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SUR UNE

CLASSE DE SURFACES MINIMA,

PAR M. X. STOUFF,

Maitre de Conférences a la Faculté des Sciences de Montpellier.

————E———

Riemann a découvert (') des surfaces minima engendrées par un cercle
dont le plan se déplace parallélement & lui-méme et montré que la théorie
de ces surfaces se rattache de fort prés au théoréme d’addition des fonctions
elliptiques. D’une mani¢re générale, le probléme de trouver des surfaces
minima passant par un cercle revient a chercher deux fonctions analy-
tiques telles que, la somme des arguments restant constante, il en résulte
une relation d’une certaine forme entre les fonctions elles-mémes.

Nous partons des formules de M. Weierstrass :

e=1 fu—w)F) du; [(— )G,

(1) y:éf(l—l—u?)f(u)du—éf(l——v?)(j(v)dw,

2

s=[aF(u)du —i—fvg‘(v)dt'.

Cherchons la condition pour que la surface contienne un cercle dont le

(V) OFuvres complétes, p. 311,
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plan soit parallele au plan des xzy. Soit 5 = ¢ I'équation du plan de ce
cercle, R son rayon. Les valeurs de « et de ¢ relatives a un point de ce
cercle satisfont a la relation

(2) [uj(u)du —l—fw(d’((‘)dw:c,

laquelle doit étre ¢quivalente & 'équation obtenue en exprimant que la

section de la surface par le plan 5 = ¢ a un rayon de courbure constant ct
¢gal a . Posons

(3) fuj(u)du:c— v G(eyde =507

Un ¢lément d'are de la courbe est donné par la formule
(4 de =1+ ue)VF («)§(v)dudy,

ou, en tenant compte de I'équation (2),

.
Rl

do =i 21 gr
Vup

a étant 'angle que fait la tangente avec 'axe des x, on a

(14 u2)F(u)du— (14 92)G(v) dv v -ku

3 t =1 z -
(%) anga ‘(I__u‘l)a"(u)du—i—(l—cﬂ)g(w)dv p—u’

l.udv——vdu_ .lﬂ.J’:(u)—i-v?g’(v) .

6 do. = = -
(6) * 2up 202023 ()G (0)
et, par suite,
33 .
ds —R— 2u? 0P (1 4+ ue)F(u)G(s)
do " wrF(u) 4+ G (v)
l)OSOI]S
(7) w=9*(%), v =14 (c—Y),
il vient
- i
= Fme@

et I'équation (7) devient

® Z((CC)) - ﬁfiig =lo0dc =D +[e(D) (e — D1

C’est a la détermination des fonctions ¢({) et ¢/({) jouissant de la pro-
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priété exprimée par I'équation (8) que revient essentiellement le probleme
de faire passer une surface minima par un cercle donné. Les coordonnées
d’un point de la surface s’expriment alors en fonction de deux paramétres
arbitraires { et v par les formules

‘x."'“‘:?’:— @g(t)d@rf;%—):
(9) e a3 - 200 -
w—iy= e f¢(n) 0,
52‘:""‘”,

La formule bien connue d’addition des fonctions elliptiques peut s’é¢erire

enZdngsn—' 4+ cnndnnsn—1iq
thsngsnn —+ (thsnlsnn)~!

(10) thsn(+=n)=

et, en prenant ¢ ({) =ik sng, $(n) = ik sn1n, la formule (10) se ramene
a la formule (8) et montre que les sections de la surface minima par des
plans paralléles au plan des xy sont foutes des cercles. On a ainsi la sur-
face cerclée de Riemann.

II.

On peut satisfaire a4 1'équation (8) par des fonctions plus simples que
celles de Riemann. Posons
a/

2 n— .
e, () =W g e,

{—a

(11) <p(§):7l~§__b

les constantes contenues dans les fonctions (11) devront étre telles que ces
fonctions vérifient 'identité (8), c’est-a-dire

kg 'L 1 '
NI Ta T =0 T c—t—d T c—=7=¥

::I%[x)\/(g"'a)(c_c_‘a’)e/w_'_ 1 (E—=b)(c—=C—=10")

—_— e‘I-'L' .
(E—=b)(c—E—10") W (f—a)(c—C—a')

En exprimant que les deux membres ont méme valeur pour { infini ct en

égalant les résidus des deux membres par rapport aux poles a, b, ¢ — «,

¢ — U, on obtient des équations faciles & résoudre et qui donnent finale-

ment le résultat suivant.
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Pour obtenir des surfaces réelles, on attribue & A une valeur réelle, exte-

rieure & — ili et + ﬁ ; la valeur de AN est déterminée par I'équation
*o2kR=72)eke 4~ ﬁe—/;c’

elle est réelle; les modules de A et de A’ seront tous deux égaux a yAR et
I'on pourra prendre arbitrairement la valeur absolue de leurs arguments,

qui seront égaux et de signes contraires : ¢ étant une quantité réelle arbi-
traire, on aura

_c 22 e# R 5
= T e ’
,_ ¢ 2i) e*R .
A= 0

2 Mpeevke g ’

a+b =b-+a'.
¢ 2M3N3e3keR .
b—=- — 0,

2 AAretke g

¢ 2MN3edkeR .
2 W Nietke 1 9, i

b=

Les intégrations indiquées dans les équations (g) peuvent s’effectuer et la
surface minima peut se représenter par les équations

) 22 —oa , 1 — 2 !
x+w:-——t———-——j_——be“5-—— _1 b —t-ae“‘fn,
- 2k {—0b 2 k)2 n—a
p 12 . i /
p—iy e L ET20 A Ly W n—2d U,
2 k12 {—a 2k n—2>b
s=C+mn,

et v étant deux quantités imaginaires conjuguées. Sil'on a
+n=a+ b =5b+a,

ue est constant. 1l en résulte que le plan 5 = a + 0’ coupe la surface sous
un angle constant.

L’emploi des fonctions elliptiques donne des résultats analogues. Consi-
dérons les expressions

g(c—b—b)o({—a)o(c—C—a)
7(c —b—a)a(a—b)g(L—b)a(c—C—10')’
g(c—a—a)e({—b)o(c—C—b)
sla—bg(c—a—b)o(l—a)s(c—C—a')
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ol ¢ désigne la fonction de M. Weierstrass ('). Elles représentent des
fonctions doublement périodiques de ¢, sila somme de leurs zéros égale
celle de leurs infinis. Cette condition, que nous supposerons réalisée,
revient a

(12) a—b—=a —b'.

Lin les décomposant en éléments simples, on trouve qu'elles sont respecti-
vement égales a

a’(a——b)__a’({—b)_a’(c——C——b') ¢ (c —a—2b")
g(a—b) o(§—b) g(c —=¢—0") + g(c—a—1¥b)

cl
d'(t—a) d(c—¢t—a') a'(a—b) a'(c—b—a’).
g({—a) g(c—{—a') sla—b) ae(c—b—d)

in remarquant que, d’aprés la relation (12),

c—a—b=c—b—ad,

on obtient 'identité

da—b) d(—a) (E—b) dc—f—d) d(c—5—0b)
2a—b) TTt—a)  TC=0b) "sle—t—a) alc—t—=0)’

(13)/  — og(lc—b—>b)o(l—a)o(c—¢—a')

' T ole—b—a)s(a—b)al—byalc—T—0)

g(c—a—a)o({—blo(c—C—0b")
ogla—b)o(c—a—¥b)o({—a)o(c—(—a’)

M

_'_

ue I'on peut ramener a l'identité (8) en posant

g(a—b)o(c—a—b")

R= ’
Vo(c—b—b)g(c—a—a')
() O(E—a) T f— G —a) ey
PO YO=N =y T
A et A étant déterminés par les ¢galités
g /2= b=V T _ / (c—b—b) ~ij5uy
\/cr(c——a—a’) \ g(c —a—a') ’

ol w est une constante arbitraire.

(1) Je suis ici les notations du Livre de M. Weber : Elliptische Functionen und alge-
braische Zahlen.
Fac. de T. — V1. A.2
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Les intégrations indiquées dans les for mules (9) peuvent s’effectuer. Je
dis que

— @(a—0b) a(f—2a+b) s Za=h
cPz(c)—])z[)\za(uz—zb) sC—10) ¢ ( b)]

soit, pour abréger,

ta—h
QE) = _(_(C_Mb_‘i‘_)i) (Zlat
On a
Q(’{—&—col):Q(c)em.«b_mﬂwl%'%_j)
donc aussi
Q'+ w)=0Q(Qe ang(b— ,,ﬂw‘mitn__[ﬁ)
et

6’ (a—1b)
Gla—b)

ANy lb—a)-+2 w5

*(L+w) =9¢*({)e
Q' (D)

Donc ——- s reste invariable quand on ajoute o, a I'argument; on vérifie
de méme qu’il ne change paslorsque 'on ajoute w,. Cette fonction ne peut
d’ailleurs avoir pour pole que @ et ses homologues. Or @ n’est pas un péle;
en effet,

o({—2a+0)=a(b—a)+({—a)s (b—a) +

C=af o —ays...,

a(C—b):a-(a~—b)+(§-a)a"(a——b)+(C;j)go”(a—b)—i—...

et, en faisant le quotient des deux séries

a(C—~2a+b) o' (a — b) g?2(a—b)
m ]+2(C—— ) (a b) 2({'— ) m+...’
on a aussi

G a—h G'la—b)

e 5=t —¢ “Tla—0 [1 +2({—a)

o' (a—0)

,o*(a—b)
sa—p) T2 +]

o*(a—0b)
En effectuant le produit, on voit que Q ({) ne contient ni termes en { — a,
ni termes en ({ — a@)?, donc { = a est un zéro double de Q' ({). Par suite,

Q' (%)
@*(%)
4 une constante, en faisant { = b, on obtient la valeur de cette constante.

la fonction =< est doublement périodique, n’a pas de poles et se réduit
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En faisant les intégrations des formules (9), il vient

5 a*(a—b)o({ —2a + b) zz‘”"_”__x_a(a—b)a(n—ob’—i—a)e_”, La—b)

oy — e A2 Gla—0b) u—I/)
FALy = g(2a—2b)c({— ) AN g(2a—2b)a(n—a’) o
(Ifl) { T — iy — — i g- ((l——b)o‘(C—Qb—}-—a) —2§§((:__:;__}\,__,0'2((l—b)G'(‘/]—-Q(l/—i— b') 2‘,‘:((%/7,’)‘,
( v 22 og(2a—2b)o({—a) g(2a-—20)a(n—10")
s=C—+mn.

Le plan z = ¢ coupe la surface suivant un cercle; il n’en est pas de méme,
en général, des autres plans paralléles au plan des xy. Mais les sections de
la surface par ces plans jouissent d'une propriété qui les rapproche d’un
cercle. Il existe entre leur courbure proprement dite et leur courbure
géodésique une relation linéaire.

En effet, si dans I'identité (13) on remplace ¢ par z, il vient

2a’(a—b) o' ({—a) _a’(C—;b)_ +o-’(:——§~—a’)__a"(:—t,~——b’)
g(a—0b) g(f—a) g({—0b) o(s—C—da) g(s—L—0)
o(s—b—0"Yo(l—a)s(s—C—a)
g(z—b—a)o(a—b)og({—0)a(5—L— )
. g{s—a—a)a({—=0)o(z—(—10")
cla—b)og(s—a—0)o({—a)e(s—L—d)’

) / V(e — v
(15) 28 L= = patbie—2) + o Te@ee — 01,

en désignant par p et o’ les quantités

o(z—b—0b)o(c—a—a) ("—”)g((::?;
e

P = b—d)aa—b)Vale—6—b) ’
s e L ML

o o(z—a—0b)o(a—b)Vo(c—a—a)

Mais le rayon de courbure de la section est, en général, donné¢ par la
formule (8) et, en divisant membre & membre les formules (8) et (15), il
vient

_puv+p
w41’
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mais, si 9 désigne I'angle de la normale avec I'axe des 3,
]
uy = tang? >’

p'+p 1 o —pcoso
> R a2 R’

1=

ce qui démontre la proposition. In particulier, le plan 5 = a + &’ coupe
la surface sous un angle conslant, et il existe des plans qui donnent des
sections dont le rayon de courbure géodésique est constant.

Le méme procédé s’applique a la démonstration du théoréme de Rie-
mann. Il résulte de la décomposition en éléments simples de la fonction

/ My~ W, Wy + 0
a(:)a(:_ ! ._2>a(c—:)a c—fp LT 2)

2 2
[ON / [OF) [OF] [OFY
a'(l’,'— ——)a(l‘— —>a((:—§— ~>o’(c—§—— -—)
2 2 . 2 2,

et de son inverse.




