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RESUME D’UN MEMOIRE

SUR LES

LIGNES GEODESIQUES®,

PAR M. G. KOENIGS,

Professeur suppléant au Collége de France.

1. Les ds* de la forme
ds* =(U — V)(du® + dv?),
que 'on peut encore écrire
ds*=[f(x +y)—g(x — y)] dz dy,

ont attiré pour la premiére fois I'attention de Liouville dans son Mémoire
célebre : Sur quelques cas particuliers ot les équations du mouvement
peuvent s'intégrer. M. Sophus Lie a montré qu’il y avait lieu, dans cer-
taines recherches, de rapprocher de la forme de Liouville une autre forme,
a savoir

ds*=[f(x)y + g(x)]dzdy.

Supposons que deux surfaces S et S’ soient représentables géodésique-
ment 'une sur l'autre, c’est-a-dire que 'on puisse faire correspondre a un
point M de S un point M de §', dans de telles conditions que, lorsque M
décrit une géodésique sur S, le point M’ en décrive aussi une sur $’. M. Dini,
qui a étudié ce probléme, a trouvé que les ds? des deux surfaces ont la
forme de Liouville; le ds® de S étant

(U —V)(du?— ds?),

(1) Get écrit est un résumé du Mémoire qui a remporté, en 1892, le prix Bordin, et dont
Pinsertion sera faite au Recueil des Savants étrangers.

Fac. de T.— VI. P.r .
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11 du? de®\
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il suit de la que tous les ds* compris dans la formule générale (*)

celui de S’ a la forme

d82_<a’U+b’_a’V—|—b' du? . do?
" \aU-+b aV+b alU—+ b aV + b

conviennent i des surfaces géodésiquement représentables les unes sur les
autres, pourvu que @, b, a’, b’ désignent des quantités constantes.

Mais un cas avait échappé a M. Dini. La démonstration de son théoréme
repose, en effet, sur ce beau théoréme de M. Tissot (*), en vertu duquel :
Si lon établit une correspondance ponctuelle entre deux surfaces S, S,
il y a un réseau orthogonal tracé sur S et un seul qui admet pour image
sur S' un autre réseau orthogonal.

Ce réscau est celui qui, dans les formules précédentes, est représenté
par les équations ’

u — const., ¢ == consl.

Or le théoréme de M. Tissot peut tomber en défaut dans certains cas.

Si, en effet, la transformation ponctuelle est conforme, c’est-a-dire si
les lignes de longueur nulle des deux familles se correspondent, tout ré-
seau orthogonal tracé sur S a pour image sur S’ un réseau orthogonal. Je
dois dire cependant que cette circonstance ne suffirait pas pour infirmer le
théoréme de M. Dini.

Mais il se peut, et c’est la 'origine du cas omis par M. Dini, il se peut
que la transformation ponctuelle soit demi-conforme, c’est-a-dire qu'une
seule des familles de lignes de longueur nulle tracées sur S ait pour image
sur ' une famille analogue. Alors le théoréme de Dini n’est plus vrai et an
lieu de la forme de Liouville, c’est la forme de M. Lie qui intervient; les
deux ds? possédent la forme de Lie.

2. La forme de Liouville et celle de M. Lie interviennent encore dans

(1) Ces ds2 forment ce que j’appelle une famille de Dini.

(2) Pour ce qui concerne ce théoréme de M. Tissot, et d’autres questions de la théorie des
géodésiques que je suppose connues du lecteur, on pourra consulter le Mémoire de M. Lie
sur les lignes géodésiques inséré au Tome XX des Math. Annalen, et le Tome II des Le-
cons de M. G. Darboux.
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un autre probléme traité pour la premiére fois par M. Massieu, le pro-
bléme des géodésiques qui possédent une intégrale quadratique par rapport
aux vitesses.

Supposons le ds* donné sous la forme

ds*= 1l dx dy.
L’équation dont Jacobi fait dépendre les géodésiques aura la forme

(I) _P;Tq =1,
ou p, g sont les dérivées partielles en x, y de la fonction de Jacobi. Soit
I'intégrale quadratique

(2) = Ap*+2Bpg + Cqg*=const.;

il faut que, p, ¢ étant tirés de 'équation (1) et de I'équation (2), I'expres-
sion
pdzx +qdy

soit une différentielle exacte pour toutes les valeurs de la constante ¢. La
condition d’intégrabilité donnera

(] & JB dC pq oA
L P , OA 0B dC> ﬂd_ .
<p dy—i—-zpqdy-l—q day) T2 - (Bp + Cg)=o.

Cette équation homogéne et du troisitme degré en p, ¢ doit avoir lieu
identiquement.
En égalant a zéro les coefficients de p®, p*q, pg*, ¢*, on trouve

oA _, 9 _

dy — 7 dox — 7’
20B 106 aB oL aC oL _
A dx+7\0y A dx 2 ()y
OB 1 0A  2A k2B

Oy iz T W o T oy T

>N

On a d’abord
A =X =fonction de =z,

B =Y =—=fonction de y,
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et 1l vient ensuite

2IBYH vy 9
dx dy

A
—2 g(di}J :lX’+2X %:

_ 2131:f<w'+ 2Y @> dz + <1X'+ 2x-‘?l> dy.
. dy dx

Ecrivons que 'expression sous le signe f est une différentielle exacte et
nous trouvons

021 ! ())\ n — ﬁ)\ 2 ! 07\ "
Cette équation, d’aprés une remarque de M. Darboux (t. Il des Legons,
p- 209), exprime, lorsque X, Y ne sont pas nuls, que les variables

x'—f@_ y’—- d'_y
S T T Y

font prendre au ds* la forme de Liouville.
Si au contraire X (ou Y) est nul, par exemple X = o, les variables

dy
==, = [ =2
’ /\/Y

font prendre au ds? la forme de Lie.
Si X, Y étaient nuls en méme temps, on aurait

A=o, B=o, — 2B 2= const.,

et 9 ne différerait que par un facteur constant de I'intégrale des forces vives

P,

On voit donc que, A étant donné, & chaque couple (X, Y) de solutions
de l'équation (D) de M. Darboux correspond une intégrale quadratique et
méme une seule, car ajouter 4 — 2BA une constante, ainsi que le permet la
quadrature, revient 4 ajouter & l'intégrale ¢ le produit de l'intégrale des
forces vives par une constante, résultat qu'on pouvait prévoir.
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3. M. Darboux a fait la remarque que si (X, Y)(X°, Y*) sont deux
couples de solutions de (D) il en est de méme du couple

(aX + 56X’ aY—+bY?),

ol a, b sont deux constantes arbitraires. Cela résulte de la forme linéaire
de I'équation.

I1 résulte encore de la forme linéaire des formules qui donnent A, B, C,
coefficients de I'intégrale ¢, que si p, 9° désignent les intégrales correspon-
dantes aux couples (X, Y), (X° Y*), I'intégrale correspondante au couple
(aX + 06X’ aY + 0Y") sera

ap+ bol.

L’intégrale qui correspond & ce nouveau couple (aX + bX°, aY + 0Y")
n’est donc pas indépendante des deux intégrales ¢, ¢°.

Ceci améne naturellement a distinguer entre les couples de solutions de
I'équation (D). Les couples de solutions (X, Y), (X, Y?), (X Y°), ..
seront dits indépendants si I'on ne peut pas trouver de constantes non
nulles K, K°, K*°, ... donnant lieu simultanément aux identités

KX + KX0+4 KX ... =o,
KY + K°Y? + K®Y® +...=o.

Dans le cas ou, au contraire, une telle identité aurait lieu, un des couples
proposés se déduirait linéairement des autres, et I'intégrale quadratique
correspondante serait une fonction linéaire des intégrales quadratiques qui
se tirent des autres couples.

Si(X, Y), (X% Y°), (X, Y°),...sont indépendants, les intégrales o,
¢°, ¢°°, ... seront aussi linéairement distinctes, car si une expression de la
forme

Ko+ Koo+ K% ...

pouvait se réduire & l'intégrale des forces vives, il faudrait que les coeffi-
cients de p*, ¢* y fussent nuls, c’est-a-dire qu’on devrait avoir

KX + K°X0+ Ko0X® . —o,
KY +K°Y° + K°Y® ., .=,

et les couples de solutions ne seraient pas indépendants.



P.6 KOENIGS.

Ainsi & m couples indépendants de solutions correspondent m intégrales
quadratiques indépendantes linéairement.
ILe probleme que j’ai traité et résolu est le suivant :

Trouver tous les ds* qui admettent pour leurs géodésiques plusieurs
intégrales quadratiques indépendantes.

Tous les ds?* d'une méme famille de Dini admettent le méme probléme
des géodésiques, c’est-a-dire que les mémes équations représentent les géodé-
siques pour tous ces ds*. On voit donc que si un ds® d’une famille de Dini
posséde exactement m intégrales quadratiques pour ses géodésiques, il en
est de méme de tous les autres ds? de la famille.

4. Des calculs directs, que I'on trouvera développés dans le Mémoire que
je résume ici, m’ont permis d’établir les faits suivants.

1° Stun ds* admet pour ses géodésiques plus de trois intégrales quadra-
tiques en dehors de celle des forces vives, il en posséde exactement cinq et
sa courbure est constante.

Il n’y a donc pas de ds* dont les géodésiques possédent exactement
quatre intégrales quadratiques.

2% Si un ds* admet pour ses géodésiques trois. intégrales quadratiques
indépendantes exactement, il convient a des surfaces de révolution.

M. Darboux, cherchant les ds® de révolution qui, outre I'intégrale li-
néaire qu’ils possédent normalement (comme ds? de révolution), possédent
encore une intégrale quadratique pour leurs géodésiques, a trouvé que
ces ds® possedent en réalité deux intégrales quadratigues en sus de leur
intégrale linéaire. Sil'on joint le carré de cette intégrale linéaire aux deux
intégrales quadratiques, on voit que les ds* de révolution de M. Darboux
possédenten fait troisintégrales quadratiques indépendantes. Nousn’avons
donc fait qu’établir la réciproque de ce théoréme de M. Darboux; ses ds?
sont les seuls qui admettent trois intégrales quadratiques exactement.

Ici se placent plusieurs remarques.

Siun ds*d’une famille de Dini a sa courbure constante, il en est de méme
de tous les autres, car ils admettent tous cinq intégrales quadratiques.

Si un ds* d'une famille de Dini convient & une surface de révolution, il
en est de méme de tous les autres. Raison analogue. La premiére de ces
remarques revient a la célebre proposition de Beltrami, d’aprés laquelle les
surfaces & courbure constante sont représentables géodésiquement les unes
sur les autres a ’exclusion de toute autre surface.
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Les ds* de révolution de M. Darboux prétent a4 une remarque analogue.

Je prouve, en effet, qu'ils conviennent & des surfaces qui sont toutes re-
présentables géodésiquement les unes sur les autres.

En sorte que 'on peut dire que, de méme qu'il n’y a qu’un seul probléme

de géodésiques qui admette cing intégrales quadratiques en dehors de
celle des forces vives (les géodésiques des surfaces de courbure constante ),
il n’y a de méme qu’un seul probléme de géodésiques qui admette exacte-
ment trois intégrales quadratiques (les géodésiques des ds* de révolution
de M. Darboux).
1l est fort remarquable que, dansson beau Mémoire du tome XX des Ma-
thematische Annalen, M. Lie soit passé fort prés de ce théoréme. Il en a
démontré toutes les parties, sauf une, omission qui ne lui a pas permis
d’arriver au théoréme général.

5. Je ne terminerai pas les considérations qui concernent ces ds?* de révo-
lution sans mentionner la détermination nouvelle extrémement simple de
ces ds* au moyen des principes précédents.

Si 'on suppose que le ds* proposé ait la forme

glz—y)drdy,
et que (X, Y) soit un couple de solutions de I'équation (D), oti I'on fait
A= g(JL‘ - .}’))

on voit que, le dsne changeant pas si 'on remplace z, y par x + A,y + h,
les fonctions
X(z+1n), Y(y-+h)

constituent encore un couple de solutions de (D). Donc

X(z+h)—X () Y(y+hA)—Y(r)
h g h

constituent aussi un tel couple et, par suite, en prenant le cas de 4 infini-

ment petit, on reconnait que X'(x), Y'() constituent un nouveau couple
de solutions.

On en peut conclure que

(X, Y), (X,Y), (X',Y"),
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sont autant de couples de solutions de 1'équation (D) dans ce cas. On
constate aussi que (1, 1) est ¢galement un couple de solutions. Mais le ds?
ne possédant que trois intégrales quadratiques indépendantes, par hypo-
thése, les couples

(1), (X,Y), (X,Y), (X1, Y

ne peuvent étre indépendants. On a donc deux relations de la forme

aX'+bX'+cX +d=o,
aY +bY 4+¢Y +d—=o.

La discussion de ces équations linéaires & coefficients constants est des

plus simples et conduit, presque sans calculs, a la détermination compléte
de toutes les formes de révolution

gz —y)dedy

qui admettent trois intégrales quadratiques pour leurs géodésiques. Le
Tableau I fournit tous les types de révolution ainsi obtenus (*).

6. Toutes les difficultés du probléme étaient concentrées sur la déter-
mination RIGOUREUSE de tous les ds* qui admettent pour leurs géodésiques
exactement deur intégrales quadratiques en dehors de celle des forces
vives. Je dis rigoureuse, car un principe simple publié par moi dans les
Comptes rendus en 1889 permettait de déduire des solutions déja connues
de nouvelles solutions. Que ces solutions fussent les seules solutions du
probléme, on pouvait le conjecturer, j'oserai méme presque dire le
souhaiter, tant était considérable la complication des calculs directs; mais
conjecturer n’est rien en Géométrie, prouver y est tout.

Si un ds* admet pour ses géodésiques uNe seuLE intégrale quadratique en
dehors de celles des forces vives, il ne poss¢de pas forcément la forme de
Liouville; la forme de Lie peut, en eftet, se substituer & cette forme. Mais, si
le nombre des intégrales quadratiques est Au MoiNs pEUX, des formes de
Liouville sont alors assurées au ds?. 11 était donc naturel de prendre pour
point de départ une de ces formes de Liouville supposée connue.

Je prends en conséquence le ds* sous la forme

ds* =[X,(z,)— Y (y)] dxdy,

(1) On trouvera les Tableaux a la fin du présent Mémoire.
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=y , xr—y

va o T

L’équation de M. Darboux acquiert ainsi la forme suivante

(n7) (X”—Y”)(X.—-Y.)+i(X’—Y’)X'lwi(X’+Y’)V1+(X*Y)(X’1—Y'{ =o.

Va V2
Cette équation admet normalement le couple de solutions (1, 1) qui fournit
précisément I'intégrale quadratique afférente & toute forme de Liouville.
L’existence d’une autre intégrale quadratique exige 'existence d'un autre
couple (X, Y) de solutions de I'équation (D). Le changement de variables

I — [
““f«i U ARV

fera passer (') du type de Liouville & un autre ; pour ce motif, j’appelle X, Y
des coefficients de transformation du ds*.

Il est clair que si (X, Y), (X° Y°), ... sont des couples de coefficients
de transformation d'un ds?, les expressions

a+bX4+cX'4+..., a+bY+cY'+...

constituent un nouveau couple de coefficients de transformation. Si le d/s?
posséde m intégrales quadratiques, I'équation (D’) admet, outre le couple
(1,1), (m — 1) autres couples formant avec (1, 1) un systeme de m couples
indépendants, et le changement de variables le plus général qui améne la
forme de Liouville sera défini par les quadratures

o — dx y= dy
= ) = .
Va +bX +cX0+. .. Va-+bY +cYo+. ..

Jappelle type essentiel le type de Liouville le plus général que 1'on
obtient de la sorte et variables essentielles les variables z’, y'.

Pour certaines valeurs particuliéres des constantes a, b, ¢, ... la forme
de Liouville que les variables «’, ' font prendre au ds* peut fort bien
avoir un aspect analytique différent du type essenticl. J'appelle ¢ypes sin-
guliers les types de Liouville que I’on obtient ainsi.

(1) Cela ne serait plus vrai si 'une des fonctions X, Y était nulle.
Fac. de T. — VI. P.

o
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Par exemple, dans le Tableau II qui comprend toutes les formes de
Liouville & courbure constante non nulle, le premier type est la forme
essentielle, les autres ne sont que des formes singuliéres.

De méme dans le Tableau III, qui comprend les formes de Liouville &
courbure constante nulle, le premier type est seul essentiel.

Nous avons formé dans le Tableau IV tous les types essentiels des ds* de
révolution.

Le Tableau V offre au contraire tous les types singuliers correspon-
dants.

7. Ici une remarque s'impose. Si I'on se placait, non plus au point de
vue du nombre des intégrales quadratiques indépendantes, mais au point
de vue du nombre des formes de Lioucille distinctes qu’un ds* peut rece-
voir, il est clair qu’on se placerait dans une position entiérement fausse.

Voila, par exemple, les ds* de révolution dont IV, est le type essen-
tiel, qui ont cinq formes de Liouville bien comptées d’aspect différent,
tout comme les ds® de courbure constante non nulle; la classification
défectueuse dont je parle placerait donc & coté 'une de 'autre ces deux
especes de ds® qui possédent des propriétés si diverses et disjoindrait les
types de révolution, qui en fait sont si étroitement unis qu’ils ont, comme
je l'ai dit, le méme probléme de géodésiques. La classification la plus
rationnelle est celle quia pour base la considération des intégrales quadra-
tiques.

8. Jarrive actuellement au principe auquel j’ai fait déja allusion et qui
permet de déduire des solutions nouvelles d’une solution connue.

L ¢équation (D) est symétrique. Elle exprime tout aussi bien que X, Y
est un couple de coefficients de transformation du ds®

(X,—Y,)dxdy,
et que X,, Y, est un couple de coefficients de transformation du ds*
(X — V) dz, dy,.

Jappelle réciprogues (') ces ds* qui se correspondent d’une maniére si
curieuse.

(1) Cette remarque et toutes ses conséquences ont été publiées par moi en octobre 1889
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Jappelle également réciproques les surfaces qui admettent deux ds*
réciproques.

Les surfaces réciproques jouissent d’une propriété remarquable d’aprés
laquelle les géodésiques de 'une ont pour images sur Vautre des coniques
géodésiques au sens que M. Dini a attribué a ce nom (woir Darsovx,
Lecons, t. IIT).

Si un ds* admet des coefficients de transformation (X, Y), (X?, Y?),
(X00, Yo0), ..., il posséde une infinité de réductions au type de Liouville
et, par suite, il existe une infinité de ds* de Liouville qui sont réciproques
chacun & une forme de Liouville équivalente au ds* proposé. L’ensemble
de tous ces réciproques est contenu dans une formule unique que le prin-
cipe de réciprocité suffit a rendre intuitive, c’est la suivante :

<a’+b'X+c’X°+... a+bY+c'Y+..D L dax? . dy? >
a+bX +cX0+... a—+—bY+cY“+...> a+bX +¢cX'+... a+bY +cY'r...)

Il est naturel d’appliquer cette méthode aux ds* a courbure constante
nulle ou non nulle. Il suffit pour cela, sans méme recourir a la formule que
nous venons d’écrire, d’appliquer le principe a tous les éléments des
Tableaux IT et III. Nous avons ainsi formé le Tableau VI des réciproques
des formes & courbure constante nulle et le Tableau VII des réciproques
des formes & courbure constante non nulle.

La derniére forme VI du Tableau VI est de révolution, mais les autres
n’admettent généralement que deux intégrales quadratiques. Nous disons
généralement, parce que, pour ceriaines valeurs des constantes, les
formes du Tableau VI, comme aussi celles du Tableau VII, reproduisent
des formes des Tableaux précédents, c’est-d-dire des formes de révolution
ou & courbure constante. Il y a méme lieu d’observer que toutes les formes
des Tableaux I, II, III, IV, V sont comprises comme cas particuliers dans
les Tableaux VI ou VIL.

Mais, tant que les constantes n’ont pas ces valeurs spéciales, les ds* des
Tableaux VI (sauf VI;) et VII n’admettent que deux intégrales quadra-
tiques : ce sont donc des solutions nouvelles du probleme.

aux Comptes rendus de U’Académie des Sciences. Depuis, en janvier 1891, j’ai déposé a
PAcadémie un pli cacheté contenant tous les Tableaux qui accompagnent le travail actuel,
ainsi que la méthode qui me permet d’établir la généralité des résultats. Par contre,
ce qui a trait au probléme de M. Lie n’a été I'objet d’aucune Communication antérieure, sauf
celle du 26 novembre 1892 a la Société Philomathique.
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9. La question qui se pose naturellement a cet instant est la suivante :
Quels sont parmi ces nouveaux types ceux qui sont essentiels et quels sont
les types singuliers? La réponse est des plus simples.

Tous les types du Tableau VI (on met VI, a part) sont singuliers; tous
les types du Tableau VII sont essenticls : ce sont les types essentiels des
types du Tableau VI.

Nous supposons, bien entendu, qu’on établit une concordance entre les
conslantes des ds* du Tableau VI et celles du type essentiel correspondant
du Tableau VII.

Par exemple, le type VI, qui est singulier et qui s’écrit

z — X -y
a cos 2 Y -+ b a’ cos Ty + 0
2

+ dzx d
e Yo
sin? ———

=
sm?—‘—)—/

admet le type essentiel
ILo[p(E+n)— p(E—m)] +2L[p(E+n+ o) — p(E — 0+ )] dida,
ou l'on a
Ly——a—b, Li—ma—b, Li=—da+0, Ly=d-+0.

Voici, du reste, quelle est la correspondance entre les types des Tableaux
VI et VII.

Le type VII, admet le seul type singulier VI,.

Le type VII, admet deux types singuliers VI, et VI,.

Le type VII; admet le seul type singulier VI,.

Le type VII, admet le seul type singulier VI;.

Enfin le type VII; n’admet aucun type singulier, fait bien curieux qui
est & rapprocher de ce fait tout opposé que le type I'V, de révolution pos-
sede quatre types singuliers. '

Je ne mentionnerai qu’en passant les calculs auxquels donne lieu la
démonstration de ces divers faits, calculs qui offrent d’élégantes applica-
tions des formules de la théorie des fonctions elliptiques.

Si I'on applique aux ds? de révolution des Tableaux I'V, V le principe de
réciprocité, on reproduit ces ds* eux-mémes; cependant, si 'on envisage
les types du Tableau I, lesquels se trouvent naturellement reproduits dans
le Tableau V, on trouve pour leurs inverses des ds* du plan.
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Le principe de réciprocité se trouve donc épuisé et I'on ne peut plus
rien en attendre. Mais, et c’estlala question précise qui constituait toute la
difficulté du probléme, cela n’est pas surprenant : I’emploi du principe
de réciprocité nous a tout donné.

10. Avant de passer & I'indication de la méthode qui me permet d’établir
rigoureusement cette proposition, je veux indiquer une application du prin-
cipe de réciprocité.

Nous ne nous sommes pas préoccupés des ds* qui admettent des formes
de Lie. Nous avons bien vu que tout ds* qui posséde plusieurs intégrales
quadratiques admet des formes de Liouville, mais rien n’empéche qu’il
admette en méme temps des formes de Lie. Il faut et il suffit pour cela
qu’il admette une forme (I) dont un des couples (X, Y) de coefficients de
transformation contienne une fonction nulle, par exemple Y = o. Mais
alors la forme (F) sera réciproque a la forme de révolution

Xdz, dy,.

Ici deux cas a distinguer :

Si X dx, dy, a une courbure variable, cette forme est 'une de celles du
Tableau I, et nous venons de dire que les formes du Tableau I ont pour
réciproques des formes de courbure nulle. Nous obtenons donc d’abord
pour () toutes les formes & courbure nulle.

Si, au contraire, X, do dy a une courbure constante, la forme réciproque
(F) sera I'une de celles des Tableaux VI ou VII.

1l faut donc chercher dans VI, VII les formes (F) qui ont un couplé de
coefficients de transformation comprenant une fonction nulle. On peut se
borner & rechercher les types essenticls, c’est-a-dire qu’on peut se borner
a chercher dansle Tableau VII. Nous trouvons ainsi les types VII, et VII,.
Si nous avions cherché dans VI, nous n’aurions trouvé que VI,, type sin-

gulier de VII,;.

1. Jarrive actuellement & la démonstration de la proposition qui consiste
en ce que les Tableaux précédemment formés contiennent toutes les solu-
tions possibles de ce probléme : Trouver tous les ds* dont les géodésigques
possédent plusieurs intégrales quadratiques.

La question se raméne & cette question d’Analyse : Trouver toutes les
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solutions de I'équation

/
(X —=Y)(X"—Y") + -\-/?l:(X; —Y)HX/
() ; >
— ;/—i(x; + Y)Y + (X —Y)(X,—Y!)=o.

Abel, dans un Mémoire inséré au tome I de ses OF usres, intitulé : Meé-
thode générale pour trouver des fonctions d’une seule quantité variable,
lorsqu’une propriété de ces fonctions est exprimée par une équation
entre deux variables, s’est occupé de ce genre d’équations.

Etant donné une équation telle que (D’), il faudra former suivant Abel,
par voie de différentiation et d’élimination, une équation différentielle ne
contenant plus que I'une des fonctions; il faudra intégrer cette équation
(E), transporter son intégrale générale dans (D") et s’efforcer de déter-
miner les constantes arbitraires qui y figurent de maniére a I'adapter &
I'équation (D). Ainsi, aprés avoir di chercher 'intégrale générale de (E),
on n’aura, le plus souvent, a utiliser qu'une solution particuliere de cette
équation. On risque, en conséquence, de compliquer le probléme en s’im-
posant l'intégration de (E). Il se peut qu'on ne puisse trouver l'intégrale
générale de (E) et que cependant la proposée (D) puisse étre intégrée.
Enfin la méthode d’Abel conduit souvent, et c’est ici le cas, a des calculs
compliqués qui la rendent impraticable.

Je me suis donc vu forcé de demander a d’autres principes les moyens de
parvenir aurésultat. La théorie des fonctions m’a été du plus grand secours. Je
développerai ailleurs la théorie générale qui est sortie de mes recherches(").
Je me renfermerai ici dans les limites du probléme qui nous occupe.

12. Je prouve d’abord que les fonctions X, Y, X,, Y, sont des fonc-
tions de leurs arguments respectifs, uniformes dans tout le plan, n’ayant a
distance finie d’autres singularités possibles que des poles.

Je prouve ensuite que tout podle de I'une quelconque de ces fonctions est
forcément double et a résidu nul. Clest-a-dire que, dans le domaine d’un

(1) Dans la séance du 13 février 1892, j’ai communiqué & la Société Philomathique une
proposition générale concernant les équations fonctionnelles, et j’ai fait connaitre la grande
utilité de la théorie générale des fonctions dans ce genre d’équations. Clest dire que dés
cette époque les principes essentiels de ma méthode générale n’étaient un mystére pour per-
sonne.
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pole a, la fonction X, par exemple, est de la forme

A : oy
@ —ap ~+ fonction entiére.

Je montre aussi que, si a est un pole de X, les fonctions X, Y, vérifient

la relation
X, _a__ +5> =Y (ﬁ_ ——z\ ,
(7 5 7)

Y, (u) =X,(ay2 — w).

Il en résulte aussitdt que, si @, b sont deux péles de X, (@ — b) /2 est
une période de X, Y,. :

Les poles de Y possédent des propriétés analogues, et enfin les poles de
X,, Y, fournissent des résultats identiques pour les X, Y.

Signalons en particulier ce fait : si zéro est un pole de Y, les fonctions
X, (), Y,(=) sont égales; donc, dans tous les cas ou Y aura un pole, il suf-
fira de changer y eny + k, ce qui est sans importance, pour donner au
ds* la forme

en sorte que

[F(z+y)—F(z—y)ldedy.

Mais le fait le plus saillant est le suivant :
Si a, b, ¢ sont trois poles de I'une quelconque des quatre fonctions et

si le rapport
b-—a

c—a

n’est pas un nombre réel commensurable, les fonctions X, Y, X,, Y, sont
doublement périodiques. I1 est alors trés aisé de trouver la forme générale
que doivent avoir ces quatre fonctions et de reconstituer ainsi les solu-
tions doublement périodiques que I'on voit figurer dans les Tableaux.

13. Restent les autres cas, ol pour tout systéme de péles d'une des fonc-
b—a
c—a
du cas ou X, Y auraient moins de trois poles, je fais voir que tout coefficient
de transformation relatif & une forme essentielle posséde stirement au moins
un podle, 4 moins d’étre constant; que s'il n’en posséde qu'un il a la
forme

tions le rapport

est un nombre commensurable; car, pour ce qui est

A
(x +a)? +B,

ct que dans tout autre casil en posséde au moins trois.
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Je détermine ensuite la forme générale que peut avoir dans cette hypo-
these le coefficient de transformation d’une forme essentielle, et je trouve
que, outre le type déja trouvé, on a seulement le suivant

A cos z + B
—_— + (.

. X
sin? —
a

En résumé, tout coefficient de transformation d’un type essentiel a I'une
de ces formes
X
A cos ~ - B

+B, — +C.
. £
sin? —
a

A

A,

J'observe d’abord que le cas d’un coefficient de transformation constant
peut étre écarté, car le ds? est alors réciproque d’un ds? de révolution et
nous possédons dans les Tableaux tous les ds* de cette sorte. En ce qui
concerne les deux autres cas, on peut toujours, en changeant, s’il y a lieu,
x — a en x, supposer que & est un poéle pour X et pour Y; le ds* a alors la
forme

[F(z+y)—F(z—y)ldrdy,
et la fonction F est paire.

Soient, dans ces conditions, ¢(x), $(y) un couple de coefficients de
transformation du ds®. Eu égard a la parité de la fonction F, le ds® ne
change pas si 'on échange x'ety; donc ¢(y), Y (x) constituent encore un
couple de coefficients de transformation du ds*.

On a donc, si’'on écarte les ds* qui admettraient plus de deux intégrales
quadratiques, car on les a déterminés directement ('),

Y(r)=ao(x)+ 3,

¢ () =ad(y) +3,
c’est-a-dire '
Y(z) =2¢(s) +B, ¢ (z) =ad(zs)+ 5,
ce qui exige que v
1 B4 af =1, (a+T1)B=o.

Le cas de &« = — 1 ne donne rien.

(1) La méthode s’étendrait aussi aux ds? de révolution; mais j’ai cru inutile de revenir
sur leur détermination.
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Restent donc le cas de o =1 et par suite B=o.
On a, dans ce cas,

Y (s) =¢(3)-
Les deux coefficients de transformation sont alors tous les deux, ou bien

A A
ou bien
Acosz+B Acosy+B
sinzz sin’y

Dans le premier cas, le ds* est réciproque du ds?* 1I, de courbure con-
stante; c’est donc le type essentiel VII,; dans le second cas, une remarque
simple prouve que A doit étre nul; le ds* est réciproque du type II, de
courbure constante : ¢’est donc le type essentiel VII,. Le cas laissé de coté
ot 'un des coefficients de transformation est constant (on peut dire nul)
. nous aurait donné évidemment les types VII; et VII;, également essentiels.

Nous obtenons donc tous les types essentiels du Tableau VII et nous
n’obtenons qu’eux ().

14. A Pégard du type VII,, nous ferons remarquer qu'il ne différe pas
de celui que M. Darboux avait fait connaitre au Tome II de ses Legons,
p- 212. '

Mais les autres types constituent des éléments véritablement nouveaux a
coté de celui-la.

Cependant, le type V1I, joue dans la question un réle important que fait
prévoir un théoréme que je vais démontrer.

Tout ds* du Tableau VII résulte de la réduction au type (X, —Y,)dx dy

d’une forme
F(u) F(¢) du® de?
[G(u) N G(v)] [G(u) N G(v)]’

ou F, G sont deux polynémes du quatriéme degré quelconques; cette forme
garde son aspect si I'on effectue sur «, ¢ une méme transformation linéaire

(1) Nous ferons observer que, en nous bornant a rechercher les formes essentielles, nous
avons déja considérablement simplifié le probléme.

Fac.de T. — VI. P.3
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de la forme
&

Ty

(3]

+8
19

4]

Si G(u) a ses racines distinctes, on pourra ramener G(u) a la forme
canonique de Weierstrass et obtenir le type VIIL,. On aura le type VII,
si I'équation a deux racines égales;le type VII, si G(u)est carré parfait; le
type VIL si G(u)a un diviseur cubique, et enfin le type VII; si G(u) est
une puissance quatriéme exacte.

J'ajouterai que, en toute hypothése, si F et G ont un diviseur commun
du second degré, le ds® convient & une surface de révolution, et & une sur-
face & courbure constante si F et G ont en commun un diviseur cubique.

Ceci posé, il est clair que les ds? de la famille de Dini

. F(u) F(v) du? dy?
* [G(u) +kF(w)  G(v)+ /cF(v)] [G(u)—l— kF(u) G(V)—!—/{F(V)]

ont tous le méme probléeme de géodésiques que le ds® proposé que je
représente par E,, tandis que E; sera '¢élément général de la famille.

Or, si 'on exclut le cas ou G(u) et F(«) auraient en commun un facteur
carré (cas ou le ds® serait de révolution), on voit que G(u) -+ kF(u) aura
généralement ses racines inégales, c’est-a-dire que VII, sera le type essentiel
de E;. On a donc ce théoréme :

Tout ds* qui admet deux intégrales quadratiques exactement pour ses
géodésiques est représentable géodésiqguement sur un autre qui est dans
le méme cas et qui est réductible au type VII,.

On voit méme que VII, est le type essentiel de 'élément général d’une
famille de Dini de ds* qui admettent exactement deux intégrales quadra-
tiques. | _

On sent encore la se poursuivre cette extension du théoréme de Beltrami
que nous avons constatée dans les ds* de révolution. Tous les ds* qui
admettent deux intégrales quadratiques admettent méme probléme de
géodésiques qu'un ds* d'un type déterminé VII, ; mais ici ce type contient
des constantes qui varient d’un type & l'autre.

15. Pour ce motif jai fait du type VII, une étude particuliére, et je suis
parvenu en ce qui le concerne & quelques résultats dignes d’intérét. Ecri-
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vons ainsli ce ds? :
ds*=— AS,+ BS,+ CS,+ DS,,

ou je fais, pour abréger,

o=[p(z+y)—plz—y)ldzdy,
Si=[p(x+y+w)—plx—y+ o;)]dzdy.

Les coefficients A, B, C, D sont ce que j’appelle les invariants du ds*.
Le ds?® reste identique & lui-méme si 'on fait varier le module des fonctions
elliptiques, en conservant les invariants.

1l reste identique a lui-méme si lon permute de toutes les maniéres les
quantités A, B, C, D, en sorte qu'avec une méme fonction elliptique le ds®
peut prendre de vingt-quatre maniéres la forme VII,.

Ainsi les ds?

AS,+ CS,+ BS,+ DS;,,
DS, +AS, + DS, -+ CS;

sont autant de formes différentes du méme ds>.

Les relations avec le type singulier sont extrémement simples.

Le type singulier est, en effet, en conservant a A, B, G, D leur significa-
tion précédente,

EoX L BA) (D=0 eosT L (D0
Py -+ dzdy.

2 sin? %

(B—A)cos

2 sin?

Ce qui, avec un léger changement de notation, s’écrit encore

A B C D
— P — z — -+ - - - o dz dy.

sin? : cos*——=  sin’

En permutant A, B, C, D de toutes les maniéres, le ds® reste identique a
lui-méme, en sorte que le type singulier VI, peut étre atteint de vingt-
quatre mani¢res comme toute forme elliptique dans le type VII,.

On doit donc regarder comme entiérement défini un ds* du type VII,, si
I'on connait ses quatre invariants A, B, C, D, abstraction faite de toute
relation d’ordre entre ces quatre invariants, qui entrent symétriquement
dans la conception du ds*.
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Le ds? étant donné sous la forme
F(u) F(v) duw? dv?
[G(Tt) - G(V):l [G(U) o G(")]’

les invariants se calculent sans peine ; @, b, ¢, d étant les racines de G (u) = o,
ils ont pour expressions

F(a)
G (a)’

F(b)
G ()’

F(c)
G?(c)’

F(d)
16 16 16G'2(d)’

ce qui permet d’écrire d’emblée les formes VII, et VI, du ds*.

Nous avons ainsi le moyen de reconnaitre I'identité de deux ds* donnés
chacun par deux polyndmes I, G.

Les invariants interviennent encore dans la forme que M. Darboux a
donnée dans ses Legons au type de ds* que nous considérons.

Considérons en effet le ds?

NGy T @ =y T a=a T ey [T

la transformation z'= tang‘-;f, y = tang% suffira pour le ramener a la

forme

B D A C )
— w5 —+ -+ = dz dy.
sin® — Yo cosr? _?_ Yo st Y cos 5-2—3—’

Le ds? ci-dessus est donc réductible au type VII, et A, B, C, D sont ses
invariants. Mais on voit de plus que, si dans la formule

[t oy ey — G
(2+y) (2—y) =y (-+zy) )
on permute A, B, C, D de toutes les maniéres possibles, le ds* ne changera
pas; on constate aisément que ces permutations reviennent & un groupe de
substitutions linéaires effectuées sur les variables x, y.

Interprétées sur le type VII,, ces substitutions fournissent un exemple
des transformations du premier degré dans les fonctions elliptiques.

Nous retrouverons un emploi fort élégant des invariants & propos du
probléeme de M. Lie. Mais, avant de passer & ce probléme, je voudrais dire
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un mot d’une représentation remarquable sur le plan des lignes géodé-
siques qui possédent deux intégrales quadratiques.

16. Les lignes géodésiques du ds*
F(u) ;.F(V):I[ du*  dv? :|
[G(u) G(v) | LG(u) G(v)
ont pour équation finie

du dy o
f\/G(u)—FaF(u) f\/G(V)+dI*‘(V)

ol a, b sont les deux constantes d’intégration. Comme F(z), G(u) sonl
des polynoémes du quatriéme degré, on est donc ramené a I'équation d’Fu-

ler.
Soit la conique représentée dans un plan quelconque par 1’équation

Y2 47X = o;
on vérifie cette équation en posant

X=2¢ Y =2¢, 7—r1,

ol ¢ est un parameétre arbitraire. La tangente au point ¢ de la conique a
pour équation
X—tY+*Z—=o.

1

Si d’un point X, Y, Z on méne deux tangentes a la conique, les para-
métres Z, ¢’ des points de contact seront racines de I’équation précédente;
on aura donc
Z_ Y _X
I

t4+t

On peut dés lors substituer, avec M. Darboux, les coordonnées ¢, # aux
coordonnées X, Y, Z d'un point. Une équation entre ¢, ¢ représente une
courbe; en particulier, I'équation la plus générale en ¢, ¢ symétrique par
rapport a ¢, ¢, du second degré en ¢ et de second degré en ¢, correspond a
la conique la plus générale.

Si-

AX?4- A'Y2 4+ A"72+ 2BYZ + 2B'ZX +2B"XY =o¢
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est I’équation en coordonnées ordinaires d’'une conique quelconque, on a,
pour I'équation de cette conique en coordonnées ¢, ¢,

o(L, )=A "+ At + U2+ A"+ 2Bt + ')+ 2Bt/ + 2B "t/ (t + t')=o.
En ordonnant, on peut écrire cette équation ainsi
{3
ot il se trouve que
H(¢{)y=—a"t"+2bt*—(a’+2b" )2+ 2b"¢t —a,
en désignant par a, a’, a”, b, b’, b” les coefficients de la forme adjointe

a=A'A"— B,
a’=A’A—B?  a’=AA'—B", b=B'B'—AB,
b=B'B—A'B, b'=BB —A'B".

A cause de la symétrie, on aurait aussi

1 /do\?
A (W) = H(¢).
Mais le lOﬂg de cette conique, on a

__ 09 99 ., .

done, a cause des relations précédentes, on a aussi

dt dt’
VH(?) — VH(D)

+

—= 0.

Donnons-nous deés lors une équation d’Euler

dt dt
i e ——— 0,

vH(2)  VH(?)

H(¢)=lt"+ mb+ nt* + pt + q,

cette équation d’Euler aura lieu en tous les points d'une conique dont les
coefficients de I'équation tangentielle a, a’, a”, b, b’, b” vérifient les condi-
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tions d’identification
—a'=/ 2b=m, —(a’'+2b')=n, 2b"=p, —a=q.
L’équation tangentielle d'une telle conique sera
(— g8 — 12+ mni —ntf 4+ pin) +a' (n*— k) =o.

Une constante a’ y demeure arbitraire; les coniques en question forment
donc un faisceau tangentiel dont fait partie la conique n*—U{§ = o, qui
n’est autre que la conique fondamentale

Y? —4ZX =o.

On voit comment, par I’emploi des coordonnées de M. !Darboux (Sur
une classe remarquable de courbes et de surfaces), 'équation d’Euler
se trouve intégrée par un faisceau tangentiel de coniques.

Revenons & nos géodésiques. Supposons que

F=Iluvt+muw+nu*+pu+gq,
G=lv'+mud+n'uw*+putq';

dans notre équation d’Euler, le polynéne H est G + aF'; nous aurons pour
chaque valeur de @ une équation d’Euler, et le faisceau de coniques inté-
grales sera représenté par I'équation tangentielle

—(¢'+aq)&— (I' +al)n*+ (m' + am)nf — (n' + an) ¢§
+ (P +ap)in+a' (n*—E) =o,
ou encore
(—q' 8=V +m'nl—n'CE+p'En)
+a(— g8 — I8+ mnf—nll+pln)+a'(n*—L&)=o.

Quand a et a’ prendront toutes les valeurs possibles, nous aurons toutes
les géodésiques de notre ds?, et, d’autre part, nous obtiendrons dans le
plan représentatif un réseau tangentiel de coniques.

On voit donc comment il se fait que les surfaces qui possédent les ds? du
type VII puissent se représenter point par point sur un plan, de telle ma-
niére que I'image de leurs géodésiques soit un réseau tangentiel de co-
niques.

J’ajouterai que, si les coniques du réseau touchent deux droites fixes, le



P.24 KOENIGS.

ds* est de révolution, et que sa courbure est constante si les coniques du
réseau touchent trois droites fixes.

Cette derniere proposition comprend le théoréme de M. Beltrami, car
les coniques inscrites dans un triangle X = o, Y = 0, Z = o ont pour équa-
tion

l\/)—(—t—mﬁ—i—n\/z:o;

il suffit de faire la transformation ponctuelle
X' =VX, Y =Y, 7 =\1L

pour transformer ces coniques dans les droites du plan, c’est-a-dire pour
obtenir une représentation des géodésiques par les droites du plan.

17. M. Lie, dans un beau travail inséré au Tome XX des Mathematische
Annalen, a étudié les géodésiques avec transformations infinitésimales. Il
a distingué trois cas principaux suivant que la transformation est conforme,
demi-conforme on non conforme. Il a résolu tous les cas possibles de trans-
formations conformes ou demi-conformes, mais en ce qui concerne le cas
général, il se borne a former une équation contenue dans celle de M. Dar-
boux. L’éminent géométre norvégien a toutefois considéré un cas impor-
tant, mais exceptionnel, ‘dans lequel la transformation infinitésimale con-
serve un réseau isotherme de coniques géodésiques. 1l restait & trouver les
autres cas, c’est-a-dire a trouver le cas général. Dans ce cas général, le ds*
posséde, d’aprés M. Lie lui-méme, deux intégrales quadratiques pour ses
géodésiques; nous devons donc nous attendre a le trouver parmi les ds?
du Tableau VII.

Mais ici intervient utilement la remarque déja faite que tout ds? a deux
intégrales quadratiques est représentable géodésiquement sur un ds* du
type VII,. Nous pouvons, grice a cette remarque, nous borner & chercher
les types réductibles a VII, qui possédent une transformation infinitési-
male de leurs géodésiques.

Les invariants du type VII, fournissent une réponse dont la simplicité
est inespérée.

1l faut et il suffit pour qu’un type VII, posséde une transformation
infinitésimale de ses géodésiques qu’un des invariants A, B, C, D soit
nul, par exemple D = o, et en outre que les trois autres vérifient une
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relation de la forme
+=VAEYB =\/C=o.

18. Il peut arriver accidentellement que deux des trois invariants res-
tants soient, en outre, égaux, par exemple B= C; on ne saurait avoir
A = o car le ds* serait de révolution; il faut donc que I'on ait dans ce cas

+=VA+=(/B+yC)=o
ou
+\VA*=2\/B=o,
cest-a-dire A = 4B = 4C.

Comme il importe peu de faire C =r1,onauraB=C =1, A =4, et l'on

obtient le ds* remarquable

. LT L L+
sm’—o—‘ sin? ———-

S
N

qui poss¢de une transformation infinitésimale de ses géodésiques cluneseule.
Mais ce qui est trés digne d'intérét, c’est que sur ce ds?, qui ne contient
aucune constante, sont géodésiquement représentables tous les ds* qui
admellent une transformation infinitésimale de leurs géodeésiques.

‘n cela consiste la solution qui manquait a M. Lie.

J’ai complété en divers autres points les résultats de M. Lie. C’est ainsi
que les seuls ds* de révolution jouissent de la propriété d’admettre trois
transformations infinitésimales de leurs géodésiques; une de ces transfor-
mations est toujours conforme. Il n’y a donc pas, contrairement a ce
qu’avait pu augurer M. Lie, de géodésiques possédant trois transforma-
tions infinitésimales non conformes. ‘

Jajouterai que, dans le cas des géodésiques & transformations infinitési-
males, le réseau représentatif des coniques peut se définir comme il suit.

On prendra deux coniques A, B telles qu’on puisse inscrire dans A une
infinité de triangles T circonscrits & B; on prendra une tangente D' com-
mune & A et & B. Les coniques tangentes a D et inscrites aux triangles T
forment le résecau demandé.

On observera que nous avons ainsi, par le fait, résolu cette question :

Trouver les réseaux tangentiels de coniques qui possédent une trans-
Sformation infinitésimale ponctuelle.
Fac.de T. — VL. P.['

#
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TABLEAU 1.

Formes de révolution 4 intégrales quadratiques sous leur aspect
caractéristique de révolution g (x Fy)dxdy.

< X —y y—x .
a\e * +e ? )—i—b -
- ————durdy,
roy YAz '
(55

Couples de solutions de I'équation (D) (1, 1) (e, e¥)(e=2, e=¥).

1. ds? =

x+y

ds? ::(ae_ 7+ be—(x*'ﬂ) dx dy,

o

Couples de solutions de (D) (1, 1)(o0, e¥)(e?, o).

Couples de solutions de (D) (1, 1)(.r, ) (.x2, y2).

k. ds*= (@& + y)du dy,
Couples de solutions de (D) (1, 1) (., ¥)(0, 1).
Remarque. — Le premier type peut encore s’écrire

xl - (,y!

a cos + 0

ds? —

dx/ d A
L —y )
sin?

2

avec les couples de solutions de (D) (1, 1) (cosa’, cosy’) (sinz’, siny’).
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TABLEAU II.

Formes de Liouville & courbure constante non nulle.
ds*=[p(z+y)—p(x—y)ldzdy.
Expression générale des coefficients de transformation [®(.x), @ (y)],
O()=Lyp(@)+Lip(x+ o)+ Lip(x +w,)+ Ly p(ar 4+ w3)+ L.

2 0 . 1
ds _[sinﬁ(x +y)  sin¥*(x - y)

]dx dy.

Coefficients de transformation @ (x), ®(y).

L L
O(r)= —— + —2— + Lycosfx + Lycosax + L,.
sinz ' cosizw

1

0 _ - . .
¥ = sin‘l(x-—y)d‘td‘)'

Coefficients de transformation [®@(x), ®(y)].

®(r)= Lysinjx + L;sinax + Lycosgx + Lycosaxr + L.

w=[ iy — )

Coefficients de transformation [®(x), ®())].
Q(r)= Ix—‘g— + Lya?+ Lyxt + Ly2® + L.
dx dy
ds?— —~—.
(z—y)
Coefficients de transformation [®(.x), ®(y)].

d)(‘l): L0x4+ le'vx—f" LQJ/"!-}- Lch +L_r..

Dans ces formules les L sont des constantes arbitraires; p () est’la fonction de M. Weierstrass.
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TABLEAU III.
IFormes de Liouville & courbure nulle.
L ds?:(em—i— eIy 4 ety e—:y>d17dy.

. . er— e~ ¥ v o "(ey — ey v/
Coefficients de transformation 2 —+ u sy A M .
(e*+e~*)* (e¥+ e )2

ds*=(e**Y + e V) dx dy.

H(el‘_e-—d.‘)_l_y } . "J. e.V»..l,_v

Coeflicients de transformation A —+ . —
(e‘l_]_ e—x)z

3. ds*=e*Ydrx dy.

per =4y )\+;L’ey+v’

Coefficients de transformation A -+ P
o

2 ————p
4. (l":(x—ky——x—y )dxdy.
. . . P s e W )
Coefficients de transformation Ax*+4 = +v, Ay *+ 5+,
x= Y
5. ds?:(«z:—l—)'—-;v -—-y) dxdy.
4
Coefficients de transformation Ax?-+ px —+v, Ayi+ —H} + V.
V2
6. ds*=dxdy,

Coefficients de transformation hz®+ px +v, Ay*— p'y + V.

Dans toutes ces formules, A, u, v, p’, v représentent cinq constantes entiérement arbitraires.
Le premier type de ce Tableau, qui est le type essentiel des ds* de courbure nulle peut s’écrive
encore

ds?=(cosx’ +y — cosz'— ') dr'dy’,
avec les coefficients de transformation

cosx' +v "cosy' + v
)x—*—H—.—,,—,"" . H——'}: il
sin°x S]ll‘)'
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TABLEAU 1V.
Types essentiels de ds* de révolution.
1. ds*=Alp(z+y)—plr—y)ldedy +B[p(x+y—+o,)—p(r—y+n)]dedy.
Coefficients de transformation -

[ple)+plx+ o), p(¥)+p(y +o,)l,
[p(x+wy)+p(x -+ w;), p(y+ o)+ p(y—+ o)l

2. ds=A(cosfz+y—coshzr—y)drdy +B(cos2z+y—cosaxr — y)drdy.

L

. . 1 1
Coefficients de transformation (o, — >; : > 0.
sin?2y sin?a2x

I I

3. cls‘l—_—A[ — ]dx dy + B(coszx—f—y—coszx-—y\)(l.rdvy.

sintfx+y sinoc—y

. . I
Coefficients de transformatmn( ! >, ( ! ! >

v P b 0} Y Yy >
sin*x sin?y cos?’x’ cos’y

13

k. ([.c‘-’:A(.z' +‘y"———x——y )dwduy—l— B(x +~y2—x—yz)d.c(l‘)'.

\ . . I ’
Coefficients de transformation <—,,, 0>, (o, lﬁ)
x? 2

Dans ces formules, A, B sont deux constantes qui changent d’un ds* a I'autre.
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TABLEAU V.
Types singuliers des ds* de révolution (*).
Types équivalents au type essentiel IV,.

xXr —
a cos Y +b

1. ) - drdy.

R’
sin? ————
2
Coeflicients de transformation (cosx,cosy), (sinz,siny).

a b

2. e 4 + L LTy
sin? sin? ———<
2 2

dax dy.

Coefticients de transformation (cosz, cosy), (cos2x, cos2y),

1 1 I \
3. |« s | O o —— | | 4y
cos? Yo o) sin? 2 sintt
2 2 2 2
. . 1 1
Coefficients de transformation (cos2x, cosay), <T—,K,—a —.—°—> .
sin? 2’ sin?y
a b
3 [ ; + . ] dzdy.
(x+y)2 (z—y)
Coefficients de transformation (z*, y*), (22, y?)
Types équivalents au type essentiel 1V,.
3, [ae—(=+Y) + be~2@+V ] dzx dy,
Coefficients de transformation (e2%,0), (o, e¥).
3 ——3
6. [a—|—b(x+y—.r-—y )]dxdy,
Coefficients de transformation (22, y?), (o, 1).
7. [a(e¥@+y) — e=2@=y) 4 p(e"®+Y) — e~ (==1))]dx dy.

. . 1
Coefficients de transformation [ma 0] (0, e=4Y).

(1) La concordance entre les types du Tableau V et leurs types essentiels du Tableau IV,
s'établit par certaines relations qui permettent d’exprimer les constantes @, b en fonction
des constantes A, B.
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Types équivalents au type essentiel 1V .

[——a—), -+ b] dardy,

(x—y

Coefficients de transformation (x, y), (a2, 3?).

el w0y = el 0 | o =t e

. . I
Coefficients de transformation (.r?, 1?), <—ga ~;>
: L)

[——d——-—4 -+ be?("'+-"7] drdy.

(e‘l‘“)' R e‘\‘—).’)z
Coefficients de transformation (e=2%, ¢=2), (e, ¢=iV),

Type équivalent au type essentiel 1V,.
(r+y)ydrdy,

Coefficients de transformation (., 3), (o, 1).
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TABLEAU VI.

Les ds* réciproques des ds* du plan.

X +y ; xr—y ,
[~ Cos > -+ Vv . cos —2— -+ v
f. s — . — drxdy.
. L& L L= ¥
sin? rry sin® -
2 2

Coefficient de transformation (cosx, cosy).

) u(et=¥ 4 ey—%) 4- v fex+Y 4 v/
2 ds* = | * P
A (64'-_»‘ - eyr—x)z eL+y)

J dxdy.
Coefflicient de transformation (e, ¢*).

er+ry 4y feT=Y 4y
3. ds* = (‘u na + & —‘ ) da dy.

ei‘(x—r_\‘) 62(.1:—3‘;

Coefficient de transformation (€%, 0).

s 5 i v

U ds* = | ray + .+ -+ ] dx dy.
[ ) (l‘ +y)l (x__'},:)ﬁ p .
Coefficient de transformation (a3, »?).

) R -

3. ds*= | hay + — L V(e +y) + ] da dy.
[_ Y =y (x+y)+p )
Coeflicient de transformation (x, v).

6. ds* = (hay 4+ pa +vy +o)drdy.

Ce dernier ds* est de révolution type V si & n’est pas nul, type V, si A est nul; c'est un ds? é
courbure nulle si A, étant nul, . ou v le sont aussi.
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TABLEAU VII.
Réciproques des ds* de courbure constante non nulle.

dss = Aj[p(x +y)—p(x —y)]dedy
+Apz+y+w)—plex—r+o)dedy
+ A [plr 4y +wy) —p(r—)+o)]dedy
( +As[p(x 4y 4+ 03) — p(x — ) =+ oy)] dre dy.

Coefficient de transformation [p(22), p(2y)].

- 1 o 1 1. ’
ds*= Ao [siu?(:r +y)  sin?(r - )‘)J dw )

I [ i
-/ — dxdy
A [cos'z(x —) cos‘-’(x—y)J w4
+ As[cosa(x + y) —cos2(x—y)] drdy
+ Az[cosh(x +y)— cosq(r — y)] da dy.

. . 1 1
Coefficient de transformation { ——, ——; .
in2az sin’2y

dst= Ay [sinf(x+y) —sinf(x —y)] dxdy

‘ +A[cosf(x+y) —cosh(x— y)]dedy
l + Ay [sina(z +y) —sina(z — y)]dedy
+ Aj[cos2(x + y) —cose(a — y)] dx dy.

. . . i
Coefficient de transformation <o, —_— >
5111‘2)’

1 1 ’
- — 4%
ds A, [»(x—i—y)’" (‘l’—)*)zJ durd)

+A[(x+y)— (xr—y)ldedy
+ As[(@ -+ ) — (@ — y) ] da dy
+ A [(2 4+ ) — (2 —y)f | dedy.

. . 11
Coefficient de transformation <——;,, —,)
e

Fac. de T. — VI.

P.5
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~ ds* =— A, (T—r )'4 —_— )'1> dody

) A (0 — (@ — y ) ] de dy

' + Ay [(2 - ) — (0 — )] de dy

+ A (e +y) — (2 — )| dredy.

3

e . I
Coetficient de transformation <0,7>-



