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B.4ISUR LES ÉQUATIONS AUX DÉRIVÉES PARTIELLES DU PREMIER ORDRE.

si l’équation caractéristique a une racine triple.
(a) Le groupe G, laisse invariante une équation du troisième ordre de

la forme

dont les courbes intégrales sont représentées par

~ ( x) étant une intégrale particulière de l’équation ( r ).
Si, dans l’équation ( 2 ), on remplace y par y + ~,~ (x), elle devient

qui représente les courbes intégrales de l’équation

L’équation différentielle considérée dérive donc, par une transformation
ponctuelle, de l’équation canonique ((2)).

( b) Le groupe G2 laisse invariante l’équation

qui dérive aussi de l’équation canonique

par une transformation ponctuelle; il suffit, en effet, de remplacer dans ( 1 )
y par y -~- ~ (x) étant une intégrale de l’équation ( 1 ), pour obtenir
l’équation canonique (( 3 )).

( c) Enfin le groupe G3 laisse invariante toute équation de la forme

et le groupe G3 les équations de la forme

chacune de ces équations dérive évidemment de l’équation canonique ((1 ))



par une transformation ponctuelle de la forme

Le groupe G ne fournit donc, dans aucun cas, de forme canonique nou-
velle.

( d) Il en est de même du groupe

en effet, ce groupe laisse invariantes les équations du troisièrne ordre com-
prises dans la formule

Si l’on effectue le changement de variables suivant

Inéquation précédente prend la form e ((1 ))?

(c) Reste à examiner le groupe

où P, (X) et P2 sont les intégrales de

Supposons d’abord que les racines de l’équation caractéristique soient
distinctes. Le groupe est alors semblable au suivant

qui ne laisse invariantes que les équations canoniques

Supposons maintenant que l’équation caractéristique ait ses racines



égales. Le groupe est alors semblable à celui-là

les équations invariantes qui lui correspondent sont données par la for-
mule

chacune de ces équations dérive par une transformation ponctuelle ~x~, = k x)
de l’équation canonique

Le groupe considéré G ne fournit donc pas de forme canonique nou-
velle.

3. Les groupes à quatre paramètres de la troisième catégorie sont au
nombre de trois.

(a) Considérons d’abord le premier

Si m = 2, le groupe ne laisse invariante que l’équation canonique déjà
obtenue

Si /?~~ 2, il y a une infinité d’équations invariantes, à savoir celles qui
sont données par la formule

où k désigne une constante.
Il est aisé de voir que, pour une valeur donnée de m, ces équations déri-

vent toutes (sauf l’équation y"‘ = o qui correspond à de l’une
d’entre elles,

par une transformation ponctuelle. En effet, il suffit, pour passer de l’équa-



tion (I) à l’équation ( 2 ) , de remplacer y par Ây, h étant déterminé par

Dans la suite nous prendrons

Remarquons, dès maintenant, que l’équation (2) dérive, dans le cas où

de 1’équation canonique

par une transformation ponctuelle (voir page 41).
( lo ) Le second groupe à examiner est le suivant

à ce groupe correspond une infinité d’équations du troisième ordre inva-
riantes, à savoir les équations de la forme

où k désigne une constante quelconque. Chacune de ces équations dérive,
par une transformation ponctuelle, de l’équation

il suffit, pour le voir, de remplacer dans l’équation (i)y par y + i x2Lk.
(c) Le dernier groupe à quatre paramètres de la troisième catégorie

est

Ce groupe laisse invariantes les équations d.u troisième ordre, qui ont la
forme

m désignant une constante.



4. Enfin le seul groupe à quatre paramètres de la dernière catégorie est
le suivant

Ce groupe laisse invariantes les équations différentielles du troisième

ordre qui ont la forme

où k désigne une constante quelconque.
En résumé, nous venons de trouver que les équations du troisième ordre

suivantes

et celles qui en dérivent par une transformation de contact admettent un
groupe ponctuel à quatre paramètres.
Nous verrons dans la suite que la quatrième équation et celles qui en

dérivent admettent un groupe de transformations de contact à cinq para-
mètres.

De même la deuxième équation admet un groupe à plus de quatre para-
mètres si

Nous pourrons alors dire que les formes canoniques des équations du
troisième ordre, qui admettent un groupe à quatre paramètres, sans ad-
mettre un groupe d’ordre plus élevé, sont



SECONDE PARTIE.

CHAPITRE L ,

ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT UN GROUPE
A DIX PARAMÈTRES.

La correspondance établie par NI. Sophus Lie entre les équations aux
dérivées partielles

qui admettent un groupe de transformations ponctuelles, et les équations
différentielles ordinaires

qui admettent un groupe de transformations de contact, nous a permis de
ramener le problème proposé à la recherche des équations aux dérivées
partielles qui correspondent aux équations canoniques (2), déterminées
dans la première Partie de ce travail. Comme je l’ai déjà énoncé, je sup-
poserai une équation aux dérivées partielles définie par son équation
associée. Grâce à l’introduction dans le calcul de cette équation aux diffé-
rentielles totales, il deviendra souvent facile d’apercevoir que deux équa-
tions aux dérivées partielles sont semblables et de trouver les changements
de variables qui permettent de transformer l’une dans l’autre. .

1. . Équations aux dérivées partielles qui correspondent à l’équation
canonique

Nous avons déjà vu que ces équations sont les équations aux dérivées
partielles qui dérivent, par une transformation ponctuelle, de l’équation



dont l’équation associée est

Le groupe de cette équation est précisément le groupe des transforma-
tions conformes (~).

2. Équations aux dérivées partielles qui correspondent à l’équation
canonique

Cette équation étant l’équation différentielle des hyperboles, dont les
asymptotes sont parallèles aux axes de coordonnées, dérive par une trans-
formation ponctuelle de l’équation

qui a pour intégrales tous les cercles du plan

Tout revient donc à chercher les équations aux dérivées partielles qui
correspondent à l’équation (2).
En exprimant que la droite (voir p. 16)

est tangente au cercle (3 ), on trouve

La famille des équations aux dérivées partielles qui correspondent à
l’équation (i’) est donc la même que celle qui correspond à l’équation

’ 

canonique

et nous pouvons énoncer le théorème suivant :

THÉORÈME. 2014 Toute équation aux dérivées partielles

( 1) Transformationsgruppen, IIe Volume, page 459.



qui admet un groupe de transformations à plus de cinq paramètres
dérive, par une transformation ponctuelle, de l’équation

et admet, par conséquent, un groupe de trans f ormations à dix para- .

mètres.

COROLLAIRE. - Toute équation différentielle

qui admet un groupe de trans f ormations de contact à plus de cinq
paramètres admet ég alement un groupe de transformations à dix pa-
ramètres et dérive de l’équation

par une transformation de contact.

3. Transformations de contact par lesquelles les coniques, ayant
deux points communs, se changent en coniques tangentes à une droite
donnée en un point donné. - Proposons-nous de déterminer une trans-
formation de contact permettant de passer de l’équation

à l’équation

ou, ce qui revient au même, de la famille des cercles

à la famille de paraboles

Appliquons d’abord, à l’équation (i), la transformation particulière

qui transforme l’équation correspondante à ( r ),



dans la suivante

qui correspond à l’équation (2). La famille des cercles est alors représentée
par

il ne reste plus qu’à résoudre le problème suivant, qui est complètement
déterminé : :

Déterminer la transformation de contact

qui ,fait correspondre, à la ,famille dcs éléments linéaires représentée
par

la fam ille suivant=

Pour résoudre ce problème, remarquons que le système (3) peut prendre
la forme suivante

obtenue en résolvant le système (3) par rapport à a et c.
De même, le système (4) peut prendre la forme

Les systèmes (3’) et (4/) doivent évidemment représenter la même mul-
tiplicité de points (x, ~y, a, a, b, c) ; donc on doit avoir



ces quatre équations se réduisent aux trois suivantes

qui, résolues par rapport à x, y, ~, donnent t

Il est aisé de voir que ces équations définissent une transformation de
contact. C’est la transformation cherchée. Désignons-la par T. La trans-
formation de contact la plus générale, par laquelle la famille de paraboles

devient la famille des cercles du plan, est représentée par le symbole ST,
où S désigne la transformation de contact la plus générale, qui laisse inva-
riante l’équation y"’= o (Transformationsgruppen, t. II, p. 439).

Cela posé, considérons l’ensemble H des coniques ayant deux points
communs A et B, et l’ensemble K des coniques tangentes à une droite D en
un point C. Pour faire correspondre la famille H à la famille K, par une
transformation de contact, il suffit d’appliquer à la famille K la transfor- -

mation de contact (USTV), où U et V sont définies ainsi : U désigne une
transformation homographique faisant correspondre à K la famille des

paraboles déjà considérée ; V désigne une transformation homographique
faisant correspondre la famille H à la farnille des cercles du plan.



CHAPITRE II.
ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT UN GROUPE

A CINQ PARAMÈTRES.

1. Cherchons d’abord les équations aux dérivées partielles qui corres-
. pondent à la forme canonique

Les courbes intégrales de cette équation peuvent être représentées par
l’équation

Comme précédemment, écrivons que l’équation en x

a une racine double; il suffit, pour cela, d’éliminer x entre l’équation pré-
cédente et la suivante (voir p. I ~ )

on trouve ainsi

Les équations aux dérivées partielles cherchées sont donc toutes sem-
blables à celle dont la forme associée est

Groupe de l’équation (II). - Par son origine même, la famille de
courbes

admet le groupe G défini par les transformations infinitésimales



Proposons-nous de déterminer le groupe conjugué (p. 21) du groupe
précédent. Nous devons, pour cela, déterminer les transformations infini-
tésimales de la forme .

qu’admet la multiplicité de points (x, y, a, b, c) définie par l’équation

Les équations qui déterminent Ci s’obtiennent en écrivant que
l’équation .

est vérifiée en chaque point de la multiplicité considérée. .

Calcul de Ai, B" C,. - En faisant i == I, on trouve

Cette relation étant indépendante de y doit avoir lieu quelles que
soient les valeurs de x, a, b, c ; par suite,

Ainsi

Calcul de A2, I~,~, t~~>.

donc on doit avoir identiquement 
.

c’est-à-dire

, et, par suite,



Calcul de A~, B3, C3.

Cette relation doit être une identité en x, a, ~, c ; donc

Calcul de A,,, B~, G,,.

Calcul de A~,13~, (~~.

Il résulte du calcul précédent que.l’équation

admet le groupe à cinq paramètres défini par les transformations infinité-
simales

Nous avons déjà vu (Ire Partie, p. 23) que l’équation (lI) n’admet pas
d’autres transformations infinitésimales que les précédentes; donc r est
bien le groupe de l’équation (II).
De là nous pouvons conclure (Ire Partie, p. 39 ) un résultat déjà annoncé



et relatif à l’équation différentielle des courbes

à savoir

Cette équation n’adrnet pas un groupe de transformations de contact à
plus de cinq paramètres.

Caractéristiques de l’équation caTionique (Il ). - Si l’on se reporte à
la formule qui donne les courbes intégrales de l’équation différentielle du
troisième ordre qui correspond à l’équation (II), on voit que les caracté-
ristiques de cette dernière sont représentées par les équations

ou bien, en changeant la signification des lettres a, ~3, y,

D’autre part, les transformations finies du groupe r sont données par les
formules

De là, on déduit immédiatement que les droites C s’obtiennent en appli-
quant toutes les transformations de r à la caractéristique particulière

Cas particulier où n = - I, 0, 1 2, I, 2.
Si n = o ou n = i) l’équation (II) devient linéaire et, par suite, admet

un groupe infini. Si n est égal à l’un des nombres -1, 2, 2, l’équation (II)
devient, par une transformation ponctuelle évidente, identique à

et, par suite, admet un groupe à dix paramètres.



2. Passons à la détermination des équations aux dérivées partielles qui
correspondent à l’équation canonique

Les courbes intégrales de cette équation peuvent être représentées par

Différentions, en considérant x ety comme constants, nous obtenons

La condition pour que cette équation en x ait une racine double est

Les équations aux dérivées partielles cherchées sont donc toutes sem-
blables à celle qui a pour associée l’équation

Groupe de l’équation (III ).
Considérons la famille des courbes intégrales

qui admet le groupe G, défini par

Cherchons le groupe conjugué de G. Comme dans le cas précédent,
nous devons chercher les transformations infinitésimales de la forme

qu’admet la multiplicité de points (x, y, a, b, c ), définie par



Calcul de A, B~, , C, .

Cette expression devant être nulle, quelles que soient x, a, b, c,

Calcul de A 2, B2, G2 ~

Cette expression devant être nulle en chaque point (x, y, a, b, c) de la

multiplicité 03C6 = o, on doit avoir identiquement

c’est-à-dire

Calcul de A3, B~, , C3.
L’identité

Calcul de A~, B~, C..
L’identité

Calcul de A~,1~~, C~.
L’identité



Il résulte du calcul précédent que l’équation

admet le groupe défini par les cinq transformations infinitésimales sui-
vantes :

Reste à examiner si l’équation (i) n’admet pas un groupe d’ordre plus
élevé. Pour cela, désignons par

une transformation infinitésimale laissant invariable l’équation ( III ) ou
l’équation équivalente

Les équations qui déterminent §, r~, ~ s’obtiennent en écrivant que l’équa-
tion

est une conséquence de (III). Posons

Les équations cherchées s’obtiendront en écrivant que la relation .



est une identité en y, ,~, ~, cc qui donne

En différentiant ces équations, on voit immédiatement que toutes les
dérivées du deuxième ordre sont nulles; d’ailleurs, le nombre des fonctions
r, Y], ~ et de leurs dérivées du premier ordre est douze, le nombre des rela-
tions entre les dérivées du premier ordre est sept; donc le nombre des para-
mètres qui entrent dans (, ~r~, ~ est égal à cinq. On trouve facilement

Ce résultat montre que les transformations qu’adinet l’équation (1 ) sont
toutes des transformations du groupe r. On peut donc dire que : :
r est le de l’équation ( III ).
De là nous pouvons conclure également que l’équation différentielle des

courbes

à savoir

n’admet pas un groupe de transformations de contact à plus de cinq para-
mètres.

Caractéristiques cle l’équation canonique (III). - Si l’on se reporte à
la formule qui donne les courbes intégrales de l’équation

on voit que les caractéristiques de l’équation (III) sont les droites repré-
scntées par les équations

ou bien, en changeant la signification des lettres a., ~~ ~ ,

D’autre part, les transformations finies du groupe r sont données par les



équations

De là on déduit immédiatement que les droites C peuvent être obtenues
en appliquant toutes les transformations de r à la caractéristique particu-
lière

Résumé.

Il existe deux classes d’équations aux dérivées partielles admettant un
groupe de transformations à cinq paramètres, sans admettre un groupe
d’ordre plus élevé.

Les équations de la première classe sont semblables à l’équation associée
à la suivante

Les transformations Infinitésimales du groupe de cette équation sont dé-
terminées par les cinq

les transformations finies sont données par

Les équations aux dérivées partielles de la deuxième classe sont semblables
à l’équation qui a pour associée la suivante :

Les transformations infinitésimales du groupe de l’équation (III) sont
les combinaisons linéaires des cinq suivantes :



les transformations finies sont

Toute équation aux dérivées partielles admettant un groupe ponctuel à
cinq paramètres (sans admettre un groupe d’ordre plus élevé) dérive, par
une transformation ponctuelle, de l’une des deux précédentes.

CHAPITRE III.

ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI CORRESPONDENT
~a. y’ yrn ~ my"2.

1. Considérons d’abord le cas où m est différent des nombres i et 2.

Les courbes intégrales de l’équation sont alors représentées par

L’équation aux différentielles totales correspondante s’obtient en expri-
mant que la courbe représentée par l’éq.uation (i) est tangente à la courbe
infiniment voisine

il suffit pour cela d’éliminer .x et y entre les équations (1 ), ( 2) et la suivante
.

on obtient ainsi

L’équation proposée ne fournit donc pas d’équation canonique nouvelle,
car on a vu que Inéquation (4) admet au moins un groupe à cinq paramètres. .

- Si m est différent de o, 1, 3, 2, 3, l’équation (4) n’admet
qu’un groupe à cinq paramètres (voir p. 59); donc :
Le groupe des transformations de contact qui laissent invariante l’équa-



tion

est un groupe à cinq paramètres pour toute valeur de III différente de

Si nz est égal à o, ~, 3, l’équation (4) admet un groupe à dix paramètres :
il en est donc de même de l’équation (5).

Enfin, si m == i ou m = ~, on ne peut plus comparer les groupes des
équations ( 4 ) et ( 5 ), car ces équations ne se correspondent pas. Nous allons
trouver que, dans ce cas, l’équation (5) admet un groupe à cinq paramètres.

2. Considérons d’abord le cas où na == i.

L’équation différentielle considérée devient 
’

et a pour intégrale générale

a et b désignent deux paramètres arbitraires, x et ) sont deux paramètres
liés par la relation

pour le moment indéterminé.
Comme précédemment, nous devons exprimer que la courbe représentée

par l’équation (2) est tangente à la courbe infiniment voisine

il suffit, pour cela, d’éliminer x et y entre les équations ( 2), (3) et la sui-
vante

Choisissons maintenant la fonction indéterminée 03C6, de manière que



nous avons alors à éliminer x et y entre les équations suivantes

ce qui donne

Cette équation est aussi une de celles que nous avons déjà trouvées : elle
admet un groupe à cinq paramètres.

3. Soit m = 2.

L’équation différentielle devient

et a pour intégrale générale

Exprimons que la courbe représentée par l’équation (i) est tangente à
la courbe infiniment voisine

nous sommes alors conduits à éliminer x et y entre les équations (z), (3)
et la suivante

Prenons encore

Le système des équations (2), (3), (~.) est alors équivalent au suivant

et le résultat de l’élimination de x et y est évidemment

Nous retombons encore une fois sur une équation déjà obtenue.



Le calcul précédent montre que l’équation du troisième ordre

admet, dans tous les cas, plus de quatre transformations infinitésimales.
Nous allons maintenant déterminer les transformations de contact qui

permettent de ramener la forme (i) à l’une des formes canoniques.

Réduction de l’équation y) à sa canonique.

Pnernien cas. - Soit ~~a =1.

Les éléments linéaires des courbes intégrales sont, comme on a vu, dé-
terminés par les deux équations

ou bien

D’après une remarque fondamentale faite au début de ce travail, ces
équations représentent, quand on y considère x, comme constants et

a, b, c comme variables, les caractéristiques de l’équation associée à

Effectuons sur a, b, c une permutation circulaire; cette transformation
particulière ramène l’équation (3 ) à la forme canonique

et le système (2) devient

D’autre part, on a vu que les mêmes caractéristiques peuvent être 
sentées par les deux équations



qui définissent les éléments linéaires des courbes intégrales de

l’équation canonique

Pour déterminer une transformation particulière qui ramène la forme (i)
à la forme canonique ((3)), il suffit de trouver les fonctions

de manière que les systèmes ( 2’ ) et ( 5 ) définissent la même multiplicité de

points c). On trouve immédiatement, en remarquant que les

équations (2’) et ( 5 ) sont linéaires en a, b, c,

Il est aisé de vérifier d’ailleurs que les équations (6) définissent une
transformation de contact.

Deuxième cas. - ni == 2. .

On trouve de même que, pour ramener l’équation

à la forme canonique ((3)), il suffit d’effectuer la transformation de contact
définie par les équations

Troisième cas. - La même méthode montre encore que, si m est diffé-

rent des nombres 1 et 2, il suffit d’effectuer, dans l’équation

la transformation de contact



pour ramener cette équation à la forme canonique

CHAPITRE IV.
CLASSIFICATION DES GROUPES HOMOGRAPHIQUES A UN PARAMÈTRE DU
PLAN. COURBES PLANES ADMETTANT UN GROUPE HOMOGRAPHIQUE. SIGNI-
FICATION GÉOMÉTRIQUE DES ÉQUATIONS CANONIQUES

Les courbes planes qui admettent un groupe homographique jouent un
rôle important dans l’interprétation géométrique des résultats précédents.
Ces courbes ont été déterminées par MM. Sophus Lie et Klein et appelées
par eux courbes V (lYlath. Annalen, t. IV). La recherche de ces courbes
est fondée sur la classification suivante des groupes homographiques à un
paramètre du plan. .

t. . Classification des groupes homographiques ci un paramètre et à
une variable x. - Un quelconque de ces groupes est engendré par une
transformation infinitésimale de la forme

Ce groupe laisse invariants deux points distincts ou deux points confon-
dus suivant que

Par un changement de variables homographiques, on peut ramener X,f,
dans le premier cas, à la forme

et, dans le second cas, à la forme



Si l’on se borne à considérer les changements de variables homogra-
phiques, on peut dire que les formes (i) et (2) ne sont pas semblables, car
la substitution qui change X2f en X, f est définie par l’équation transcen-
dante

Un résumé, les groupes homographiques considérés se partagent en
deux classes : ceux de la première sont semblables au groupe G., défini par
X, f, ceux de la seconde au groupe G2 défini par .

Les transformations finies de G, .et G2 sont

2. . Classification des groupes homographiques à un paramètre et deux
variables x et y. - Un quelconque G de ces groupes est engendré par
une transformation infinitésimale de la forme

Ce groupe G laisse invariants des points et des droites du plan ; l’étude
de ces éléments invariants va nous fournir une méthode de classification

toute naturelle (’ ). ,

Les seuls cas qui peuvent se présenter sont les suivants :
I. Le groupe G laisse invariants A, B, C et trois droites formant les

côtés du triangle ABC (jig. I).
Fig. I.

Le groupe G est alors semblable homographiquement au group; G1

(1) ) Transformationsgruppen ( p . 580-585),



qui laisse invariant le triangle formé par la droite de l’infini, l’axe des x et
l’axe des y.

II. Le groupe G laisse invariants un point simple A et un point double B

Fig.2.

2). Les droites invariantes sont : une droite double confondue avec
AB et une droite simple passant par B.
Le groupe G est alors semblable homographiquement au groupe G~ qui i

laisse invariants : .

III. Le groupe G laisse invariants un point triple A et une droite triple
passant par 3).

Fig.3.

G est alors semblable homographiquement au groupe G3 qui laisse inva-
riants le point triple ( x = o, ,~ = o ) et la droite triple ,~ = o.

IV. Le groupe G laisse invariants une infinité de points et de droites, à



savoir : chaque point d’une certaine droite D et chaque droite d’un fais-
ceau A (de sorte que le point A est invariant). Ce cas se subdivise en deux
autres :

1 ° Le point A est extérieur à la droite D ~~ ~ ; le groupe G est alors

Fig. 4.

semblable homographiquement au groupc G4 qui laisse invariants chaque
point de l’axe des y et chaque droite parallèle à l’axe des x.

2° Le point A est situé sur la droite D ~).

Fig. 5.

Le groupe G est alors homographiquement semblable au groupe G, qui
laisse invariant chaque point de la droite de l’infini et chaque droite paral-
lèle à l’axe des x.

En résumé, les groupes homographiques G, , G2, (.~~, G~, G~, d’oii déri-
vent tous les autres, sont définis par les transformations infinitésimales sui-



vantes

3. . Courbes planes admettant une transformation homographique zr2e
finitésimale. - Je dirai dans la suite que la courbe C’, représentée par

est une dérivée homographique de la courbe C, représentée par .

si l’équation (1) est la transformée de l’équation (2) par une substitution
homographique.

Cela posé, considérons une transformation homographique infinitési-
male X f et cherchons les courbes qui admettent cette transformation (et
par suite le groupe G engendré par X f ).
Premier cas. - X f est semblable homographiquement à

En d’autres termes, X f est une transformation infinitésimale de la pre-
mière classe.

Les courbes qui admettent la transformation infinitésimale ~,~ /sont les
courbes intégrales de l’équation

c’est-à-dire les courbes représentées par l’équation



On peut donc dire que :

Toute courbe admettant une transformation infinitésimale de la

classe est une dérivée homographique d’une courbe

Deuxième cas. - X f est une transformation infinitésimale de la

deuxième classe, c’est-à-dire est semblable homographiquement à

Toute courbe admettant cette transformation infinitésimale X2 f est une
courbe intégrale de l’équation

c’est-à-dire une courbe ayant une équation de la forme

Donc :

Toute courbe admettant une transformation infinitésimale de la .

deuxième classe est une dérivée homographique de la courbe

Troisième cas. - X f est une transformation infinitésimale de la troi-

sième classe, c’est-à-dire est semblable homographiquement à

()n en conclut, par un raisonnement analogue aux précédents, que :

Toute courbe admettant une transformation infinitésimale de la

troisième classe est une dérivée homographique de

c’est-à-dire une courbe quelconque du second degré (non décompo-
sable). .

Quatrième cas. - X f est une transformation infinitésimale de la qua-



trième classe, c’est-à-dire est semblable homographiquement à

Comme précédemment, on trouve que :
- Toute ligne admettant une transformation infinitésimale de la qua-

classe est une ligne droite.

4. On voit donc que les courbes admettant une transformation infinité-

simale homographique sont les dérivées homographiques des courbes rc-
présentées par les équations

Cherchons maintenant à classer ces courbes d’après le nombre des trans-
formations infinitésimales qu’elles admettent.

Cherchons d’abord les transformations homographiques infinitésimales do

Je suppose m différent des nombres

Soit X/

une transformation infinitésimale satisfaisant à la question; les équations
qui déterminent 1 et ~ s’obtiennent en écrivant que

est une conséquence de l’équation (1).
Si dans l’équation (2) on remplacer par x1n, ce qui donne

on doit obtenir une identité ; de là. on conclut, eu égard aux hypothèses



faites sur m,

Supposons, maintenant, que m soit égal à l’un des nombres

la courbe (i) est alors une conique, c’est-à-dire une dérivée homogra-
phique

Un calcul analogue au précédent montre que cette conique admet trois
transformations homographiques infinitésimales, à savoir

Enfin, si ne est égal à o ou à i, la courbe (I) représente une ligne droite,
c’est-à-dire une dérivée homographique de la droite

qui admet évidemment six transformations homographiques infinitésimales,
à savoir

On trouve, aussi facilement, que la courbe

n’admet qu’une transformation infinitésimale homographique, à savoir

Il résulte de là que toute courbe plane, admettant une transformation
homographique infinitésimale, appartient à l’une des trois classes sui-

vantes : :

Première classe. - Cette classe comprend les courbes qui admettent
une transformation infinitésimale homographique et une seule.



Ces courbes sont les dérivées homographiques de

et de

Deuxième classe. -- Les courbes de la deuxième classe admettent trois

transformations infinitésimales et trois seulement. Ce sont les courbes du

deuxième degré non décomposables.
, 

Troisième classe. - Enfin la troisième classe comprend les courbes
admettant six transformations homographiques infinitésimales. Ces courbes
sont les droites du plan.

5. Cela posé, désignons par le symbole ( J ) tout complexe déterminé par
les droites qui rencontrent une courbe V (plane). Cette courbe sera appelée
la directrice du complexe.

Cherchons à former l’équation générale des complexes (J). A cet effet,
considérons d’abord deux complexes (J) particuliers, à savoir les com-

plexes J’ et J" qui ont respectivement pour directrices

Il est clair que tout complexe J est la transformée homographique de
l’un de ces deux complexes.

Le complexe J’ a pour équation

en entendant par là qu’il est formé par les tangentes aux courbes inté-
grales de l’équation (I).
De même, le complexe J’’ a pour équation

Appliquons à ces deux complexes la transformation homographique



qui transporte la directrice à l’infini, et nous trouvons pour complexes
transformés les deux suivants

Pour obtenir l’équation d’un complexe (J) quelconque, il suffit de faire

dans les équations précédentes la transformation homographique la plus
générale. Remarquons d’ailleurs que ceux de ces complexes qui sont du
deuxième degré peuvent être considérés comme des transformés homogra-
phiques du complexe des droites, rencontrant le cercle Imaginaire de

l’infini

Les développements qui précèdent nous conduisent aux résultats sui-
vants :

Toute équation aux dérivées partielles, admettant un groupe de trans-

formations à plus de quatre paramètres ( ufi groupe à cinq
ou dix paramètres), est une transformée ponctuelLe d’une équation aux
dérivées partielles, pour laquelle les tangentes aux courbes intégrales
déterminent un complexe J. Ce complexe J a pour directrice une courbe
du deuxième degré (non décomposable) ou une courbe V quelconque,
suivant que le groupe est à dix paramètres ou seulernent à 

CHAPITRE V.

ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT UN GROUPE

A QUATRE PARAMÉTRES. ÉQUATIONS QUI CORRESPONDENT A L’ÉQUA-
TION CANONIQUE ((,~ j).

Je commence par déterminer les équations aux dérivées partielles qui
correspondent à l’équation différentielle des courbes

à savoir l’équation



Le groupe de cette équation est, comme on sait, défini par les transfor-
mations infinitésimales

ou par les transformations finies

Le groupe conjugué G est donc évidemment le groupe à quatre para-
mètres a, ~, ~ , ~

Cela posé, si l’on élimine x entre les deux équations

on trouve une équation de la forme

Réciproquement, quelle que soit la fonction 03A6, on peut toujours déter-

miner 03C6 ( x) de manière que les équations ((4 )) et ( 2 ) se correspondent. Il
suffit, pour le démontrer, de faire voir qu’une certaine intégrale complète ,

de ( 2 )

représente précisément l’intégrale générale d’une équation de la forme ((4))’
Soit, à cet effet,

l’équation aux dérivées partielles associée à Inéquation (2). Appliquons la
règle donnée par Lagrange pour trouver une intégrale complète, c’est-

à-dire posons

x désignant une constante arbitraire, et intégrons



ce qui donne

Or cette équation représente bien, si l’on y considère a, b, c comme

constantes, l’intégrale générale de l’équation

De ce qui précède résulte que : :

Les équations aux dérivées partielles qui correspondent à l’équation
canonique ((4)) sont semblables à celle qui a pour associée

W désignant une fonction arbitraire.

L’équation (IV) admet le groupe défini par les quatre transformations
infinitésimales

ou par les transformations finies

Reste à examiner si l’équation (IV) n’admet pas un groupe d’ordre plus
élevé. Pour cela, cherchons les transforrnations infinitésimales

qui laissent invariante l’équation (IV). Posons

Alors

~, ~, ~ sont données par les équations qui expriment que



est une conséquence de

Un calcul facile montre que la condition nécessaire et suffisante pour que
l’on ait

quelles que soient a et ), est que X f soit une transformation infinitésimale
du groupe G. Cela posé, supposons que X f désigne une transformation in-
finitésimale n’appartenant pas au groupe G, et représentons par A et B

ce que deviennent X ( a ) et X(~) quand on y remplace x, y, z par des con-
stantes choisies de manière que les coefficients a, b, c ne soient pas tous
nuls. Il faut évidemment que l’équation

soit aussi une conséquence de l’équation (4).
En d’autres termes, si l’on considère a, ~3 comme les coordonnées d’un

point d’un plan, il faut que la courbe représentée par

soit une courbe V. Dans ce cas l’équation ( IV ) est semblable à une des
équations déjà trouvées, qui admettent un groupe à cinq paramètres.

Sila fonction $ est quelconque, comme nous le supposons , l’équation (IV)
admet le groupe G et n’admet pas un groupe d’ordre plus élevé. On peut
donc dire que G est le groupe de l’équation (IV).

Ceci nous conduit à cet autre résultat.

L’équation différentielle des courbes

à savoir

admet un groupe de transformations de contact à quatre paramètres, et

n’admet pas de groupe d’ordre plus élevé.
Les équations aux dérivées partielles, qui correspondent à l’équation ((4~)t



sont susceptibles d’une interprétation géométrique analogue à celle que
nous avons déjà donnée pour les équations. qui admettent un groupe de
transformations à plus de quatre paramètres.

Désignons par le symbole (I) tout complexe déterminé par les droites
qui rencontrent une courbe plane quelconque C. Il est clair que tout com-
plexe (I) est une transformée homographique d’un complexe de même na-
ture pour lequel la directrice est dans le plan de l’infini, c’est-à-dire d’tin
complexe ayant une équation de la forme

Donc : 
’ ’

Les équations aux dérivées partielles qui correspondent à l’équation
((4)) dérivent, par une transformation ponctuelle, d’une équation aux
dérivées partielles pour laquelle les tangentes aux courbes intégrales
déterminent un complexe ( 1 ) .

CHAPITRE VI.
ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT UN GROUPE A
QUATRE PARAMÉTRES (suiTE). ÉQUATIONS QUI CORRESPONDENT AUX ÉQUA-
TIONS CANONIQUES

1. Nous avons vu déjà (p. 36) que les équations ((5)), qui correspondent
à la même valeur de p, dérivent toutes ( sauf y"’ = o) de l’une d’entre elles

par une transformation ponctuelle. Il suffit donc de chercher les équations
aux dérivées partielles qui correspondent à l’équation particulière (1). Dans
la suite nous poserons

et nous prendrons

Pour écrire l’intégrale générale de l’équation ((5)) nous sommes obligés
de distinguer plusieurs cas.



cas. - ni est différent de o et de r (et bien entendu aussi de 2).
Alors l’équation (i) est l’équation différentielle des courbes

Inéquation aux différentielles totales qui correspond à cette équation résulte
de l’élimination de x entre 

.

et par suite a la forme suivante

Remplaçons a, b, c respectivement par

l’équation des courbes intégrales devient

et Inéquation aux différentielles totales

Deuxième cas - na = o. .

L’équation ( I ) devient

Les courbes intégrales peuvent être représentées par l’équation

L’équation aux différentielles totales correspondantes à cette forme s’ob-

( 1 ) On voit que n est différent de i et de o.



tient en éliminant x entre

ce qui donne

Remplaçons a, b, c respectivement par

L’équation des courbes intégrales devient

et l’équation aux différentielles totales

Troisième cas. - Soit ni = Z .

L’équation (y devient

les courbes intégrales peuvent alors être représentées par

L’équation aux différentielles totales correspondant à cette forme s’ob-
tient en éliminant x entre

ce qui donne

je dis que cette équation dérive de l’équation connue



par une transformation ponctuelle. En effet , remplaçons dans(3) bpara + b .
Nous obtenons

ou bien

il suffit maintenant de remplacer c par ze pour obtenir la forme désirée.
En résumé, les équations aux dérivées partielles qui correspondent à l’é-

quation (( 5 )) sont, d’une part, les équations aux dérivées partielles corres-
pondant à l’équation ((3)), d’autre part les équations semblables à celles .

qui a pour associée

Un calcul absolument analogue à celui qui a été fait plus haut (p. 55)
montre que cette équation admet le groupe

ou bien

Reste à examiner si G est bien le groupe de l’équation (V ).
A on peut voir que, pour

l’équation (V) admet un groupe à dix paramètres, car alors elle correspond
à l’équation

Il en est de même si

En effet, pour cette valeur de n l’équation (V) prend la forme



Changeons x en - y et y en x, l’équation devient

or celle-ci admet, comme nous venons de le voir, un groupe à dix para-
mètres 1 ’ ).

Nous allons démontrer que si l’on a

l’équation (V) réadmet pas d’autres transformations infinitésimales que
celles du groupe G. Il nous suffira de faire voir que l’équation

n’admet pas un groupe à plus de quatre paramètres.

2. Proposons-nous de déterminer le groupe de l’équation (( 5 )).
Soit

une transformation de contact infinitésimale laissant invariante l’équa-
tion (~ 5 ~~ et soit W sa fonction caractéristique, de sorte que

Désignons par X f la transformation prolongée

On sait que

(1 ) Plus généralement, si l’on remplace dans l’équation (V) n par I - n, on obtient une

équation semblable.



avec

Les équations aux dérivées partielles qui fournissent W s’obtiennent en
écrivant que la multiplicité de points (x, y, y’, y", y"’) définie par

est contenue dans la multiplicité (( 5 )).
A cet effet, exprimons que la relation

est identique y, .X y".
L’identité (i) prend la forme

n’est pas égal à la différence 03B4 des degrés de F 3 et de p F2 - Fi y",
l’identité précédente se décompose en deux

Voyons ce qui arrive si

Les valeurs possibles pour S sont les nombres suivants :

Il résulte des hypothèses faites sur p que l’égalité (4) ne peut avoir
lieu que si

Dans le premier cas, l’identité ( 2 ) montre que F3 doit se réduire à son



dernier terme

et que (4 F 2 - doit être indépendant dey"

Cette dernière égalité montre que

De là, on déduit l’identité

et, par suite

Dans le deuxième cas, l’identité ( 2) montre que

de là on tire

puis

donc, dans ce cas encore, les identités (3) sont vérifiées.
En résumé, l’identité (2) entraîne, dans tous les cas, les identités (3)

Celles-ci donnent

La première montre que

la seconde des égalités ( 5 ) donne alors

La seconde des égalités (4) devient



ou bien

Si l’on remarque que cette dernière entraîne

on voit que les égalités Po = o et Q, = o prennent les formes suivantes

En différentiant inéquation (c) par rapport à y’, on trouve l’équation

On aperçoit alors immédiatement que

et, par suite,

En résumée nous avons trouvé les équations suivantes

de là on déduit d’abord que toutes les dérivées du troisième ordre de W
sont nulles, puis que

Le groupe de l’équation ((5)) est donc défini par les quatre transforma-



tions infinitésimales

qui ont pour fonctions caractéristiques

De là on conclut que le groupe de l’équation (V) est bien un groupe à
quatre paramètres, lorsque n est différent de - I , o, I , 2. Ce que nous
voulions démontrer.
En résumé, nous venons de trouver une nouvelle famille d’équations aux

dérivées partielles admettant un groupe à quatre paramètres. Ce sont les
équations semblables à celle qui a pour associée

3. Cherchons maintenant les équations aux dérivées partielles qui cor-
respondent à l’équation canonique

Un calcul élémentaire montre que les courbes intégrales de cette équa-
tion sont représentées par

L’équation aux différentielles totales correspondant à l’équation (J)
s’obtient en éliminant x entre les équations

Si l’on remarque que



on trouve immédiatement que

Remplaçons a, b, c respectivement par

l’équation précédente devient

Les équations aux dérivées partielles cherchées sont donc toutes sem-
blables à celle qui a pour associée

Un calcul analogue à celui qui a été fait (p. 55) plus haut montre que
cette équation admet le groupe défini par les transformations infinitési-
males

ou les transformations finies

Nous allons démontrer maintenant que G est bien le groupe de l’équa-
tion (VI), c’est-à-dire que l’équation (VI) n’admet pas d’autres transfor-
mations infinitésimales que celles du groupe G. Tout revient à prouver que
l’équation du troisième ordre

n’admet pas de transformation infinitésimale étrangère au groupe déjà
connu

A cet effet, soit XI une transformation infinitésimale de contact laissant
invariante cette équation et, par suite, l’équation équivalente



La fonction W, caractéristique de X, f, est déterminée par l’identité en

où F~, F2, F3 ont les significations données plus haut (p. 83). De là on dé-
duit d’abord

et ensuite

Donc W est donnée par l’équation

L’équation du troisième ordre considérée n’admet donc que quatre trans-
formations infinitésimales distinctes, à savoir, les quatre déjà connues.
Donc l’équation (VI) n’admet aussi que quatre transformations infinitési-
males distinctes, ce que nous voulions démontrer.

CHAPITRE VII.

ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT UN GROUPE A

QUATRE PARAMÈTRES (suiTE). ÉQUATIONS QUI CORRESPONDENT A L’ÉQUA-
. 

TION CANONIQUE ((; ))

1. Je commencerai par intégrer l’équation ((7 )), en me fondant sur la

remarque suivante. Soit .

la famille des courbes intégrales. Cette famille à trois paramètres admet le

groupe G à’ quatre paramètres , défini par les transformations infinitési-



mâles

ou les transformations finies

Il résulte de là que chaque courbe de la famille admet certainement une
transformation infinitésimale du groupe G. En d’autres termes, les courbes

intégrales sont des courbes V (voir p. 65 ).
Ceci nous conduit à chercher si Inéquation ((~ ~) admet une intégrale par-

ticulière ayant l’une des formes suivantes :

La condition nécessaire et suffisante pour que l’équation (i) représente
une courbe intégrale est exprimée par l’équation

Si I/J. est différent de l’unité, cette équation permet de calculer Il en
fonction de lf, et l’équation « 7 » admet, par suite, une intégrale particu-
lière de la forme (i).

Si, au contraire,

c’est l’équation (2) qui définit une intégrale particulière de l’équation ((7)).
En appliquant toutes les transformations du groupe G, dans le premier

cas, à l’équation (1), dans le second cas, à l’équation (z), on trouve toutes
les courbes intégrales cherchées.
Donc l’équation

représente, dans le premier cas, les courbes intégrales, pourvu que Il soit
lié à k par la relation (3).



Les courbes intégrales sont au contraire représentées par

Si l’on a

A la verite, les équations (4) et (5) contiennent quatre paramètres a, h,
rJ, in, mais ces quatre paramètres ne sont pas essentiels.
En effet, si l’on pose

l’équation (/i) devient, après la suppression des accents,

de même, par le changement de paramètres

l’équation (5) prend la forme

La fonction arbitraire c~(a, b, c) peut être remplacée par l’unité, mais
nous verrons dans la suite qu’il y a avantage à poser

2. Recherche du premier groupe conjugué de G. - Ce groupe T est.
formé par les transformations en a, b, c conjuguées des transformations

par rapport à Inéquation

Plusieurs des transformations infinitésimales de r peuvent être obtenues
a priori sans avoir recours à la méthode générale.



En effet, il est clair que l’équation (4’) ne change pas de forme si l’on

remplace x, a, c respectivement par

~~r si l’on choisit (p de manière que

Donc les transformations à un paramètre 03B1

forment un sous-groupe de r et, par suite, l’une des transformations infini-
tésimales de r a pour symbole

Quant à la fonction nous la choisirons de manière que

On aperçoit alors facilement que le groupe r contient les deux sous-
groupes à un paramètre 7.

et, par suite, les deux transformations infinitésimales

Le groupe défini par les transformations infinitésimales At f, A2f et A 3 /
étant le groupe conjugué du groupe défini par X, f, et X3f, il n~~
reste plus qu’à déterminer la transformation infinitésimale conjuguée
de X4f.

Il suffit, pour cela, de calculer les fonctions fY..( a, b, c), ~ (a, b, c ),
~-(~~, b, c), de manière que la transformation infinitésimale

laisse invariante la multiplicité de points définie par l’équation (4’) ou l’é-



quadon équivalente

Les équations qui déterminent 0~ [3, y s’obtiennent en écrivant que la
relation

est une identité c. On trouve d’abord

et, par suite

Choisissons o de manière que

Alors et y sont données par les équations

par

La transformation infinitésimale conjuguée de donc

. 

le groupe à un paramètre qu’elle engendre est le suivant

En résume, le groupe r est engendré par les quatre transformations iii li-
nitésimales

Grâce à la manière dont nous avons déterminé c~, le groupe conjugué est
homographiquc et indépendant du nombre n.



3. Recherches du second groupe conjugué de G. - Ce broLlpe r’ est
formé par les transformations en a, b, c, conjuguée; des transformations

par rapport à l’équation

Choisissons encore ? de manière que

On peut déterminer toutes les transformations de r’ sans avoir recours à
la méthode générale. En effet, si l’on multiplie les deux membres de l’équa-
tion (5’) par cB on obtient

donc l’équation (5’), considérée comme une équation à cinq variables 
a, b, c, admet la transformation

Donc les équations (2) définissent un sous-groupe à un paramètre du
groupe r’. L’une des transformations infinitésimales de r’ est donc

On voit aussi facilement que les trois premières transformations iniini-
tésimales de r, à savoir Atl, A2 f, A3/, sont également des transforma-
tions infinitésimales de r’. Ce groupe ri est donc engendré par les quatre
transformations infinitésimales distinctes



4 . Recherche des équations aux partielles qui correspondent
à l’équation

Nous supposerons dans la suite le nombre k différent de zéro (et par suite
n ~ ~ ), car, pour cette valeur de k, l’équation ((~)) se réduit à

et dérive par une transformation ponctuelle

de l’équation

Supposons d’abord le nombre k différent de l’unité. Les courbes inté-
grales de l’équation «( 7» sont alors représentées par

ou bien

en appliquant la règle si souvent rappelée, nous sommes conduits à écrire
que l’équation en x

a une racine double. A cet effet, posons

et exprimons que le discriminant de l’équation en 1

est nul; nous obtenons ainsi



Comme 2 n -1 n’est pas nul, nous pouvons poser

Remarquons immédiatement que h n’est pas nul; il suffit pour le voir de
se reporter à l’équation qui détermine Il en fonction de k. En outre, il est

clair que

L’équation (f) devient alors, après le changement de a en - a,

Supposons maintenant

Les courbes intégrales de l’équation « 7 ) peuvent alors être représentées
par l’équation ..

Inéquation aux différentielles totales correspondante est

En résumé, les équations aux dérivées partielles cherchées se partagent (
en deux classes. Celles de la première sont semblables à l’équation qui a
pour associée 

.

celles de la seconde sont semblables à l’équation qui a pour associée

Inéquation (VII’) admet, cnmme on a vu le groupe défini par



L’équation (VIII’) admet le groupe défini par

- Si dans la forme canoniquc (VIII’) on rcmplacc x, y,
respectivement par

on obtient la forme suivante, qui peut remplacer la forme (VIII) :

Le ~rou~e ~ ~, , X2, X3, X5) se transforme d’ailleurs en

Observons en outre que les six transformations infinitésimales

déterminent un groupe H, à savoir le groupe des transformations homogra-
phiques qui laissent invariante la surface du second degré

Les transformations X2f, déterminent un sous-groupe de H et
il en est de même de X, f, (on sait quc ces deux sous-broupes sont
réciproques (’~~.

5. Nous venons de trouver que les équations canoniques ( VII’ ), ( VIII ),
( VIII’) admettent chacune un groupe à quatre paramètres; nous allons
maintenant démontrer qu’elles n’admettent pas un groupe d’orclrc plus
élevé. A cet effet, nous prouverons, ce qui est évidemment suffisante que

( 1 ) Voir Transformationsgruppen, t. I, p. 382.



l’équation

n’admet pas un groupe de transformations de contact à plus de quatre para-
mètres.

Soit ’

une transformation infinitésimale laissant invariante l’équation (( ~ )) et soit
W sa fonction caractéristique, de sorte que

Désignons par X f la transformation prolongée

Cela posé, l’équation (( ~ )) peut prendre la forme

Les équations qui déterminent W s’obtiennent en écrivant que la multi-
plicité de points (x, y, y’, y", définie par

est contenue dans la multiplicité (i). Pour cela exprimons que

est identique en x, y, y’, y". Nous obtenons d’abord

L’équation (3) montre que X (y" ) s’annule pour y" = o ; donc

( i ~ Yoir p. 8~ et 83,



et par suite

Inéquation ( 3 ) développée donne

et par suite, comme k est différent de zéro,

c’est-à-dire

Il résulte de là que

et aussi

L’équation (3’) devient alors

et l’équation (4) prend la forme .

Cette identité exige que

Revenons à l’équation ( 3" ) ; elle peut s’écrire

c’est-à-dire, eu égard aux valeurs de Ro et P ~ ,

ou bien

ou enfin



. 

Si l’ou différentie cette égalité par rapport à y, et si l’on tient compte
de ( e ), on trouve

En résumé, la fonction W doit satisfaire aux relations suivantes :

De ces relations on déduit immédiatement que les dérivées du troisième

ordre de W sont toutes nulles, sauf d 3 w , qui satisfait à

donc W est de la forme

On voit donc que l’équation (( ~ )) ne peut admettre que les quatre trans-
formations infinitésimales qui ont pour fonctions caractéristiques

c’est-à-dire les quatre suivantes

C’est précisément ce qu’il fallait démontrer.
Nous pouvons donc dire que les groupes des équations canoniques (VII’ ) ,

(VIII’), (VIII) sont respectivement 
’

6. Modification de l’équation canonique (VII’)



Effectuons la transformation homographique

qui fait correspondre à la surface

la sphère

Nous obtenons successivement les formules suivantes :

L’équation proposée a donc pour transformée

Nous pouvons, par suite, prendre pour équation canonique, à la place de
l’équation ( VII’ ), l’équation suivante

Nous verrons plus tard que, si a ~= r, cette équation peut être ramenée
par une transformation ponctuelle à la forme -

Quant au groupe de l’équation (VII), c’est le groupe transformé du



groupe de (VII’). Les six transformations infinitésimales

définissent le groupe homographique de la sphère

Le groupe de l’équation (VII) est défini par les quatre transformations
infinitésimales

CHAPITRE VIII.
SUR DEUX CLASSES PARTICULIÈRES DE COMPLEXES. - INTERPRÉTATION
GÉOMÉTRIQUE DES ÉQUATIONS AUX DÉRIVÉES PARTIELLES QUI ADMETTENT
UN GROUPE A QUATRE PARAMÈTRES.

1. . Groupe spécial de transformations homologiques. - Je commen-
cerai par rappeler la définition d’un groupe de transformations homolo-
giques que l’on rencontre fréquemment dans les recherches de M. S. Lie.

Considérons, dans le plan des (x, y), les transformations homologiques
ayant pour centre d’homologie le point 0, et pour axe d’homologie une
droite passant par ce point 0. Ces transformations forment un groupe à
deux paramètres, dont nous allons chercher les équations. Remarquons
d’abord que les transformations homologiques qui ont le point 0 pour
centre d’homologie sont les transformations homographiques qui laissent



invariante chaque droite passant par l’origine. Ces transformations sont
donc définies par les équations

L’axe d’homologie relatif à l’une de ces transformations étant une droite,
dont chaque point reste invariant par cette transformation, a pour équa-
tion

Les transformations particulières que nous cherchons s’obtiennent donc
en faisant

dans les équations ( i ), ce qui donne

Il est aisé de vérifier que ces équations déterminent un groupe et que cc
groupe est engendré par les deux transformations infinitésimales

Nous appellerons ce groupe le groupe homologique spécial relatif au
point 0.
Remarquons que, D et D’ étant deux droites quelconques du plan ne

passant pas par l’origine, il existe toujours une transformation du groupe,
et une seule, vis-à-vis de laquelle les droites D et D’ sont homologues. L’axe
d’homologie est la droite qui joint le point 0 au point d’intersection des
droites D et D’.

D’une manière générale, soit C’ la courbe homologue de C par rapport
à une transformation du groupe G. D’après la nature des transformations
du groupe G, il est clair que la courbe C ne peut admettre une transforma-
tion de ce groupe ; donc il n’existe qu’une transformation du groupe chan-
geant C en C’.

2. Correspondance entre les droites d’un plan et les courbes d’une
certaine famille à deux paramètres. - Considérons dans un plan P un
point 0, une courbe absolument quelconque C, et une droite D ne passant
pas par le point O. Appliquons au couple (C, D) toutes les transforma-



tions du groupe homologique spécial G, relatif au point 0. L’ensemble des
transformées de D comprend toutes les droites du plan ne passant pas par
l’origine 0 (n° i); l’ensemble des transformées de C constitue une certaine
famille F de courbes à deux paramètres. Cela posé, soit D’ une droite quel-
conque du plan (ne passant pas par l’origine), et soit S la transformation
du groupe G qui change D en D’. Faisons correspondre à la droite D’ la
courbe C’, homologue de C par rapport à S. Nous avons ainsi défini une

correspondance entre les droites du plan (ne passant pas par le point 0) et
les courbes C de la famille F. Il résulte, d’ailleurs, de la remarque faite

précédemment (1), que cette correspondance est univoque.
Observons, en outre, que si deux droites, D et D’, se coupent au point A,

les courbes correspondantes, C et C’, se coupent en un point situé sur OA.
’ En effet, soit S la transformation du groupe G, qui fait correspondre le

couple ( C’, D’ ) au couple (C, D ) ; l’axe d’homologie de cette transforma-
tion est évidemment la droite OA. Si donc B est un point d’intersection
de OA avec la courbe C, la transformation S doit laisser, invariant ce

point B, et, par suite, il doit se trouver sur la courbe C’, transformée de C.

3. Définition des complexes K. - De la correspondance entre les droites
du plan P et les courbes de la famille F, il est aisé de déduire une corres-

pondance univoque entre les mêmes courbes et les droites d passant par
le point 0, mais non situées dans le plan P. Il suffit pour cela de considé-
rer un complexe linéaire H tel que le pôle du plan F soit précisément le
point 0, et de faire correspondre à chaque courbe C de la famille F la
droite d conjuguée de D par rapport au complexe H (fig. 6). Puisque la

Fig. 6.

correspondance entre les droites d et D est univoque, ainsi que celle qui
existe entre les courbes C et D, il en est de même de la correspondance
entre les droites d et les courbes C. Je dirai, dans la suite, qu’une droite d
et la courbe C correspondante sont deux lignes associées.



Cela posé, remarquons qu’à toutes les droites d situées dans un même
plan Q correspondent les droites D du plan P, passant par un point A situé
sur l’intersection de P et de Q (A est le pôle du plan Q par rapport au
complexe linéaire H ). Donc on peut dire, en vertu de ce qui précède, qu’à
toutes les droites d situées dans le plan Q correspondent des courbes C se
coupant en un point B de la droite OA. De là résulte que les droites ren-
contrant à la fois deux lignes associées forment un complexe. Tout com-
plexe susceptible de ce mode de génération sera appelé un complexe K.
Les courbes C seront dites les directrices du complexe.

4. . Complexes K de première espèce. Interprétation de l’équation (V ).
- Supposons que la courbe C, qui a été jusqu’à présent complètement
indéterminée, soit une courbe V relative au triangle formé par la droite D
et deux droites Ox, Oy. Les complexes K, que l’on déduit du couple (D, V)
ou des couples analogues situés dans le plan P ou un autre plan de l’es-
pace, constituent une famille particulière de complexes ; nous les appelle-
rons complexes de première espèce.

Cherchons l’équation générale de ces complexes. A cet effet, considérons
l’un d’entre eux, et prenons pour axes des x et des y les deux côtés com-

muns aux triangles liés aux directrices, pour axe des z la droite conjuguée,
par rapport au complexe linéaire H, de la droite de l’infini du plan des
(x, y). Pour obtenir les équations des couples (D, V), il suffit d’appliquer
à l’un d’entre eux, ( Do, Vo), les transformations du groupe homologique 

.

spécial relatif au point 0. Prenons pour droite Do la droite de l’infini ;
alors la courbe V~ a pour équation .

et, par suite, les couples (D, V) sont représentés par (voir n° 1 )

D’autre part, le complexe linéaire H est défini par les tangentes aux

courbes intégrales de

donc les équations de la droite conjuguée de D sont



La condition pour qu’une droite, représentée par

rencontre deux lignes associées (d) et (V), s’exprime alors par l’équation

Les droites du complexe peuvent donc être considérécs comme les tan-

gentes aux courbes intégrales de l’équation

Cette équation par une transformation homographique, de la
forme

de l’équation

Sl mamtenant on remplace x, J‘ , z respectivement par (- x z), (- y ,W N

- ’- , l’équation précédente devient

ou bien

Le calcul précédent montre que, si dans l’équation canonique (V), on
effectue la transformation homographique la plus générale, on obtient l’é-
quation générale des complexes K de première espèce.
Le complexe K défini par l’équation (V) a ses directrices dans le plan de

l’infini. Les deux côtés communs à tous les triangles liés aux directrices sont
les intersections du plan de l’infini avec les plans 

5. . Groupe d’un complexe K de première espèce. --- Les considérations

géométriques qui précèdent mettent en évidence qu’un complexe K de pre-
mière espèce admet un groupe homographique à quatre paramètres. En
effet, il est clair que ce complexe admet les transformations homographiques



qui laissent invariants à la fois le complexe linéaire H et la famille des
couples (D, V ), qui correspondent au complexe K. Nous allons déterminer
ces transformations pour le complexe K défini par l’équation (2).
La famille des couples (D, V) admet évidemment le groupe, à trois pa-

ramétres, engendré par les transformations infinitésimales de G (n° 1)

et la transformation infinitésimale

qui laisse invariante la courbe 

Considérons maintenant le tableau des transformations infinitésimales

homographiques du complexe linéaire ~’ )

On aperçoit immédiatement que les transformations du groupe ayant les
formes

sont les suivantes

d’autre part, le même groupe contient une transformation infinitésimale (et
une seule ), laissant invariant chaque point du plan des xy, à savoir

{1) Voir Transformationsgruppen, t. H, p. 446,



Le complexe K considéré admet donc le groupe défini par les quatre
transformations ( 1 ), ( 2 ), ( 3 ), ( 4 ). Si maintenant on remplace x, y, z res-

pectivement par - x z, - y et - I , le groupe devient

et l’équation ( 2 ) a pour transformée l’équation ( V ) . Donc l’équation (V)
admet le groupe G; nous avons vu d’ailleurs qu’il ne peut admettre un
groupe d’ordre plus élevé. ,

6. Complexes K de seconde espèce. Interprétation de l’équation (VI).
- Nous avons vu qu’un complexe de première espèce est un complexe K
dont les directrices sont des courbes V appartenant à des triangles ayant
deux côtés communs. Supposons maintenant ces côtés confondus ; nous
dirons alors que le complexe est un complexe K de seconde espèce.

THÉORÈME. - Les complexes K de seconde espèces dérivent tous, par
une transformation homographique, de l’un quelconque d’entre eux,
par exemple du complexe déterminé par les tangentes aux courbes in-
tégrales de l’équation

Considérons un complexe quelconque de seconde espèce ; prenons pour
plan des (x, y ) le plan des directrices, pour origine le sommet commun à
tous les triangles (aplatis), liés aux directrices, pour axe des y une droite
quelconque 0y du plan et pour axe des 2 la droite conjuguée, par rapport
au complexe linéaire, de la droite de l’infini du plan des xy.
Le complexe linéaire est alors défini par une équation de la forme

Comme précédemment, il suffit, pour obtenir les équations des couples
(D, V ), d’appliquer les transformations du groupe homologique spécial,
relatif au point 0, à un couple particulier (Do, Vo). Prenons encore pour



droite D~ la droite de l’infini ; alors la courbe V~ a pour équations

et par suite les couples ( D, V) sont représentés par

Les équations de la droite d conjuguée d’une droite D sont

La condition pour que la droite

rencontre deux lignes associées (d) et (V) s’exprime alors par l’équation

Les droites du complexe défini par cette équation sont évidemment les
tangentes aux courbes intégrales de

On voit donc que le complexe dérive par une transformation homogra-
phique de la forme

du complexe de même espèce pour lequel fi. = r et If = 1, c’est-à-dire du

complexe déterminé par Inéquation

Si maintenant on remplace ;xi, y, -j respectivement par



ce qui revient à transporter à l’infini, par une transformation homogra-
phique, le plan des directrices, on trouve

ce que nous voulions démontrer.

On peut, comme précédemment, démontrer a priori qu’un complexe K
de seconde espèce admet un groupe homographique à quatre paramètres et

que ce groupe est un sous-groupe du complexe linéaire correspondant au

complexe K.

7. . Définition des complexes H. - Considérons une surface quelconque
du second degré, et supposons qu’on ait établi, entre les génératrices d’un
même système, une correspondance homographique quelconque. Cela

posé, les droites qui rencontrent à la fois deux génératrices homologues
forment évidemment un complexe.

Les génératrices du second système sont toutes des droites du complexe.
La surface du second degré est la surface singulière du complexe.
Tout complexe susceptible de ce mode de génération sera appelé un com-

plexeH.Il y a lieu de distinguer les complexes pour lesquels les génératrices
doubles de l’homographie sont distinctes de ceux pour lesquels les généra-
trices doubles sont confondues. Les complexes H de la première catégorie
seront dits de première espèce, les autres seront dits de seconde espèce.
Avant de déterminer les équations de ces complexes, je commencerai

par rappeler quelques théorèmes de M. Lie, relatifs aux transformations
homographiques qui laissent invariante une surface du second degré non
décomposable.

Considérons la surface représentée par l’équation

Les transformations infinitésimales qui laissent invariante cette surface
forment un groupe à six paramètres, défini par les transformations infini-
tésimales



Les trois premières transformations infinitésimales déterminent un sous-
groupe r, de G, les trois dernières forment également un sous-groupe r~.

Les transformations du groupe r, t laissent invariante chacune des géné-
ratrices d’un même système

Les transformations du groupe T~, au contraire, échangent ces droites
entre elles. Le groupe en a,, conjugué du groupe r 2’ est engendré par les
trois transformations infinitésimales

qui correspondent respectivement à X6f. .
De ce que le groupe conjugué est un groupe à trois paramètres résulte

ce fait, que nous utiliserons à l’instant : :

Étant donnés deux couples quelconques (D" D’1) et (D2, Dz) de gé-
nératrices D, il existe toujours une transformation du groupe r? (ec
même une infinité simple) qui transforme D j cn D’1 et DZ cn D’,.

Cela posé, revenons aux complexes H de première espèce.

8. . Complexes H de première espèce. . -- Un de ces complexes est com-

plètement déterminé quand on donne la surface singulière S, les deux géné-
ratrices doubles de l’homographie et le rapport anharmonique k qui carac-
térise l’homographie.

THÉORÈ>iE. - Les cornplexes H de espèce, qui correspondent
au même rapport anharmonique, dérivent tous, par une transformation
homographique, de l’un quelconque eux, pan exemple du com-

plexe déterminé par les tangentes aux courbes intégrales de l’équation

En effet, considérons un quelconque de ces complexes et effectuons une

première transformation homographique qui transforme la surface sin-

gulière du complexe en la surface suivante

Le complexe transformé est un complexe de même espèce ayant pour



surface singulière ~. Soient alors

les équations des génératrices liées par une homographie. Par une seconde
transformation homographique, qui n’altère ni la surface ~, ni l’ensemble
des droites D, nous pouvons, comme on a vu, amener les deux génératrices
doubles à coïncider avec les génératrices correspondantes aux valeurs À==O
et À = oo. Au complexe H transformé correspond alors une homographie
définie par une équation de la forme

La condition pour que la droite

coupe la droite D est exprimée par l’équation

donc l’équation du complexe est

ou bien

Le complexe représenté par cette équation est précisément celui des tan-
gentes aux courbes intégrales de l’équation (VII). Le théorème est donc
démontré.

De la définition d’un complexe H de première espèce résulte immédiate-
ment qu’il admet un groupe homographique à quatre paramètres. En effet,
considérons, pour fixer les idées, le complexe H défini par l’équa-
tion (VII).
Ce complexe admet évidemment toutes les transformations homogra-

phiques qui laissent invariante la surface du second degré 2 et les deux
génératrices doubles de l’homographie. Or les transformations du groupe r t
laissent, comme on a vu, chaque génératrice D invariante ; donc le com-
plexe admet le groupe r~. En outre, la seule transformation infinitésimale
de r n qui laisse invariantes les génératrices doubles (À = 0, À = est la



transformation infinitésimale X4f qui a pour conjuguée

donc le complexe H considéré admet le groupe défini par les quatre trans-
formations infinitésimales

Nous avons vu, d’ailleurs, que ce complexe n’admet pas de groupe d’ordre
plus élevé.

Ainsi, pour former le groupe d’un complexe H de première espèce, il
suffit de déterminer les transformations hornographiques qui laissent inva-
riantes la surface singulière du complexe et les génératrices doubles de
l’homographie correspondant au complexe.

Si, dans l’équation (VII) qui contient déjà un paramètre h, on effectue
la transformation homographique la plus générale, on obtient l’équation du
complexe H le plus général. Cette équation contient à la vérité seize para-
mètres ; mais, comme le groupe de l’équation est à quatre paramètres, douze
seulement sont essentiels.

Cas particulier. - Si

c’est-à-dire, si chaque génératrice est à elle-même son homologue, le com-
plexe (VII) est celui des tangentes de la surface ~. Ce complexe admet
évidemment le groupe à six paramètres G : donc il admet également u.n
groupe à dix paramètres.
Remarquons d’ailleurs que, si l’on effectue dans l’équation (VII) la trans-

formation homographique

on obtient un complexe H de même espèce, défini par ,l’équation (voir
p.100)



La surface singulière du complexe est la sphère

On retrouve alors ce résultat de NI. Klein (’ ) :

L’équation

définit le complexe des tangentes à la sphère

Nous verrons plus loin par quelle transformation ponctuelle cette équa-
tion se change en la suivante

9. Complexes H cle seconde espèce.
-- Tous les complexes H de seconde espèce dérivent, lJaj’ Ulle

transformation homographique, de l’un quelconque d’entre eux, par
exemple, du complexe défini par l’équation

En effet, considérons un complexe quelconque If de seconde espèce et
effectuons encore une transformation homographique qui le change en un
complexe ayant pour surface singulière

Soient alors

les équations des génératrices, qui sont liées par une homographie.
Une seconde transformation homographique, n’altérant ni la surface ~, ni

l’ensemble des droites D, permet, comme nous avons vu, d’amener le

rayon double unique de l’homographie à coïncider avec la génératrice cor-
re spondante à ). == oc.

L’homographie qui correspond au complexe H transformé est alors défini
par une équation de la forme

( 1 ~ KLEIN, Matheniatische Annalen, t. V.



La condition pour que la droite

rencontre deux génératrices homologues est alors exprimée par l’équation

Cette équation représente le complexe des tangentes aux courbes inté-
grales de

Il suffit maintenant de remplacer y et z respectivement par iky et ikz
pour obtenir Inéquation (VIII) et le théorème est démontré.

Remarquons, d’ailleurs, que la dernière transformation homographique
n’altère ni la surface 1, ni l’ensemble des droites D, ni la génératrice
double de l’homographie. Donc la surface singulière du complexe (VIII)
est encore la surface ~; la génératrice double unique de l’homographie est
la génératrice correspondant à ~ = oo. Enfin le nombre k qui caractérise
l’homographie est égal à i.
On verrait, comme précédemment, que, pour former le groupe d’un com-

plexe H de seconde espèce, il suffit de déterminer les transformations

homographiques, qui laissent invariantes la surface singulière et, sur cette
surface, une génératrice et une seule, à savoir la génératrice double

(unique) de l’homographie correspondante au complexe.
Si, dans l’équation (i), on effectue la transformation homographique la

plus générale, on obtient l’équation du complexe H de deuxième espèce le
plus général. Cette équation contient quinze paramètres; mais, comme
le groupe de l’équation est à quatre paramètres, onze seulement sont essen-
tiels (’ ).

10. De ce qui précède résulte que : :

Toute équation aux dérivées partielles qui admet un groupe à quatre
paramètres dérive par une transformation ponctuelle d’une équation
pour laquelle les tangentes aux courbes intégrales déterminent un com-

plexe I (voir p. 78 ), un complexe H ou un complexe K.

( 1 ) Les complexes H se confondent avec les complexes et [III (12)] signalés par
M. Weiler (Math. Ann., t. VII, p. 168 et 1; 8 ).



CHAPITRE IX.
SUR LES CARACTÉRISTIQUES DES ÉQUATIONS CANONIQUES. COURBES
GAUCHES QUI ADMETTENT UNE TRANSFORMATION HOMOGRAPHIQUE
INFINITÉSIMALE.

Les caractéristiques des équations canoniques appartiennent à la famille
des courbes gauches, étudiée par MM. Sophus Lie et Klein, qui admettent
une transformation homographique infinitésimale (’ ). Je me propose, dans
ce Chapitre, de classer ces courbes et d’indiquer ensuite la catégorie à
laquelle appartiennent les caractéristiques d’une équation canonique don-
née. La méthode que je vais suivre est la généralisation de celle qui a été
indiquée par M. Sophus Lie pour la détermination des courbes V planes
(voir page 66).

1. Soient x, , x3, x3, x,, les coordonnées homogènes d’un point quel-
conque de l’espace.
Une transformation homographique infinitésimale quelconque est définie

par le symbole

Cette transformation infinitésimale (et, par suite, le groupe à un para-
mètre qu’elle engendre) laisse invariants des points x3, x~,,) et des
plan.s (Ut, , u2, u3, de l’espace. Ces points et ces plans sont définis par
les équations ( 2 )

( 1 ) Comptes rendus de l’Académie des Sciences ( t 8; o).
( 2 ) Transformationsgruppen ( t. J, p. 580, 581, etc. ).



Remarquons qu’à une racine X qui n’annule pas les mineurs du troisième
degré correspondent un seul point invariant et un seul plan invariant.

Cela posé, à l’égard de ces points et de ces plans invariants, nous allons
démontrer les théorèmes suivants : :

THÉORÈME I. - Tout point invariant correspondant à une racine h de

se trouve dans tout plan invariant cornespondant à une racine 03BB’ diffé-

rente de 03BB.

En effet, soient

les équations qui déterminent les points invariants correspondant à la ra-
cine 03BB, et soient

les équations qui déterminent les plans invariants correspondant à la ra-
cine A’.

De l’équation (3), on déduit 

et, par suite,

ou bien

ou encore

Comme X’ est différent de À, cette égalité exige que

Ce qu’il fallait démontrer.



THÉORÈME II. -- une racine de l’équation

qui n’annule pas tous les mineurs du tnozsiéme degré. Pour que le point
invariant qui correspond à cette racine se trouve dans le plan invariant

correspondant à la même racine, il faut et il suffit que la racine ~ soit
une racine multiple.

Il est clair que nous pouvons, sans particulariser la question, supposer le

point invariant M au sommet (x, = o, x2 = o, x3 = o) du tétraèdre de ré-
férence, c’est-à-dire

Le plan invariant P correspondant à cette racine est déterminé par les
trois équations

Ces équations ne déterminent effectivement qu’un plan invariant, car
il résulte de l’hypothèse faite sur À que les déterminants du troisième degré
du Tableau des coefficients ne sont pas tous nuls. En outre, si D~, D~, D3,
D, désignent les déterminants du troisième ordre, obtenus en supprimant
successivement la première colonne, la deuxième, ... , les coefficients u, ,

uz, Mg, u, du plan invariant

sont déterminés par les équations

Cela posé, pour que le plan ( P ) passe par le point ( M ), il faut et il suffit
que

ou bien



Cette égalité exprime précisément que À est une racine multiple de
l’équation (i).

Je vais maintenant démontrer un troisième théorème, qui nous permettra
de diminuer considérablement le nombre des cas à distinguer dans la re- -

cherche des courbes V de l’espace.

THÉORÈME III. - Si l’équation en 03BB admet une racine qui annule tous
les rraLneurs du troisième degré, chacune des courbes qui admettent la
transformation infinitésimale X f est une courbe plane.

En effet, les courbes qui admettent la transformation infinitésimale X/’
sont déterminées par les équations différentielles

Supposons qu’une racine À de l’équation en X annule tous les mineurs du
troisième degré, et cherchons une intégrale particulière du système (1)
ayant la forme

les constantes Ai sont données par les équations

Eu égard à l’hypothèse faite sur h, ces équations admettent certainement
deux solutions distinctes

Si donc on désigne par ~, l~, c, d quatre constantes arbitraires, l’inté-

grale générale du système (l) a la forme

où ci et d; désignent des fonctions linéaires de c et d.
Considérons une courbe intégrale correspondant à des valeurs détermi-



nées de a, b, c, d, il est clair que cette courbe est située dans le plan

Ce qu’il fallait démontrer.
Les courbes V planes ayant déjà été déterminées, nous pourrons, dans la

suite, supposer que l’équation en X n’admet pas de racine annulant les
du troisième degré. Nous commencerons par démontrer que

toutes les transformations X f, satisfaisant à cette condition, sont sem-
blables homographiquement à cinq d’entre elles. 

’

2. Soit X fune transformation homographique infinitésimale et suppo-
sons que l’équation À n’admette pas de racine annulant les mineurs du
troisième degré. Je vais étudier successivement les cinq cas suivants : :
Premier cas. - L’équation en 03BB a quatre racines simples : h, , 03BB2, 03BB3, 03BB4.
Les théorèmes 1 et II montrent que les quatre points et plans invariants

F’g. ;.

forment un tétraèdre ABCD ~ ). La transformation X f est alors ho-
mographiquement semblable à

qui laisse invariant le tétraèdre de référence. Cette transformation est
d’ailleurs équivalente à



et, par suite, à

(Les droites invariantes, qui correspondent à X f’, sont les arêtes du

tétraèdre. )
Deuxième cas. - L’équation en 03BB a deux. racines simples, 03BB1 et 03BB2, et

une racine double, ~3.
Les mêmes théorèmes 1 et II montrent que :
1 ° A la racine double correspond un point invarian t (C, D ), et un plan

invariant P passant par ( C, D) ( f b~. ~ 1 ’ )].

Fig. s.

2° Aux racines simples À, et À2 correspondent respectivement des points
invariants A, B situés dans P, et des plans invariants BCL, AC1A, formant
avec le plan P un véritable trièdre.
On peut dire que la figure formée par les points et plans invariants est

un tétraèdre ayant deux faces confondues.
Soit 0 un point quelconque de CL. En effectuant une transformation ho-

mographique convenable, on peut faire coïncider le tétraèdre de référence
avec OABC. Soient

les équations des faces. La transformation infinitésimale X f prend la forme

(1) Dans cette figure et les suivantes, les droites dessinées en traits pleins sont les droites
invariantes.



Comme, par hypothèse, la racine ~~ n’annule pas les mineurs du troi-
sième degré, on doit supposer

X f est semblable, homographiquement, à la transformation ou a la

transformation équivalente

Cette dernière est semblable à la transformation

il suffit, pour le voir, de remplacer dans la variable ~ ~‘’ ~ F ’~~ "" >
ce qui revient à déplacer le point 0 sur la droite CL.

(Les droites qui admettent la transformation infinitésimale X/ sont ici
les arêtes du trièdre C et la droite AB.)

Troisième cas. - L’équation en 03BB a deux racines doubles, 03BB1 et 03BB2.
A ces racines correspondent respectivement deux points invariants (A, B)

et (C, D), et deux plans invariants passant par AC ( f b . g ).

Fig. 9.

Soit 0, i un point quelconque du plan correspondant à et soit, de
même, O2 un point situé dans le plan correspondant à À2. Par une trans-
formation homographique convenable, on peut faire coïncider le tétraèdre
de référence avec le tétraèdre 0, 02AC. Soient

les équations des faces. La transformation X f prend alors la forme



et, en outre,

car, par hypothèse, l’équation en X n’admet pas de racine annulant les mi-
neurs du troisième degré.

Remarquons que la transformation réduite

indique l’effet produit par la transformation X f sur les points du plan
Xi = o. Or on voit immédiatement que les éléments (points et droites) in-
variants, qui correspondent à Af, sont : un point simple A, un point
double (C, D), une droite double (AC, AD), une droite simple passant
par le point C. Cette dernière est représentée par

De même, la transformation Xy laisse invariante, dans le plan X4 == o,
une droite M passant par A et représentée par

En particulier, si l’on a choisi les points O, et O2 sur les droites inva-
riantes L et M, la transformation X’ f a la forme plus simple

ou la forme équivalente

Si maintenant on remplace respectivement par

la transformation X" f devient

Donc, dans ce cas, la transformation X f est semblable, homographique-



ment, à X3f. . (Les droites invariantes, qui correspondent à X f, sont au
nombre de trois.)

Quatrième cas. - L’équation en h a une racine simple ~" et une racine
triple À2. A la racine triple correspond un point invariant (A, B, C) et un
plan invariant passant par ce point (théorème II). A la racine Ài corres-
pond un point invariant D situé dans le plan précédent, et un plan inva-
riant passant par A, mais non par D (voir théorèmes I et II).

Soient 0, et AD02 les deux plans invariants o). Par une

Fig. 10.

transformation homographique, on peut faire coïncider le tétraèdre de ré-
férence avec le tétraèdre A 0, 02 D. Soient

les équations des faces. La transformation X f prend la forme

et, en outre,

car, par hypothèse, l’équation en À n’admet pas de racine annulant tous les
mineurs du troisième degré.

Si l’on remplace x, 1 par Xi + (ce changement de variables équivaut
à une rotation du plan O, AD autour de AD), a étant une constante conve-
nablement choisie, la transformation précédente prend la forme 

’



ou la forme équivalente

Les trois coefficients a, ,,, a~>" Àf - À2 étant différents de zéro, on peut
déterminer a, ~, de manière que la transformation X" f devienne

quand on remplace ~ et ~ respectivement par et ~~.
Donc, dans ce cas, la transformation X f est réductible à la forme (4)

(par une substitution homographique). Les droites qui admettent la trans-
formation infinitésiniale X. f se réduisent ici à deux.

CINQUIÈME CAS. - L’équation C/Z À a une racine quadruple Â, . - A
cette racine correspond (théorème II) un point invariant (A, B, C, D) et
un plan P invariant passant par ce point ( fig. 4)’ On sait d’ailleurs que,

Fig, ij. 
’

parmi les droites du plan P qui passent par A, il en existe certainement

une AK qui admet la transformation infinitésimale X f 1’ ). Cela posé, y
effectuons une transformation homographique qui fasse coïncider le plan

~ 

avec le plan invariant P, le point

(1) Cela résulte immédiatement de ce qu’un groupe homographique, à une variable x,
laisse invariant un point (au moins) de l’axe des x.



avec le point invariant A, et la droite

avec la droite AK. Alors la transformation X f prend la forme

ou la forme équivalente

En outre, pour une raison déjà donnée, on doit avoir

Je vais démontrer que la transformation X’ f est semblable, homogra-
phiquement à celle que l’on obtient, en supposant les trois coefficients a, ,,,

a3 2 égaux à l’unité et les autres nuls. A cet effet, remplaçons dans X’ f
la variable x3 par x~ + ax, + ~x2. En choisissant a convenablement,
on arrive à mettre la transformation sous la forme

Effectuons un nouveau changement de variables homographique ; rem-
plaçons Xi par x, + où P est donné par

La transformation infinitésimale précédente devient

Enfin remplaçons r, , x2, X4 respectivement par ax" ; en choi-
sissant a, ~, y convenablement, on parvient à la transformation suivante



Ainsi la transformation considérée X f est, dans le cas actuel, sem-

blable à la transformation X5f. (La transformation X f laisse invariante
une droite et une seule.)
En résumé, une transformation homographique infinitésimale (de l’es-

pace à trois dimensions), pour laquelle l’équation en X n’admet pas de
racine annulant les mineurs du troisième degré, est semblable homogra-
phiquement à l’une des cinq suivantes :

qui s’écrivent en coordonnées non homogènes de la manière suivante :

3. Courbes gauches qui admettent une transformation infinitési-
m,ale homographique. -- D’après ce qui précède, nous pouvons affirmer
que toute courbe gauche, admettant une transformation homographique
infinitésimale, est une transformée homographique d’une courbe admettant
l’une des cinq transformations infinitésimales canoniques.

I° Cherchons d’abord les courbes qui admettent la transformation infi-



. nitésimale Xi f, ces courbes intégrales de

c’est-à-dire les suivantes

Donc : 
’

Toute courbe gauche admettant une transformation infinitésimale
homographique de la première classe est une transformée homogra-
phique de la courbe gauche

2° De même, toute courbe gauche admettant une trans f ormation
infinitésimale homographique de la deuxième classe est une trans-

formée homographique de la courbe gauche

3° Toute courbe admettant une transformation infinitésimale de la
troisième classe est une transformée homographique de la courbe

gauche

4° Toute courbe admettant une trans f ormation infinitésimale homo-
graphique de la quatrième classe est une transformée homographique
de la courbe gauche

5° En fin la famille des courbes, qui admettent une transformation
homographique infinitésimale de la cinquième classe, est par
les transformées homographiques de la cubique gauche

Nous allons voir que cette famille est celle de toutes les cubiques
gauches de l’espace.

Ainsi les courbes gauches qui admettent une transformatioa homogra-



phique infinitésimale, courbes que MM. Sophus Lie et Klein ont appelées
courbes V, peuvent être partagées en cinq catégories essentiellement dis-
tinctes. Je me propose d’examiner maintenant combien chacune de ces
courbes admet de transformations homographiques infinitésimales. Aupa-
ravant, je ferai quelques remarques au sujet des courbes V de la première
classe.

4. Remarques relatives aux courbes V de la classe. - Ces
courbes sont les transformées homographiques des courbes, en nombre
doublement infini, représentées par les équations

Nous représenterons par le symbole (x, ~~ la famille des courbes qui
correspondent aux valeurs

des exposants m et p. L’identité de deux familles (ex, 03B2) et («’, 03B2’) sera

exprimée par l’égalité

Si l’on effectue, dans les équations (1), successivement les transformations
homographiques suivantes :

on aperçoit que

Cela posé, cherchons les familles (m, p) composées de courbes tracées
sur des surfaces du second degré (non décomposables).

Soit

l’équation d’une surface du second degré passant par la courbe



Alors on a l’identité

qui exige que deux des dix exposants

soient égaux, c’est-à-dire que l’on ait (au moins) une des égalités

Donc, si une famille (m, p) est composée de courbes tracées sur des sur-
faces du second degré, on peut affirmer que l’une des égalités précédentes a
lieu. Remarquons maintenant qu’en vertu des relations (2), toute famille
(m,p) pour laquelle une des égalités (3) a lieu est identique à une famille
( m’, p’) pour laquelle -

De même, toute famille (m, p) pour laquelle une des égalités (4) a lieu
est identique à une famille ( m’, p’) pour laquelle

Ainsi chacune des familles cherchées peut être représentée par un des
deux symboles .

La réciproque est évidente : une courbe d’une famille F, est tracée sur
une surface conique (ou cylindrique) ; une courbe d’une surface F2 est tracée
sur une surface du second degré de la classe générale.
On peut se demander quelles valeurs il faut donner à p et m pour que

chacune des courbes considérées soit tracée sur deux (et par suite sur une
infinité) surfaces du second degré.

Considérons d’abord les courbes d’une famille ( 2, p) . Soit



l’équation d’une surface du second degré passant par la courbe

Les coefficients de y, z) sont déterminés par l’identité

Si les nombres

sont tous distincts, c’est-à-dire si aucune des égalités

n’a lieu, forcément il n’y a qu’une surface du second degré passant par la
courbe considérée, à savoir

Si au contraire une des égalités (7) a lieu, la famille ( 2, p) est identique,
en vertu des relations ( 2 ), à l’une des deux familles

Dans le premier cas, la famille se compose de cubiques gauches; elle
contient même, comme nous le verrons, toutes les cubiques gauches. Dans
le second cas, la famille se compose des transformées homographiques de la
biquadratique à point de rebroussement

et contient; comme nous le verrons aussi, toutes les biquadratiques à point
de rebroussement.

Considérons maintenant les courbes de la famille (ne, m -+-1). Soit encore

l’équation d’une surface du second degré passant par la courbe

Les coefficients de y, ,~ ) sont déterminés par l’identité



Si les nombres

sont tous distincts, c’est-à-dire si aucune des égalités

n’a lieu, il n’y a qu’une surface du second ordre passant par la courbe consi-
dérée, à savoir

Si, au contraire, une des égalités (g) a lieu, la famille (m, m + I ) est iden-
tique, en vertu des relations ( 2 ), à la famille ( 2, 3 ), c’est-à-dire la famille
des cubiques gauches.
En résumé, les familles (m, p) qui se composent de courbes tracées sur

des surfaces du second degré se partagent en quatre catégories : :

La première comprend les cubiques gauches.
La seconde comprend les biquadratiques à point de rebroussement.
La troisième comprend les familles (2 p) qui se composent de courbes,

dont chacune est tracée sur une surface du second degré et une seule,
la surface étant conique.
La quatrième comprend les farrzilles m + r ) dont chaque membre

est tracé sur une surface du second degré et une seule, la surface appar-
tenant à la classe générale.

Enfin remarquons que les courbes ,de la première et de la quatrième caté-
gorie constituent la famille des transformées homographiques des loxodro-
mies de l’espace. p:n effet, les courbes des deux catégories considérées
peuvent être obtenues en appliquant toutes les transformations homogra-
phiques aux courbes suivantes

c’est-à-dire aux courbes définies par



Or, par la substitution homographique

le système ( 1 ) se transforme dans le suivant

qui représente les loxodromies de la sphère S correspondant aux méridiens
passant par l’axe des 2’. Les courbes de la première et de la quatrième caté-
gorie sont donc les transformées homographiques des loxodromies (2). Il
résulte évidemment de là que ces courbes constituent la famille des trans-

formées homographiques de toutes les loxodromies de l’espace.

des transformations infinitésimales qui laissent invariante
une courbe V. - Considérons d’abord les courbes V de la première classe.
Pour déterminer le nombre des transformations infinitésimales qu’admet
une de ces courbes, il suffit évidemment de chercher combien la courbe

adrnet de ces transformations. Soit

une transformation homographique infinitésimale laissant invariante la

courbe (i). Les polynômes (, r~, ~ s’obtiennent en écrivant que les relations

sont vérifiées en chaque point de la courbe ( 1 ). Donc les coefficients de
~, r~, ~ sont définis par les identités suivantes :



qui peuvent prendre la forme

Nous sommes alors conduits à distinguer plusieurs cas.
Premier cas. - La courbe ( r) n’est pas située sur une surface du second

degré. Dans ce cas n° 4 ), si l’on considère les termes de l’une quel-
conque des identités ( 2 ), on aperçoit que les exposants de x dans ces termes
sont tous distincts. Par suite, _

quant aux autres coefficients de ç, °r~, Ç, ils sont tous nuls, sauf a, . Donc la
courbe (i) n’admet alors qu’une transformation infinitésimale (homogra-
phique ), à savoir

Deuxième cas. - La courbe (I) est une cubique gauche.
La courbe est alors (voir n° 4) une transformée homographique de la

courbe

Un calcul analogue au précédent montre que la cubique ( 3 ) admet trois
transformations homographiques infinitésimales, à savoir

En appliquant à cette cubique les transformations homographiques de
l’espace, on obtient donc une famille de cubiques dépendant de douze para-
mètres essentiels, c’est-à-dire la famille totale des cubiques gauches de
l’espace. Nous parvenons donc à ce résultat déjà annoncé.



L’ensemble des transformées homographiques de la cubique gauche

se compose de toutes les cubiques gauches de l’espace.
Troisième cas. - La courbe ( I ) est une biquadratique à point de rc-

broussement. Nous avons vu qu’elle est alors une transformée homogra-
phique de

En répétant sur ces équations les calculs et raisonnements qui précèdent,
on voit d’abord que la courbe ( / ) n’admet qu’une transformation homo-
graphique infinitésimale, ensuite que l’ensemble des transformées homogra-
phiques de ( 4 ) se compose de toutes les biquadratiques à point de re-
broussement.

Quatrième cas. - La courbe (I) est tracée sur une surface de second
degré S et une seule.
La courbe est alors n° 4 ) une transformée homographique de

Remarquons d’ailleurs que, si une transformation homographique laisse
invariante la courbe considérée, elle laisse également invariante la surface S.
En effet, si elle transformait S en une autre surface S’, la courbe en question 

.

serait l’intersection de deux surfaces du second degré, ce qui est contraire à

l’hypothèse.
En ayant égard à cette remarque et aux inégalités (5) et (6), on trouve

facilement que la courbe ( 1 ) n’admet qu’une transformation homographique
infinitésimale.

Passons aux courbes V de la seconde classe, c’est-à-dire aux transformées

homographiques de la courbe



Soit X f une transformation infinitésimale (homographique ), qui laisse
invariante cette courbe. Les relations

doivent être vérifiées en chaque point de la courbe (ï) : donc on doit avoir
les deux identités en x

En égalant les coefficients de lyr, dans les deux membres de l’identité (5),
on trouve

car, par hypothèse,

L’identité (3) donne de même

ce qui exige que

Les identités ( 2) et (3) deviennent alors

De là on déduit, eu égard aux hypothèses faites sur m,

et, par suite,



d’où

c’est-à-dire

ce qui entraîne les égalités

Les relations (a), (~), (y), (ô) donnent

La courbe ( i ) n’admet donc que la transformation homographique infi-
nitésimale

Remarque. - Parmi les courbes V de la deuxième classe se trouvent les
transformées homographiques des hélices de l’espace. Ceci résulte de ce
que la courbe

qui correspond à m .- - i, se transforme, par la substitution linéaire

en la courbe suivante

qui est évidemment une hélice.

Considérons enfin les courbes de la troisième et de la quatrième classe.
Ces courbes sont les transformées homographiques de la courbe

Des calculs identiques à ceux qui ont déjà été faits plusieurs fois rnon-
trent que chacune de ces courbes n’admet qu’une transformation homogra-
phique infinitésimale.



Quant aux courbes V de la cinquième classe, elles ont déjà été étudiées;
car les cubiques gauches appartiennent aussi à la première classe.
En résumé, toute cubique gauche admet trois transformations homogra-

phiques infinitésimales. Les cubiques gauches sont les seules courbes gau-
ches admettant plus d’une transformation homographique infinitésimale.

6. Caractéristiques des équations canoniques. - Nous avons déjà vu

que les caractéristiques des équations canoniques ( I ), ( II ), ( III), (IV) sont
des droites. Je me propose maintenant d’indiquer la nature des caractéris-

tiques des autres équations canoniques. .

Caractéristiques de l’équation

Supposons d’abord

Les caractéristiques sont alors données par les équations (voir p. 79)

Considérons, en particulier, la caractéristique correspondant aux va-
leurs

Elle a pour équations

En lui appliquant toutes les transformations du groupe G de l’équa-
tion (V) (voir p. 81), on obtient toutes les caractéristiques de l’équa-
tion ( V). Or on voit que la courbe Co est une courbe V de la première classe

et de la famille f2014~2014? + i ) (voir p. 128). Donc les caractéristiquesI /~ ’- ~ -~

sont des courbes V de la première classe. Examinons si ces caractéristiques
peuvent être des cubiques gauches ; il faut, pour cela, que l’on ait une des



égalités suivantes (p. i3]) :

Les deux dernières égalités sont impossibles, eu égard aux hypothèses
faites sur n.

Les deux premières sont équivalentes aux suivantes :

Ainsi, pour que les caractéristiques de l’équation (V) soient des cubiques
gauches, il faut et il suffit que

Dans tous les autres cas, les caractéristiques sont des courbes V de la
première classe et de la quatrième catégorie (voir p. I3I). On peut dire que,
dans tous les cas, les caractéristiques sont des transformées homographi-
ques d une loxodromie.

Remarquons d’ailleurs que les deux équations

sont homographiquement semblables, car la somme des deux exposants est
égale à l’unité (voir la note p. 82).

Soit maintenant

Les caractéristiques sont alors (p. 80) données par

Comme précédemment, il suffit, pour étudier la nature de ces courbes, de
considérer une caractéristique particulière, par exemple

qui est une transformée homographique de



Donc les caractéristiques sont des courbes V de la deuxième classe ct en
particulier (voir p. I36) des transformées homographiques d’une hélice. .

Caractéristiques fic l’équation (VI).

Si l’on se reporte au calcul qui a été fait (p. 86), on voit que les carac-
téristiques de cette équation sont représentées par

Ces courbes peuvent être considérées comme obtenues en appliquant les
transformations du groupe de l’équation (VI) à la caractéristique particu-
lière C~, 

"

Or cette dernière est une transformée homographique de l’hélice

il suffit, pour le voir, de poser

On voit donc que les caractéristiques de l’équation ( VI ) sont aussi des
transformées homographiques d’une hélice. .

Caractéristiques des équations canoniques (VII) et (VII’). - Consi-
dérons d’abord l’équation

Les caractéristiques de cette équation peuvent être représentées (voir
p. 94>>



Considérons en particulier les caractéristiques pour lesquelles

Ces caractéristiques sont représentées par

En appliquant à ces caractéristiques les transformations du groupe G de
l’équation (VII’), (p. 95), on obtient (f) toutes les caractéristiques de
l’équation (VII’). Or chaque courbe (2) est une transformée homogra-
phique de la courbe

Donc les caractéristiques de l’équation (VII’) sont des courbes V de la
première classe et de la première ou de la quatrième catégorie. Cherchons
pour quelles valeurs de h les caractéristiques sont des cubiques gauches. Il
faut pour cela (voir p. i3i) que l’une des égalités suivantes ait lieu

c’est-à-dire

Dans tous les autres cas, les caractéristiques sont des courbes V de la
première classe et de la quatrième catégorie. On peut dire aussi que les ca-
ractéristiques sont, dans tous les cas, des transformées homographiques
d’une loxodromie.

Comme l’équation VII dérive de l’équation (VII’) par une transforma-
tion homographique (p. il en résulte que les caractéristiques
de (VII) sont aussi des transformées homographiques d’une loxodromie.
On peut obtenir simplement les caractéristiques de l’équation (VII) en

effectuant la transformation déjà utilisée (p. I00) dans le système (2) ou
le système équivalent

(1) Cette .opération fournit une famille de courbes ne contenant que trois paramètres
essentiels, car la famille (2) admet deux transformations infinitésimales de G, à savoir X2 f
et X4f.



ce qui donne

et en appliquant ensuite aux courbes (3) toutes les transformations du
groupe de (VII). .

Caractéristiques de l’équation canonique (VIII). - Si l’on se reporte
au calcul qui a été fait (p. 95), on voit que les caractéristiques de l’équa-
tion (VIII’) peuvent être représentées par

En ’remplaçant dans ces équations x, y, z respectivement par z y, i, -?

on obtient les caractéristiques de l’équation (VIII); on trouve ainsi

En particulier, considérons les caractéristiques pour lesquelles

c’est-à-dire les courbes représentées par

En appliquant à ces courbes les transformations du groupe de l’équa-
tion (VIII), on obtient toutes les caractéristiques de l’équation (VIII). Or,
les courbes Go sont des transformées homographiques de la courbe

Donc les caractéristiques de l’équation (VIII) sont des courbes V de la
troisième classe.



TABLEAU DES ÉQUATIONS CANONIQUES.

Note. - L’équation (VII) peut être remplacée par la suivante



NOTE.

RÉDUCTION DE PLUSIEURS ÉQUATIONS CONNUES A LA FORME CANONIQUE. TRANS-
FORMATION PONCTUELLE FAISANT CORRESPONDRE AUX TANGENTES D’UNE SURFACE
DU SECOND DEGRÉ LES DROITES RENCONTRANT UNE CONIQUE.

1. Comme exemple d’équation aux dérivées partielles admettant un groupe, je
choisirai l’équation pour laquelle les normales aux surfaces intégrales sont tan-
gentes à une sphère (’ )

Je me propose de montrer que cette équation dérive par une transformation
ponctuelle de l’équation canonique

A cet elllet, je considère l’équation associée à l’équation (1), qui est évidemment

Effectuons la transformation

L’équation (2) se change en la suivante

Posons

c’est-à-dire

L’équation (4) devient

(~) Je suppose le centre de la sphère à l’origine et le rayon égal à l’unité.



ou bien

en posant t

Si donc on effectue dans l’équation canonique (I) la transformation ponctuelle

où p et r sont définis en fonction de x, y, ,~ au moyen des relations

on trouve précisément l’équation (2). Ce que nous voulions démontrer.
Cette réduction de l’équation (2) à la forme canonique permet d’intégrer cette

équation.
Je ne parlerai pas des résultats de cette intégration, qui sont connus depuis

longtemps.

2. Parmi les équations, qui sont des transformées ponctuelles de

se trouvent évidemment toutes les équations du second degré non décomposables

à coefficients constants.

Cela posé, considérons Inéquation aux dérivées partielles pour laquelle les tan-
gentes aux courbes intégrales sont les normales aux surfaces homofocales

Cette équation a pour associée la suivante

ou bien

(1) Consulter, au sujet du complexe déterminé par ces normales, le Mémoire publié par
N1. Darboux dans le Bulletin des Sciences mathématiques, t. II, année I87I.



ou encore

Par la transformation

l’équa tion (3) se change en la suivante

En vertu de la remarque que nous venons de faire, cette équation dérive par
une transformation ponctuelle de l’équation

Donc l’équation aux dérivées partielles considérée est une transformée ponc-
tuelle de l’équation canonique

L’équation ( 2 ) peut aussi être considérée comme définissant un complexe té-
les faces du tétraèdre étant les trois plans de coordonnées et le plan de

l’infini. Tout complexe tétraédral est d’ailleurs une transformée homographique de
celui-là. Donc : :

Toute équation aux dérivées partielles, pour laquelle les tangentes aux
courbes intégrales déterminent un complexe tétraédral est une transformée
ponctuelle de l’équation canonique

3. Transformation ponctuelle faisant correspondre aux tangentes d’une
surface du second degré les droites rencontrant une conique. - Entin consi-
dérons l’équation au; dérivées partielles associée à l’équation

Les tangentes aux courbes intégrales de cette équation sont tangentes à la

( 1 ) Cette équation peut aussi s’écrire

C’est sous cette forme que nous l’avons rencontrée plusieurs fois dans ce travail (en particu-
lier, voir p. 100).



sphère

Je dis que l’équation aux dérivées partielles considérée dérive encore de

l’équation i + p2 j- ~~ = o, par une transformation ponctuelle, ou, ce qui revient t
an même, que l’équation (1) est une transformée ponctuelle de l’équation

En effet, effectuons dans l’équation (i) la transformation ponctuelle

- ? désignant une fonction indéterminée. Inéquation (i) a pour transformée

I’our que cette équation soit identique à l’équation (3), il suffit que U satisfasse
à inéquation

il suffit donc de prendre U de manière que

La fonction U étant déterminée par l’équation (5), la transformation (4) change
l’équation ( i) en l’équation ( 2 ), ce que nous voulions démontrer.
Remarque. - La transformation précédente offre ceci de curieux, qu’elle

change les droites tangentes à la sphère (2) en droites rencontrant le cercle

imaginaire de l’infini. Cette transformation est un cas particulier d’une transfor-
mation plus générale, faisant correspondre aux tangentes d’une surface du second

degré S les droites rencontrant une section plane C de cette surface. Voici cette
transformation (’ ).

Considérons la transformation ponctuelle qui fait correspondre à chaque point t

y, z) de l’espace les sommets ni et m’ des deux cônes qui passent par la

( 1) Cette transformation a été utilisée par M. Darhoux dans ses recherches sur les 

cyclides.



conique C et la conique K intersection de S avec le plan polaire de M ~ ~ ~.
Cette transformation jouit bien de la propriété en question.
En effet, soit A le pôle du plan de la conique C. Les deux points m, m’ doivent

évidemment se trouver sur l’intersection des plans tangents à la surface S aux
points d’intersection des deux coniques C et K, c’est-à-dirc sur la droite con-
juguée de l’intersection des deux plans G et K. Or cette droite est précisément la
droite AM : donc les deux points in, ni’ se trouvent sur AM. Cela posé, consi-
dérons une droite quelconque MN tangente en N à la surface S et faisons passer
un plan par le point A et la droite 3IN. Ce plan coupe la surface S suivant une

Fig, 12.

conique H et la conique C en deux points P et Q. Il résulte immédiatement de la
remarque qui vient d’être faite que les points ni et m’ qui correspondent à un
point M de la droite MN doivent se trouver aux points d’intersection de AM avec
les droites NP et NQ. On peut donc dire que la transformation considérée fait t
correspondre aux points de la droite MN les points des deux droites NP et NQ ct,
par suite, à l’ensemble des tangentes de la surface S, l’ensemble des droites ren-
contrant la conique C.

Supposons en particulier que la surface S soit la sphère représentée par J’é-
quation

et que la conique C soit le centre imaginaire de l’infini. Soient m(x, y, z) et
M(X, Y, Z) deux points correspondants. Pour trouver les relations qui Ment les
six quantités (x, y, ,~, X, Y, Z), il suffit d’écrire que la sphère de rayon nu]

passe par l’intersection de la sphère S avec le plan polaire du point c’esL-



à-dire que les deux équations

représentent le même plan. On obtient ainsi les équations

qui sont identiques, comme je l’ai annoncé, aux équations (4) et (5).
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