consiste dans la somme de carrés

z} + 2} +...+ k.

Nous allons étudier successivement ces deux Lypes.

Nous observerons d’abord que les coordonnées r;; réalisent le premier, et nous
allons montrer que, réciproquement, si les coordonnées réduisent la forme v (z)
au type

w (Z) = X120, + X205 + T3Zg
(somme de trois rectangles), les z, sont des coordonnées ri par rapport a un
certain tétraédre.

En effet, si nous cherchons la forme adjointe Q (@), nous trouverons

Q(a) = a,d;+ asas—+ agas,

c’est-a-dire © (a). C’est un de ces cas ou la forme adjointe reproduit la forme
primitive. Pour le complexe z, = o, tous les coelficients a; sont nuls, sauf a;, et,
par suite, @ (@) = o; les complexes coordonnés sont donc tous spéciauzx.
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Montrons maintenant que les directrices de ces complexes sont les arétes d’'un
tétraédre.
La condition d’involution de deux complexes A, B s’écrit ici

a;,bi—!— b5a1+ a5bg+ bsag—l— agbz+ bgaz = o;

elle est vérifiée pour chaque couple ap =0, ;=0 de complexes coordonnés,
sauf pour les trois couples d’indices 1 et 4, 2 et 5, 3 et 6.

Prenons, par exemple, les complexes d’indices 1, 2, 3 (fig. 1), puisqu'ils sont
spéciaux et en involution deux & deux, ‘et qu’ils ne font pas partie d’'un méme
systéme a deux termes, il en résulte queleurs directrices forment un triédre ou un
triangle : par exemple, un (riedre de sommet O.

Les directrices des complexes 2, 3, 4 forment de méme un triédre ou un triangle;
mais si elles formaient un triédre, la direcirice de 4 devrait passer au point de
rencontre O des directrices de 2 et de 3; la directrice de 4 couperait donc en O
celle du complexe 1, ce qui ne se peut, attendu que 1 et 4 ne sont pas en invo-
lution. Donc les directrices de 2, 3, 4 forment un triangle, et la directrice de 4
coupe celle de 2 en un point O, celle de 3 en un point O,.

Si I'on prend ensuite la directrice de 5, elle forme avec celles de 3 et 4 un
triédre ou un triangle. Si elle formait un triangle, elle serait dans le plan 00O, O,

ct couperait la directrice de 2, ce qui ne se peut, attendu que 2 et 5 ne sont pas
en involution. Donc les directrices de 5, 3, 4 forment un triédre, et, par suite,
la directrice de 5 passe en Oy ; de méme la directrice de 6 passe en O,.

Il ne reste plus qu’a prouver que les directrices de 5, 6, 1 se coupent en un
méme point Oy, c’est-a-dire forment un triédre. Or, en effet, ces trois directrices
se coupent deux a deux; elles forment donc un triédre ou un triangle. On ne
peut admettre qu’elles forment un triangle, car la directrice de 1, étant alors dans
le plan des directrices de 5 et de 6, couperait la directrice de 4; et cela ne se
peut, puisque 1 et 4 ne sont pas en involution. C’est donc un tri¢édre que forment
les droites directrices des complexes 1, 6, 5.

Il est ainsi établi que les directrices des complexes coordonnés forment un
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tétraédre, dans lequel les couples d’arétes opposées sont les directrices des com-
plexes 1 et 4,2 et 5, 3 et 6.

On serait arrivé évidemment au méme résultat si 'on était parti de I'hypothése
que les directrices de 1, 2, 3 forment un triangle et non un tri¢dre. On aurait
obtenu une configuration dualistique au point de vue des notations de celle que
nous avons trouvée.

Ceci posé, affectons de I'indice 1 le point O, de I'indice 2 le point O,, de 'in-
dice 3 le point Oj; et de I'indice 4 le point O; puis considérons les coordonnées
ri définies au n° 4 et prises par rapport a ce tétraédre.

La directrice du complexe

1 est la droite O O; ou 41,

2 » O 0y » 42,
3 » O O3 » 43,
> 0,0, » 23,
5 » 0;0;, » 31,
6 » 0,0, » 12.
Or I'équation
rig=o0

est la condition de rencontre d’une droite avec la droite ik; donc, avec le sys-
teme des ri, I'équation du complexe

I sera ry =o,

» Ty =0,

w N
<
=
<
I

=o,
» 93 = 0,

=0’

S Ov =
N
w
-

» Iy =o,
et, comme les 7 sont des fonctions linéaires de x,, on devra avoir

Ty = 0 Iy,
Zo = O Ty,
X3 = 03 1I'43,
’
Xy = %y I'e3,
— ’ .
T3 = %y '3y,

@s = ajr1s,

ou les «, o/ sont des constantes. Sil’on forme

7 - .
L\ Xy A ToT 5~ T3 T = 0 A Py Tz~ o)y Fyalyy~+ A3 %y I'y3Tie)
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cette forme ne devant différer que par un facteur de

Py a3 Paa sy = i3y,
on voit que

(2) ool = agay = 3%y :

mais, et c’est 1a le point essentiel, les formules (1) montrent bien qu’aux fac-
teurs a prés, les x, sont des coordonnées r;; prises par rapport 4 un certain
tétraedre.

La présence des facteurs o est sans importance, puisque, eu égard aux rela-
tions (2), on peut les faire rentrer dans les x sans changer la forme

XN XY, X5+ 3T

En somme, effectuer une transformation qui raméne de la forme ci-dessus a
cette méme forme revient & changer le tétraédre de référence.

Le lecteur prouvera aisément, comme application des formules qui définissent
les r; au n° 4, que réciproquement tout changement de titres ou de coordon-
nées se traduit par une transformation linéaire des coordonnées r.

75. Les autres coordonnées dont nous allons parler sont dues 8 M. Klein.

Supposons qu’on ait un systéme de coordonnées de ’espéce précédente, c’est-
a-dire tétraédriques, et désignons dés lors ces coordonnées, comme au n° 4, par
le symbole r;. Nous aurons

Tyilas—+ a3+ I'g'a = 0,
ou encore

(7a1+723)+ (Fig =+ 730)2 4= (Fag = 112)2 — (P — rag)2— (P — 1y ) — (ry3— re)? =

La forme fondamentale, si ’on a égard & la réalité, est donc décomposable
en six carrés, dont trois positifs et trois négatifs.
Effectuons la transformation réelle

Ty -+ Iz = 2y,

Tye 731 = 2,

. I3y = 3,
(3)

T I3 = &y,

T'vo— I'3y = T3,

Ty3— I'ig = g,
et il viendra, pour la forme fondamentale,

(4) z} 4+ x3 + 2} —x} —x? — .
2 3 4 H 6
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Mais des raisons de symétrie, qui se présentent aussi dans la théorie des coor-
données penta ou hexasphériques, font désirer de ramener (4) & une somme de
carrés (). Ce but ne peut étre atteint évidemment que par une transformation
imaginaire.

Par exemple, aux équations (3) on peut substituer les suivantes :

Ty~ T3 = 2y, rig— T2 =T,V —1,
(%) % ye—= T3 = Ty, Tye— T3 = &y \/-ly
ey~ Iy = Ty, I'w3— I'ta = T \/—-l,

et, au lieu de (4), nous aurons
(6) x} + 2z} +...+ >,

formule symétrique, mais compliquée d’imaginaires.

Cependant, dans 'hypothése ol nous nous sommes placé, les six complexes
coordonnés sont réels, attendu que z,, x,, ;3 sont réels, et que \/—I est en
facteur dans x;, x5, Zy-

Mais cette circonstance n’aura pas lieu nécessairement si nous effectuons toute
autre transformation linéaire ramenant la forme fondamentale 2 une somme de
six carrés.

76. Une forme quadratique, somme de carrés (mettons six carrés), élant
“donnée

2 2 2
2} + 2% +. ..+ 2},

on appelle substitution orthogonale Loute transformation linéaire qui conserve
a la forme son type, en sorte qu’en vertu des équations de transformation

Ty =g Y1+ A Yet.. . %ig Ve (t=1,2, ..., 6),
on doit avoir
ri+xi+.. .+ x;=y}+yi+...+yi.

En conséquence, en effectuant sur les variables z;, définies avec précision par
les formules (5), une substitution orthogonale quelconque, on aura le type gé-
néral des coordonnées qui attribuent & la fonction w la forme d’une somme de
carrés.

Les coordonnées ainsi définies sont celles de M. Klein; mais il est aisé de

(*) Consulter a cet égard les travaux de M. Darboux : Sur une classe remarquable de courbes
et de surfaces; Sur les groupes de points, de cercles, et les Lecons sur la theéorie des surfaces.
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conslaler que ces coordonnées ne sont pas essentiellement distinctes des coor-
données, en apparence moins générales, que définissent les formules (5).
Ayons, en effet, des coordonnées j; ramenant © a la forme

Yi+yi+ooo 0k

et effectuons la transformation linéaire

&1 =Y1+ Y2 \/:Ia Ty =}Y1—Ya2 t/;—l,
(7) z-z=}’4+}’a\/:-—l, 55=.)/3_‘}/k\/__]y
(Zs‘—:.}’s—i-)’e\/:, »56:_}’5—.}’6\/:—'»

I'emploi des variables z ainsi définies raménera la forme au type tétraédrique
313, + B3935 - 3336,

en sorte que les z; sonl les coordonnées ry relativement & un certain tétraédre,
tandis que les y, d’aprés les formules (7), sont celles qui s’en déduiraient pré-
cisément par application des formules (5).

Il y a cependant une différence, car ici le tétraédre auquel se rapportent les
coordonnées z; peut fort bien étre imaginaire. On concoit que cette distinction
n’ait rien de bien essentiel.

Par cette remarque, le passage d’un systéme de coordonnées de M. Klein & un
autre systéme analogue peut se ramener au passage d’un syst¢me de coordonnées
tétraédriques a un autre systéme tétraédrique, précédé et suivi de la transforma-
tion définie par les formules (5).

T1. Le systéme de coordonnées de M. Klein présente une configuration remar-
quable dont nous allons exposer les principales propriétés.

Il'y figure six complexes coordonnés C,, C,, . -+, Cg, représentés par les
équations respectives

2y = o0, Ty = 0, ceey e = 0.
Aucun de ces complexes n’est spécial, car la forme adjointe de w(x) estici
Qa)=ai+al+...+al;

elle n’est nulle pour aucun des complexes C,.
l.a condition d’involution des deux complexes

AT+ ATy, ..+ agxg o,

b1 21+ by wo+...+ bgxs =0
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s'éerit

a b+ arby+...+~agbg=o.

On reconnait ainsi que les complexes C;, pris deux a deux, sont en involu-
tion ou orthogonaux. De li le nom de sextuplement orthogonal que 1'on donne
quelquefois a ce systétme de coordonnées. M. Klein a donné a lensemble des
six complexes C; le nom de systéme fondamental.

Supposons que, réciproquement, les complexes coordonnés Zyy Loy oeey Ty
soienl en involution deux a deux.

La forme adjointe de la forme fondamentale s’écrivant

'involution des complexes

Xri= o0, Tj=o0

exige que A;j=o0; tous les rectangles doivent manquer dans Q(«), et aucun

complexe coordonné ne peut étre spécial, car, si x;= o était spécial, on aurait
Aji=o,

et Q(«) serait réductible & moins de six carrés. En faisant rentrer dans les «
des facteurs conslants, on peut done écrive

9

Qa)=a} +a}+...+ a},

¢t alors on a
w(r) =2} +r}+...+2xy;
le systéme de coordonnées est celui de M. Klein.

Ceci nous permet de compter le nombre de paraméires contenus dans un Sys-
Léme fondamental.

Donnons-nous arbitrairement C,, nous introduisons ainsi cinq paramétres,
car un complexe linéaire dépend de cinq paramétres. Nous prendrons C, en
involution avec G, mais quelconque d’ailleurs : nous introduisons ainsi quatre
nouveaux paramétres. C; devra étre en involution avec C, et C,, mais il con-
lient encore Lrois paramélres nouveaux. C,, apporlera seulement deux paramétres,
car il est assujetti a étre en involution avec C,, C,, Cy; C; conlient enfin un seul
paraméltre, car il doit étre en involution avec C,, C,, C;, C,. Quant a Cg, il est
pleinement défini par la condition d’étre en involution avec C,, C,, C,, C,, C;.
Nous avons ainsi construit un systéme fondamental, et, en vérité, le plus gé-

néral. Nous avons di introduire dans notre construclion

S+4+34+2+1=1>
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paramétres. Tel est le nombre de paramétres que contient le systéme fonda-
mental.

On observera que, aprés avoir pris C,, Cs, . .., C,, réels, nous pouvons prendre
ensuite Cpyy, ..., G avec des coefficients imaginaires quelconques, en sorte
que, dans un systéme fondamental, le nombre des complexes imaginaires est
arbitraire. Toutefois, il est impossible qu’il n’y en ait qu'un seul d’imaginaire,
car si Gy, Gy, ..., Gs sont réels, le complexe C; est forcément réel; mais il
peut y en avoir deux, trois, quatre, cinq ou méme six d’imaginaires.

Un tel systéme exige évidemment, pour étre obtenu, une transformation ima-
ginaire.

78. Prenons p des complexes C;, savoir G, Cs, ..., C, et formons le systéeme

a p termes
M@+ haoy+.. .+ Ay, =0;

il est clair que, z,,y=o0, ..., ;= o étant (6 — p) complexes en involution avec
Cy, Gy, «.., Cp, le systéme complémentaire du systéme précédent sera

)\p+lxp+1+' . )\G.Z'o-= 0.

De 14 de nombreuses conséquences, comme on va le voir.

Soit G la congruence commune aux complexes C; et Cj; elle n’est pas singu-
liére, car son invariant est égal a 'unité. Je désigne par A;; et Aj; ses directrices,
qui sont toujours distinctes. J'observe que le systéme a deux termes formé des
complexes qui contiennent la congruence C;; a pour équation

X+ )\.Z‘j: 0,

son invariant est égal & 14 A%; donc les complexes spéciaux du sysiéme auront
pour équations
\/—- 12, +Xj =0,

V—1iz;+x; = o.
J

Les coordonnées des directrices de la congruence C;; seront toutes nulles,

sauf z; et x;, qui seront proportionnelles & =y/— 1 et a 1.
Voict cOMMENT JE FIXE LES NOTATIONS :

Je désigne par A;j la directrice dont les coordonnées sont z;=\/—1, z;=1,

les autres coordonnées étant nulles ; déslors Aj; aura pour coordonnées z;=/—1,
Z;= 1, les autres coordonnées étant nulles.

On va voir combien est importante cette fixation des notations au point de
vue de la correspondance & élablir entre les propriétés de la configuration des
six complexes fondamentaux et celles des permutations de six lettres.

Fac. de T. — VII. 2
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Il'y a quinze combinaisons de six indices deux & deux; il y a donc quinze con-
gruences C;; et, par suite, Lrente droites A,q.

On observera que : toute droite A;j appartient & tout complexe C; qui n'a
avec elle aucun indice commun. Il y a quatre de ces complexes Ck, C;; Cpy Co;
ils ont en commun deux droites, A;j et Aj;.

Prenons deux congruences C;;, Ci n’ayant aucun indice commun. Leurs
directrices forment un quadrilatére gauche. En effet, A;j, par exemple, ap-
partient, d’aprés ce qui précéde, aux complexes Cyx et C;: donc A;; appartient &
la congruence Cy; et coupe, en conséquence, Az et Ay.

Supposons, au contraire, que C;j et Ci alent un indice commun ¢; dans ce
cas, les directrices ne sauraient se couper; en effet, soient /, m, n les trois
indices autres que Z, j, k; les complexes C;, Cp, C, contiennent les directrices
de C;j, Cix; donc ces directrices appartiennent a la demi-quadrique Qn, com-
mune & ces trois complexes. '

Les complexes C;, associés par trois, donnent lieu & vingt demi-quadriques.
Ces demi-quadriques vont par couples de demi-quadriques complémentaires. Il
est clair, en effet, que les deux demi-quadriques

Qijky lens

sans indice commun, sont complémentaires; elles sont portées par une méme qua-
drique que je représente par le symbole

( Qijk» len )

Il'y a donc dix de ces quadriques. M. Klein leur a donné le nom de quadriques
Jondamentales.
Deux demi-quadriques ayant un indice commun

Qilrl, Qim n

n’ont en commun aucune droite, car si une droite commune existait, elle serait
commune aux cinq complexes C;, Cx, C;, Gy C,. Les complémentaires de ces
deux demi-quadriques sont

Qjmm ij[’

et elles ont aussi un indice j commun.
Considérons, au contraire, deux demi-quadriques ayant deux indices com-
muns

Qijk) Qij[y

ces demi-quadriques ont en commun les droites Ay, A,n, directrices de Cpp.



CHAPITRE V. — COORDONNEES DE KLEIN. — GEOMETRIE ANALLAGMATIQUE. 1II

Leurs complémentaires seront

anl, ank,

et ces complémentaires ont en commun A;j, Aj;.
Donc les deux quadriques fondamentales

(Qijk, anl)’ (Qijl; ank)

se coupent suivant le quadrilatére gauche, formé par les droites A;;, Aj;,
Alnll, Allm'

Si une congruence C;; n’a aucun indice commun avec une demi-quadrique
Qumn, elle en a deux communs avec la demi-quadrique complémentaire Q;jx et
ses directrices sont portées par cette demi-quadrique; elles sont donc tracées sur
la quadrique

( Qijlcr len)-

Ainsi, pour qu’une congruence ait ses directrices sur une quadrique fon-
damentale, il faut et il suffit qu’elle ait deux ou zéro indices communs avec
Uune ou Uautre des demi-quadriques qui constituent la quadrique fonda-
mentale proposée.

Mais il peut arriver que la congruence C;; ait un indice commun avec chacune
de ces demi-quadriques

Qikt, Qjmn;

on peut prouver que, dans ce cas, les droites A;j, Aj; sont conjuguées par rap-
port a la quadrique fondamentale proposée

(Qikl, Qjmn)~

En effet, A,y Apm, Az, Ay forment un quadrilatére gauche sur cette qua-

Fig. 2.

drique; Ay, coupe A, et A, en deux points O, O, et A coupe ces deux mémes

droites en O,, O. La droite A;; coupe les quatre droites Azs, Ak, Apny, Apm;
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donc, puisque A;; n’est pas tracée sur la quadrique, il faut que les points ou elle
perce cette surface soient deux des quatre points O, O', O,, O}; ils ne peuvent
étre que O, O, ou O, O}. De méme pour Aj;. Donc les droites A,;, Aj; sont pré-
cisément celles qui joignent O et O, O" et O] : ce sont donc les diagonales du
quadrilatére gauche. En conséquence, elles sont bien conjuguées par rapport a
la quadrique proposée.

Mais notre raisonnement nous prouve quelque chose de plus.

Les droites A;j, Ajiy Agsy Asky Apeny Apm sont les arétes d’un tétraédre.
Ainsi :

Les directrices de trois congruences C;j, Cx;y, Cppn sans indices communs

Jorment un tétraédre.

Je désigne par T(ij, kl, mn) ce tétraédre.
On peut donner de ce fait une autre démonstration.

Je rappelle que le complexe spécial dont Ay est la directrice a pour équation
V—1z,+25=o.

Posons, en conséquence, d’une facon générale,

Zos=V— 125+ ;.
On aura
Ziiji—'r— Z/.~[Zlk+ Zmn an =<‘/:~[ X+ xj)(\/’——l_-l'j'*‘ xi)

+<‘/: xk—i—xl) (\/:;.Z‘/—i—‘z‘k)—i—(\/'—_lxm_'_‘rn)( :_I Tn +‘T’”)
=—(2;Xj+ T T+ Tmy)

V=1 (T} X} AT 4 B X))+ (X T DTy
=y— (2} + 2} + 23+ 2} + 23 + T}).

Les formules de transformation

Z,‘j =\/—hlz‘l +xy,
Zj,' =‘/——_l.z‘, -+ Z;,
Ty =V—12p +a,
Lig =V—1a, +ay,
Zin= \/:xm+ Zp,

Zum= \/: Zn +Tm
attribuent donc a la formule quadratique w (z) la forme tétraédrique

Z;j1ji+ZrLig—+ LonnZym,
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et, par suite, conformément au n° T4, les axes des six complexes spéciaux
Z;j=o, Zji= o, Zi=o, Zy=o, Zyn=o, Zom=o,

c’est-a-dire les directrices des congruences C;j, Cy, Cy, forment un tétraédre.

79. Disposons les directrices de ces congruences suivant le Tableau ci-aprés :

At'j, Arrs  Amn,
Ajiy Mgy Apm;

il est clair que toutes les droites de ce Tableau se coupent, sauf celles qui sont
sur une méme verticale, et qui constituent précisément les couples d’arétes op-
posées du tétraédre T (i/, kI, mn).

On peut, en groupant par trois les droites du Tableau précédent, sans en
prendre jamais deux sur une verticale, procéder de plusieurs maniéres. On peut
les prendre toutes trois sur la premiére ligne, ou deux sur la premiére et une sur
la seconde, ou une sur la premiére et deux sur la seconde, ou bien enfin toutes
les trois sur la seconde. Nous obtiendrons ainsi huit groupes différents de trois
droites se coupant deux & deux et formant, en conséquence, soit triédre, soit
triangle.

Nous réalisons de la sorte les quatre triédres et les quatre triangles de face de
notre tétraeédre T (7, kl, mn). ‘

Supposons, pour fixer les idées, que les droites placées dans la premiére
ligne

(Aijy Akly Amn)
forment un triédre de sommet O; les trois autres droites, celles de la seconde
ligne

(Aji, Allc, ‘—\/uu)a

formeront évidemment un triangle qui constitue la face opposée au point de con-
cours des trois premiéres aréles.

Si maintenant nous remplacons dans le symbole
(Al'j, -\/c/a A/nn)

une des droites, par exemple A, par la droite de la seconde ligne A,n, qui est
placée au-dessous, nous obtenons trois droites

(Aij» Akty Aam),

qui forment une des faces qui aboutissent au point O.

On voit done qu’on obtiendra les quatre faces du tétraédre en prenant un
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nombre impair (1 ou 3) de droites dans la seconde ligne et un nombre pair (2 ou
zéro) dans la premiére.

On aura, au contraire, les quatre tri¢dres du tétraédre en prenant un nombre
impair (1 ou 3) de droites dans la premiére ligne et un nombre pair (2 ou zéro)
dans la seconde.

Donc, si les droites

(Aijs Bk, Ama)

forment un tri¢dre, il en est de méme des triples de droites

(Aij, Art, Anm ),
(Ajl') Akla Anm )y
(Aji, Mgy Apn)s

tandis que les triples de droites

(Aji, Ay Apm),
(Ajiy Mgty Amn).
(Aijy Ak, Amn),
(Azjy Bty Anm)

forment des triangles.
On peut résumer ces faits dans un énoncé trés laconique :
Soit le triple de droites

( Al’jy Al:/; Aum )

Ces droites forment triedre ou triangle; si I'on permute dans 'une de ces
droites les deux indices, on a encore trois droites qui se coupent deux a deux et
forment encore triédre ou triangle, seulement Uespéce de la configuration est
changée, c'est-a-dire que si le premier triple formait triangle, le nouveau
Jforme triédre, et réciproquement.

Nous appellerons fondamentaux les tétraédres T (if, ki, mn). Il y a quinze
de ces tétraédres. Chacun est, en effet, caractérisé par une distribution en trois
couples

(g), (kl), (mn)

des indices 1, 2, ...,’6. L’ordre de ces couples importe peu, ainsi que I'ordre des
indices dans un couple.

Observons que I'indice 1 figure dans l'un de ces couples. Soit ¢ =1, alors j
peut étre 2, 3, 4, 5 ou 6, ce qui nous fournit déja cinq classes de groupements.
L’indice associé a I'indice 1 étant choisi, il reste a distribuer les quatre autres in-
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dices en deux couples; le nombre des dispositions possibles est égal a la moitié du
nombre des combinaisons de quatre objets deux a deux, c’est-a-dire a 153 =3,
Chaque classe comprend donc 3 dispositions; il y a 5 classes, il y a donc
3 < 5 =15 tétratdres.

Considérons une directrice A;j de la congruence C;;; cette directrice est coupée
par les directrices des congruences

Crr et Cmn; Crm €t Clm Clcn et Gyp.

Nous associons par deux ces congruences, parce que les directrices de Cy, et
Conny par exemple, coupent A;; aux deux mémes points. Sur chaque droite A;;
nous avons donc trois couples de sommets de tétraédres fondamentaux. Ces trois
couples, pris deuzx a deux, sont en relation harmonique.

Par exemple, les deux points ol Ay, Ay coupent A;; forment une proportion
harmonique avec ceux ou A;j est coupée par Ay, et A,y En effet, les deux pre-
miers points sont deux sommets du tétraédre T (if, &/, mn), et les deux autres

AY ’ A . : :
sont ceux ol I'aréte A;j, qui les porte, perce la quadrique

(Qikl, Q/’mn)~

Donc, puisque le tétraédre T (if, kl, mn) est conjugué par rapport a cetle
conique, la propriété harmonique a bien lieu.

80. Nous avons vu que le tétraédre T (if, ki, mn) a deux de ses couples d’a-
rétes opposées Ax, Ak, Apny Apm sur la quadrique

( Qiklr Qjmn );

tandis que les arétes opposées A;j, Aj; sont conjuguées par rapport a cette qua-
drique. :
On a formé cette quadrique au moyen du groupement des indices en trois

couples
i, kl, mn,

en prenant pour Qy,; un indice dans un de ces couples (I'indice ), deux dans un
autre (k et ) et zéro dans le dernier (m et n); Q. est formé de méme en pre-
nant un indice dans un des deux couples, deux dans un second et zéro dans le
troisiéme.

Il'y a visiblement six quadriques fondamentales qui contiennent ainsi chacune
deux couples d’arétes opposées de T (if, kl, mn) en effet; contiennent tous
les couples d’arétes opposées, sauf Aij, Aji, les deux quadriques

(Qizty, Qjmn), (Qimny Qjrt);
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item, sauf Az, Ay, les deux quadriques

(Qxiiy Quimn), (Qrmn, Quij);

item, sauf A, Ayn, les deux quadriques

(Qmijv anl»)y (kah Q/zij)~

Restenl quatre autres quadriques fondamentales qui ne contiennent aucune
aréte du tétraédre proposé: ce sont les quadriques que I'on obtient en prenant
pour chacune des demi-quadriques composantes un des trois indices (et un seule-
ment) dans chacun des couples

i, kI, mn.
On trouve ainsi les quadriques fondamentales

(Qixms  Qjen),
(Qitms  Qjkn),
(Qikns  Qjim),
(Qitns  Qjkm)-

Ces quatre quadriques admettent le tétraédre T (ij, £/, mn) comme tétraédre
conjugué commun.

Nous avons vu en effet qu'une quadrique fondamentale étant donnée, par
exemple,

(Qikm: lenv),

toute congruence qui a un indice commun avec ses deux demi-quadriques com-
posantes Qim, Qjin, par exemple C;j, a ses deux directrices conjuguées par rap-
port & la quadrique.

Donc, eu égard précisément au mode de formation de nos quatre quadriques,
on voit que les directrices de G;j, Cy, Cpn forment autant de couples de droites
conjuguées communes & ces quatre quadriques; ces droites formant le tétraédre
T (i, kI, mn), on voit bien que ce tétraédre est conjugué a la fois par rapport &
ces quatre quadriques.

On peut rattacher cette propriété & une autre qui concerne trois complexes li-
néaires en involution.

Soient trois complexes linéaires C;, Cj, Cx en involution deux a deux; O un
point de I'espace; =, =, = ses plans polaires dans les trois complexes; «;j, %,
a;x les intersections de ces plans.

Sur la droite a;; est le point O, pole de =; dans le complexe C; et sur a4 est le
point Oj, pole de w; dans le complexe Cs.
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Puisque O et Oy sont péles d'un méme plan w;, dans C; et C; respectivement,
il en résulte que Ok et O (eu égard a 'involution) sont péles d’'un méme plan
dans ces deux complexes C; et C; respectivement (fig. 3).

Fig. 3.

0

&z

(o

Comme =; est le plan polaire de O dans Cj, on voit que =; est le plan polaire
de O dans C;. Ainsi Oy est podle de =; dans C; et de =; dans C;. De méme le
point O; est le pole de w; dans C; et de w; dans Cy.

On verra de méme qu'’il existe sur oj; un point O;, qui est a la fois le poéle de mx
dans C; et de =; dans Cy. Enfin le plan = des points Oy, Oj, Oy est le pole de
ces points dans chacun des complexes C;, Cj, Cx respectivement.

En effet, prouvons par exemple que O; est le pdle du plan = dans le complexe
C;. 1l suffit de prouver que O;0; et O;0; sont deux droites de ce complexe.
Or, en effet, 0,0y est issue du point O dans le plan w; polaire de Oy dans C;,
et 0;0; estissue de O; dans le plan 7 polaire de O; dans C;.

Nous avons ainsi formé un tétraédre tel que chaque plan de faces admet comme
poles dans les trois complexes précisément les trois sommets qu’il contient.

La loi de répartition des pdles et des plans polaires donne lieu au schéma sui-

vant :
o O; 0, O
i * C; Cj Cp
T C; * Cr (oF
o G Cr * C;
T Ck C; Gy *

Fac. de T. — VII. 3
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Prenons un plan dans la colonne de gauche et un sommet dans la ligne du haat;
par exemple «; et O, a Pintersection de la ligne =; et de la colonne Oj se trouve
Cx; c’est le complexe par rapport auquel =; et O; sont conjugués.

Si j’avais pris w; et Oy, je serais tombé sur une case vide; c’est qu’en effet O;
est le sommet opposé & w;, et, par suite, ce point et ce plan ne peuvent étre con-
jugués dans aucun complexe.

Soient A;;, Aj; les directrices de la congruence C;; commune aux complexes C;
et Gj. Ces droites coupent OOy et O, 0}, car ces derniéres droites appartiennent
a la fois aux complexes C; et C;. Mais il y a plus : puisque O; et O; sont les poles
d’un méme plan = dans les complexes C; et C; respectivement, on voit que le seg-
ment O;0; est divisé harmoniquement par les droites A;;, Aj;, en vertu des pro- .
priétés déja démontrées des complexes en involution.

Or envisageons la demi-quadrique
Qiﬂﬁ

commune aux complexes C;, Gj, Cx; la demi-quadrique complémentaire contient
évidemment A;j, Aj;; donc les points ou la droite O;0; coupe A;j, Aj; sont a®si
ceux ou elle coupe la quadrique qui porte la demi-quadrique Q;jz. En conséquence,
O; et O; sont conjugués par rapporl a celte quadrique. L.e méme raisonnement
s’applique aux autres arétes du tétraédre. On voit donc que :

Le tétraédre O0;0;0; est conjugué par rapport & la quadrique qui porte
la demi-quadrigue Q.

Prenons, par exemple, le tétra¢dre
T(ij, ki, mn)
et une des quatre quadriques fondamentales déja considérées
(Qikmy Qjin)-

Le tétraedre T (i, kl, mn) est tel que les plans de ses faces ont pour péles,
par rapport aux complexes C;, Cx, Cp, les trois sommets situés dans chacun de
ces plans.

Admettons, en effet, que A;;, Az, A,, forment un triangle; appelons = le
plan de ce triangle, toute droite issue du point (A;;, Az)(intersection de A;; et
Ay) et tracée dans le plan &, coupe A, et A,y ; elle appartient donc & Gy, et,
par suite, & G,. Ainsi, le point (A;;, Ag) est le pole de = dans C,,; de méme le
point (A;;, Apy) est le pole de = dans Cy, et enfin (Apn, Ag) est le pole de =
dans C;. Le tétraédre T(ij, kI, mn) est donc bien dans le cas du tétraédre
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00,004 de tout a I'heure, il est donc conjugué par rapport 4 la quadrique qui
porte Qizxm et Qjsp.

Fig. 4.

Nous compléterons ce qui concerne 'ensemble de ces quatre quadriques, qui
admettent comme conjugué le tétraédre T(ij, kI, mn) en prouvant a leur égard
une propriété intéressante.

Chacune de ces quadriques est & elle-méme sa propre polaire réciproque
par rapport a une quelconque des trois autres.

On observe d’abord que ces quatre quadriques se coupent deux a deux suivant
quatre droites. Prenons-en deux quelconques

(Qilclm Qj[n)y
(Qitm, Qjkn);

elles se coupent suivant les directrices de C;p, et de Cj,, qui forment un tétraédre
avec Az et Ay

Donc Ay et Ay coupent ces deux quadriques aux mémes points. Prenons alors
une des quatre autres arétes du tétraédre T (7, kI, mn), par exemple A;;, les
deux segments que ces deux quadriques déterminent sur A;; sont ceux qu’y dé-
terminent les directrices des congruences Cin et Cg,; d’aprés la remarque qui
termine le n° 79, ces deux couples de points sont en relation harmonique.

Voila donc deux quadriques Q, Q' qui ont un tétraédre conjugué commun
T(ij, kI, mn), qui se coupent suivant quatre droites formant un quadrilatére
gauche dont Ag, Ay sont les diagonales et qui, enfin, déterminent sur les quatre
autres arétes du tétraédre envisagé, des couples de segments en relation harmo-
nique.

Rapportée au tétraédre conjugué commun, I’équation de Q sera

X2+ Y24 224+ T2=o,
et si X = 0, Y=o sont les équations de Ay, celles de A seront
7 = o, T=o.

Les propriétés harmoniques démontrées prouvent alors que Q' aura une équa-

tion de la forme
X2 Y2 Z2—T2=o,
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et I'on reconnait bien ainsi que les deux quadriques sont leurs propres polaires
réciproques I'une par rapport a l'autre.

81. Pour nous représenter plus complétement la configuration des droites A;j,
on peut introduire un symbole qui met en évidence une intéressante correspon-
dance entre les propriétés de cette configuration et celles des permutations de six
lettres.

Trois droites A;j, Ag;, Ap, sans indice commun forment toujours un hyper-
faisceau (triédre ou triangle).

Je représente cet hyperfaisccau par la notation
(¢, kI, mn).

Il y a autant de symboles de cette forme qu’il y a de permutations de six
lettres; soit 720. Mais j’observe qu’on peut permuter les couples d’indices 7, A/,
mn sans que le symbole cesse de s’appliquer & I'ensemble des trois droites A,
Ags, At les six permutations

(¢, kI, mn), (ki, i, mn), (mn,kl, i),
(if, mn, ki), (mn, i, ki), (ki, mn, ij)

s’appliquent aux trois mémes droites. Nous n’avons donc, en réalité, que

7_(259- = 120 hyperfaisceaux. Soixante sonl des gerbes (sommets de tétra¢dres fon-

damentaux). Soixante sont des plans (faces du tétraédre).
Il s’agit d’établir une régle pour distinguer.
11 résulte d’abord de ce qui a été dit au n° 79 que, si dans le symbole

(if, ki, mn)

on permute Z et j, ou bien & et /, ou bien m et r, la nature de I'hyperfaisceau
change.

On peut méme ajouter que, en effectuant plusieurs fois ces permatations, on
obtient huit hyperfaisceaux, dont quatre sont les sommets du tétraédre fonda-

mental
T (i, kI, mn)

el les quatre autres les faces de ce méme tétraédre.

J’ajoute maintenant que, quels que soient les deux indices que 'on permute
dans le symbole (i, kI, mn), '’hyperfaisceau qu’il représente change towujours
de nature.

Comme la permutation de deux indices quelconques résulte d’un nombre
impair de permutations d’indices successifs (voir la théorie des déterminants),
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et que le fait est déja établi pour les deux indices d’'un méme couple ij, ki, mn,
il suffit d’établir qu’il est vrai pour deux indices consécutifs de deux couples
différents, par exemple, pour m et /.

Considérons donc I'hyperfaiscean

(i, km, In)
et établissons qu’il est d’espéce différente de celle de I’hyperfaisceau primitif
q p yp p
(¢, ki, mn).

Cherchons pour cela si ces hyperfaisceaux ont des droites communes.
L’hyperfaisceau (if, kI, mn) est formé des droites qui coupent A;j, Axsy Ay
les droites de cet hyperfaisceau vérifient donc les équations

Zijj =x y—1+4+zj; =o0,
Ly =aiV/—1+2,=o0,
Lypn= 2, ‘/_ I+x,=o0,
k] Y .
c’est-a-dire

i X

(8) ﬁ = Zj, ﬁ

Pareillement, Phyperfaisceau (ij, km, in) est défini par les équations

=y, = Zp.

Lm
V—1

X ' H
(9) —_— =2y, —— = T'm, —_— = Zp.
V—1 V—1 V—1
L’ensemble des équations (8) et (9) se réduit a
X Z; X} xZ x X
(10) e S Lk T Tm T
V=1 I —I —1I V—1 f
X j . A A Z x x .
Le rapport —! est déterminé, de méme que les rapports =%, =2, 2%, mais le
i Tn &Tn Tk

Z, . . . N
rapport x—" demeure arbitraire. Nos deux hyperfaisceaux ont, dés lors, en com-
i

mun un faisceau plan de droites ; cela exige évidemment qu'’ils soient d’espéces con-
traires, et méme, de plus, il faut que ces hyperfaisceaux soient unis, c’est-a-dire
que celui qui est une gerbe ait son sommet dans le plan de celui qui consiste en
un systéme plan de droites. Donc on peut affirmer que si, dans le symbole

(l:i’ ki, mn),

on permute deux indices consécutifs quelconques, I'hyperfaisceau qu'il repré-
sente change d’espéce.



22 KOENIGS.

Comptons, dés lors, comme on le fait dans la théorie des déterminants, le
nombre d’inversions présentées par la permutation

(i, ki, mn);

comme la permutation de deux indices consécutifs change la parité du nombre
des inversions, on peut dire ceci :

Deuz symboles représentent deux hyperfaisceaux de méme espéce ou d’es-
péces différentes, selon que les deux nombres d’inversions qu’ils présentent
sont de méme parité ou de parités différentes.

1l est bien évident que rien n’indique a priori quel genre de parité s’applique
aux gerbes ou aux systémes plans, mais il suffit que le choiz se trouve fixé
dans un symbole, par exemple dans

(123456),

pour que 'on sache & quoi s’en tenir pour tous les autres. Ainsi, si le symbole
précédent convient & une gerbe, comme il contient zéro inversions, tous les sym-
boles qui contiennent un nombre pair d’inversions conviennent & des gerbes;
aux systémes plans, au contraire, conviennent ceux qui en présentent un nombre
impair.

L’introduction de cette représentation dans 1'étude de la configuration du sys-
téme fondamental y jette, croyons-nous, un certain jour, elle marque un lien
entre cette configuration et le systéme des permutations que I'on peut former
avec six indices distincts.

82. Les soixante sommets et les soixante faces des quinze tétraédres fonda-
mentaux offrent un groupement remarquable.
Considérons les tétraédres

T(y, kI, mn), T(ij, km, In), T(i, kn, Im)

que l'on obtient en partageant de toutes les fagons possibles les indices k, I, m, n
en deux couples (ce qui donne trois dispositions). Ces Ltrois tétraédres ont visi-
blement en commun le couple d’arétes opposées A;;, Aj;.

Sur A;j, par exemple, il ya donc trois couples de sommets appartenant chacun
4 'un des trois tétracdres. Ces couples sont deux a deux harmoniques les uns par
rapport aux autres. En effet, le triedre T (i, Al, mn) est conjugué par rapport a

la quadrique
Q = (Qikmy Qj[n)1

et celle-ci contient deux couples d’arétes opposées du tétraedre T (if, km, in).
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La droite A;; coupe cette quadrique Q en deux points qui sont précisément
les deux sommets de T (if, km, In) portés par A;;; ces points divisent donc har-
moniquement I'aréte A;j du premier tétraeédre T (7, ki, mn).

On démontrera de méme que les trois couples de face des trois tétraédres

T (if, kI, mn), T(ij,km, in), T, kn, Im)

qui passent par A;; se divisent harmoniquement. '

Supposons que les droites A;j, Axz, Amn forment un triédre; nous appellerons
O leur point de concours. Le triedre de ces droites appartient au Létraédre
T(ij, ki, mn). Par 'aréle A;; passent, outre les faces de ce tétraédre, un couple
de faces du tétraédre T(ij, km, In) et un couple de faces du tétraédre
T(i, kn, lm). .

Les symboles de ces faces sont aisés & former.

Soit d’abord

(i, kI, mn)

le symbole du triédre des droites A;j, Axzy Amn, les symboles

(¢, km, ln),
(i, mk, nl)

sont ceux des deux faces du tétraédre T (¢f, km, In), qui contiennent A;;; pareil -

lement,
(¢, kn, ml),

(if, nk, im)

sont les symboles des deux faces du tétraédre T (ij, kr, ml), qui contiennent A;;.
La régle de la parité des permutations, donnée au numéro précédent, permet
de former sans hésitation ces quatre symboles.
Nous aurons de méme, relativement & Ay,

(kl, im, jn)

_°  faces de T (kl, im, jn) menées par Ay,
(ki, mi, nj)
(k) in, my) z -

o faces de T (kI, in, mj) menées par Az;
(ki, ni, jm) |

et enfin, relativement a A,,,,

(mn, ki, lj) oo .
(mn, ik, 1) faces de T (mn, ki, Ij) menées par A,,,,

(mn, kj, il) -
. _ ¢ faces de T (mn, kj, il) menées par A,,p.
(mn, jk, I7)
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Nous voyons ainsi que, par tout sommet O d'un tétraédre fondamental
T (if, kl, mn), il passe, outre les trois faces de ce tétraédre, douze des faces de
six autres tétraédres fondamentaux, ayant chacun avec le tétraédre proposé un
couple d’arétes opposées commun,

Jajoute que ces dousze faces se coupent suivant seize droites issues de O;
c’est-a-dire que tout plan parmi les quatre menés par A;j, et tout plan parmi les
quatre menés par Az, se coupent dans I'un des quatre plans menés par A,.

Prenons, par exemple, la face

(if, km, tn)

menée par A;;, et associons-la aux quatre qui sont menées par A.
Nous pourrons former les quatre groupes :

(if, km, In),
I. (kl, im, jn),
(mn, kj, il};

(if, km, In),
I (KL, nj, mi),
(mn, Ui, jK);

( (if, km, In),
Ir. (kl, mj, in),
(mn, lj’ ki);

(i, km, In),
IV, (kl, nt, jm),
(mn, ik, jl).

Dans ces groupes, le premier plan est toujours celui de la face (if, km, in)
menée par A;j; le second plan est I'un des quatre menés par Ay; quant au troi-
sitme plan de chaque groupe, c’est I'un des quatre menés par A,,,; dans chaque
groupe, ce troisi¢tme plan dépend des trois premiers.

Il est aisé de constater que les trois plans d’'un méme couple ont en commun
une droite; voici la représentation de ces droites pour chacun des quatre triples
de faces ci-dessus :

I x; x; Tk Xy Zm T

. —_— = = e = e e &
—1 1 —1 V—1 V—1 I

x; & j X x; ZTm Zn

1L Y - Sy T e S e
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Z Zj X 'y Zm Zn

I11. ——i = 4 = — = —— = —— = —
V—1 ! —t /= /= !

T Z; &) Z Tm Zn

Iv. d = L =% = - = =

V= — _—I:¢:T~\/——_T 1

Nous avons de la sorte quatre droites sur la face (i, km, In) menée par A,
et, par suile, il y a bien autour de O seize de ces droites.

On peut donner un procédé régulier de formation des coordonnées de ces
droites.

Observons que, faisant partie de la gerbe

(if, K, mn),

ces seize droites vérifient forcément les équations

B

i Zxj Tk Zzy Tm _ Zn

—_—— = —_— = — = —
“_l 1 V—1 i ‘/_, 1
qu’on peut écrire couramment a la simple lecture du symbole (i, k¢, mn).

Chacune des droites de la gerbe sera donc définie par un systéme de valeurs

des deux rapports
X x|
L, Ze,
Xn Zp

Or ces rapports ne peuvent étre que +1, — 1, \/— 1, — \/—1; car, dans tous
les hyperfaisceaux que nous considérons, les équations que nous aurons a écrire

seront tonjours de la forme
T = .28,

ou ¢ égale I'une des quatre quantités ci-dessus, et, comme la multiplication ou la
division ne fait que permuter ces quantités, on voit bien que
Z ; ﬂ

—

Zn Zn

ne pourront étre que +1, —1, \/_——; ou — V/"' I.

Cela nous donne donc seize combinaisons possibles, et, comme il nous faut
seize droites, ces seize combinaisons seront toutes réalisables.

De la sorte, on obtient les seize droites de la gerbe en prenant z,, z,, ..., z,
proportionnelles de toutes les facons possibles & 1, —1, ‘/——1 ou — \/——1, de
telle sorte cependant que les équations de la gerbe soient sAvvEGARDEES,

Z;

Fac. de T. — VIIL. 4

.

x; xr z Zom Zn
[
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On observe que, pour les quatre droites situées dans un méme plan mené par A;j,
les rapports des coordonnées xx, 2, Zpn, Z, sont les mémes.

Fappellerai E les droites que nous venons de définir.

Nous aurons un résultat analogue si le symbole

(if, kI, mn)

convient & un systéme plan. Il y aura douze sommets de tétraédres fondamentaux
situés dans ce plan, en outre des trois sommets de la face, et ces sommets se-
ront distribués par quatre sur les cOtés de cette face; ils seront, de plus, par groupes

(=0

de trois sur seize droites Z/, dont la représentation analylique est la méme que
celle des seize droites =.

Mais il y a plus, ces nouvelles droites E' que nous venons d’obtenir ne forment
pas un ensemble différent de celui formé par les droites E.

Considérons, par exemple, la droite commune aux trois systémes plans

(i, km, In),

(kl, im, jn),

(mn, kj, tl),
laquelle a pour coordonnées

ry Xy Xy 2

R e -

elle passe déja par le sommet de la gerbe
(i, ki, mn);
on constate qu’elle fait aussi partie des gerbes

(il, km, jn),
(im, kj, In).

Ainsi, toute droite E qui est commune a trois plans de faces sert de jonction
A trois sommets ().

Le nombre de ces droites est, dés lors, trés facile a évaluer. Il y a 60 sommets
qui portent chacun 16 droites Z; mais comme, d’aprés ce dénombrement,
chaque droite est comptée trois fois puisque chacune contient trois sommets, il

(*) On entrevoit la possibilité d’établir une correspondance compléte entre les groupes de per-
mutations de six lettres et les propriétés de la configuration du systéme fondamental. Je me conten-

terai ici de ces indications générales, me réservant de développer plus a fond ces remarques nouvelles
dans un écrit particulier.
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Y aura
80,16 — 390

droites E.

83. On peut joindre deux a deux 6o points d’un nombre de maniéres égal &

8059 — 570,

Mais chacune des droites E représente a elle seule 3 droites de jonction des
sommets deux a deux, soit g6o droites.

Il reste donc 1770 — g6o = 810 droites de jonction deux a deux.

Or, prenons les arétes A;;; il y a sur chacune six sommets de tétraédres; cha-
cune représente donc un nombre de droites de jonction deux & deux égal a

et, comme il y a 3o de ces arétes, cela nous fait 3o > 15 = 450 droites de jonc-

tion. Il en reste donc
810 — 450 = 360,

qui ne sont pas des arétes, ni des droites E et qui joignent les sommets deux a
deux.

Il est aisé de voir comment on obtiendra ces 360 droites nouvelles, que je dé-
signe par &,.

Prenons le sommet (i, kl, mn), qui est & la rencontre des droites A;j, Mgz, Ay

Il y a six tétraédres

T(é]’ km) ln’)? T(l:], kn’ lm)’
T (kl, im, jn), T (ki, in, jm),
T (mn, ik, ji), T (mn, i, jk),

qui ont, avec le tétraédre T (7, kL, mn), chacun un couple d’arétes communes.
Les deux premiers ont chacun deux sommets sur Aj;, ce qui fait quatre, et
de méme les deux seconds en donneront quatre sur Ay et les deux derniers (uatre
autres sur Ay,. En tout, 3 >< 4 =12 points.
Cela posé, joignons le sommet

(if, ki, mn)

du tétraédre T (if, kI, mn) & ces douze sommets. .

Nous aurons ainsi douze droites Ey, et nous les aurons toutes de cette maniére,
car le nombre des droites ainsi obtenu est exactement égal a

60X42 __
2252 = 36o.
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On obtient donc les droites E, en joignant un sommet d’un tétraédre
T(ij, kl, mn), pris sur une aréte A;; & un sommet, pris sur 'aréte opposée Aj,
d’un autre tétra¢dre fondamental assujetti d avoir A;j et Aj; pour arétes opposées.

On ne manquera pas d’observer que toute droite E, est aussi U'intersection de
deux plans de faces des tétraédres ci-dessus considérés.

Cherchons a représenter les droites Z,. Nous allons, pour cela, prendre un

hyperfaisceau
(i, ki, mn),

disons une gerbe pour préciser; prendre sur Aj; un sommet de I'un des tétraédres
T (i, kn, Ilm), T (ij, km, In) et joindre au sommet de la gerbe proposée.
Les gerbes du tétraédre T (i, kn, {m), qui contiennent A;; sont les deux sui-

vantes :
(i, ml, kn),

(Ji, Im, nk);
les gerbes du tétraédre T (if, km, In), qui contiennent A;j, sont de méme

(Ji, km, In),
(ji, mk, nl).

Des calculs trés simples nous donnent : droite commune aux gerbes (i7, k{, mn),
(ji, ml, kn)

2

o [ \/___1 T 7:;;

Ti _ @ Xk _ X Em T
[

droite commune aux gerbes (ij, ki, mn), (ji, {m, nk)

droite commune aux gerbes (7, kl, mn), (ji, km, In)

o

¢:1_ I I —\/—[,

droite commune aux gerbes (7, /\:l, mn), (ji, mk, ln)

Zi zj Xk Z Zm ZTn .,
(o]

X Z; Ty _* Tm . Zn

o o V—1 ! -1/

On voit aisément que toutes les droites E, s’obtiendront en annulant deux des
coordonnées, et prenant les quatre autres de toutes les fagons possibles propor-

tionnelles & I'une des quatre quantités 41, —1, + /—1, —V—1, de telle
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sorte cependant que, si z;= 0, z; = o, on ait deux relations de la forme

) Tm
= = = Zn.

Vi

84. Nous ne quitterons pas ce sujet sans meltre en évidence une propriété
fort curieuse des tétra¢dres fondamentaux.

Prenons un sommet (&7, kI, mn) du tétraédre T (i, kl, mn). 11 y a huit té-
traédres quin’ont avec lui aucune aréte commune. Prenons I'un de ces tétraédres,

par exemple
T (ik, jm, In),

et joignons le point (i7, kI, mn) aux sommets de ce tétraédre; nous aurons ainsi
quatre des seize droites E; sur chacune de ces quatre droites il y a donc encore
un sommet, ce qui fait quatre sommets; je dis que ces quatre sommels appar-
tiennent & un méme tétraédre fondamental.

Les quatre sommets du tétraédre T (ik, jm, {n) ont en effet pour symboles

(ik, ym, In), (tk, mj, nt),
(ki, mj, In), (ki, jm, nl).

Or on constate aisément que les trois points
(i, ki, mn), (ik, jm, In), (km, ni, ji)
sont en ligne droite; de méme les points

(i, kI, mn), ¢k, mj, nl) et (mk, in, ji),
(7, kI, mn), (ki, mj, In) et (km, lj, in),
(i, kI, mn), (ki, jm, nl) et (mk, ni, Ilj).

On voit bien que les quatre nouveaux points sont les sommets du tétraédre
T (mk, in, Ij).

Donc : relativement a chacun des sommets d’un tétraédre fondamental
T (i, ki, mn), les huit tétraédres fondamentaux qui n’ont avec le précédent
aucune aréte commune sont deux a deux homologiques.

De Ia on peut conclure que trois tétraédres fondamentaux, qui n’ont en com-
mun aucune aréte, forment un systéme desmique de trois tétratdres, c’est-a-dire
que les faces de 'un passent par les seize droites de rencontre des faces des deux
autres, et que les sommets de 1'un sont sur les seize droites de jonction des som-
mets des deux autres.
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On pourra consulter, au sujet de ces systémes desmiques, un travail de M. Sté-
phanos inséré au Bulletin des Sciences mathématiques, t. XIVde la collection.

85. Le systéme fondamental donne lieu a une remarquable correspondance
entre les points et les plans de I'espace.

Considérons d’abord un plan =; les pdles de ce plan dans les six complexes
Jondamentaux sont sur une méme conique.

En effet, soit O; le pole du plan 7 dans le complexe C;, et prenons trois de ces
points Oy, O,, O;. Les complexes C,, C;, Cy permetient, comme on sait, d’as-
socier a ces trois points un quatriéme point O tel que le plan 00,03 soit le
plan polaire de O dans Cy; 00,0, le plan polaire de O dans C,; 00,0, le
plan polaire de O dans C, (voir n°80). Le tétraédre O 0, 0,0, est conjugué par
rapport & la quadrique Q qui porte la demi-quadrique Q,,5. Donc le triangle
0,0,0; est conjugué par rapport a la conique K trace de Q sur le plan =. Or
la quadrique Q porte aussi la demi-quadrique Q,y,; donc, le triangle 0,0, 0,
est aussi conjugué par rapport a la conique K. Les deux triangles O, 0,0; et
0,0;0, étant conjugués par rapport & une méme conique, leurs sommets sont
sur une méme conique.

On peut méme ajouter que leurs c6tés touchent une méme conique.

Pareillement : Si I'on distribue en deux triédres les plans polaires =, w,, =,
T, s, T¢ d'un méme point O dans les six complexes fondamentaux, les deux
triédres sont conjugués par rapport & un méme coéne du second degré; leurs
arétes sont sur un méme coéne du second degré et leurs faces touchent un troi-
sieme cdne de second degré.

86. Conservons les notations précédentes.

Le point O; et le point O; étant les poles d’un méme plan = dans C; et C; res-
pectivement, le point O; et le point O; sont aussi les poles d’un méme plan =;;
par rapport & C; et a C;. Ce plan =;; passe par la droite 0;0;; il y a quinze
plans =;;.

Prenons les trois plans

Tijs  Tjky Thi;
le point O;j; ou ils se coupent est celui que nous avons considéré plus haut et

qui est le podle
de ;7 dans Cy)
» wipe v Gy
» Tk » Cj-

Prenons maintenant les trois autres indices /, m, n. Nous aurons de méme
trois plans 7, Tmn, T, s€ coupant en un point Oypp.
Mais il est clair que Oyjx et Oy, coincident. Nous savons, en effet, que les
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tétraédres 0;%0;0;0%, 0;rn0;0,0, sont conjugués par rapport a la qua-
drique Q, qui contient les demi-quadriques complémentaires Qjjx, Qzmn. Donc
O;jx et Oymy, sont les poles d’un méme plan = par rapport & Q.

6.5.4
1.2.3

llya

= 20 combinaisons d’indices trois a trois, et, par suite, il y a vingt

tétraédres
0:jx0:0, O,

mais il 0’y a que dix points Ok, puisque O;j4 est identique a Oumn.
D’aprés cela, on voit que le point (O = Oymn) est le pole

du plan w;; dans G,
» T » Cj,
» T » G,
» Tmn » Gy,
» Tnl » Cm:

» m  » Cpe
Nous avons, en résumé, une configuration de seize points
O1, Os O3 Oy, Os, Os (O123= Ous6), (O34 = Oase) (O125= Oss),

et de seize plans
Ty, T2y T3y Tihy e

tels que les podles des seize plans dans les six complexes fondamentaux font partie
des seize points, et que les plans polaires des seize points font partie des seize
plans.

Chacun des seize plans contient ainsi six des seize points, et par chacun des
seize points passent six des seize plans.

Sil’on prend les pdles de I'un des seize plans par rapport aux dix quadriques
fondamentales, on obtient les dix points du systéme non situés dans ce plan, et
silon prend les plans polaires d’un des seize points par rapport aux quadriques
fondamentales, on obtient les dix plans du systéme qui ne passent pas par ce
point.

87. On peut rattacher cette configuration remarquable 4 une importante cor-
respondance a laquelle donne lieu le systéme fondamental.

Nous venons de voir que tout plan = se trouve faire partie d'une configuration
de seize plans et de seize points qu'il définit complétement. Nous pouvons dire,
en conséquence, que la connaissance d'une gerbe définit une configuration de
seize gerbes et de seize systémes plans dont fait partie la gerbe proposée.

Plus généralement : tout hyperfaisceau fait partie d’une configuration de
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trente-deux hyperfaisceaux, dont seize sont des gerbes et seize sont des systémes
plans. ‘

Soit une droite z,Z, 2y 2,25 2;; en désignant par ¢, ¢y...¢ le symbole +1
ou le symbole — 1, les expressions

€121, E2Z, cey E6Tg

sont les coordonnées de 23 = 32 droites, parmi lesquelles les droites zy, z3, ...,

x4, et qui forment avec elle une configuration spéciale. D’abord, deux droites de
la configuration ne se coupent généralement pas, car

812} + 2223 + ..+ 262}

ne peut élre une conséquence de 2} +-.. .4 2; = 0, que sig ==ey=...= g,
auquel cas les deux droites ne sont pas distinctes.

1l saute aux yeux que, si la droite z,, xs, ..., s engendre un hyperfaisceau

Zi= a;\ + by +c;v,

il en est de méme des trente et une autres droites de la configuration. On a, pour
ces droites

xi =cei(aiN + by + V).
et )

Les hyperfaisceaux sont-ils de méme nature?
Supposons que le nombre des ¢ positifs soit pair, par exemple 2, il y en aura
6 — 2 négatifs; on peut toujours, grice a un changement de tous les signes,
supposer 2. = 4, car siap =2, ona 6 —ap=4.
Soit donc
2y = a1 N + by + eV,
Zh=ay N + by’ + ¢V,
zy = azN -+ byp/+ c3v,
Zh, = a, N+ b+,
— @y =as\ +bsp' + csv,
— Zg=agh + bgp/ + cgV'.
Si l'on écrit que

, o ot o .
Zy= Ty, Xy = T3, T3 = T3, Ty = Ty, Ts=x

on trouve
ar(M="N)+bi(p— )+ (v—v)=o,
as(h—=N)-4-by(p— @) +cy(v—v')=o,
as(A—N) 4+ b3(p— ) +ec3(v—y) =0,
ay(N—=N)+ b (p—p)+e(v—vy)=o,
as(A =AY+ bs(p+ ') +cs(v+v)=o,
ag(h =+ N) +bg(p+ ')+ ce(v+ ') =o.
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Les quatre premiéres équations exigent que
A—AN=p—py'=v—v=o,

et les deux autres donnent
ash+ bsp + cyv = o,
agh + bgp -+ cv = o,

pour déterminer A;p:v. Les deux hyperfaisceaux ont, dans ce cas, une droite
commune. Ils sont de méme espéce.

S’il y a, au contraire, un nombre impair de quantités ¢ égales & + 1, on peut
toujours supposer qu’il y en ait cinq ou trois. S’il y en a trois, au lieu des six
équations ci-dessus, on aura le systéme

ay(A—))+b(p—uw)+ci(v—v)=o,
ay(h =) +by(p— ') +er(v —v') =o,
ay(A —N)+by(p—p')+c3(v—v') =o,
ay(h+N)+b(p+p)+ec(v+v)=o,
as(A+ 1)+ by(p—+p)+ecs(v+v')=o,
ag(A 4+ M)+ be(p+ ') + co(v +v') = o,

et il y aura impossibilité de 'existence d’une droite commune, car les trois pre-
miéres équations donnent

A—N=p—p'=v—v=o,
et les autres
A+ N =p+p=v+v=o,
d’out
A=\ = = p,': l,;':v’: o.
Les hyperfaisceaux seront donc d’espéces différentes.
Enfin, s’il n’y a qu’un seul ¢ négatif, on aura cinq équations de la forme

ai(h—N)+bi(p—p)+ci(v—v') =o,
qui donneront

et ensuite une équation unique de la forme
ajk+bju+cjv=o.

Les hyperfaisceaux auront donc, en commun, dans ce cas, un faisceau plan de
droites. 1ls seront encore d’espéces différentes, mais, de plus, ils seront wnis
L’équation unique
ajk+bju+c;v=o0
Fac. de T. — VII.

Qt
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exprime que z;= 0, c'est-d-dire que le faisceau commun a nos deux hyper-
faisceaux est un faisceau du complexe C;.
Il est dés lors facile de retrouver les résultats précédemment obtenus.
Supposons que la droite z,, z,, ..., 2, engendre, pour fixer les idées, un
systéme plan =, les trente et une autres droites

1%y, 9T, ...y T

vont engendrer des hyperfaisceaux.

Les quinze pour lesquelles il y a un nombre pair d’c positifs engendreront
encore des systémes plans. Les seize autres engendreront des gerbes et sur ces
gerbes il y en aura six ayant un seul ¢ négatif et dont les six sommets O,, O,, ...,
Og seront dans le plan =. Les droites du faisceau plan (=, O;) appartiennent au
complexe C;; et O; est ainsi le péle du plan = dans le complexe C;. On voit com-
ment nous retrouverons la configuration déja décrite des seize points et des
seize plans.

Nous aurons occasion de revenir sur ces questions a propos de la théorie des
complexes du second degré et des surfaces de Kummer.

88. Nous avons eu a nous occuper, au point de vue de la transformation des
coordonnées, de celles de ces transformations qui conservent son type a la forme
fondamentale, ou, comme on dit, la font revenir sur elle-méme. Au lieu de se
placer au point de vue de la transformation des coordonnées, on peut se pro-
poser un autre probléme que je vais traiter.

Soient xy, Zs, ..., x; des coordonnées linéaires de droites, c’est-d-dire se
déduisant linéairement de coordonnées tétraédriques quelconques, comme nous
avons vu, et soit

w(z)
la forme linéaire correspondante.

1l existe des transformations linéaires

(ll) ‘21'; = AT+ AiaXy—+. ..+ Ajs2g,

qui conservent a la forme fondamentale son expression, en sorte que, en vertu des
équations (11), on a

(12) w(z) = w(z").

Ces transformations peuvent étre considérées comme faisant correspondre a
une droite dans le systéme des coordonnées z,, &, ..., £, une autre droite &'
dans le méme systéme de coordonnées, puisque les coordonnées z; annulent
la méme forme que les z;.
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Quelle est la nature de cette transformation?
Si x décrit un faisceau plan, on a

X, = aﬂ\ +bjp.,

et, par suite, eu égard a la forme linéaire des 2 exprimés en fonction des z;, on
a aussi
x; = aj\ + bj p.

La droite 2’ décrit donc aussi un faisceau plan.

Méme démonstration pour I'hyperfaisceau. Si x décrit un hyperfaisceau, 2’ en
décrit un autre.

Mais ici surgit une distinction capitale.

Les hyperfaisceaux engendrés par x et par #/ peuvent étre de méme nom (gerbe
et gerbe ou plan et plan); ou bien peuvent étre de noms contraires (gerbe et
plan ou plan et gerbe).

Dans le premier cas, a toutes les droites z, issues d’un point P, correspondent
toutes celles #’ issues d’un point P’. A toutes les droites # d’un plan = corres-
pondent toutes celles 2’ d’un plan . De plus, si P est dans le plan =, P/ est dans
le plan =, car au faisceau plan (P, =) correspond le faisceau plan (P, w'). A tous
ces caracteres, on reconnait une transformation homographique de l’espace.

Dans le second cas, a toutes les droites issues d'un point P correspondront
celles d’un plan =/, et & toutes celles d’un plan w correspondront celles issues
d’un point P'. De plus, si le plan met le point P sont unis, le plan =’ et le point P’
le sont aussi, & cause encore de la conservation des faisceaux.

La transformation consiste ainsi en une correspondance dualistique entre les
figures lieux de droites z et les figures lieux de droites «'.

La réponse a notre probléme est donc la suivante :

St les équations de transformation linéaire

Xy = Ay Xy+. ..+ AigTq (i=1,2,...,6)
donnent
w(z)=w(x),

elles établissent entre les droites x et x' soit une correspondance homogra-
phique, soit une correspondance dualistique.

89. Cette remarque a été pour M. Klein le point de départ d'un curieux rap-
prochement entre la Géométrie de la droite dans P'espace et celle des propriétés
métriques d’un espace a quatre dimensions.

Cette notion d’espaces a plus de trois dimensions a aujourd’hui conquis droit
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de cité en Géométrie. Nous ne voulons pas dire par la qu'une étude systématique
et compléte des espaces & n dimensions puisse offrir un véritable intérét géomé-
trique : l'intérét qui s’attacherait a une pareille étude serait tout d’ordre philoso-
phique et spéculatif. Cependant, il est certaines propriétés des espaces a n di-
mensions qui trouvent une interprétation utile dans des figures de la Géométrie
ordinaire; grice a ces propriétés, les faits de la Géométrie d’Euclide peuvent
souvent recevoir une forme plus rationnelle, plus lumineuse. A ce point de vue,
le langage de la Géométrie & n dimensions peut rendre de signalés services, et
ce serait se priver d’un auxiliaire précieux que de le rejeter sans examen. Clest
dans ces limites que 'étude de la Géométrie & n dimensions mérite que l'on s’y
arréte. On va en trouver un exemple dans la Géométrie de la ligne droite.

Soient xy, &y, +.., Zp, Tuyr, (n~+1) variables homogenes, c’est-a-dire n’in-
tervenant que par leurs rapports. Nous regarderons ces paramétres comme les
coordonnées homogénes dans un espace & n dimensions E,.

Une équation homogéne du degré m entre z,, 3, ..., Z,y, représente un
espace du degré m contenu dans 'espace E}, et doué seulement de n — 1 dimen-

sions; nous représenterons par
Eﬂl

n—1

un tel espace.
En particulier, une relation linéaire représente un espace linéaire

Et

n—1i

a n — 1 dimensions contenu dans E}.

Si_I'on se donne k équations linéaires, c’est-a-dire & espaces E)_|, ils ont en
commun un espace a n — A dimensions, que nous qualifierons encore de linéaire.

Plus généralement, si I'on se donne k équations entre les z;, on définit un
espace Et_; a (n — k) dimensions.

Le degré o de cet espace se définit comme le nombre des points qu’il a en
commun avec un espace linéaire E} a4 £ dimensions arbitrairement choisi.

Si g = 2, nous dirons que 'espace est quadratique.

Par exemple, une équation du second degré entre z,, Z, «+ ., Zpy définit un
espace quadratique & (n — 1) dimensions E2_|; nous dirons aussi, pour abréger,
une quadrique & (n —1) dimensions. L’intersection d’une quadrique a (n — 1)
dimensions et de (k — 1) espaces linéaires & (n — 1) dimensions est évidemment
un espace quadratique & (n — k) dimensions.

Les espaces quadratiques donnent lieu aux mémes théories que les quadriques,
Les cones et les coniques.

Soit, par exemple, un espace quadratique a (n — 1) dimensions, dans l'espace

a n dimensions,
) w(r)=o,
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et
L1y weey Tpiq, Y1y Y2y -y Yat+1

deux points de ’espace ; on dit que ces points sont conjugués si
p pace; q P jug
w(z|y)=o.

Lelieu des points x conjugués d’un point fixe y est un espace linéaire a (n —1)
dimensions. Cet espace linéaire généralise la notion du plan polaire ou de la droite
polaice pour les quadriques et les coniques.

Soit Q (a) la forme adjointe de - (x); 'équation

Q(a)=o0
exprime que l’espace linéaire
Zaxi=o0
est tangent (') a I'espace quadratique © () = o; pareillement, 1'équation
Q(alb)=o0
exprime que les deux espaces linéaires

Za;x;=o, 2bix;=o0

sont conjugués, c’est-a-dire que chacun contient le péle de ’autre.
Un espace quadratique @ (n — 1) dimensions est le lieu d’une infinité d’espaces
linéaires & un nombre moindre de dimensions.

90. La Géométrie des espaces quadratiques a pour nous un intérét particulier.
Nous avons vu, en effet, que I'on peut définir toute droite de Pespace au moyen
de six coordonnées homogénes z,, z,, ..., xg, lides par une équation du second

degré

w(z)=o.

Sil'on considére, dés lors, les 2; comme les coordonnées d’un point dans un
espace E} a cinq dimensions, I’équation v = o représente dans cet espace un es-
pace quadratique E} & quatre dimensions. On peut dire ainsi que la Géométrie
de la droite dans Uespace ordinaire est identique & celle d’un point sur une
quadrique E5 a quatre dimensions contenue dans un espace cing dimen-
sions.

Les droites d'un complexe linéaire

Eaixi::O

(*) Cest-a-dire que son pole est sur la quadrique.
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sont représentées par les points d’'intersection de 'espace linéaire E}, représenté
par cette équation avec la quadrique fondamentale E}. L’équation

Q(a)=o,

qui exprime que le complexe est spécial, exprime que I'espace E} est tangent a
I'espace quadratique E;.
Si I'on considére deux complexes linéaires

Za;xi=o, Sa;x; =o,

la condition d’involution
Q(ala)=o0

exprime que les espaces linéaires E}, E' correspondants sont conjugués par rap-
port & la quadrique fondamentale E2,
La quadrique E} contient des espaces linéaires a une et 4 deux dimensions.
Nous savons, en effet, que si 2° et 2°0 sont deux droites qui se coupent, les
expressions

(13) 2= 20h+ 2.

sont les coordonnées d’une droite du faisceau plan défini par ces deux droites.
Il en résulte aussitot que, lorsque A:u varie, on a constamment

w(z) =w (2N +200n) = o.

Or, interprétées dans 'espace a cinq dimensions, les équations (13) repré-
sentent un espace linéaire E} 4 une dimension contenu dans E3.

Réciproquement, soit E} un espace linéaire 4 une dimension contenu dans EZ,
les coordonnées z; d’un point de cet espace linéaire seront représentées par des
formules telles que (13) ot 'on devra avoir

w(z)=w (2 + 20u) = o,

quels que soient ), .. Dans la Géométrie des droites, nous aurons donc un fais-
ceau plan. On peut dés lors énoncer cette proposition :

Il y a sur E} une infinité d’espaces linéaires a une dimension; ces espaces
correspondent en Géométrie de droites aux faisceaux plansde l’espace eucli-
dien, en sorte qu'il y a une quintuple infinité de ces espaces linéaires sur E3.

On verra de la méme fagon qu’il y a sur E} une infinité d’espaces linéaires a
deux dimensions, qui correspondent aux hyperfaisceaux de la Géométrie li-
néaire.

Mais il y a deux sortes d’hyperfaisceaux, la gerbe et le systtme plan. On peut
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donc prévoir qu'il y aura sur E? deux familles distinctes d’espaces linéaires &
deux dimensions.

Ce fait, qui est tout a fait analogue & celui du double systéme de génératrices
rectilignes dans les quadriques de l'espace ordinaire, peut étre mis directe-
ment en évidence. Il offre, comme on va le voir, une différence essentielle avec
I’exemple auquel je ’ai comparé.

Pour les quadriques ordinaires, deux génératrices rectilignes se coupent tou-
jours si elles sont de systémes différents, et jamalis si elles sont du méme systéme.

C’est Uinverse ici, car deux espaces linéaires E} de méme famille ont toujours
un point commun : cela tient 4 ce que deux gerbes ou bien deux plans ont tou-
jours une droite commune.

Par contre, deux E} de E?, pris dans les deux familles, ou bien n’ont aucun
point commun, ou bien ont en commun un espace E;.

Cela tient 4 ce qu’une gerbe et un plan n’ont généralement pas de droite com-
mune et que, si cela a lieu, ils ont en commun un faisceau plan de droites.

Un complexe de droites, défini par une équation

f("l'i, Loy ooy x(;):O,

sera représenté comme la trace sur la quadrique E} de I'espace E; représenté par
P’équation f= o.

Nous obtiendrons ainsi sur E? un espace a trois dimensions E,.

Pareillement, un espace a deux dimensions E,, tracé sur E}, représente une
congruence, et un espace a une dimension représente une surface réglée.

91. Ce rapprochement entre la Géométrie réglée et celle du point sur une qua-
drique a quatre dimensions dans un espace a cinq dimensions resterait sans
grande utilité si 'on ne le faisait suivre d'une remarque concernant la Géométrie
des espaces quadraliques.

Je prendrai d’abord I'exemple d’une quadrique ordinaire dans I'espace ordi-
naire.

Soit Q une telle quadrique, O un point pris sur elle, = un plan quelconque.

Concevons que I'on fasse correspondre a tout point M du plan un point P de
la quadrique, en prenant l'intersection de celle-ci avec la droite OM. Récipro-
quement, & un point P de la quadrique correspondra un point M et un seul; de
part et d’autre la correspondance est univoque; c’est ce que I'on exprime en di-
sant que la quadrique est représentable sur le plan (').

(1) Pour cette question des surfaces représentables sur le plan, on pourra consulter plusieurs
Notes que lui a consacrées M. G. Darboux dans le Bulletin des Sciences mathématiques. Les Tra-

vaux originaux de Clebsch ont paru dauns les Mathematische Annalen. Aujourd’hui trés développée,
cette théorie mériterait une étude spéciale.
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3

On peut donner une forme analytique concréte a cette représentation et la
rattacher & une méthode anciennement imaginée par Chasles pour I'étude des
courbes tracées sur les quadriques (').

Soient OGy,, OH, les deux génératrices rectilignes de la quadrique issues du
point O; par le point P de la quadrique passent deux génératrices, une G de
méme systéme que OG,; la seconde H de méme systéme que OH,. G coupe OH,
en un point P, H coupe OG, en un point P’. Pour définir la position de I sur
OH,, on peut prendre le rapport anharmonique qu’il forme avec le point O et
deux autres points fixes pris sur OH,; en sorte que, A’, B’ désignant ces points
fixes, on aura, par exemple,

A'O A'B

PO P B

u —=

De méme, A", B" désignant deux points fixes sur OGy, on définira le point P’

par le paramétre
v - AIIO . AIIBI!
PO P

Une fois « et ¢ connus, les points P, P en résualtent, ainsi que le point P et,
par conséquent, le point M, dans le plan =.
Appelons Gy, Hy les traces de OG, et OH, sur ce plan. La droite G,M est la

Fig. 5.

trace du plan OG,M sur le plan =; ce plan OG,M est évidemment tangent en P’
a la quadrique, et a cause du théoréme de Chasles, sur le plan tangent & une sur-
face réglée; le paramétre ¢ est égal au rapport anharmonique

v = (Gox", GoM, G¢Hy, Go@”)y

(') Comptes rendus des séances de UI’Académie des Sciences, t. LIII.
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ou Gya” est la trace sur le plan = du plan tangent en A", G, la trace du plan
tangent en B’.
De méme, Hyo', Hy B étant les traces des plans tangents en A’ et B/, on a

u = (Hod’, Hol\l, HoGo, Ho B’).

Prenons comme triangle de référence dans le plan = le triangle formé par les
droites H, ', G, " et GoH,, on voit aussitot que si

X =o, Y =o, Z=o0

représentent les équations de ces trois droiles, on aura, en faisant rentrer dans
X, Y, Z des facteurs constants,

_Y
’ V—Z-

En appelant K, le point de rencontre des droites G, 3" et H, {8, on voit donc
que les quantités u, ¢ sont tout a la fois les coordonnées de Chasles du point P
sur la quadrique, et qu’elles sont aussi les coordonnées triangulaires du point M
par rapport au triangle de référence G, H,K,.

Les points Hy G, jouent dans celte représentation un réle essentiel. Tout point
de OGq se projette en Gy, tout point de OH, se projette en H,. Cies points H,,
G, sont donc des points d’indétermination, en ce sens qu'en chacun d’eux se pro-
jettent une infinité de points de la quadrique.

Il y a aussi sur la quadrique un point d’indétermination. En effet, il est visible
que, si le point P de la quadrique tend vers le point O, le point M vient se placer
sur la droite G,H,, et que la position du point M est la trace sur G,H, de la po-
sition limite de OP, quand OP devient tangente en O & la surface.

Nous voyons ainsi qu’il y a sur le plan deux points remarquables Gy, H, et
une droite remarquable, la droite qui les joint. Sur la surface, il y a un point
remarquable O et deux droites remarquables, les génératrices issues de ce
point.

Dans les représentations de ce genre, les points Gy, H, portent le nom de
points de base de la représentation, et la droite GoH,y le nom de ligne fonda-
mentale.

Dans le cas général de la représentation des surfaces sur le plan, la nature des
points de base et des lignes fondamentales, ou génériguement des krimenTs
FONDAMENTAUX, caractérise la représentation.

On démontre que, généralement, les courbes du plan qui représentent les sec-
tions planes de la surface passent par les points de base ou points fondamen-
taux.

Fac. de T. — VII. 6
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Tci c’est évident, car toute seclion plane coupe OG, en un point, OH, en un
autre, et la perspective est ainsi une conique qui passe pas les deux points
G,, H,.

On sait que les propriéiés métriques des figures planes se définissent comme
des relations entre cette figure et deux points remarquables du plan, les points
circulaires a I'infini. Au point de vue projectif, on peut donc regarder comme
élant métriques toutes les propriétés de relation entre une figure et deux points
du plan.

Les coniques passant par ces deux points fixes seront dénommées cercles. A ce
point de vue, on peut dire que les sections planes de la quadrique sont représen-
tées sur le plan par des cercles.

On reconnait dailleurs que, pour réaliser effectivement cette représentation,
il suffirait de prendre pour le point O un ombilic de la quadrique, et, pour le
plan =, un plan paralléle au plan tangent au point O.

On se trouve alors avoir généralisé une transformation bien ancienne, la trans-
Jormation stéréographique.

Mais une telle restriction nous est inutile, puisque nous sommes toujours
libres de prendre comme base des propriétés métriques deux points quelconques
du plan.

92. On peut présenter cette représentation des quadriques sur le plan sous
une forme plus analytique, qui se préte mieux 4 la généralisation que nous avons
en vue.

Prenons, en effet, deux points O et O’ sur la quadrique non situés sur une
méme génératrice rectiligne. Menons par la droite OO’ deux plans conjugués et
soit A la droite d'intersection des plans tangents en O et O'. Cette droite coupe
les plans conjugués en deux points 0", O”; nous prenons le tétracdre O O’ 0" 0"

comme tétraédre de référence. La quadrique aura une équation de la forme
(14) x:+ y?— 3t = o,

en faisant rentrer dans z, », z, ¢ des constantes numériques qu'il est inutile de
meltre en évidence. Je pose alors

ox = XZ,
(15) ;py:YZ,
\ Pz:Z’-’y

et J'observe que I’équation (14) donne alors

(16) ot = X2+ Y2,
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Nous avons ainsi exprimé z, y, 3, ¢ en fonction de trois paramétres homo-
génes X, Y, Z.

Nous pourrons regarder X, Y, Z comme des coordonnées triangulaires d'un
point dans un plan, et nous aurons ainsi réalisé analytiquement une représen-
tation de la quadrique sur le plan.

Je ne m’arréte pas & démontrer que cette représentation se réalise géométri-
quement dans la projection stéréographique telle que je I'ai définie ci-dessus.

Observons que toute section plane

axr + by + ¢z + dt = o,
est représentée sur le plan par la conique
(17) (aX~+bY +cZ)Z + dt (X2+ Y?) =o,

laquelle passe par deux points fixes
Z=0, X=iY=o.

SiI’on regarde ces deux points comme les points circulaires 4 'infini du plan,
I’équation (17) est I’équation générale des cercles du plan.

93. Ceci posé, cherchons & résoudre la question suivante :

Quelles sont exactement les propriétés des figures planes qui correspondent
aux propriétés projectives de la quadrique?

Pour résoudre cette question avec précision, nous allons rechercher quelle est
la transformation plane qui correspond a une transformation homographique
conservant la quadrique proposée.

Soientz,y,z, t les coordonnées d'un point P de la quadrique; &/, 3/, 5/, ¢ celles

du point P’ correspondant. On a

s z'= ax + by + cz +di,
(18) y=dz +by+cz+dt,
1 <
/ d=adzr+b0y+ c"z+d't,

' =a"x+b"y+c"z+d"¢,
et, de plus, il faut avoir identiquement
(19) x4yt — 't = k(22 y2— 3t).

Soient (X, Y, Z) les coordonnées du point M correspondant au point P;
(X', Y/, Z/) celles du point M’ correspondant au point P'.
On aura, en remplagant dans (18) z, y, z, ¢, 2/, 3/, 3, ¢ par leurs valeurs en
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X,Y, 7, XY, 7,

sX'Z =aXZL+b YZL-+c Z2+d (X4 Y?),
o) sY'7 =a' XZ+b YL+ L2+ d (X2+ Y?),
20

o L2 =@ XL+ b" YL+ " L2+ d' (X2 Y?),

o (X2 Y2) = a"XZ + b"YZ + ¢" 22+ d” (X2 + Y?).

Ces équations sont évidemment surabondantes pour définir X', Y/, Z/ en fonc-
tion de X, Y, Z; mais elles sont compatibles d’aprés I'identité (19), c¢'est-a-dire
quand @, b, ¢, d, a', b, ¢, d', ..., ", d" se prétent a cette identité.

Pour simplifier I'interprétation des formules, je ferai Z'=7Z =1, et }’écrirai
les formules sous cetle forme

| aX +bY +c+ d (X4 Y?)

XN = X oYy iox d (Xx5Y2)’

(T) Yy — aX+b'Y +c'4d(X24-Y2)
T AX Y+ I+ d(Xe Y2
Xty o @K BUY e d" (X2 Y2)

dX+ Y+ I+ d (X212

Alors X, Y seront les coordonnées rectangulaires d’un point, X', Y’ celles de
son transformé.

Supposons qu’on effectue une premiére transformation de cette forme T, puis
une autre T' avec d’autres coefficients, la nature linéaire de ces formules nous
montre que la transformation résultante T''T sera encore une transformation de
méme forme.

En un mot, ces transformations forment ce que M. Lie a appelé un groupe.

Une transformation homothétique autour d’un point quelconque, un déplace-

A

ment quelconque, une transformation par symétrie par rapporl & une droite
quelconque, et plus généralement une inversion par rapport a un cercle quel-
conque, font partie du groupe, ainsi qu'on le reconnait immédiatement sur les
formules qui expriment ces diverses transformations. Je vais prouver que, réci-
proquement : toute transformation définie par les formules (T) résulte de
Uapplication successive d’un certain nombre de ces transformations ().

En effet, désignons par T, la translation qui change le point X, Y dans le

oint X”, Y” et qui est représentée par les formules
p , q p p

(Ty) X" =X + A, Y=Y +k,

(') KLEIN, Mathematische Annalen, t. V.
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ou A et k sont deux constantes; envisageons ensuite la transformation

a; X"+ b Y'+ d; (X"2+ Y"2)

X = X oY el +d] (X2+ Y2)

(Ty) / Y = a} X"+ by Y 4 dy (X724 Y"2)
2 ’ T @ X+ b Y o]+ d] (X Y72’
X2y SR BV 4 e - dy (X2 Y7

Al X'+ b Y + o]+ df (X2+Y2)

La succession des deux opérations (T,) et (T,) équivaut a la transformation
générale (T) ol ¢, ¢ ne sont pas nuls; on peut donc poser T =T, T,.
Maintenant, si l'on a égard a I'identité
(X" P (@) X . 2 = (@) X . ) (@) X . ),
on voit que, le premier membre s’annulant avec X", Y”, il doit en étre de méme
du second; on a donc

nomo__
cici=o.

Supposons d’abord ¢|; = o; alors, en effectuant I'inversion

) < -
(To) XN=xizyn Y= xm o vm

I'opération T, apparait comme le produit T; T, des opérations T; et Ty, ot T,

est défini par les formules

(11 X’"+ b] Y”’ + di

X = a’{X’”—i— b’{Y"’—i—d'{ ’
) v a\ X"+ b Y"+ d)
(TS) = aI{X’”—i— b/{Y”,—i—'d/'/’
a"X" 4+ b"Y" 4 " (X" - Y"2) 4 "
X’2+ Y2 = 1 1 1 ( ) 1 ,

X b+
etl'on a
T = TzT‘ == T3TOT1.
Supposons au contraire que ce soit ¢} qui soit nul; alors, en effectuant encore
Popération Ty, T, apparait comme le produit T, T, des deux opérations T, et T,
ou T, est ainsi défini

ai X"+ b X"+ d,

X'= “'1, X" b/{ Y7 c/l/ (X1112+ sz) + d/{ ’
) v - A X"+ 0, Y+ d ,
2 a’ X""—l— b7 YIII+ c” X!I/2+ Y2 + d’
1 1 1 1
A
X2 Y2 — anXIII_'_ b{ Y 4 dl‘l

al{ XIII+ b,{ YIII+ C’n’ (XIII2+ Ylllz) 4 d/{ *
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Or, pour effectuer la transformation (T}), on peut effectuer la transformation

[ X ag X”’—'— 61 Y'"+ d1
1= ar;r X7 b'f Y7 - d/il’
a’ XW—I— b/ Ym_‘_d,
(T%) Y1 = /}/ r r?/ " /}I’
ay X"+ b{Y" + df
a/l/ X”’+ bl'l 'Y"I+ 0/11 (X”’2+ Yl”-z) 4 /”I'
= a/;l XIII+ b/;/ Y’II+ d’{

>

On a alors
T = To T; To T1.

Les transformations T3 et T, ont le méme caractére; elles ont la forme gé-

nérale
X — aX +B8Y+ vy
- a’,X‘F‘ﬁ”Y—l‘Y”’
Y — X+ 6'Y+v
— a"X - g”Y'-F‘{”’
X’2+Y12— al’lx+ Q”’X—i——Y”’-—'— 81//(X2‘+ Yz)

X+ 'Y+
Eerivons que I'on a identiquement
@X+BY + 72+ @ X+ FY -y 2= (XY 4+ y") [2" X+ 3"Y + "+ 3" (X2 Y2)].

On voit d’abord que «’, 3" devront étre nuls, ce qui permet alors de faire ¥ =1.

Il reste donc
X' =aX+8Y+y,

Y =X +8Y +7,
XI2+ YI2 - a”IX + B/I/'Y + Y”’—{— all/ (X2+ Y: )7

avec I'identité
(aX+BY +9)2+ (A X+ BY+Y+y¢)2=a"X+B"Y +y"+ 8" (X2+ Y2).
On doit donc avoir, en particulier,
(aX 4 BY )24 (X 4+ BY)2 = 8" (X2 4+ Y2).
Or cette identité prouve que ’on peut poser, soit

a= /8" coso, B = V87 sinf,

(an) _ -
[ &'=— /8" sin®, B'= V3" cosh,
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soit
B = ¥ sino,

(22) l
B

"= — /3" cosh.

Dans le premier cas, la transformation T; représente un déplacement quel-
conque D dans le plan, précédé d’'une homothétie H; on a alors

T3 = D.H;

Dans le second cas, cette homothétie est accompagnée d’une transformation S

par symétrie par rapport & une droite, et I'on a alors

T; = D.H.S.
Donc, en résumé, on a
( T3T0Tl?
T = < ou bien
( T0T3 TOTh
ou
D.H,
T3 = ¢ ou bien

D.H.S.

Donc T se raméne bien a une superposition d’opérations de la nature sui-
vante :

Mouvements, homothéties, inversions, symétries par rapport a des droites.

Toutes ces transformations ont une propriélé commune : elles transforment
tout cercle du plan en un autre ou, autrement dit, ce groupe de transformations
conserve la famille des cercles du plan. On pourrait donner & ces transformations
le nom de transformations anallagmatiques.

On voit, en conséquence, que, inlerprétées surle plan représentatif, les trans-
formations homographiques d’une quadrique en elle-méme ont pour images le
groupe des transformations anallagmatiques du plan.

Les propriétés projectives de la quadrique correspondent aux propriétés anal
lagmatiques dans le plan.

94. Tout ce que nous venons de dire pour la représentation des quadriques
ordinaires sur le plan s’étend au cas des quadriques & n — 1 dimensions dans
Pespace a4 n dimensions.

Prenons, par exemple, la quadrique

(23) i+ 2} + x}+x}—2575=0
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dans l'espace a cinq dimensions, nous poserons

pzr =X, X,
p s = X,y X5,
Prs= X; X5,
p,= X, Xy,
paws= X3,

et I'équation (23) donnera
pas= X3+ X3+ X3+ X3.

Nous avons aussi représenté notre quadrique sur un espace linéaire a qualre
dimensions, dans lequel X, X,, X;, X;, X; sont les coordonnées homogénes
d’un point. ‘

Nous avons ici encore une figure fondamentale, ou d’indétermination. Elle
est représentée par les équations

Xs=o0, X}+X3+Xj+Xi=o,

elle constitue un espace quadratique & deux dimensions, que je représente
par L.

Appelons sphére toute quadrique de I'espace & quatre dimensions qui contient
I,, Péquation d’une sphére sera
(aXy+ bXo+ c X3+ dX, + e X)X+ f(X]+ X3+ X2+ X2) = o.
Il est commode de réduire & 'unité la variable X qui, égalée & zéro, repré-

sente 'infini de notre espace a quatre dimensions, et I’équation de notre sphere
aura la forme

1 X1 9 Xg 3 X3 W X4 5 6 ( X3 H ? (2).
(24) a; Xy + ay Xg+ asXs+ a, X, + a3+ ae( X3 + X3+ X3+ X3)

La distance de deux points sera

VX=X (K= X2

un déplacement, une symétrie, une homothétie, une inversion se définiront
comme dans le cas de I'espace ordinaire, et, par le méme raisonnement que plus

haut, nous reconnaitrons que toute transformation linéaire qui conserve la
forme

z}+ 23+ 23+ v} — x5 2%,

c¢’est-a-dire toute transformation homographique ou dualistique de I'espace réglé,
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se traduit dans I'espace représentatif & quatre dimensions par une succession
d’opérations telles que :

1° Homothétie; 2° symétrie; 3° inversion; 4° déplacements, toutes transfor-
mations qui laissent invariable la notion de sphére.

A ce point de vue, nous pouvons dire que :

La Géométrie réglée, au point de vue dualistique et projectif, est iden-
tigue a la Géométrie anallagmatique d’un espace a quatre dimensions.

95. On voit que, dans la représentation qui nous occupe, un complexe linéaire
(c’est-a-dire une section de la quadrique & quatre dimensions par un espace
linéaire & quatre dimensions) se trouve représenté par une sphére de l'espace a
quatre dimensions.

Si

A X1+ AT+ ..+ AgXg= O

est équation du complexe linéaire, celle de la sphére est précisément 1’équa-
tion (24).
I’équation de la sphére peut recevoir la forme

a; \? a; \? as \? a,\? al+al4al+a?—fasa
<X1+ —’) —l—(Xz—l— —2> +<X3+ ——3> +<X,,+ -—“-> S e b el fasas
2044 2Qg 2Q¢ ag

. . . ; a
L’expression du second nombre représente le carré durayon de la sphére, — 2(1‘
6

a a. a, I3 .
— —, — =%, — —* sont les coordonnées de son centre. Le rayon est nul si
2Qg 20Q¢ 2 Qg )

(25) a}+ a3+ ai+al—jasas=o.

2+ x4+ v+ 2] — w570,

Iinvariant du complexe est précisément le premier membre de (23). Les sphéres
de rayon nul correspondent ainsi aux complexes spéciauzx.
Pareillement, I’équation

a,b1—|— a2b2+ a3b3—|—al,bb—2a5b6—2a6b5=o
exprime 1'involution des deux complexes
QX+ X3 +...= 0, bixy+ byxs+...=0;

elle exprime aussi l’orthogonalité des deux sphéres correspondantes.

Fac. de T.— VII. 7
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Une congruence linéaire est représentée par l'intersection de deux sphéres.
Par cette intersection, on peut faire passer deux sphéres de rayon nul qui re-
présentent chacune un des complexes spéciaux, qui ont pour directrices les di-
rectrices de la congruence.

L'intersection de deux sphéres dans I'espace & quatre dimensions est, outre 1,,
qui est mis & part, un espace quadratique 4 deux dimensions, que l'on peut ap-
peler une sphére & deux dimensions.

Désignant par S; les sphéres a trois dimensions, je désignerai celles-ci par S,.

L’intersection de trois sphéres a trois dimensions est un cercle S, ou espace
quadratique & une dimension d’espéce particuliére, car il a toujours deux points
communs avec l’espace & deux dimensions I,.

Par un cercle S, passent une infinité (une double infinité) de sphéres images
du sysiéme a trois termes de complexes linéaires menés par la demi-quadrique
dont S, est 'image. Une infinité de ces complexes sont spéciaux; leurs direc-
trices, qui engendrent la demi-quadrique complémentaire, ont pour images les
points d'un second cercle S/, lequel est le lieu des centres des sphéres de rayon

nul menées par S,. La correspondance entre S, et S/ est évidemment réci-
proque.

96. Les faisceaux plans de droites et les hyperfaisceaux de l'espace réglé ont
aussi une représentation trés simple.
Si la droite # engendre un faisceau plan de droites, on peut écrire, nous le
savons,
zy = a+ pby, Zy= ay+ pbs, 73 = az;—+ pbs,

Ty, = a,+ p by, Xy =1, o= ag— 0bg.

Les coordonnées X, X,, X3, X, du point correspondant dans’espace & quatre
dimensions seront

(o6) Xy= oGl oy el oy aivpbs o atpby

T 1+ p 140 I+=p I+p

On aura, de plus,
R . 2]+ @i+ @]+ T} — T3T6= 0,
c’est-a-dire

(@1+ 001+ (a2 002) 4 (a3+ pby)2+ (@3—+ pby)2 = (1+ p)(as—+ pby).
Ceci devant avoir lieu quel que soit p, il vient

ai+ a3+ aj+ a} = a,
b3 + b3+ b3+ b} = b,

‘Zaibi'-i—ﬁazbz—!— 2a3b3+ 2a1,b5 = Qg + bG,
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d’ou, en éliminant ag et b,
(27) (a1—01)2+ (ay— by )*+ (a3— b3)2+ (a,— b, )2 = o.

Les bindémes a;— b; sont les coefficients directeurs «; de la droite représentée
par les équations (26), lesquelles pourront s’écrire, en posant

= a;— by,

(28) Xj—a, — X2—d X3—a3 — Xr—aa.

% %2 %3 %
L’équation (27), qui s’écrit
(29) aj+ai+a3+af=o,

exprime évidemment que le point de la droite (28), qui est & I'infini, appartient
a Pespace quadratique I,; elle exprime aussi que la distance de deux points quel-
conques de la droite est nulle. Les droites considérées sont des droites de lon-
gueur nulle et peuvent étre définies par la propriété d’avoir avec [, un point
commun. ;

11 est, dés lors, naturel d’introduire les coordonnées de Chasles de ce point de
rencontre, en posant

oy _ £} _ a3 . a,,
Mot Bo (ho— po)y—1  Roto—T1  (hopo+ 1)y/—1

(30)

et, dés lors, la représentation générale de nos droites (et par suite des faisceaux
plans de I'espace réglé) sera

Xl—a, Xg—ag X3—a3 Xg‘—-(lg

3 = =X - .
(31) Moo (hg— po)y/—1  MoBo—T  (Ropo+1)y—1

11 est clair que, A, et 1, restant fixes, le point de rencontre avec I, reste fixe.

Si on laisse fixe k, le point en question décrit, lorsque u, varie, une généra-
trice rectiligne d’un systéme de I; il décrit, au contraire, une génératrice recti-
ligne du second systéme si X, varie, {1, élant fixe.

La représentation va beaucoup plus au fond des choses qu'on ne le pourrait
croire au premier abord.

Cherchons, en effet, a représenter un hyperfaisceau.
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Si la droite # engendre un hyperfaisceau, on peut poser

ry= a1+ pby+ p'b},
Zy= ay+ pby—+ p' by,
x3= a3+ pbsy+ p' b,
z,= a,+ pb,+p'b),,
rs=1-+p+p,

xs= as—+ pbs—+ p' b,
avec la relation

z}+ 2} + 3+ 2} — 25205 =0,
qui, devant avoir lieu quels que soient p, p’, nous donne

al—+ aj+ a}+ al= as,

b3 + b3 + b3 + b} = by,

B2+ bR+ b2+ b2=b,
2(ayby +as by + azb; + a,b,) = ag+ by,
2(a1 by + as by + a3 by + a, b)) = as+ b,

2(b| b’1—|— 172 b’2+ b3b/3 -+ b;, blb) = be—'v- b’ﬁ’
d’oui, par élimination de ag, bg, by,

(@1— b1)2 4+ (ay—b2)?+ (a3— b3)2+ (a,— b,)? = o,
(a1— b))+ (@y— b3)*+ (a5— b3)*+ (e — b))* = o,

(b1— b2+ (by— by)?+ (bs— by)2+ (by— b)? = 0.

On vérifiera les deux premiéres équations en posant

b —a, — by — a, — by— a; — b,— a, -0
Mt dg—po)V—1 R —T T (Agp+1)yY—1 ’
b'l—-a1 _ b,_;—az — b’:,,—a3 - b’b—(lg -0
Nt (Ng—po)V—1 M=t Ohpery—1

ol Aoy oy B, Ny 10, 0’ sont des arbitraires.
On en tire
by — by = [0'(h§ + o) — 0(Rho—+ o)),
by— b= 0" (A — p5) — 00— pa)lV— 1,
by — by = [0'( My —1) — B( X po—1)],
by — b, =0\ pp+1)— 0 Xopo+ 1]V —1,
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d’ou
0=(b;——b1)2—|—(b’,-—bg)7+(b’3—bg)2+(b',,~b,.)2
=—200 (A + o) (Ro+ o) — (A5 — 125) (lo— t20)
=+ (Ao o — 1) (Ao pro— 1) — (Ag 1o+ 1) (Ao pro~+1)]
= 400" (25— Xo) (o — to)-

On voit qu’il faut avoir soit
o=,
soit
o = [o-
Prenons, par exemple, A; = A,.
i’hyperfaisceau correspondant se représente dans ’espace a quatre dimensions

par les équations
i+ pbi+p' b}
= % pOi+p i

Xi— - 0
1+p+p
ou encore par les équations
Xi——ai — Xﬁ_ a3
p(br—ay)+p'(bi—ar) — p(by—as) +¢'(b;— as)
Xg—(ts le— a,

T e(bs—an) o (Os—ar)  p(bi— ay) + o' (b, —as)

c’est-a-dire, en faisant rentrer § dans p et ¢ dans o/,

Xi—ai _ Xg—ag
PRt pro) + 0 (o 10)  p(Ng— po)y/— 1+’ Qo— prp )V —1
Xg—ag Xk—ab

T Koo — 0 (RoBo—1  [pOapmot 1)+ ¢ (hopp D] V=1

Ces équations, ol p' : p est arbitraire et méme variable, définissent un espace
linéaire 4 deux dimensions qui représente I'hyperfaisceau considéré. Or, et c’est
la un fait bien remarquable, en posant

Hop 1o P’
i+
ces équations peuvent recevoir la forme
Xl—a, . Xg—ag . X3—a3 _ X‘—ab

3 = = = .
) Mt Qe—p)y—1  AeB—1 T (lop-1)y—1

Ces équations se déduisent des équations (30) en y remplagant le paramétre
constant p, par un paramétre variable .
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SiTon avait adopté la solution p, = ,, on serait arrivé i la formule

X,—a, Xg—ag X3—a3 X,',—' a,
(33) —_ ;z) = ——
e (N —pe) V1 o1 Ao 41)y/—1

qui se déduit des équations (30) faisant varier A.

Les espaces linéaires (32) et (33) sont a deux dimensions, puisque p est va-
riable dans (32) et A dans (33). Ce sont, en quelque sorte, des espaces linéaires
a deux dimensions isotropes. Ils possédent cette propriété de couper chacune le
plan de I'infini suivant une génératice rectiligne de I,. Seulement, les uns cou-
peront I, suivant une génératrice d’'un systéme [équation (32)]; les autres, sui-
vant une génératrice du systéme opposé [ équation (33)].

Nous avons donc deux sortes d’espaces (*) linéaires E} isotropes.

Les uns correspondront aux hyperfaisceaux qui sont des gerbes, les autres
aux hyperfaisceaux qui sont des systémes plans.

Il est assurément bien curieux que la séparation des deux systémes de généra-
trices de I, revienne 3 la distinction entre la Géométrie du point et celle du plan
dans I'espace a trois dimensions, qui est le lieu des figures réglées.

Prenons, par exemple, les équations

3) Xi—ay Xo—a, _ Xa—-—a% _ Xi— ay .
! Moo Go—po)V/—1 MoBo—T  (gpo+ny—1

nous avons la la représentation d’un faisceau plan (O, =) dont fait partie la
droite A, quia pour image le point a,, a,, a;, a, de I'espace a quatre dimensions.
Quand %y, 1o recevront toutes les valeurs possibles, nous aurons tous les JSais-
ceaux plans qui contiennent A.

Si A, reste fixe, la droite X engendre, nous le savons, un hyperfaisceau, dont
un des éléments O ou = reste fixe, par exemple O, et alors les équations (34)
représentent toutes les droites issues de O.

Si, au contraire, c’est o qui est fixe, c’est le plan = qui se trouve fixé et repré-
senté comme support d’un systéme plan de droites.

Ainsi, en résumé, quand un faisceau est représenté par des formules telles
que (34), a,, as, as, a; représentent une droite de ce faisceau, A, le point O et
%o le plan = du faisceau sur cette droite (2).

(*) Le fait n’est pas nouveau; déja, dans le plan, les droites isotropes forment deux familles dis-
tinctes.

(*) On pourra comparer avec la représentation que j’ai donnée en 1882 dans mon travail Sur les
proprietés infinitesimales de Uespace réglé, p. 23.
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Si l'on reliait Ay, po homographiquement, le lieu de la droite X serait une
congruence linéaire singuli¢re admettant A pour directrice ().

Il existe encore d’autres systémes de coordonnées, mais leur étude viendra
nalurellement a la suite des propriétés infinitésimales.

J'ajouterai que les coordonnées que j'ai définies projectivement au début
peuvent recevoir une forme métrique importante. Nous y reviendrons au moment
de I'étude des propriétés méiriques des systémes réglés.

(A4 suivre.)

(*) Le lecteur pourra comparer ce qui précéde avec le Chapitre sur les coordonnées penta ou
hexasphériques du Tome I des Lecons de M. G. Darboux. La sphére dans I’espace euclidien donne
licu a une théorie toute pareille a celle de la droite.



