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ETUDE BIBLIOGRAPHIQUE.

SUR LA

THEORIE DES NOMBRES,

PAR M. T.-J. STIELTIES,

Professeur a la Faculté des Sciences de Toulouse.

CHAPITRE I.

SUR LA DIVISIBILITE DES NOMBRES.

1. L’idée de nombre a son origine dans la considération de plusieurs objets dis-
tincts. '

C’est une notion qui s’attache a cette considération, ol 'on fait abstraction de
la nature des objets, et qui est, d’aprés notre conviction intime, indépendante de
Pordre dans lequel on envisage successivement les objets donnés.

Ce dernier point est essentiel et constitue, 3 proprement dire, le seul axiome
de toute la science des nombres. Peut-étre méme est-il possible de ramener cet
axiome a quelque chose de plus simple encore.

Si I'on se rappelle, en effet, que I'on peut passer d’'une permutation i une autre
par une série de transpositions opérées sur deux éléments voisins, il semble qu’au
fond il suffit d’adopter I'axiome dans le cas de deux objets.

Mais, sans insister sur cette question, nous nous bornerons a observer ue les
relations exprimées par les équations

a+b=b+a, a+btrc=a+(b+e) ...
abe = bac = c(ab), ceey

a(b+c)=ab—+ ac, ey

doivent étre considérées comme des théorémes qui découlent de 'axiome fonda-
mental qui donne naissance a I'idée de nombre.
IV. — Fac. de T. I
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2. En comparant un nombre @ avec les multiples o, b, 20, ... d’un second
nombre b, deux cas peuvent se présenter. Ou bien @ est égal & un multiple de b,
alors « est divisible par b, b un diviseur de @, ou bien le nombre « tombe entre
deux multiples consécutifs de b. Dans ce dernier cas, il existe un nombre m tel
que @ = mb + c, c étant positif, mais inférieur a b.

3. Etant donnés plusieurs nombres «, b, ¢, ..., [, on peut toujours trouver des
nombres qui sont en méme temps divisibles par «, par b, ..., par /. Parmi ces

nombres qu’on appelle communs multiples de a, b, ¢, ..., I, il y en a un néces-

]

sairement qui est le plus petit et qui s’appelle le plus petit commun multiple des
nombres a, b, c, ..., [. ‘

Tutorime I. — Le plus petit commun multiple m des nombres a, b, c, ..., 1
divise exactement tout autre commun multiple M de ces nombres.

En effet, si M n’était pas un multiple de m, la division de M par m donnerait
lieu & une relation
M =km+m,

Y

ou !/ serait positif, mais inférieur & m. Or on reconnait immédiatement que m'
serait encore un commun multiple de @, b, ¢, ..., I, ce qui est absurde, puisqu’on
suppose qu'il n’existe pas un tel commun multiple inférieur a m.

Il est clair qu’on peut énoncer ce théoréme encore de cette maniére :

Tatorime 12. — Si un nombre M admet pour diviseurs les nombres a, b,

¢, ..., I, le plus petit commun multiple de a, b, c, ..., 1 sera encore un divi-
seur de M.

4. Le plus petit commun multiple des nombres
a>b>c>...>1

est évidemment au moins égal a @, et il ne peut étre égal & @ que dans le cas ol
b, ¢, ..., [ sont des diviseurs de a.

5. Un nombre qui divise a la fois @, b, c, ..., [ s'appelle un commun diviseur
de ces nombres. Parmi ces communs diviseurs, il y en a nécessairement un, plus
grand que les autres, et qui s’appelle le plus grand commun diviseur de a,
b,ce, ..., L

Tatoreme Il. — Le plus grand commun diviseur 8 des nombres a, b, c, : ..,
L est un multiple de tout autre commun diviseur &' de ces nombres.

~ N4

Soient, en effet, ¢, ¢/, ¢, ... les communs diviseurs des nombres donnés.
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Puisque @ est divisible par 8, &, &', ..., il est encore divisible par le plus petit
commun multiple de &, &, &", ..., et il en est de méme pour b, ¢, ..., {. Par con-
séquent, le plus petit commun multiple de 3, &, &', ... est encore un commun di-
viseur de @, b, ¢, ..., {. Ce plus petit commun multiple est donc nécessairement
égal a6, et &, &, ... sont les diviseurs de &. L’ensemble des communs diviseurs
de a, b, ¢, ..., [ est identique avec I'ensemble des diviseurs de o.

6. Pour chercher le p. g. c. d. (p. p. ¢. m.)de a, b, ¢, ..., {, on peut diviser
ces nombres en divers groupes, chercher le p. g. ¢. d. (p. p. ¢. m.) des nombres
contenus dans ces groupes, ensuite le p. g. ¢. d. (p. p. ¢. m.) des nombres ainsi
obtenus.

On pourra donc ramener le probléme toujours au cas ou il n’y a que deux
nombres « et b, et, dans ce cas, I'algorithme d’Euclide conduit de la facon la plus

simple a la connaissance du p. g. ¢. d. Par une suite de divisions, on obtient les
relations

a =qgb -+ r,

’ w
b =gq'r -+,
r =gq"r -+ r’,

Plh=1 = glk+0 plh) 4 plhs1),

Pk = g+ plh+D),

et Pkt estle p. g. c. d. de a et b.

Soit & le p. g. c. d. de @, b, ¢, ..., [, alors les nombres ma, mb, ..., ml soni
tous divisibles par m3, leur p. g. c. d. est donc nécessairement divisible par m3g,
mais on reconnait immédiatement que ce p. g. c. d. est exactement m3.

Pour abréger, nous emploierons quelquefois les symboles

(a,bye, ..., 1),
|a,b,¢,...,1]

pour désigner respectivementle p. g. c. d. etlep. p.c. m. dea, b, ..., (.
On a donc

(ma, mb,...,ml)=mx(a,b,...,1)
et de méme

|ma, mb, ..., ml|=mx<|a,b,... 1|

De la on peut conclare le lemme suivant qui est souvent utile.
Lemme. — Soientd lep. g. c. d. (p. p. c. m.) des » nombres

a, o, a,
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elep.g.c.d. (p.p.c.m.)des B nombres
b’ b/’ bll’
alors lep. g.c. d. (p. p. c. m.) des a3 produits

ab, ab', ab", ..., ab, a'd, ..., a'b, a'b,

est de.
En effet, les p. g. c. d. (p. p. ¢c. m.) des divers groupes

ab, ab', ab"
’ 1z 1

ab, a'b, ab", ...,
" g vy
a"b, a'b, a"'b", ...,

ce ey “ ey cee ey

sont respectivement ae, d'e, a’e, ..., et le p. g. c. d. (p. p. c. m.) de ces der-
niers nombres est de.

7. La recherche du p. p. c. m. peut se ramener toujours a celle du p. g. c. d.,
et réciproquement.
Le p. p. c. m. de a, b, c est de la forme
at’;c_w>< bc__b>< €@ _ o ab
d ~ d d "~ d’
donc d doit étre un commun diviseur de bc, ca, ab. Pour avoir le p. p. c. m.,
il faut évidemment prendre pour d le p. g. c. d. de be, ca, ab.

Tutorkme III. — Le p. p.c. m. (p. g. c. d.)yde a, b, c, ..., Lest égal au pro-
duit abe. ..l divisé parle p. g. c. d. (p. p. c. m.) des produits

be...l, ac...l, ..., abe...k.

8. Dans le cas de deux nombres a el b, le produit du p. g. c.d. etdup. p.c. m.
est ab. Cette relation n’a plus lieu dans le cas ot 'on a n nombres. Cependant
on peut rétablir 'analogie, et il faut, pour cela, considérer, non seulement le
p- 8. c. d. et le p. p. ¢. m., mais une suite de n nombres qui dérivent d’une fagon
particuliére des nombres donnés.

Nous allons entrer dans quelques détails sur cette théorie, comprise dans des
recherches plus générales de M. Smyth dont nous aurons a parler plus loin.

Considérons n nombres

(A) a, b, c. ..., L
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Prenons deux nombres, par exemple @ et b, de ce systéme et remplagons-les
par leur p. g. c. d. et leur p. p. c. m. On aura ainsi un second systéme (A,)

,
a, b, ¢ ..., L

En répétant la méme opération sur (A,) pour en déduire un systéme (A,), puis
un systéme (A;), ..., on finira toujours par obtenir un systéme dans lequel deux
nombres quelconques sont eux-mémes leur p. g. c. d. et p. p. c. m.; c’est-a-dire
I'un de ces nombres divise 'autre. Si 'on ordonne les nombres de ce systéme dé-
finitif par ordre de grandeur croissante

€y, €3, €3, cees €p,

ex divise ez, et nous dirons que ces nombres forment le systéme réduit, ey est
le k™ nombre réduit. En effet, on verra que ce systéme réduit est unique et in-
dépendant de la maniére dont on a dirigé les opérations.

9. Pour faciliter un peu le langage, nous dirons que deux nombres forment un
couple réduit lorsque I'un de ces nombres divise 'autre. Il est clair que, si @ et
b sont un'couple réduit, les groupes (A) et (Ay) sont identiques; on peut donc se
dispenser de combiner les couples réduits. Si tous les couples de (A) étaient ré-
duits, ce groupe serait déja le systéme réduit.

Nous allons faire voir qu’en combinant deux nombres qui ne forment pas un
couple réduit, on augmente toujours le nombre total des couples réduits.

Considérons, pour cela, les divers couples réduits de (A). On peut distinguer
les quatre catégories suivantes :

1° Les couples réduils f, g qui ne renferment ni @, ni b. Il est bien clair que
ces couples réduits se retrouvent dans (A, ).

2° Les couples réduits a, f qui renferment le nombre « et qui sont tels que b, f
n’est pas un couple réduit. Dans ce cas, au moins un des couples ', f et ¥/, f
sera réduit, et ils peuvent I'étre tous les deux. En effet, si f divise a, il est clair
qu’il divise aussi 0/, et, si f est multiple de «, il sera aussi multiple de @'. [On
suppose a'= (a, b), b'=|a, b|.]

3° Les couples réduits b, f qui renferment le nombre & et qui sont tels que
a, fn’est pas un couple réduit. Il est clair que ce que nous venons de dire pour
le second cas s’applique encore ici.

4° Les couples réduits @, f qui sont tels que b, fest en méme temps un couple
réduit. Dans ce cas, on reconnait facilement que les couples @/, f et U, fsont
aussi réduits tous les deux. l! suffit d’examiner successivement les trois hypo-
théses possibles : fdivise @ et b; f est multiple de @ et de b; f divise I'un des
nombres @, b et est multiple de I'autre.
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Nous avons ainsi énuméré déja dans le systéme (A, ) au moins autant de couples
réduits que dans (A). Mais le sysiéme (A,) renferme encore le couple réduit
a', U, par conséquent le nombre des couples réduits du systéme (A,) surpasse
aumoins d’une unité le nombre des couples rédnits de (A).

Par un nombre fini d’opération:, on arrivera donc nécessairement & un groupe
de n nombres dont tous les couples sont des couples réduits, et qui est ainsi le
systéme réduit. Il reste a faire voir que ce systéme réduit est unique.

10. On constate d’abord qu’en remplacant @ et b par «' et &', on ne change ni
le p. g. c. d., nile p. p. c. m. des nombres du systéme.

Envisageons maintenant les divers produits A 4 £ des nombres (A), pour voir
quelles modifications résultent, pour ces produits, par le remplacement de a et
par a’ el b'.

Les divers produils & a & se composent :

1° Des produits qui ne renferment ni «, ni b;
2° Des produits qui renferment a et b;
3° Des produits qui renferment un seul des nombres « et b.

Il est clair que ce sont les derniers produits seulement qui sont affectés par
le remplacement de a et b par @ et b'. Ces produits sont, d'ailleurs, en nombre
pair el peuvent étre écrits ainsi

' 3 "
aP, aP', aP’, aP”, ...,

oP, BP', bP', bP", ...,

P, P, P, ... étant les divers produits A —1 & A — 1 des nombres ¢, ..., L.
En remplacant maintenant a et b par @ et 0/, cela revient évidemment & rem-
placer chaque couple

(aP,bP), (aP’,bP'), (aP’,bP"),

par son p. g. c. d. et son p. p. c. m. Cette opération, nous P'avons déja remar-
qué, n’influe ni sur le p. g. c. d., ni sur le p. p. c. m. des divers produits & a £.

Par conséquent, le p. g. c. d. Dy et le p. p. c. m. My des divers prodaits &
a k des nombres (A) ne changent pas en passant aux nombres (A, ). Ds et My sont
aussi le p. g. ¢. d. etle p. p. c. m. des produits &k & £ du systéme réduit

ey, 62, caey €ny
c’est-a-dire

Dy=eies...e4, Mi=enen—1...€n-k+1-
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~a

De la on conclut les relations suivantes

D-z Dy D,
ep =D [ = =- eee e = e e, =
1 1y 2 Dl ’ ’ k Dry ’ s n D,,_, ’
M, M, M,
en= My, ep—1 = ~— Cpfr) = ey = ——
n 13 n—1 Ml ’ s n—k+1 M/c—l ’ ’ 1 Mn—1 ’

qui mettent en évidence ce fait que le syst¢éme réduit est unique et donnent
I'expression des nombres réduits en fonction de @, b, ¢, ..., [. Les relations

e,=D=M,: My, e,=M=D,:D,,

reproduisent le théoréme lII. Puisque e; divise ezyy, on voit que D7 divise
DDy, M} est multiple de My, ,M;_,; on pourrait le démontrer directement
en s’appuyant sur le lemme du n° 6. On voit que D4 ne peut étre égal a Dy_,, &
moins qu'on n'ait Dy =D, =.. . =Dy=1.

11. Lemme. — @' et U étant le p. g. c. d. et le p. p. ¢. m. de a et b, le
p.g.oc.doetlep. p.c.m. de

(m,a) et (m,b)
sont respectivement '
(m,a') et (m,d").

De méme, le p. g. c. d. et le p. p. c. m. de

|m,al et |m,b]|
sont l'espectivement

|m,a'| et |m,bd|.

Pour démontrer la premiére partie, on remarque d’abord que le p. g. c. d. de
(m, a)et(m,b)est évidemment (m, a, b) = (m,a’). Cela étant, pour démontrer
que (m, b')estle p. p. c. m. de (m, @) et (m, b), il suffira de faire voir que

(m,a)><(m,b)=_(m,a') < (m,b").
Mais cela est évident; car, d’aprés le lemme du n°6, on a

(m,a) < (m,b) =(m2 ma, mb, ab) = (m?, ma',ab),

(m,a')y><(m,b")=(m2 ma',mb',a'b') = (m?, ma',a'd").

Pour la seconde partie, on remarque d’abord que le p. p. c. m. de |m, a| et
|m, b| est évidemment [ m, @, b| =|m, b [; et ensuite il est clair que

|my,alx<|m,bl=|m,a'|><|m,b|.
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5

On conclut de ce lemme que les nombres réduits de

(m,a), (m,b), (m,c), ..., (m,1)
sont

(”‘L‘, 81)’ ("1’62): (nl, 63)7 RS (’na en)'
De méme, les nombres réduits de

fm,al, Imbl, |m,c|, ..., |m,1]

sont
| m, e, | m,esl, ‘m763|1 ceey | myen|.

12. Nous avons considéré, dans le n° 10, les divers produits & a4 & des nombres
) ) p
a, b, c, ..., 1. S, au lieu de cela, on avait considéré simplement les divers groupes
k a k, non pour en former les produits, mais pour en prendre le p. g.c. d. ou le
, P ’ I [ p-8
P- p- ¢. m., on serait arrivé aux résullats suivants :

ey estlep.g.c.d.de|al, |b], |c|, ..., |1];
€y » |aab‘ala’cl9~~-7‘ka”;

€3 » |a,b,¢|, |a, b, d]|, ...;

puis aussi
e, estlep.p.c. m.de (a), (b), ..., (I);
€n_1 » (a,b), (a,c), ...; (k, 1);
€n—s » (a,b,¢), (a,b,d), ...;

Cette recherche n’offre aucune difficulté en s’appuyant sur le lemme du n° 11.

13. On dit que deux nombres sont premiers entre eux (ou bien @ est premier

avec b) lorsque leur p. g. c. d. est égal a 'unité; leur p. p. ¢. m. est alors égal a
leur produit.

Levme. — On a
(a, bc) =(a,cx(a, b))

En effet, il est clair que
(a, bc) = (a, be, ac),
or

(bc,ac)=cx<(a,b).

Tatoreme IV. — Lorsque a et b sont premiers entre eux, tout commun divi-
seur de a et bc est aussi commun diviseur de a et c.

11 suffit évidemment de montrer que

(a, bc) = ((l, c),
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mais cela est évident d'aprés le lemme précédent, puisque (@, b) =1 par hypo-
thése. ‘

On déduit de ce théoréme les conséquences suivantes : 1° Si ¢ est aussi premier
avec a, bc est premier avec a. Il est facile de généraliser ce résultat ainsi. Les

nombres
a, a, a’, ...,

b, b, b, ...

étant tels que chaque nombre @, @/, ... est premier avec tous les nombres b, ¥/, ...,
le produit aa'd’.. . est premier avec b0'Y'. .., a™ est premier avec b”. 2° Lorsque
be est divisible par @ (a et b étant premiers entre eux), ¢ est divisible par a.

14. On dit que plusieurs nombres «, b, ¢, ..., [ sont premiers entre eux lorsque
deux quelconques d’entre eux le sont. On peut remplacer cette définition par la
suivante qui lui est équivalente. Plusieurs nombres @, b, c, ..., I sont premiers
entre eux lorsque @ est premier avec bc...[l, b avec cd...l, ..., enfin L avec [.

Le p. p. c. m. des nombres «, b, c, ..., {, qui sont premiers entre eux, est égal
a leur produit, et cette propriété est caractéristique. En effet, ayant

|a,b,¢,...,1|=abc...I,

il est impossible que deux de ces nombres aient un diviseur commun > 1. Car, si
¢ dmise a et b,

?\—bxcd...l
3

est un commun multiple de @, b, ¢, ..., L.

Un nombre admettant les diviseurs a, b, c, ..., { premiers entre eux, est divi-
sible par leur produit abc...!.

On peut dire encore : lesnombres a, b, ¢, ..., [ sont premiers entre eux lorsque
le (n —1)*™ nombre réduit e,_, = 1. En effet, e,_, est le p. p. c. m. des nombres

(a,0), (a,¢), (bye), ..., (k).

On a alors aussi
eg=€=...=€pg=¢€p-1=1,

e,=abc...l.

Pour que plusieurs nombres «, b, ¢, ..., { soient premiers entre eux, il ne
suffit pas que leur p. g. c. d. soit égal a I'unité, il faut que le p. g. ¢. d. D, des

produits

be...l, ac...l, ..., abc...k

soit égal a 'unité. (Voir le théoréme III et la fin du n° 10.)
IV. — Fac. de T. 2
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Lemve. — Le p. g. c. d. des nombres m, a, b étant Uunité, on a
(m, ab) = (m,a) < (m,b).
En effet, d’aprés le lemme du n° 6,

(m, a) < {m, b) = (m?, ma, mb, ab).
Or

(m?*, ma,mb) =mx(m,a,b)y=m

d’aprés 'hypothése.
Plus particuliérement, on aura

(m,ab)=(m,a)x (m,b)

lorsque @ et b sont premiers entre eux. Ce résultat peut se généraliser immédia-
tement ainsi.

Tutorime V. — Les nombres a, b, c, ...; | étant premiers entre eux, on «
(m, abe...l)y= (m,a) > (m, b)>x(m,c)x...xx(m,1)

Remarque. — Ce résultat est compris aussi comme cas particalier dans les
propositions obtenues dans le n° 11. En effet, le ni™® nombre réduit de

(m.a), (m,b), (m,c), ..., (m1).
¢’est-a-dire leur p. p. c. m. est égal &
(m,e,)=(m,|a,byc,....0l]).

En supposant a, b, ¢, ..., [ premiers entre eux, on retrouve le théoréme ci-dessus.
On peut en tirer la conséquence que voici. Les nombres a, b, ¢, ..., [ élant pre-
miers entre eux, un diviseur & de leur produit peut étre toujours mis d’une seule
facon sous la forme

s=a'bc...l,
ot @ divise a, b’ divise b, ..., I’ divise /. En effet, si cette décomposition en fac-
teurs est possible, @’ doit diviser @ et 8, et par conséquent (a, ).
Mais, d’aprés le théoréme V, on a

3= (a,d)x(b,8)x...x({,0);

d’out il est clair que la décomposition est possible, et d’une seule maniére.
D’autre part, on obtient toujours un diviseur de abc...!, en multipliant un
diviseur quelconque @’ de @ par un diviseur 0’ de b, etc.
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On peut donc conclure :

Tatorime VI. — Les nombres a, b, ¢, ..., | étant premiers entre eux, on
obtient tous les diviseurs de leur produit abe...l, et chaque diviseur une seule
Sfois, en multipliant chaque diviseur de a par chaque diviseur de b, ..., par
chaque diviseur de (.

Corollaire. — En désignant par f(m) le nombre des diviseurs de m (ou la
somme de ces diviseurs, ou la somme de leurs &A™ puissances), on a

Slabe. .. l) = f(a) X f(b) < f(c)<...x f()
lorsque a, b, c, ..., { sont premiers entre eux.

15. Tout nombre a (excepté I'unité) a au moins les deux diviseurs a et 1. Tout
nombre qui n’admet pas d’autres diviseurs s’appelle nombre premier. Nous ne
compterons pas 'unité parmi les nombres premiers : les plus petits nombres pre-
miers sont

2, 3, 5. 7, 11, 13, 17, 19, 23, 29, ....

Tout nombre qui n’est pas premier est dit composé. Un nombre composé a est
toujours égal & un produit bc dont les facteurs sont > 1 tous les deux.

Soient p un nombre premier, @ un nombre quelconque; si p ne divise pas a,
a et p seront premiers entre eux.

Lorsqu’un nombre premier p divise le produit abc. ../, p doit diviser au moins
un des facteurs a, b, ¢, ..., [; car, dans le cas contraire, p serait premier avec a,
avec b, ..., avec [/, par conséquent premier avec abc. ..l et ne pourrait diviser
ce produit.

Tatorime VII. — Tout nombre composé admet un diviseur premier.

En effet, il est clair que le plus petit diviseur, surpassant I'unité, d’'un nombre
composé, est nécessairement un nombre premier.

Tutorime VII. — Tout nombre composé est égal & un produit de facteurs
premiers ou, comme on dit, il est décomposable en facteurs premiers. Celte
décomposition ne peut se faire que d’une seule maniére.

En effet, mettons le nombre composé a sous la forme d’un produit

be...l

de facteurs > 1, de toutes les maniéres possibles. Le nombre de ces facteurs sera
toujours inférieur a n, en supposant 2> a. Parmi ces produits égaux a a, il y
en aura donc un, au moins, dans lequel le nombre des facteurs est le plus grand.
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Soit
plpZ' . .pk

un tel produit, il est clair que tous les facteurs sont des nombres premiers; car,
si par exemple p, était composé, on pourrait obtenir un produit égal a « et
renfermant & -1 facteurs.

Remarque. — Il est clair qu'on obtient toujours par un nombre fini d’essais
les divers produits égaux & @ que nous considérons. 11 suffit d’écrire les nombres

2, 3, 4, ..., a,

de prendre leurs divers produits un a un, deux & deux, ..., n—1an —1 (avec
répétitions) et de ne conserver que ceux de ces produits qui sont égaux a a.

La premiére partie du théoréme se trouve ainsi démontrée; quant a la seconde
partie, supposons deux décompositions en facteurs premiers

a =P1P2P3---= qquq;;-.-.

I est clair que ¢, doit diviser le produit p,psp;. .., et, par conséquent, un des

nombres py, pa, ps, ... : donc ¢, est égal 4 un de ces nombres, par conséquent
Pr=1q.
On en conclut
P2pPs3. .. =q293-.+;
d’ou
P2= (g2, ceen

Le théoréme étant ainsi complétement démontré, on voit qu’on peut meltre un
nombre quelconque, et cela d’une seule maniére, sous la forme

prqbry...,

Py ¢, Ty ... étant des nombres premiers distincts, «, 8, v, ... des nombres quel-

conques.
On peut déduire ce théoréme aussi du théoréme VII.

16. Pour que deux nombres soient divisibles I'un par 'autre, il faut et il suffit
qu’en ayant décomposé les deux nombres en facteurs premiers le diviseur n’ait
pas d’autres facteurs premiers que le dividende, et que ces facteurs ne figurent
pas dans le diviseur avec de plus grands exposants que dans le dividende. Cela
est évident d’aprés ce qui précéde.

A Vaide de ce résultat, on peut reconnaitre immédiatement la vérité de tous les
théorémes que nous avons obtenus sur le p. p. c. m., le p. g. c. d., etc., en sup-
posant tous les nombres décomposés en facteurs premiers. Nous n’insisterons
pas sur ce sujet, cependant on doit remarquer que ce n’est la, a proprement
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parler, qu'une espéce de vérification; cela devient sensible surtout lorsqu’il s’agit
de propositions plus compliquées, comme celles dun® 11 sur les nombres réduits.
Mais nous devons expliquer encore comment on obtient immédiatement les nom-
bres réduits de «, b, ¢, ..., [, lorsqu’on a décomposé ces nombres en facteurs
premiers.

Supposons donc

Pour plus de symétrie, nous avons introduit partout les mémes nombres premiers
Pis P2y -y Py €€ qui peut se faire en admettant pour les exposants aussi la va-
leur o.

Considérons les exposants de p;

Ay pia Yis ooy )\i- -

Supposons qu’en les écrivant par ordre de grandeur croissante on ait

a;lb;<e;S.. .S
Alors on aura
e oy s ar
ey = py'py...pit
by b s
€2 =py'pPy...Pis
—_— C. Ca 'k
es = pypy-..pib .
e ,
ol A
en=py pg .. -Pik

C’est ce qu’on vérifie directement en remarquant, par exemple, que
€1€y...6p = Dk

est bien, avec ces valeurs de ey, e,,...,e,, le p. g. c. d. des produits £ 4 &£ des nom-
bres a, b, ¢, ..., . On vérifie encore sans peine les expressions des e; que nous
avons obtenues dans le n° 12.

Les diviseurs de p* sont

L, Py, P P
leur nombre est « + 1, leur somme

pa+l 1
?.,_'
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Un nombre quelconque

prgBrr...
admet donc

(a+1) X (B+1) < (y+1)...
diviseurs, et leur somme est

‘pawl_] . q§+1_ ! 7Y+ —

p—1 q— r—1

17. Décomposer un nombre donné en facteurs premiers, c’est un probléme
dont la solution exige un grand nombre detitonnements. On a imaginé de nom-
breux artifices pour abréger le travail; mais, quoi qu’on fasse, cette décomposi-
tion est, en réalité, impraticable pour un nombre un peu grand. Aussi serait-il,
par exemple, & peu prés impossible d’obtenir de cette fagon le p. g. c. d. de deux
nombres de douze a quinze chiffres; Ualgorithme d’Euclide conduit sans trop de
peine au but.

On voit par la que ce n’est pas seulement en se placant au point de vue théo-
rique qu’on peut exiger de ne pas faire intervenir la décomposition en nombres
premiers dans des questions ot ces nombres premiers ne figurent pas expressé-
ment.

Il'y a une infinité de nombres premiers. En effet, p étant un nombre premier,
on peut toujours trouver un nombre premier plus grand que p. Soit, pour le
montrer,

P=9x3x...xp

le produit de tous les nombres premiers qui ne surpassent pas p. Mettons le
nombre P d’une facon quelconque sous la forme d’un produit de deux facteurs

P = AB,

alors il est clair que le nombre N = A + B n’est divisible ni par 2, ni par 3, ...,
ni par p. En décomposant donc N en facteurs premiers, on trouvera nécessaire-
ment des nombres premiers qui surpassent p.

Remarquons avec M. Cayley que, si 'on prend A=P, B=1, les nombres
N—+1, N+ 2, ..., N4 p—1 sont tous composés; d’ou I'on voit que la diffé-
rence de deux nombres premiers consécutifs peut surpasser un nombre donné.

18. Voici une proposition dont on a besoin quelquefois. Il est toujours pos-
sible de mettre le p. p. c. m. des nombres a, b, c, ..., {sous la forme d’un pro-
duit

a'bc...l,
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dont les facteurs sont premiers entre eux et divisent respectivement a, b, c, ...,
{. Adoptons les notations du n° 16, le p. p. c. m. est

1, ! 173
pip3---Pi-

Ecrivons les nombres a, b, ¢, ..., { I'un au-dessous de I'autre. Ecrivons ensuite
le facteur p’ & c6té d'un des nombres a, b, ¢, ..., [ qu'il divise (un au moins de
ces nombres est divisible par p%). Faisons de méme pour p%...p%. Alors on
prendra pour ' le produit des nombres qu’on aura écrits a coté de a («'=1
lorsque aucun nombre ne se trouverait a c6té de @), de méme pour &', ¢/, ..., (.

Il est clair qu’on obtiendra toujours au moins une solution; elle est unique dans
le cas o1, parmi les nombres a, b, ..., [, il n’y en a qu’un seul divisible, soit par
p, soit par p%, etc. Dans le cas contraire, le probléme admet toujours plusieurs

solutions.

19. On peut toujours obtenir une solution, sans décomposer les nombres «,
b, ¢, ..., l enfacteurs premiers et uniquement a I’aide de I’algorithme d’Euclide.

Mais, pour abréger, nous nous bornerons au cas de deux nombres « et b, d’ou
il est facile, du reste, de remonter au cas général. Soit (@, b) = d, et calculons

(—z—;a d) =da, (%* d) =b"

. . a b C .
@' et U/ seront premiers entre eux, puisque e le sont; d sera donc divisible

par leur produit, soit

d=a'b'd
et puis

a 1 " b ’ "
(3:(1):(1, <?l-,d>=b,

df: a”b/’d”’
a n " b LA "
<g,d)=a, <0-l,d>=b,

d/l= a/’l bllld,’/l,

En continuant ainsi, on finira toujours par arriver a un couple

alk+1) =y, OU+1) —
car .
d=dbd'=aad"b'b'd =a' a" a"b'b'b"d" =

On aura alors
d=(aa".. a®)s (b4 ...50) s di



16 T.-J. STIELTJES.
et, pourle p. p.c. m.,
ab

nm = —-»

d

m = (?[ = a’a”...a“’) > (f_i < b0, .b“") > dR,

\

a b . , .
Les nombres - et - sont premiers entre eux, et, @', @', ..., a® ¢tant des diviseurs

13 .. b . .
de [71’ O, 0" ..., bR des diviseurs de 2 il est clair que les deux facteurs
a b
— a' (k) e b (&)
gxaa...a et dxbb...b

sont premiers entre eux. Ensuite d® est premier avec chacun de ces facleurs,
car

<Z‘_i, dik;) =akt) =, (g, dw) — pU+1) — 1.

in prenant donc

"

>
Il

xaa...a,

o
Il
US> AU

X O'D". . bW < dR)

on aura m = AB, A et B seront premiers entre eux, puis A divise @ et B divise b.
Plus généralement, si 'on a d® = pq, p et ¢ étant premiers entre eux, on pourra
prendre

a
A= 5% a'a'...a® xp,

b

= 2 X bW g,

Si 'on suppose @ et b décomposés en facteurs premiers, on verra facilement que

g xaa'...ak
est le produit des puissances de nombres premiers qui figurent dans la décomposi-
tion de @ avec des exposants plus grands que dans la décomposition de b, tandis
que d®) est le produit des puissances de nombres premiers qui figurent avecleméme
exposant dans les décompositions de @ et de b. Lorsqu’on a d¥ > 1, on obtient
toujours deux solutions au moins, en prenant soit p ==1, ¢ = d®), soit p = d'¥,
¢ =1. Mais, dans ce cas, il peut arriver que le probléme admet encore d’autres
solutions, et cela alieu lorsque d®) est divisible par plus d’un nombre premier.
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Mais, pour obtenir ces solutions, il faut absolument recourir a la décomposition
de d® en facteurs premiers : I'algorithme d’Euclide seul ne peut pas les faire
connaitre.

20. En jetant maintenant un coup d’ceil sur le chemin que nous avons par-
couru, on reconnaitra que la théorie de la divisibilité des nombres repose sur ce
fait, qu’étant donnés deux nombres a et b, on peut toujours déterminer un nom-
bre m, tel que

a=mb+c,
ou
ole<b.

'Si I'on considére les nombres complexes @ + bi(i =y/—1), on peut établir une
relation analogue, et de Ia découle, pour ces nombres, une théorie de la divisi-
bilité parfaitement analogue a celle des nombres ordinaires. Nous aurons a revenir
plus tard sur cette question et d’autres de la méme nature.

Les propositions les plus essentielles sur la divisibilité des nombres se trouvent
déja dans les Eléments d’ Euclide; notamment on y trouve : 'algorithme pour la
recherche du plus grand commun diviseur, la proposition qu'un produit ne peut
étre divisible par un nombre premier, & moins qu’un des facteurs ne le soit, la
proposition qu’il y a un nombre infini de nombres premiers.

IV. — Fac. de T. 3
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CHAPITRE II.

DES CONGRUENCGES.

1. Si la différence des deux nombres « et b est divisible par un nombre M, «
et b sont dils congrus par rapport a M; le diviseur M est appelé le module; a et
b sont résidus U'un de I autre suivant le module M. Pour exprimer cette relation,
on écrit, d’aprés la notation de Gauss,

r

‘a=1b (modM);

celte formule est une congruence. 11 y a avantage, dans cette théorie, a admettre,
pour @ et b, non seulement les valeurs entiéres positives, mais aussi les valeurs
entiéres négatives.

Si r est le reste de la division de @ par M, on a

a=r (modM):
le reste r est ordinairement un des nombres
0, 1, 2, ..., M—i,
mais on pourrait le prendre aussi entre — % et -+ “;I; d’ou il suit que tout nombre

a un résidu qui ne surpasse pas en valeur absolue la moitié du module. C’est la
le résidie minimum.

2. Nous allons indiquer iciles propriétés les plus élémentaires des congruences,
il sera & peine nécessaire d’insister sur les démonstrations. Si on n’indique pas
le module, il sera sous-entendu que ce module est toujours M.

Si l'on a

on aura ainsi

a+a-+a+..=b+b+b"~+...,
ma = mb.
De méme, on aura
aa'= ba'= bb’
et plus généralement
aa'a...=bb'b"....

am= bm,
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Ainsi

Sz, y,2,...)= E Amn,p, Tmynzp. ..

étant un polyndme a coefficients entiers, on aura
fla,a'a’, ...)=/f(b,0,0", ...).

3. Supposons qu’on ait
ma = mb (mod M),

ce qui signifie que m(a — b) est divisible par M ; soit

(m,M)=d,

m N c M . m M . 3
= (@ — b) sera divisible par 7’ €L pwisque — et — sont premiers entre eux, @ —

sera divisible par %,I : donc

a=5b (modM .

On peut donc diviser les deux membres d’une congruence par un nombre ne, a

condition de diviser en méme temps le module par le p. g. c. d. de m et M. On

aura a appliquer cette proposition le plus souvent dans les cas particuliers sui-

vants : 1° m est premier avec M, alors d = 1; 2° m divise M, alors d = m.
Supposons encore qu’on ait

aa'= bbd’ (mod M),
a=b (modM).

En multipliant la seconde congruence par «/, il vient, en faisant attention 4 la
premiére,

ba'= bd' (modM),
donc

a'="b (mod%),

olt d=(b,M)=(a, M), car il est clair que des nombres congrus ont méme
p- g. ¢. d. avec le module.

Si deux nombres sont congrus suivant le module M, ils scront congrus encore
en prenant pour module un diviseur de M. Si deux nombres sont congrus suivant
plusieurs modules A, B, C, ..., L, ils seron!. congrus encore en prenant pour mo-
dule le p. p. c. m. de ces nombres

M=|A,B,C,...,L|
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Le cas particulier le plus intéressant est celui ou les modules A, B, C, ..., L sont
premiers entre eux, alors M = ABC...L.

4. On peut distribuer ’ensemble des nombres entiers en M classes, en consi-
dérant deux nombres comme appartenant 4 la méme classe ou non, selon qu’ils
sont congrus ou non suivant le module M. En prenant dans chaque classe un
nombre, on obtient un groupe de M nombres, qu’on appelle un systéme complet
de résidus. Un tel systéme jouil évidemment de la propriété qu’un nombre quel-
conque est congru a un et a un seul de ses nombres. Un nombre quelconque a
pris dans une classe peut étre considéré comme représentant la classe entiere qui
se compose des nombres @ + Mz, x =0, %=1, =2, == 3, .... On désigne ainsi
souvent la classe par un quelconque des nombres qu’il renferme, et'on peut ainsi
remplacer un nombre par un nombre congru.

Tous les nombres d’une classe ont le méme p. g. ¢. d. avec le module M, et ce
p- 8. ¢. d. peut étre un diviseur quelconque d de M.

On peut, d’aprés cela, distribuer les classes en familles, en considérant diverses
classes comme appartenant a une méme famille, si elles ont le méme p. g. c. d.
avec le module M.

Combien de classes y a-l-il qui sont premiéres avec M? Il est clair qu'il y en a
autant qu’on trouve parmi les nombres

(A) I, 2, 3 ..., M

des nombres qui sont premiers avec M. Nous désignerons ce nombre par ¢(M),
en sorte que

?(l)=‘3 g(2)=1, 9(3)=2, 9(4) =2, 9(5) =4, vees

Le nombre des classes qui ont avec M le p. g. ¢. d. d est évidemment le méme
que celui des nombres du groupe (A) qui out d pour p. g. c. d. avec M. Il faudra
donc les chercher parmi les nombres

M

d, 2d, 3d, ..., kd, ..., 7

Or, pour que (kd, M) =d, il faut et il suffit que & soit premier avec % Le nom-

bre cherché indique donc combien, parmi les nombres

1, 2, 3, ..., —»

il y en a qui sont premiers avec ’Tj,,c’est—z\-dire ce nombre est cp(

a
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Iy aainsi ¢ (M) classes qui ont d pour p. g. c. d. avec M, le nombre total des

Ze()=w

classes étant M, on a
d parcourant tous les diviseurs de M. 1l est clair qu'on peut écrire cette relation

Ecp(d)=M.

Il est facile de déduire de 1 la valeur de »(M).

plus simplement ainsi

5. Supposons plus généralement que deux fonctions numériques f et I soient
liées par la relation

(1 F(M) =Y, f(d).

d parcourant tous les diviseurs de M. Nous allons exprimer réciproquement la
fonction f au moyen de F.
Soit
M= prgBry...ur

la décomposition de M en facteurs premiers. On obtient 'ensemble des diviseurs d
de M en développant le produit

1 I
M(I-I— + = 4+ .+ ><1+— +.o —>...<1+ I—-4-.‘.-|- —I->,
P p p* q g8 u wh
et nous pouvons écrire d’'une maniére symbolique

F(M)_f’M<|+P+ +p°‘><1+g+ +as> (1+u—+— —+--l;)l

On doit développer le produit du second membre et remplacer ensuite chaque
terme d par f(d). En remplacant M par M: p (donc « par « — 1), on aura

FC’I fJM< - +p“><‘+q+ +qr3> <[+ - +u'~>l'

En retranchant, il vient, si 'on fait usage dans le premier membre de la méme
notation symbolique

FIM(' > fl <l+ -+. +qﬁ)<l—|—’1~+...+;'7>...<x+i+...+$)!.
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5 M o e .
En remplacant M par 7 et retranchant, il vient ensuite

F‘M(I-—;—;><I~—,§>‘=f,M<l+;‘—i—...—i— :-Y><I+:7++Z¢]—X>i

En continuant ainsi, on obtient finalement

I [ [ B [

c’est Pexpression cherchée; on peut I'écrire plus explicitement

(2) f(M):F(M)—EF(%) —|—ZF(\]I:—;> —ZF(%)-&—..

On rencontre souvent des fonctions numériques qui jouissent de la propriété
3) f(ab) = f(a) < f(b)

lorsque a et b sont premiers entre eux (voir Chap. I, n° 14). 11 est clair qu’une
telle fonction est parfaitement déterminée lorsqu’on connait sa valeur pour les
puissances des nombres premiers, mais ces valeurs-1a peuvent étre prises arbi-
trairement.

On voit facilement que, si la fonction f qui figure dans la relation (1) jouit de
cette propriété (3), on aura aussi, @ et b élant premiers entre eux,

() F(ab) = F(a)x F(b),

et I'on reconnait maintenant par les formules (2) ou (2') que, réciproquement, si
deux fonctions f ct F sont lides par la relation (1), et si la fonction F satisfait &
la relation (4), la fonction f satisfera a larelation analogue (3). -

Le théoréme, souvent utile, de ce numéro est di & M. Dedekind (Journal de
Crelle, t. 3%, p. 21). On D’établit ordinairement par une simple vérification. En
exprimant au second membre de (2) partout la fonction F par la fonction f, on
constate qu’il ne reste que le terme f(M): tous les autres termes se détruisent.

6. En revenant au cas particulier de la fonction (M), F(M)=M, on trouve
1 1\ / I 1
cp(M):M(l——;) (x--q-) K:—;>...<u—;),
o(M) = pxigb-t.. =1 (p—1)(g —1)...(u—1).

Ayant o(ab) =¢(a)2(b) lorsque a et b sont premiers entre eux, on peut remar-
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quer que, a élanl impair, on a, a cause de ¢(2)=1,
o(2a) =¢(a)
A Texception de ©(1) = ¢(2) =1, ¢ (a) est toujours pair.

7. Dans la théorie des nombres, on se propose, sur les congruences, des pro-
blémes analogues a ceux qu’on traite en Algébre sur les équations.
Ainsi on pose la question de trouver les nombres x qui satisfont a une con-
gruence, telle que
Sflz)=o0 (mod M),

ot le premier membre est un polyndme a coefficients entiers en z.

Si I'on satisfait & cette congruence en faisanl z = xo,-xo est une racine de la
congruence. Il est clair que tout nombre congru a x, suivant le module M satis-
fera alors aussi 4 la congruence, mais on a I'habitude de ne pas considérer comme
différentes ces solutions. Aussi, si 'on dit qu'une congruence admet & racines,
cela veut dire & racines incongrues, ou encore, ce qui revient au méme, I'en-
semble des nombres qui satisfont a la congruence se répartit en k classes. 1l
est clair, d’apres cela, qu'on obtient toutes les racines d’'une congruence, en es-
sayant successivement tous les nombres d'un systéme complet de résidus, par
exemple les nombres

o, 1, 2, ..., M—1,

mais cc moyen devient impraticable dés que M est un peua grand.

Si tous les coefficients du polyndme f(z) sont divisibles par M, la congruence
est ielentique, un nombre quelconque y satisfait. La congruence est impossible
évidemment lorsque tous les coefficients de /() sont divisibles par M, 4 'exception
du terme indépendant de z.

Il est clair, du reste, qu'il est permis de remplacer‘ un coefficient quelconque de
J(z) par un nombre congru suivant le module M.

8. Considérons la congruence du premier degré
ar +b=o (modM).

Supposons d’abord @ premier avec M. Pour voir si la congruence admet des ra-
cines, mettons pour z successivement les valeurs

o, I, 2, ..., M—1

ou, si'on veut, M valeurs quelconques formant un systéme complet de résidus.
I est clair que les valeurs correspondantes de ax -+ b sont incongrues, car la re-



24 T.-J. STIELTJES.

lation
ar+b=ay+5b

exige qu'on ait @z = ay ou encore £ =y, puisque @ est premier avec M.

Les valeurs de ax + b forment donc également un systéme complet de résidus,
et, parmi ces valeurs, il y en a donc une qui est congrue avec o. La congruence
proposée admet donc une racine.

Supposons maintenant (a, M) = d. Dans ce cas, il est clair que b doit étre di-
visible par d; dans le cas contraire, la congruence est impossible évidemment.
Admettant donc que b soit divisible par d, la condition imposée & z revient a

o [ )

. a M . . . .
Puisque Jet sont premiers entre eux, nous savons qu’il existe une seule racine

celle-ci

.0
- a*ra

M . . .
par rapport au module R Soit z, cette racine, I’ensemble des valeurs de z qui sa-

tisfont & la question est comprise dans Iexpression

M
Zo+ S, y=o0, £I1, 2 =3

Mais il est clair que, suivant le module M, ces nombres se répartissent en d classes,
car les d nombres

M
>

M
a ceey .’l’o+(d—l)7

M M
Zoy x0+-3, x°+23’ 2o+ 3

sont incongrus suivant le module M, mais un nombre quelconque z,-- %y est
congru, suivant le module M, avec un de ces d nombres.
Tatorime I. — La congruence
ar+b=o (mod M)

est possible seulement lorsque b est divistble par d = (a,M). Sicette condition
se trouve satisfaite, elle admet exactement d racines.

On voit que cet énoncé renferme aussi le résultat particulier qui a lieu pour
d=1.

9. 1l nous reste 4 donner une méthode pour trouver effectivement, sans trop de
peine, la racine de la congruence

ar+b=o (modM).
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I1 est clair que nous pourrons nous borner au cas o « et M sont premiers entre
eux, puisque le cas général se raméne immédiatement a ce cas particulier. Ensuite
il suffira de considérer la congruence

ar=i (modM);

car, la racine de cette congruence étant obtenue, il suffira évidemment de la mul-
tiplier par — b pour obtenir la racine de la congruence proposée. Le probleme
revient donc & satisfaire a 'équation indéterminée

ar—My =1.

On développe en fraction continue le rapport M:a ou, ce qui revient au méme,
on applique a @ et M I'algorithme d’Euclide. On peut alors exprimer de proche en
proche comme fonctions linéaires homogeénes de @ et M tous les restes obtenus et
finalement le p. g. c. d. lui-méme qui est 1. Comme ce mode de calcul est encore
utile dans d’autres circonstances, nous allons I'expliquer avec détails.

Supposons qu’on ait une suite de nombres N, Ny, N,, ... liés par les relations
N = a, Nl -+ Ng,
N1 = Q3 Ng—i— N3,
m § No =a3N;+ N,

" N1 = azNg—+ Ngtq,

alors on peut exprimer successivement N par N, et Ny, par N, et N3, ..

N = alN1+ Ng,
N = (a1d2+ |>N2+ ay N3,
N=(ajasas+ a;+ az)N;+ (a1a; +1)N,,

Introduisons un symbole

lay, as, ..., ar],
déterminé par les relations
(2) ﬁ [a1] = ay, [a, as]l = ajas+1,
2 )
( [a'h Aoy oo vy ak] = [ah Ay o vey a’k—l]a/f+ [(11, A3y sy a/u'-—i]a
alors on aura généralement
(3) N= [ala A2y o vy ak]Nk+ [ah Ay ‘7ak—1]Nk+1~

V. — Fac. de T. 4
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I est clair qu'on aura aussi

Ny=[as, as, ..., ap]Ni+[as, as, - - -, @r—1 | Nit1,

Ny=[as, ..., a;]Ng + [as, ooy @r—y ] Ni+1,

et, si I'on substitue ces valeurs dans la premiére relation (1), on obtient une
expression de N par Ny et Niy, qui doit étre identique avec (3). D’olt I’on conclut

(4) [a, @z .. sar]=a[a,, as, ..., ar] +[as, ..., ar],

ce qui donne'un nouveau moyen pour obtenir par récurrence la valeur du symbole.
A Paide de ces relations (2) et (4), on démontrera facilement cette formule

(5) - [ah Aoy o vy “k]:[aka Alp—1y oo oy Aoy al]'
En joignant a I'équation (3) celle-ci
(6) Nl = [aiy A3y« e vy (lk]Nk’i- [aZa A3y o ooy ak—l]Nk‘Fh

on a deux équations; d’out 'on pourra tirer la valeur de Ny en fonction de N et
N,. Mais cette valeur s’obtient aussi directement, car on obtient de proche en

proche
+N2:N—alN‘,
—Ng:dzN"'[alyaz]Nn
+ Ny=[as, as]N —[ay, as, a3 [Ny,
Généralement, '
(7) (—)ENg=[as, a3, ..., @p—1]N —[ay, @z, .., @1 [N,

En comparant cette valeur de Ny avec celle tirée de (3) et (6), ona
(8) [ay, @ay .oy ap] < [@2, a3, ...y @pa] —[ @y, @y ooy @p—1] X [@2, @3y .oy @] = (— k.

Ce sont 14 les formules dont nous aurons besoin ; nous en donnons encore quelques

autres qui sont quelquefois utiles. On a

Ni  =[dars1, Qrey « o5 @it | Nprs + |ar+rs -y Apri—1 ] Nprr1:

Niwr=[@hroy - -+, @t ]INprs + [@ha2y ooy @rt—1 | Nir 1

Substituant ces valeurs dans (3), on a Pexpression de N par Nz et Nigrgr,
expression qu’on peut obtenir aussi en remplacant & par A + ! dans la méme for-

mule. On trouve, par comparaison,

(()) lftl7a27 "-’a/t+l]

= [y, @ay <oy @) X [@hats ooy Qpag] + [ @y, @ay ooy @pma ] X} [Qray ooy dpsr]-
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o
~1

Enfin nous ajouterons la relation suivante

(IO) [aha?a '-*aal';bhbh ---vba';ch Cay o vy ct] X[blybza -"’bs]
—lay, ..y ar; by, o0 01 < [0y, .05 055600 -0y Ct]

= (—1)f[a, agy ..., ar] < [c2y¢3, ..., 0]
qui, pour r = ¢ =1, reproduit la formule (8) et, pour s = o, la formule (9).
10. Pour appliquer ces relations a la solution de lv’équation
ar—My =1,

on prendra N=M, N, == a. Comme ces nombres sont premiers entre eux, on
finira par trouver Nzy=1, N;,, = o, de maniére qu’on ait

M= [[ll, Qay .. .,(lk],
a=1[as...,al,

(—1f=lay, a3, ...,a,_1 ] xXM—[ay,as, ...,ar-1] < a.

On peut donc prendre
r = (- l)k‘“i[a‘h Azy ooy ak—-l]w

Y = (— I)k—1[a2) Az, ..y alc—-l]-

Si I'on fait le calcul de la maniére ordinaire, le dernier quotient a4 est au moins

. égal a 2, et 'on peut le remplacer par les deux quotients @y —1 et 1, de maniére
que le nombre total des quotients est a volonté pair ou impair. Il est & peine
besoin de dire que

M_;[al,a«g,...,ak]:al—’_ I
a |as, as, ..., ax) -+ I

On voit sans peine que, o, ¥, étant une solution particuliére de
ar— My =1,
la solution la plus générale sera renfermée dans les formules

xr = xy+ Mt Q

y=yo+at )
Il est clair aussi que 1’équation indéterminée

ar—+by=c
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sera impossible si ¢ n’est pas divisible par d = (a, b). Mais, si cette condition est
satisfaite, il y a toujours une infinité de solutions. Soit x,, y, une solution par-
ticuliére, la solution la plus générale sera

b A\
w:xo-u——t'

U

" (t=o0,%=1,x2,...).
Yy=Yo— St

*

11. Nous allons considérer maintenant le probléme suivant, qui se rencontre
Lreés souvent :

Trouver tous les nombres x qui satisfont au systéme suivant de n con-
gruences

z=a (modA), z=8 (modB), z=y (modC), ..., =i (modL).

Soit M le p. p. c. m. des modules A, B, C, ..., L, il est clair que, si la valeur
x = x, satisfait aux conditions, il en sera de méme de toutes celles comprises dans

la formule
x9g+ Mt (t=o0,F=r1,x2,...).

Réciproquement, si 'on a deux solutions z, et z,, la différence z,— x, doit étre
divisible par M, puisqu’elle est divisible par A, par B, ..., par L. Il résulte de la

que, parmi les nombres
o, 1, 2, ..., M—1

formant un systéme complet de résidus pour le module M, 1l y en aura tout au
plus un qui satisfait aux conditions, et nous pouvons dire :
Si le probléeme proposé admet des solutions, ces solutions seront toutes ren-

fermées dans la formule
r=a (mod M),

ol @ est un nombre déterminé de la série 0, 1, ..., M —1.

Mais, si aucun des nombres o, 1, ..., M —1 ne satisfait au probléme, on sera
assuré que le probléme est impossible et n’admet aucune solution.

Supposons maintenant d’abord que A, B, C, ..., L soient premiers entre eux,
alors M = ABC...L. Sil'on divise maintenant chacun des nombres

o, 1, 2, ..., M—1

par A, par B, ..., par L, on obtiendra en tout M systémes de résidus qui seront
tous différents. Mais, d’autre part, on ne peut donner & a que A valeurs, a B B va-
leurs, etc., en sorte que le nombre total des systemes de résidus possibles est M.
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En divisant donc les nombres
o, I, 2, ..., M—1

par A, B, G, ..., L, on obtiendra effectivement tous les systémes possibles de ré-
sidus, et chaque systéme une seule fois.

Tutoriwr 1. — Les modules A, B, C, ..., L étant premiers entre eux, le
systéme des congruences

z=a (modA), z=03 (modB), z=2XL (modL)
admet toujours des solutions, renfermées toutes dans la formule

r=a (modM),
ou
M = ABC...L.

12. Lorsque les modules A, B, C, ..., L ne sont pas premiers entre eux, M est
plus petit que le produit ABC...L.

Oril y a toujours A, B, C, ..., L systémes de résidus possibles (si I'on prend
%, 3, ¥, --., h arbitrairement). Mais le probléme ne sera possible que si le systéme
%, B, v, ..., A se trouve parmi les M systémes de résidus qu’on obtient en divisant

les nombres
o, 1, 2, ..., M-—

par A, B, C, ..., L. On voit donc que, dans ce cas, le probléme ne sera pas pos-
sible toujours : il faudra, pour cela, que 2, B3, ..., A satisfassent & certaines con-
ditions que nous énoncerons plus bas. Mais toujours, lorsque le probleme est
possible, la solution est donnée par une formule

rz=a. (modM).

13. Revenons au cas ou A, B, C, ..., L sont premiers enlre eux pour voir com-
ment on obtiendra la solution z = a (modM).
Puisqu’on doit avoir z =« (modA), on posera

oo z=a+ Ay,
et il viendra
Ay=f8—ua (modB),

Ay=+y—a (ﬁlodC).
La premiére congruence donnera
y=yo+Bs,

on substituera cette valeur dans les autres congruences, etc.
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On remplacera cette méthode souvent avec avantage par la suivante indiquée
par Gauss.

Déterminons d’abord les nombres auxiliaires o/, 8/, ..., ¥’ par les congruences

BCD...L&¥=1 (modA),
ACD...LE'=1  (modB),
ABD...Ly'=1 (mod C).

alors on aura

-+ ABGC... K2V (modM = ABC...L).

On vérifie, en effet, immédiatement que cette valeur de 2 satisfait aux congruences
proposées, et il est facile de s’apercevoir que cette méthode revient a résoudre la
question successivement dans les cas particuliers ot 'un des résidus o, 3, ..., X
est 1 et ol tous les autres sont o. On compose ensuite la solution générale avec
ces solutions particuliéres. Il est clair que cette méthode sera surtout avantageuse
lorsqu’on aura a résoudre le méme systéme pour diverses valeurs des résidus «,
B, ..., A, les modules A, B, ..., L restant les mémes. Les mémes nombres o,
3, ..., X servent alors pour les diverses solutions.

14. Revenons maintenant au cas général ol les modules A, B, ..., L ne sont
pas premiers entre eukx. On peut d’abord poser comme tout a I’heure

r=oa-+ Ay,
et la seconde congruence deviendra
| Ay=f—a (mod B).
Il faudra donc que 8 — « soit divisible par (A, B) = d. Si cette condition n’.est pas

satisfaite, le systéme n’admet aucune solution. Mais, si elle est satisfaite, on aura

B
,}’=}’0+Et (t=o0,FE1,x2,...)

et, par conséquent,

z=a-+ Ay, (modé‘—i—q»
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et cette congruence remplace maintenant les deux premiéres x = 2 (modA),
AB .
2 = (modB). On remarquera que le module —T est bien le p. p. c. m. de A et B.

On pourra combiner maintenant la congruence

r=a-+ Ay, (mod j—t;—%)

\

avec la troisiéme
r=" (modC),

et ainsi de suite. Il est clair qu’on arrivera de cette fagon toujours, soit i s’assurer

que le probléme est impossible, soit & trouver la solution sous la forme

r=a (mod M)

st elle existe.
Cette méthode, toutefois, a I'inconvénient de ne faire souvent connaitre l'im-

possibilité du probléme qu’aprés de longs calculs qui ont été inatiles alors. On
ne peut remédier & cet inconvénient qu’en dennant le moyen de reconnaitre a
priort la possibilité ou I'impossibilité du probléme. C’est la 1'objet da théoréme

suivant :

Tntorewe Il — Pour que le systéme des congruences
z=a (modA), =03 (modB), R =X (modL)
admette des solutions, il faut et il suffit que les différences
a—8, a—~y, B—vy, ..., x—2A
sotent divisibles respectivement par
(A,B), (A, C), (B,C), ..., (K,L).

Que ces conditions sont nécessaires, cela est clair d’aprés ce qui précéde. Pour
montrer qu’elles sont suffisantes, nous supposerons que la proposition est exacte
dans le cas de n — 1 congruences, et ferons voir qu’elle est alors exacte aussi dans
le cas de n congruences. Puisqu’on sait que, dans le cas n = 2, le théoréme est
vrai, il sera ainsi démontré généralement.

En effet, la proposition étant vraie pour n — 1 congruences, on pourra rem-

placer les n — premiéres congruences par celle-ci

r=t (modM")
et le systeme complet par

(1) ={( (modM), =12 (modL).
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lei M'=|A,B,C,...,K|. Or, d’aprés notre hypothése,

A—a, A—B, ..., A—y

sont divisibles par
(L,A), (L,B), ..., (L,K)

respectivement, et il est clair que

a-—-t, B—t, ..., y—t

sont divisibles par A, B, G, .... K respectivement, donc aussi par (L, A)

(L, B), ..., (L, K) respectivement. On voit par la que la différence
h—1t

est divisible par (L, A), par (L, B), ..., par (L, K) et, par conséquent, aussi par
le p. p. ¢c. m. de ces nombres qui est (L, M") (Chap, T, n° 11). Mais cette divisi-
bilité de A — ¢ par (L, M') est précisément la condition nécessaire et suffisante
pour que les congruences (1) et par li aussi les congruences proposées admettent
une solution.

On peut démontrer ce théoréme aussi en faisant voir qu'il y a exactement
M systémes de résidus a, B3, ..., A qui satisfont aux conditions exigées.

\

15. On peut réduire le cas général au cas ou A, B, ..., L sont premiers entre
eux. Pour cela, mettons le p. p. ¢. m. M des modules sous la forme

M=A'B'C...L,

ou A/, B', U, ..., I sont premiers entre eux et divisent respectivement A, B,
G, ..., L (Chap. I, n> 18, 19).
Il est clair que les solutions du probléme proposé satisferont aussi aux con-

gruences

z=o (modA), z=f (modB’), z =i (modL"),

mais ce dernier syst¢éme admet, nous le savons, toujours des solutions renfermées

dans la formule
r=a (modM).

Si donc on s’est assuré préalablement que le probléme proposé admet des solu-
tions, ces solutions sont encore renfermées dans la formule précédente. Mais, si
'on ne savait pas si oui ou non le systéme proposé admet des solutions, cette va-
leur « = @ (modM) pourrait ne pas satisfaire aux conditions imposées, qui se-

raient alors incompatibles.
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Considérons, par exemple, le systéme

r= 31 (mod 72 = 23.32),
xr= 22 (mod 105 = 3.5.7),
z= 50 (mod 77 = 7.11),

z =337 (mod3g99 = 3,7.19)-

33

On a ici M=123.32.5.7.11.19 = 526680 et ABCD : M = 441. Donc, si les

vésidus 31, 22, 50, 337 avaient été pris au hasard, il n’y aurait qu'une chance

sur 441 que le probléme soit possible. 1l convient donc de s’assurer d’abord si le

probléme est possible ou non. Or, les nombres
9, 19, 306, 28, 315, 28y
étant divisibles respectivement par
3, 1, 3, 7, 21, 7,
le probléme est possible. La décomposition de M
M=72x3X11X19
permet maintenant de remplacer les congruences données par celles-ci

= 31 (mod7y2),
= 22 (mod35),
r= bo= 6 (mod 1),

xr=2337=14 (modig).

En appliquant maintenant la méthode de Gauss, les nombres auxiliaires 2/,

y', ¢’ se déterminent par les congruences

35.1109d'=  43a'=1 (mod72),
72.11.19 ' =— 28'=1 (mod35),
72.35.19¢' = 8+'=1 (mod 1),
72.35.118'=— d'=1 (mod1g),

d’ou
d=—5 =17 =7 F=-1,
et, finalement,
r=— 5.35.11.19.31
~+17.72.11.19.22 (mod 526 680),
-+ 7.72.35.19. 6

—  72.35.11. 14

x = 323527 (mod 526 680),
IV. — Fac. de T. 5

lev
2
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16. Soient

les © (a) nombres premiers avec @ et ne surpassant pas a,
&gy s

les o (b) nombres premiers avec b et ne dépassant pas b,
oA

les © (@b) nombres premiers avec ab et ne surpassant pas «b. Il est clair que
tout nombre Y est aussi premier avec a et avec b, et sera par conséquent con-
gru avec un des nombres « suivant le module «, et congru avec un des nombres 3
suivant le module 4. Mais, si nous supposons maintenant @ et b premiers entre
eux, nous savons aussi qu’en prenant arbitrairement un des nombres « et un
des nombres {3, il y a toujours au-dessous de ab un nombre et un seul qui leur
sera congru suivant les modules a et b, respectivement; et ce nombre, étant pre-
mier avec a et avec b, sera premier avec ab et figurera donc parmi les nombres Y-
Ensuite deux nombres vy, v’ donnant toujours deux systémes de résidus différents,

on conclut
¢ (ab) =¢(a)2(b).

(Zest la relation que nous avons déja rencontrée (n°6) et qui conduit immé-
diatement a la détermination de la fonction o, car on voit facilement que

o (p*) = p*—p*L
17. Considérons maintenant une congruence quelconque
(1) flz)=o0 (modM),

et supposons
M=ABC...L,

les facteurs A, B, C, ..., L étant premiers entre eux.
Il est clair que chaque racine de la congruence (1) satisfera aussi aux con-

gruences
S(z)= (modA),
Sf(z)=o0 (modB).

(2)

Donc, si une de ces derniéres congruences n’admet pas de racines, il en est de

méme de la congruence (1).
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Soient o une racine de f(z)=o0 (modA),[f une racine de f(x)=o
(modB), etc., enfin A une racine de f(z) = o (modL).
Alors on saura trouver toujours un nombre ¢, satisfaisant aux congruences

t=a (modA),
t=13 (modB),

et ce nombre ¢ est parfaitement déterminé aux multiples de M prés.
Mais il est clair qu’on aura

f(t)=o0 (modA), f(f)=o0 (modB), v..v f(t)=o0 (modL),

donc aussi f(t) = o (mod M).

On conclut de 1a que le nombre des solutions de la congruence (1) est égal au
produit des nombres des solutions des congruences (2).

On peut évidemment prendre pour A, B, ..., L des puissances de nombres

premiers.

18. On comprend bien, d’aprés ce qui précéde, que dans la théorie des con-
gruences de degré supérieur, on s’est surtout occupé des cas o le module est un
nombre premier ou une puissance de nombre premier. On ne connait presque
aucun théoréme général sur les congruences par rapport & un module composé.

Ici, ol il s’agit seulement de donner les premiers ¢léments d’une théorie que
nous devons développer plus tard, nous nous bornerons a considérer le cas d’un
module premier. Lagrange a obtenu dans ce cas quelques propositions trés
simples, mais fondamentales.

Considérons donc la congruence

f(z)=o0  (modp),

p étant un nombre premier. Le degré n de cette congruence est le degré de la
plus haute puissance de z qui figure dans f(z), avec un coefficient non divisible
par p. Du reste, il n’y aurait aucun inconvénient a supposer ce coefficient égal
A 1, car, s'il est @, on pourra toujours maltiplier la congruence par un nombre 4
tel que ab = 1 (modp). La congruence obtenue est évidemment équivalente a la
congruence proposée.

Soit maintenant x — « une racine de la congruence. En divisant f(z) par
r —a, on aura

S(&)=(z—2)fi(z) + (),

Ji (z) étant un polynéme du degré n — 1 a coefficients entiers.
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La congruence donnée peut donc s’écrire
(#—a)fi(z)+f(a)=0  (modp),
ou bien, puisque par hypothése f(a) est divisible par p,
(z —2)fi(z)=0  (modp).

Si la congruence proposée admet encore d’autres racines 3, y,..., on doit

avoir

B—0/fi(B)=o,

donc f, ()= o, fi (y) = o, elc., puisque, par hypothese, § — «, Y — @ ne sont
pas divisibles par p. On voit donc que ces racines 83, v, ... sont aussi racines de
la congruence

Ji(z)=o0
qui est du degré n — 1.

La congruence du premier degré admet toujours une racine : on peut done con-
clure qu’une congruenee du second degré admet tout au plus 2 racines, une con-
gruence du troisi¢eme degré tout au plus 4 racines; généralement on peut énon-
cer le

Tutorime IV. — Une congruence de degré n par rapport & un module
premier admet tout au plus n racines.

Et nous pouvons ajouter encore :
Tukorime V. — Les racines de la congruence de degré n
f(z)=o0  (modp)
étant o, B, v, ..., A, on a identiquement
f@)y=(@—=a)(z—f)...(x—N) fi(z) (modp),

Ji(z) étant un polynéme en x tel que la congruence

fi(z)=0  (modp)
llkld”l@t aucune I'[lCl'Ilei

On en déduit encore facilement le

Tatorime VI. — Si la congruence de degré n

f(@)=o0 (modp)
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admet n racines et qu’on a
f(@)=fi(z) fa(z)  (modp),
alors les congruences
Si(z)=o0, fa(z)=0 (modp)

des degrés n, et n, (ny+ na=n) admettront respectivement n, et n, ra-

cines.

19. Pour donner, dés a présent, un exemple de la fécondité de ces principes,

considérons avec Lagrange le polynéme
(1) z(x+1)(x+2) .. (+p—1) =P+ AP+ ApxrP—24+.. .+ A, .
En changeant z en x + 1, on aura aussi
(z+D)(z+2)...(z+p)=(x+1WP+ A(z+1)P 1+ Ay (2 +p)P2+. . . +Ap g (+1).

Or, il est clair que ces denx polyndmes sont congrus entre eux suivant le mo-
dule p, que nous supposerons premier, car leur différence est

plr+1)(x+2)...(x+p—1)

En écrivant donc que les coefficients des mémes puissances de .x sont congrus

(modp), on a
Ag= i—)—*- Ay (modp),

AQE])(%L) +IZI;[ A]“I—Ag,

Ay= plp _]’;(5“2) o+ (p—ll).(zp—_l)Al'}"pT?‘Az“‘A&

...........................................................

_pp—0...3.2 (p—1)...2 2
Ap-1= o (p—1)  T.a.(p—2) A+ I Ap=2 = Ap-r;

OEI+A1+A2+. Lot Ap_g-l— Ap—l'

On remarque ici que les coefficients du binéme L, plp—v pp—n..53>
1 1.2 1L.2...(p—1)

sont tous des entiers divisibles par p : on peut les négliger. La seconde con-
gruence montre alors que A== o modp, ensuite la troisié¢me que A, = o modp, etc.,
Jusqu’a 'avant-derniére, qui montre que A,_,= o. Donc

(2) AlE AQEA;;E...E AI,..QEO (modp)
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et la derniére congruence donne ensuite
(3) Ap+1=0 (mod p).
Si l'on se rappelle la signification de A,_;,on ale
Tutorkme pE WiLson, p étant un nombre premier,
1.2.3...(p—1)+1
est toujours di;)z'sible par p.
insuite nous avons d’aprés (1), (2) et (3) la congruence identique

r(x+1)(r+2)... (r+p—1)=xr—2 (modp).

Mais, parmi les p nombres consécutifs z, x +1, ...,z +p—1,ilyen a tou-
jours un divisible par p; donc

xP—x

est toujours divisible par p. En supposant = @ non divisible par p, on a le

Tutorkme vE FERMAT. — @ étant un nombre entier non dicisible par le
nombre premier p,
ab—t—1
est toujours divisible par p.
Autrement, la congruence xP~'—1=o0 (modp) admet les p— 1 racines

1,2,3...,p—1.

Le théoréme de Fermat est un des théorémes les plus importants de la théorie
des nombres; nous le retrouverons dans le Chapitre IV, oli nous traiterons parti-
calierement des résidus des puissances et de la théorie des congruences bi-

nomes.

20. Les systémes de plusieurs congruences du premier degré a plasieurs in-
connues se présentent maintenant naturellement & notre attention. mais nous con-
sacrerons & ce sujet important le Chapitre I1I tout entier. Ici nous nous borne-
rons & traiter une question élémentaire et dont on a souvent besoin. La théorie
des équations indéterminées est liée évidemment trés étroitement a la théorie des

congruences ; nous discuterons ici I’équation indéterminée
(1) A1 X1+ AT+ A3T3 . o Ay 1 Tyt = U,

@y, sy .« .y Apyy €U w étant des nombres donnés, x,, s, ..., 2,4, étant des in-
connues qui doivent avoir des valeurs entiéres. 11 est clair d’abord que w doit étre
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divisible par le p. g. c. d.

d:(al, Ay oo oy a”+1)

C3

des coelficients a,, @a, ..., Qpyy.

Mais, pour que d ait une valeur déterminée, il faut supposer que les coefti-
cients @y, dy, - - ., @uyy ne soient pas tous nuls. Ce sera la la seule restriction a
laquelle nous soumettons les données du probléme. Maintenant, si « est divisible
par d, le probléme admet toujours des solutions. Cette proposition est vraie dans
le cas n =1, etil est trés facile, en partant de 13, et & I’aide d’une induction, de
montrer qu'elle est vraie généralement.

Mais nous suivrons une autre voie qui nous donnera en méme Lemps toutes les
solutions du probléme. Mais ici une explication est nécessaire, si les valeurs

zy= by, Ty = by, Tpar = by,
satisfont a la relation (1); de méme que les valeurs
Ty = Cy, T == Ca, ) T n+1= Cn+1,
ces deux solutions seronl considérées comme distinctes si les différences
by — cr, k=1,2, ...,n+1

ne sont pas toutes nulles. Il importe de bien observer cette convention; ainsi,
méme dans le cas ot @,,, = o, les solations

)= bh X3 = by, ey wn:bn, Zpa1= by
et )

zy = by, s = b, R Zp= by, Zna1=bprr+k

seront considérées comme distinctes, tant que & n’est pas nul.

Les coefficients a,, ..., a@,;, n’étant pas tous nuls, on supposera que «, n’est
pas nul. On pourra déterminer alors deux nombres « et y satisfaisant a la con-
dition

ayr+ ayy = (a1, a,),

et ces nombres seront premiers entre eux, en sorte qu'on pourra ensuite déter-
miner deux nombres {3 et & par la condition

a8 — By =1.

On pourra prendre du reste 8 =— a, : (ai, a2), d =-a, : (a1, a,); c’est la
une remarque dont nous profiterons tout 3 I’heure.
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Posons
2= 0 + By, d'ou @) = da1— By,
By =Y & + 32, Ty =— Y&+ A,
I'équation (1) deviendra
(2) (a1, @) T+ 0,2, + a3+ @2, +. . .+ Ap1 Tptr = U.

11 est clair que ces équations (1) et (2) sont équivalentes en ce sens, que si
'une des équations est impossible, 'autre le sera; et que, si I'on connait une
solution de l'une de ces équations, on en déduira une solution de I'autre. A deux
solutions distinctes d'une de ces équations correspondent toujours deux solutions
également distinctes de l'autre.

Remplacons maintenant de la méme maniére les inconnues x| et xy dans (2)
par deux nouvelles inconnues &, et z,, en posant

(ag, as) e+ asyr= (ay, as, as),
N
05101“31‘{1=l7
7y =y &) + By oy, 7y = 8,2 — B a3,

X3 = 11 & + &y &%, Xy = — (1 &)+ 4y 3,
on obtiendra une transformée encore équivalente a (2) et a (1)
(3) (@1, Gy a3) T + 022y + b3, + a4+ . .+ @1 Ty = U

On peut continuer ainsi, en opérant maintenant sur z et z,, etc. Aprés n
transformations, on aura la transformée équivalente que voici

’ ’ ! 4 .
(4) (a1; @z, ooy Qpad) 8P+ by @y ~+ b3 2y =0, &+ o .+ Dp1 Ty = 4,

et 'on obtient les expressions de z,, ..., Z,,1 au moyen de substitutions suc-
cessives sous la forme

’ ’ ! ’
2= A2 4+ a0 Ty + @y 3T+ AT e Ay a1 Ty
’ I ’

Zo = AoV 4 @3 0T + Ay 3Ty —+ A2 4 T+ o . Ay n1 Ty s

) ’ ’ ’
(5) &3 = Aza{¥ + a3 3%+ A3, T e A3 1 Ty
—_— ) ’ "
@z, = A2 + AT Q1 Ty
|\ Zp1= Ap 2P + Qpt, 1 T g

Ces formules donneront toutes les solutions du probléme, si 'on prend pour
p ’ P p

2\, xy, &y, ..., &, toutes les solutions de (4). Mais on remarque que, sil'on

prend pour § et ¢ les valeurs que nous avons indiquées plus haut, ona b, =
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En appliquant donc toujours le méme procédé, on aura aussi
b3= b6=~'-:bn+1=0-

Mais alors les solutions de (4) sont en évidence; il faut évidemment que u soit
divisible par d, et I'on obtient toutes les solutions de (4) en prenant 2{" = u : d,

el en donnant a
Xy, Ty aeey Thag

toutes les valeurs de — 0 a -+ oo.

Treorime VIL. — On obtient toutes les solutions de l’équation indétermi-
née (1), et chaque solution, une seule fois, en posant x\" = w:.d dans les for-

mules (3) et en faisant parcourir a x,. ..., x,,, toutes les valeurs entiéres
de — o @ + .

On voit sans difficulté qu'en procédant comme nous I'avons indiqué, les coef-

ficients a@sa, @33, + .y @pyi nye ont les valeurs suivantes :

Az2= th:(ah ai)’

az3=(ay, az):(ay, as az).

Antnrt = (A1, Qgy ooy @p)i(@yy @y, ooy AQpaq)-

21. Cette solution donne lieu a quelques remarques utiles. Il est clair qu’en
ajoutant les équations (5) apres les avoir multipliées par a,, a¢s, ..., @pyy les
coefficients de z,, z,, ..., z,,,, s'annulent. On a ainsi des relations homo-
génes entre @, s, ..., @z, qui déterminent les rapports de ces quantités. En

supposant
X, X Xz ... Xpu
aq.9 [22%] o e o
D= a3 as 3 as.s - o) = lwlxi"‘ M2X2+-‘ B M/H—i Xn+h
An+1 A2n+1 A3n+1 -+ Apit,n+t
on aura

A1y Az .... Q1= 1“1:M2:M3:...:M,l+1.
Mais il est clair qu’on a
Mi=assX a3 3X<...XApr1,n+1= a; . d;

donc, généralement,
M, =a;:d, k=r1,2,...,n+1.
IV. — Fac. de T. 6



42 T.-J. STIELTJES.

En multipliant donc, par exemple, la derniére ligne horizontale du détermi-
nant D par d, on obtient un déterminant dont les mineurs ont les valeurs «,,
Aoy v uvy @pyy. On voit par 12 que lon peut toujours déterminer n lignes de
n+ 1 nombres entiers telles qi’en ajoutant une (n + 1) ligne et formant
le déterminant, les coefficients multipliés dans ce déterminant par les dif-
Jérents termes de la (n + 1)*™ ligne, soient des nombres donnés.

C’est 12 une proposition donnée par M. Hermite (Journal de Crelle, t. 40,
p- 264), qui en a fait une application trés importante.

'

22. En cherchant I'expression de z{", z}, ..., z,,, comme fonctions linéaires

de xy, &3, ..., Zny1, on trouve d'abord, & causede by, =by=...= b, = o,

’
(ay,az) @) = a1 @y + ay 2y,

(ai,ag, a:,)x'i = a1+ Qs+ A3,

PRI I I I R P Sees et .y

(@1,as, - ooy Aue1) XY = @ 1+ A X3+ . . Anr1 Ty,

el ensuite on reconnait que les expressions cherchées se présentent sous la
forme

8
I

(ay 21+ @y 4. . .4 Qpy1 Tpay) & d,
Ty = A 1 Ty %3 3 T2,

Ty = 13,1‘Tl+ 13'21‘2—\— a3yg.1'3,

Tpiy = %n+14 01+ Xppo oL+ oo Xpt . n+1 Cntte

Le déterminant des fonctions linéaires au second inembre est évidemment = 1,
comme cela a lieu pour les équations (5), car les déterminants des deux systémes
sont réciproques et en méme temps des nombres entiers. Ces déterminants sont
donc, tous les deux, soit =+ 1, soit =—1, mais il est facile de voir que c’est la
premiére valeur qui a lieu.

On voit donc que, étant donnés les nombres entiers

ay, da, ceey Qpig,

on pourra trouver toujours n lignes de n + 1 nombres entiers, telles gu’en les
ajoutant a la ligne donnée, on obtient un déterminant égal aup. g. c. d. de
Aiy Aoy onny Qpyy-

C’est la un résultat dont on a souvent besoin. La question a été posée et réso-
lue par M. Hermite (Journal de Mathématiques appliquées, t. XIV, 1349).
Nous verrons, dans le Chapitre IlI, qu’il est extrémement facile de déduire d’une
solution particuliére de ce probléme toutes les solutions possibles.
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23. 1l convient de considérer plus particuliérement le cas « = o,
a1+ Ay e+ A3 T3+ . ..+ Ap+1 Tp1 = O.
Sil'on a m solutions de cette équation

/fm ki 151,3 kl,n+1 (K1)
k'z.l /f-’ 2 /fg,a L k2,n+1 (K2)

km,i k/n,‘l lfm,:i .. km,n+l (K/n)

nous dirons que ces solutions sont indépendantes, lorsque les déterminants de
degré m dont les éléments sont puisés dans cette matrice (et que nous appelle-
rons les déterminants de ces solutions) ne sont pas tous nuls. 1l est clair qu’un
systéme de solutions indépendantes se composera tout au plus de n solutions, car,
les nombres a,, a,, ..., @y, n’étant pas tous nuls, le déterminant de n -+ 1
solutions est toujours nul. On peut représenter une solution par un simple sym-
bole (K,) qui représente ainsi 7 + 1 nombres entiers, pris dans un ordre déter-
miné.

On pecut déduire des solutions (Ky), (Ky), ..., (K,,) une nouvelle solation
(Kyty+ Kyty+...+ Ky tn),
dont les éléments sont
kipti+kaptotbkypts+..o +kpypty (r=1,2,...,n+1).

Nous dirons qu’un systéme de solutions (Ky), (Ky), ..., (K,) forme un
systeme fondamental de solutions, dans le cas ou I'on obtient toutes les solu-
tions de I'équation proposée, et chaque solution, wne seule fois, en donnant
Ly, tay ooy ty loutes les valeurs entiéres de — 0 a +0 dans Pexpression

(Kity+ Koto+...+~ K, ).

L’existence de ces systémes fondamentaux ne fait pas de doute; nous avons
obtenu déja (théoréme VII) un systéme fondamental composé de n solutions.

Tatoriwe VIII. — Un systéme fondamental de solutions se compose néces-
sairement de n solutions indépendantes.

D’abord, les solutions qui composent un systéme fondamental (Ky, Ky, onoy
K,.) sont nécessairement indépendantes. En effet, dans le cas contraire, on sait
qu’il existe une relation identique

(Kiuy+ Koo+ ..+ K yuy) =o,
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les w,, s, ..., un n’étant pas tous nuls. On obtiendrait donc la solution
Ty =T3=...=Tp+1 =0,

non seulement en prenant
Li=tl=...= ¢, =0,
mais encore en prenant

t = uy, ly= Uy, e tn = Wm,

ce qui est contraire 4 la définition d’un systéme fondamental.

Et en second lieu, on anécessairement m — n.En effet, la supposition de m << n
est inadmissible, car il en résulterait que m + 1 solutions quelconques ne pour-
raient jamais étre indépendantes. Or, le systeme fondamental que nous avons
obtenu se compose effectivement de n solutions indépendantes, dont les détermi-
nants (d’aprés le n°21) sont ax:d (hk=1, 2, ..., n41).

2%4. On s'assure facilement que 7 solutions indépendantes quelconques
(K)), (Ky), ..., (K,) ne forment pas toujours un systéme fondamental de solu-
tions. Car si 'on cherche & représenter une solution quelconque par

(K1 t) + thz--l'- R Knl,l),

on trouve bien toujours des valeurs déterminées pour &y, &y, ..., tn, mais ces
valeurs seront en général fractionnaires.

Tutorime IX. — Un systéme de n solutions indépendantes, tel que le plus
grand commun diviseur de ses déterminants

My, Ms, .... Mui,

est =1, forme un systéme fondamental de solutions.

En effet, si 'on cherche & représenter par
(Kltl+ thg—l—.. .+ K,ltn)

une solution quelconque by, bs, ..., byyy, on obtient, pour déterminer ¢, ¢,, ...,
tn, un systétme de n -+ 1 équations linéaires, mais ces équations sont compatibles
a cause de la relation

alb1+(l2bg+...+an+;bn+1 = 0.

On peut donc, pour déterminer lesinconnues, faire abstraction d’une quelconque
de ces équations, et I'on obtient ainsi 7 + 1 systémes de n équations dont les dé-
terminants sont M,, M,, ..., M,,. La valeur de ¢; se présentera donc sous la
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forme

>

_ _ Pn+t
=...= P
2 My

i

=

=

=

P1yP2+ -+ Prgs 6tant desnombres entiers. Mais, sila valeur fractionnaire irréductible
r .. . g

de ¢4 est S divisera M,, Ms, ..., M, . On a donc s =1, c’est-a-dire ¢ a une

valeur entiére et les solutions indépendantes (K,, K,, ..., K;) forment un sys-

téme fondamental, ce qu’il fallait démontrer. Il est clair que les déterminants de
n solutions indépendantes sont proportionnels & a,, @s, ..., @pyy (voir n° 21).

Tatorime X. — Les déterminants d’un systéme fondamental de solutions
sont, abstraction faite des signes,

al:d, as . d, cevy QApyy :d.

Désignons par (A,), (Az), ..., (A,) le syst¢tme fondamental particulier que
nous avons obtenu et dont les déterminants sont as : d(k =1, 2, ..., n +1). Alors
(Ky), (Ky), ..., (K,) étant un autre systéme fondamental, on aura

(0 Ky + 2Ky +. .o+ 2, K,) = (Ay),
($1K1+ Bng—(—-..—f— BﬂKﬂ) = (Ag),

........................ Yol enaay

()\] K1 -+ )\2K2+. et )\nKn) = (An).

On voit par la qu’un déterminant quelconque a;: d, du systéme fondamental

(Ay)y (As), ..., (Ay) est égal au déterminant correspondant du systéme fonda-
mental (K,), (K,), (K,) multiplié par

Ay Ay .0 Ap I
R
Aol Ay

On a donc nécessairement A == 1.
La liaison des divers systémes fondamentaux est évidente. On voit que chaque
systéme fondamental fournit une solution du probléme que nous avons considéré

dans le n° 21.

25. La méthode la plus simple pour obtenir un syst¢éme fondamental de solu-
tions se fonde sur la remarque suivante.

Supposons que I'un des coefficients a,, as, ..., @, soit égal a
d=(ay, ay .... apty),

par exemple a,,, = d. Alors il est clair que, pour avoir toutes les solutions de
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I'équation indéterminée
AT+ Ay ...+ ApZp~+ Apir1Zpry = 0,

il suffit de donner & z,, ., ..., 2, des valeurs entiéres quelconques et & z,,, la
valeur (entiére aussi) qui en est une conséquence. On a donc, dans ce cas, immé-
diatement un systéme fondamental de solutions correspondant 4 la solution géné-
rale

ayty+ asto+...+ant,
] .

=1t Ty =1y, ceey Tp=tpn, Tp1=—

Si le cas particulier que nous avons considéré ne se présente pas, soit a, le
coefficient non nul, dont la valeur absolue est la plus petite. En posant

ay=kyay+ by, as = kya,+ b3, ceey @psr= kpay+ bpi,

(l"l =X+ klx‘z—l— k2$3'+'. o knx"+1,
on aura une équation transformée
alx; -+ bg.l‘g-l— b3x3+. N blH—l ZLp+1= 0.

Par un choix convenable de &y, ks, ..., &, on peut faire en sorte que le plus
petit coefficient de I'équation transformée soit moindre que @, ou méme ne sur-
passe pas 3. En continuant ainsi, on tombe finalement sur une équation dont
un des coefficients est d et dont on peut écrire immédiatement un systéme fon-
damental de solutions auquel correspondra un systéme fondamental de solu-
tions de DP'équation proposée. Cette méthode, qui s’applique également a
I'équation

A X+ ATy + .o+ Apit Tt = U,

se trouve dans un Mémoire posthume d’Euler. Jacobil’a rappelée a 'attention des

7 \

géomeétres dans un Mémoire également posthume (Journal de Crelle, t. 69, p. 21).
26. Les nombres a, b, ¢, ..., { étant premiers entre eux et
m=abe, ..., I,

m m
2’ ---,—lest

= 1. N étant un nombre quelconque, on pourradonc toujours satisfaire a I'équa-

« . m
nous savons que le plus grand commun diviseur des nombres )

tion

N:a1§+b,%‘+...+z,”7’,
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-—
~J3

c’est-a-dire on aura

N _a b 4
abe. 1 a T T

; peut se mettre d’une seule ma-

. . N
On verra facilement que la fraction ———
abe. ..

niére sous la forme

E étant un entier positif ou négatif et

ofay<<a, o0ib<b, oil<L

La solution de I'équation indéterminée ax — My =1 a été donnée en Europe,
pour la premiére fois, par Bachet de Méziriac (Problémes plaisants et délectables,
qui se font par les nombres. 2° édition; 1624. 5° édition, par Labosne; 1884).
Les anciens géométres hindous, Bhascara et Brahmegupta connaissaient aussi
déja la solution de ce probléme.

Le probléme dun® 11 se trouve traité complétement dans d’anciens Livres d’A-
rithmétique chinois. On y trouve non seulement la méthode de Gauss (n° 13),
mais aussi la réduction du cas général au cas ou les modules sont premiers entre
eux (n° 15). On peut voir sur cette question

BI1ERNATZKI, Journal de Crelle, t. 52.
J. BERrTRAND, Journal des Savants, 1869.
MATTHIESSEN, Journal de Crelle, t. 91.

La fonction ¢(M) a été considérée pour la premiére fois par Euler. Les Mé-
moires d’Euler sur 'Arithmétique ont été réunis en deux volumes (Leonhardi
Euleri Commentationes arithmeticee collectce. Petropoli, 1849). Nous citerons
toujours cette édilion; la fonction ¢ se rencontre dans le Mémoire 7Theoremata
arithmetica nova methodo demonstrata, 1759 (tome I, p. 274). La démonstra-
tion d’Euler est reproduite dans le tome Il de I’4{gé¢bre de Serret. Le théoréme
So(d) =M est di a Gauss (Disquisitiones arithmeticce, 1801, art. 39; tome |
des OFuvres complétes).

Les théorémes de Lagrange sur les congruences se trouvent dans le Mémoire :
Nouvelle méthode pour résoudre les problémes indéterminés en nombres en-
tiers (O/upres, t. 11) et la démonstration des théorémes de Fermat et de Wilson,
OF ugres, v. 111, p. 425.

La considération d’un systéme fondamental de solutions d’une ou de plusieurs
équations indéterminées est due a M. H.-J. Stephen Smyth (Philosophical Tran-
sactions of the Royal Society for the year 1861; vol.151).
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Nous indiquerons ici les principaux Ouvrages d’un caractére général sur la
théorie des nombres :

Gauss, Disquisitiones arithmeticee (OFuvres, t. I). I1 y a une traduction frangaise par
Poullet-Delisle.

LEGENDRE, Théorie des nombres, 3° édition.

Swyti, Report on the theory of Numbers (British Association for the advancement
of Science, 1859, 1860, 1861, 1862, 1863, 1865).

C’est la un résumé extrémement important sur toutes les parties de la théorie

des nombres auquel nous aurons & emprunter beaucoup de choses.

LesevNe-DiricuieT, Vorlesungen iber Zahlentheorie, herausgegeben von R. Dedekind.
Dritte Auflage, 1879.

SERRET, Traité d’Algébre, 5° édition, t. II.
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CHAPITRE [1L

EQUATIONS LINEAIRES INDETERMINEES, SYSTEMES DE CONGRUENCES
LINEAIRES.

1. Considérons le systéme des congruences
AU XL+ AiaZy~+ oo+ Qi =Tp=1U; (mod M).

Soit A = l ;x| le déterminant formé avec les coefficients des inconnues, puis
21 le coefficient de a;z dans A. On obtient immédiatement

Ar;= g dy;~+ Us%ar—. ..+ Up%pg (modM).

Supposons que A soit premier avec le module M, alors cette derniére relation
détermine une valeur unique de x; par rapport au module M; et ensuite il est fa-
cile de voir que les valeurs de z,, z,, ..., , ainsi obtenues satisfont bien aux

conditions proposées. En effet, on trouve
A(@pzi+ @pae+...+ Qi) = A u; (mod M)

et, puisque A est premier avec M, on peut diviser par A.
Le systéme des congruences admet donc une solation unique dans le cas parti-
culier que nous considérons. On peut ajouter que les valeurs de z,, s, ..., x,

satisferont encore a la relation

Ap+1,1 &1+ Apag 9o+ oo+ Apir),n Tpn = Up+1 (mOd M)
si 'on a
g Ay 22)

|

=0 (mod M).

An Qnn Up

QAp+1,1 Ap+1,n Up+ty

En effet, il est facile de voir que cette derniére congruence peut s’écrire sous

cette forme
A(Upr1~— A1 X1 — dps1 28— oo — Api1p®y) = 0 (mod M),

2. Les résultats précédents sont ceux qui s'offrent immédiatement lorsqu’on
poursuit P'analogie évidente qui existe entre la théorie des congruences et la

IV. — Fac. de T. 7
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théorie des équations. Mais si A n’est pas premier avec M, une étude plus appro-
fondie estnécessaire. Elle a été faite pour la premiére fois par M. H.-J.-S. Smith,
et nous allons exposer sa théorie. Les considéralions suivantes interviennent
non seulement dans des questions de la théorie des nombres, mais elles sont en-
core utiles dans beaucoup de théories d’analyse pure; aussi plusieurs résultats
1solés ont été obtenus antérieurement par d’aulres géométres.

Nous commencerons par étudier les équations linéaires indéterminées, mais il
convient d’abord de fixer le sens de quelques expressions dont nous ferons usage.

En adoptant une expression introduite, croyons-nous, par M. Sylvester, nous
appellerons matrice un Tableau de forme rectangulaire

a1 Qi ... Qi
Az Q23 .. Qamy
Ana An2 ..+ Qam

contenant mn quantités données, et nous dirons que cette matrice est du type
n > m. Silon a unsystéme quelconque d’équations linéaires, les coefficients des
inconnues constituent la matrice de ce systéme. Siles équations ne sont pas ho-
mogénes, on peut ajouter a cette matrice une derniére colonne formée par les
termes connus. On obtient ainsi la matrice complétée du systeme. Les mémes
expressions s’emploieront dans le cas d’un systéme de congruences. Les éléments
@ seront toujours des nombres entiers.

Les déterminants d’'une matrice sont les déterminants de degré le plus élevé
que Pon peut former avec les lignes ou les colonnes de la matrice; ainsi, dans le

cas m 2 n, ces déterminants renferment n2 éléments et leur nombre est

m(m —1)...(m—n-+r)
1.2...n

= (M)n.

Le plus grand diviseur d’une matrice est le plus grand commun diviseur des
déterminants de cette matrice, en supposant que ces délerminants ne soient pas
tous nuls. Dans le cas m = n, ce plus grand diviseur est le déterminant méme du
systéme des n? éléments.

Nous désignerons une matrice souvent par le symbole

(Al
et, dans le cas ou elle est du type n >< n, | A| sera le déterminant. Deux matrices
Al et [[B]

des types m >< (m - n) et n > (m+ n) sont de types complémentaires. 1l est
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clair que ces matrices ont le méme nombre de déterminants, et l'on peut faire
correspondre 4 chaque déterminant de || A ]| un déterminant de || B || et récipro-
quement, de la maniére suivante.

En écrivant la matrice '| B|| en dessous de la matrice || A || on obtient une ma-

H

qui sera du type (m + n)><(m-+n) et & un déterminant de || A || on fera cor-

trice

respondre le déterminant de || B|| avec lequel il se trouve multiplié¢ dans le déter-

I

Souvent il n'y a pas d’'intérét a faire attention au signe d’un déterminant d’une

minant des (m -+ n)? éléments

matrice, mais dans le cas actuel il convient de faire en sorte que le produit des
déterminants correspondants se retrouve avec son signe dans le déterminant des
(m -+ n)? éléments.

3. Les déterminants d’une matrice ne sont pas indépendants; il existe en gé-
néral un grand nombre de relations identiques entre eux. Nous allons nous rendre
compte d’abord de la nature de ces relations et du nombre des déterminants qui
sont indépendants. On pourra considérer dans ce numéro les éléments de la ma-
trice comme des quantités arbitraires. Considérons la matrice

‘ a  Qaye ... Quman
(2281 Q2,2 .. Ay m+n
(l) ( i) £ v 2

( Am, Cm,a oo Appim+n

du type m >< (m + n). Le nombre des déterminants est

(n+1)(n+2)...(n+m)
1.2.3...m ’

mais nous allons montrer qu’il y en a seulement mn -1 qui sont indépendants.
Tous les déterminants peuvent s’exprimer a I'aide de mn <4~ 1 d’entre eux.
Soit

(2) A=a;| (i, k=1,2, ..., m)
le déterminant formé par les m premiéres colonnes de la matrice. Le déterminant

obtenu enremplacant dans A la ™ colonne par la m +- A" colonne de la matrice

sera désigné par A, 4. On déduit ainsi de A mn nouveaux déterminants, 7
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variant de 1 & m, & de 1 & n. On pourra les disposer dans le Tableau

A1,nz—H A2,m+‘2 Al,m+n;

(3) A2,m+l A2,11L+2 cee Dy mn,

AIIZ, m-+1 AIII’IIL—*-2 AR A)Il.lll+ll‘

Les mn 41 déterminants A, A; myx sont indépendants; on peut trouver une
matrice pour laquelle ces déterminants ont des valeurs données d’avance. Prenons
d’abord arbitrairement les éléments a;; de A, avec la seule restriction de vérifier
la relation (2). On a ainsi les m premiéres colonnes de la matrice. On peut dé-
terminer ensuite la m —+ £™¢ colonne par la condition que les déterminants
Ajmyk (i =1, 2, ..., m) prennent des valeurs données. En effet, on obtient ainsi
m équations linéaires pour déterminer

@rm+ky Qam+ky  coos Cmom+ke

Le déterminant de ce systéme est A”~!, mais, en le résolvant, on trouve simple-
ment

(D A k= (i Ak =+ @ip s g+ oo+ AimAm m+r) 4,
1=1,2,3, ..., m,

k=1,2,3, ..., n

La vérification de ces valeurs est du reste immédiate, et 'indépendance des
mn + 1 déterminants A, A; . x est manifeste.

Considérons maintenant un autre déterminant A’ de la matrice. 1l contiendra
k colonnes appartenant aux n derniéres colonnes de la matrice (k 2 2); soient

m —+ Ay, m + ks, R m—+ A

les rangs de ces colonnes. Les autres m — & colonnes de A’ appartiendront aux
m premiéres colonnes de la matrice, ¢’est-a-dire, ce sont des colonnes de A. Soient

Bry, P2y eeey A

les rangs des colonnes de A qui ne figurent pas dans A'. En remplacant alors
dans A’ les éléments a@; o x par leurs valeurs (4), on obtient, al’aide des propriétés
élémentaires des déterminants, la formule

Ap.i,m+)\l Ay mady - A[.L,,m+)\k

(3) N A!lzv"l-i-h A!lzy"l+7n-: Ap.:,m«w—)\k vy

Ay m+dy Dugpmady oo Augmadg i
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Ainsi tous les déterminants de la matrice s’expriment rationnellement au moyen
des mn + 1 déterminants A, A; .,z On voit que A’ est égal a un déterminant mi-
neur du degré £, puisé dansla matrice (3), divisé par A% *. Le nombre des déter-
minants tels que A est

(m)y(n)s+(m)s(n)s+(m)(n)—+...

=(m+n)y,—(m)(n)—(my(n)yy=(m-+n),—(mn~+r1).

Equations linéaires indéterminées.
4. Considérons d’abord le systéme linéaire et homogéne

‘ AT+ A2 X2+ oo o = Qi mrn T m+n = O,

()

1=1,2,...,m

Nous supposerons que ces équations sont linéairement indépendantes, c’est-
a-dire que tous les déterminants de la matrice de ce systéme ne sont pas nuls. Le
plus grand diviseur de la matrice a alors une signification précise, soit d ce plus
grand diviseur.

Le moyen que nous emploierons pour trouver toutes les solutions en nombres
enliers consiste dans I'introduction de nouvelles inconnues.

Au lieu de zy, ..., Zmyn, on peut introduire de nouvelles inconnues, en
posant

Ti=Cig &y A Ci o Th—+ ... + Ci,m+n1';n+m

I=1,2, «.., M+ n.

Les ¢; & seront des nombres entiers, et nous n’emploierons que des substitutions
dont le déterminant | ¢; x| ===1.

On peut alors exprimer réciproquement les z; par des fonctions linéaires a coef-
ticients entiers des z;, et, comme nous ne considérons que les solutions en nombres
entiers, le systéme transformé sera absolument équivalent au systéme donné,
¢’est-d-dire a deux solutions distinctes d’un des systémes correspondront toujours
deux solutions également distinctes de l'autre.

Parmi les déterminants de la matrice de (I) qui ne sont ‘pas nuls, il y ¢n aura
au moins un dont la valeur absolue est le plus petit. Nous pouvons supposer, en
adoptant la notation du n° 3, que A soit ce déterminant minimum. Supposons
d’abord que tous les déterminants A; ik soient divisibles par A. Alors il est clair
que I'on obtient la solution la plus générale de (T) en donnant & Zpys, Zomya,y - - -,
Zmyn des valeurs entiéres absolument quelconques et en déterminant ensuite
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Zyy ...y Ty par les formules

T =— (Ai,m+1x'm+l+ A2 Zmae + ..+ Am+n®men) i A,

(i=1,2, ...m).

On voit, du reste, par la formule (5) du n° 3, que, lorsque A divise tous les
A; ik, 1l divisera tous les déterminants de la matrice, en sorte quel’on doit avoir
A==d.

Mais supposons que A ne divise pas tous les A; . x et, par exemple, ne
divise pas A, ;.. Alors, on peut toujours trouver un entier ¢ tel que la valeur ab-

solue de
Apmrr— €A

soit inférieure a celle de A. La substitution de déterminant —+ 1

x;, = (i=1,2,3,...,mym~+2,m—+3,...,m-+n),

U ’
Zm+1= Ly — CTy

transformera alors le systéme (1) dans un autre systéme dans lequel un des déter-
minants est A, ., —cA. Le déterminant minimum du systéme transformé est donc
plus petit (en valeur absolue) que A. Si ce déterminant minimum ne divise pas
tous les autres déterminants, on pourra encore le diminuer par le méme procédé.
I1 est clair que I’on finira par trouver un systéme transformé dans lequel le déter-
minant minimum divise tous les autres déterminants, et dont on peut écrire alors
immédiatement la solution la plus générale. Cette solution renferme, comme nous
I'avons vu, n indéterminées auxquelles on peut donner toutes les valeurs entiéres

de — o0 & + 0.

Tutorime I. — On obtient toutes les solutions du systéme (1), et chaque solu-
tion une seule fois, par les formules
(an Zz;= gl,itl+§2,l’t2+"~;|_plt,itn7

(i=1,2,...,m~+n),
en donnant a ty, ts, ..., t, toutes les valeurs entiéres de — x a + .

11 est claiv qu’en substituant les expressions (II) dans le systeme (I), les coeffi-
cients de ¢y, ts, ..., £, doivent s’annuler.

On obtiendrait donc encore des solutions de (I) en donnant a ¢, ..., ¢, des va-
leurs fractionnaires. Mais il est clair que 'on ne peut jamais obtenir, de cette
facon, une solution de (1) en nombres entiers, car toute solution entiére corres-
pond & un systéme unique de valeurs entieres de ¢, ..., &,
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Pour obtenir, dans un cas donné, la solution générale sous la forme (II), il sera
plus pratique de procéder autrement. On cherchera, par exemple, par la mé-
thode d’Euler (Chap. IT, 25), la solution générale de

A X+ A1,9%3 + . oo = A mnTm+n = 0,

qui renfermera m -+ n— 1 indéterminées, puis on introduira ces valeurs dans la
seconde équation

A2\ 1+ A2 92+ oo+ A2 mt-nTpt-n = 0,

etc., jusqu’a ce que I'on ait épuisé les m relations données.

Si I’on transforme, comme nous ’avons fait, le systéme (1), il est clair que tout
déterminant du systéme transformé est une fonction linéaire a coefficients entiers
des déterminants de (I), et réciproquement. On voit par la que le plus grand di-
viseur des deux matrices est le méme et, par conséquent, dans le procédé que nous
avons employé plus haut, on trouvera finalement un systéme dont la matrice a un
déterminant minimum égal & = d.

5. Considérons 7 solutions du systéme (1)

Ay gy 1,2, eeey R mtn,
A2,y X225y ..y X2 mtn,

ey eeey seay eeeasey
Apty ey oevs Apmdn,

que nous désignerons quelquefois aussi par de simples lettres A;, A,, ..., A,. Ces
solutions sont indépendantes si tous les déterminants de degrés r ne sont pas
nuls. Il est clair que 'on peut trouver tout au plus » solutions indépendantes, car,
puisque toutes les solutions sont comprises dans les formules (II) (n° 4) qui ne
renferment que n indéterminées, n + 1 solulions ne sont jamais indépendantes.
En multipliant les solutions précédentes par ¢, ¢s, ..., ¢, et en ajoutant, on ob-
tient une nouvelle solution

Aty +Asty + ...+ Aty
dont les éléments sont

Xp= a1,y 4+ Ay pla—+ ..o =yl
Nous dirons que les solutions

Ah A27 L) Al'

forment un systéme fondamental de solutions, lorsque l'on obtient toutes les

solutions possibles, et chaque solution une seule fois, en donnant a ¢,, ¢,, ..., ¢,
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les valeurs entiéres de — o0 & -+ o. L'existence de ces systémes fondamentaux de
solutions ne fait pas de doute, car nous savons, par le théoréme I, que

Bi,l; Bz‘,z, ey Bt’,m+n
(i=1,2,...,n)
estun tel systéme.
Tutorkme . — Un systéme fondamental de solutions se compose de n solu-
tions indépendantes.

Ce théoréme est une généralisation du théoréme VIII du Chapitre I1; la démon-
stration est exactement la méme.

La matrice formée par n solutions indépendantes, ou par un systéme fondamen-
tal de solutions, est du type n >< (m -+ n), donc du type complémentaire de la
matrice du systéme (1).

Considérons la matrice du systéme (1) et la matrice formée par n solutions in-

dépendantes
aq.1, Q195  oeey Qi man,

.y veey ceey ces ey

Amay Am2y  «o oy Amn-+n,

Ay, A2y, ceey Xmn,

.y ey ceey e N

An,1y 92y -y Anmtn-

Les relations qui existent entre ces nombres se réduisent a ceci : que la somme
obtenue en multipliant les éléments d’une quelconque des m premiéres lignes par
les éléments correspondants d’une des n derniéres lignes est nulle.

On voit donc qu’il y a une réciprocité compléte entre les deux matrices, et si
I'on considére le systéme indéterminé

ATy = A oT2 e oo = U manTm+n = O
(t=1,2,...,n),

fes nombres
iy Ay, ooy Aimtn

(i=1,2,...,m),

en donneront m solutions indépendantes.

D’aprés ce que nous avons dit dans le n® 2, on peut faire correspondre a chaque
déterminant de la matrice || @;x||'un déterminant de la matrice || 2; 4 || d’'un sys-
téme de n solutions indépendantes.

Tatorkme . — La matrice d’un systéme fondamental de solutions a l’unité
pour plus grand diviseur.
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Considérons, en effet, les formules

@i = Brity+ Baite + .o = Bt

[t=1,2,...,(m—+n)]

qui renferment la solution la plus générale. Il est clair d’abord que
(31,1 31,2 ‘e Bl,7n+n) =1,

car, si ces nombres étaient tous divisibles par ¢ >> 1, on trouverait une solution

.y I . . . .
entiére en posant ¢, = - ce qui, on le voit facilement d’aprés ce que nous avons

dit plus haut, est contraire 4 la nature d’un systéme fondamental de solutions.
Ensuite, je dis que les déterminants de la matrice

@1,1, Bl,z; sy @1,m+n7

‘32,1, 62,‘23 sy ﬁ2,m+n

ont aussi 1 pour plus grand commun diviseur. Car si ces déterminants étaient tous
divisibles par ¢ >>1, ¢ ne divisera pas tous les éléments de la premiére ligne, par
exemple ¢ ne diviscra pas 3, ;; mais alors on trouverait encore une solution

entiére en posant

ce qui est impossible.
Ensuite, je dis que le plus grand commun diviseur de la matrice

Bl,h 31,27 oy Bl,m—i—nv
32,17 p?,?y sy pQ,m+n7

33,1 ’ BS;‘Z) ceey §3,In+n

est encore = 1. Car si ce plus grand diviseur était ¢ > 1, ¢ ne diviserait pas, par

exemple, le déterminant

Bi,1 Bie ‘
B2 Poye '
et, en posant
_ Ba,1 P . Bs,1 Bse . Br1 B2 .
1= « G 2 = . Cy 3= <G
Bs1 Ba,e B Bie Ba,1 Boye

on trouverait encore une solution entiére, ce qui est impossible.
Il est clair que I'on peut continuer ainsi, pour arriver au théoréme énoncé.
1V. — Fac. de T. 8
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6. En cherchant & exprimer une solution quelconque
a1, O, wvey Ontn

par un systéme fondamental de solution $;, on est amené & déterminer n incon-
nues &y, ly, ..., tp parm—+n équations

a; = @1,1"31 + Baile—+ ...+ Br,itn

(i=1,2,...,m+n).

On sait d’avance qu'il existe une solution unique et en nombres entiers; ce sys-
téme linéaire doit donc présenter certaines circonstances particuli¢res. Nous allons
montrer qu’elles se réduisent a ceci : d’abord le plus grand diviseur de la matrice du
systéme est = 1, ensuite tout déterminant de la matrice complétée est nul, car cette
matrice complétée se compose de n + 1 solutions.

Tutorime 1V. — Un systéme de m -+ n équations entre n inconnues

a;i = Biits + Boita+ ...+ Bryita

(i=1,2,...,m—+n)

admet toujours une solution unique et en nombres entiers, lorsque le plus
grand diviseur de la matrice du systéme est =1 et que tous les déterminants
de la matrice complétée sont nuls.

Nous ajouterons un théoréme analogue sur les congruences.

TatoriMe V. — Un systéme de m + n congruences entre n inconnues

a;=B1,0t1 -+ Boita—+ ...+ Bnitn (mod M),

(it=1,2,...,m—+n)

admet toujours une solution unique, lorsque le plus grand diviseur de la ma-
trice du systéme est premier avec M et que tous les déterminants de la matrice
complétée sont = o (mod M).

11 suffira de démontrer ce dernier théoréme ; nous pouvons écrire les congruences
données ainsi
Aj=ay (mod M), (i=1,2,...,m—+n),

les A; étant des fonctions linéaires en ¢,, ..., £,. Considérons le déterminant mini-
mum A de la matrice de ce systéme. Si A divise tous les autres déterminants, il sera
premier avec M d’aprés notre hypothése. Les n congruences correspondantes ad-
mettront alors une solution unique et cette solution satisfera aussi a toutes les

autres congruences (voir le n° 1).
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Mais si '
A=|Bix| (Lk=1,2,...,n)

ne divise pas tous les autres déterminants, il ne divisera pas, par exemple, le

déterminant
Bl‘n+1 ﬂ?,n+l e pn,n—i—l
Bi,? pm e pu,z
B:,x B2.3 oo Bags
Bl,n BQ,n e gn,n

Mais alors on pourra remplacer le systéme donné par le systéme équivale nt

Ai=a; (i=1,2,...,n,n+2,n+3, ..., n+m),

Apri—cAy =y —cay,

et ce nouveau systéme aura, pour une valeur convenable de ¢, un déterminant mi-
nimum plus petit que A. On pourra ainsi diminuer le déterminant minimum jusqu’a
ce qu’il soit devenu égal au plus grand diviseur de la matrice donnée. 1l divisera
alors tous les autres déterminants et I'on est ramené au cas que nous avons consi-
déré d’abord.

Le théoréme IV peut se démontrer d’une fagon toute semblable, ou encore par le
raisonnement que nous avons fait dans la démonstration du théoréme IX (Cha-
pitre II).

Nous indiquerons encore une autre démonstration du théoréme V.

Sil'on écrit

M=Px<xQxRx ...,
ou P, Q, R, ... sont des puissances de nombres premiers distincts, on reconnait
facilement que les congruences données admettent une solution unique, par rapport
a chacun des modules P, Q, R, ..., dot I'on peut conclure qu’elles en admettent
aussi une par rapport au module M.

1. Multiplication des matrices. — Soit

{=1,2,...,.n
||a[1k” ?
k=1,2,...,m+4n
ou || A || une matrice du type n < (m + n), (m2 o),
el (Hhk=1,2,...,n),

ou || G|, une matrice du type n >< n, nous représenterons par

G <l Al = 11A]
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une matrice du méme type que || A || et dont les éléments sont

@ = Ci1 @k~ Ciala k= -+ = Cin@nk

1=1,2, ..., )
<k:1,2, ceom+n)

Lorsque [|C, || est encore du type n >< n, nous écrirons

NG|l < [JA" ] =Gy [l < || Gl < [[ Al
et il est facile de voir que

NGl >G> [TA = Call < || GI[§ >< || Al

Mais on ne peut pas permuter les deux matrices dans un produit, et si I'on con-

sidére un produit de plusieurs facteurs
HCall < 1 Crma > o< I G < (LA,

on suppose toujours que toutes les matrices || Cx|| sont du type n > n : seule la
matrice || A || peut étre du type n >< (m + n), le produit est toujours du méme type
que ||A|.
Il est clair que, lorsque
AT =Gl =< TA 1,

tout déterminant de || A’|| est égal au déterminant correspondant de || A || multiplié
par le déterminant |CG|. Les déterminants correspondants de || A || et || A’|| seront
proportionnels et si, en particulier, le plus grand diviseur de | A| est = r, le plus
grand diviseur de || A’ || sera la valeur absolue de | C|.

Dans le cas ot le déterminant

C1,1 C1,2 Ci,n
C C C
2,1 2,2 2,n —e =1 ,
| eng Cng ... Cn,n

nous désignerons par || C||~* la matrice

€Y1,y €Y2,15  ceey EYn,

1,2, €Y2,2,  -+-s EYm,2y
P T,

1,my  a2,my o5 nyny

Yi,x étant le coefficient de c;,x dans le déterminant | G |.
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On voit que
1 0 ... O
e e L e M|
o 1

et de la relation

A =GN =< [|Al,
on peut conclure

TA=Cl-t><]]A"[l.

8. Soit || A|| la matrice formée par n solutions indépendantes, || B[l la matrice
formée par un systéme fondamental de solutions.
Puisque les solutions de || A || peuvent se déduire du systéme fondamental B,

cela revient, avec notre nouvelle notation, & dire que

TAT=1CI><[IB].

Il est clair que le plus grand diviseur de |A|| est ===|C]|, el, dans le cas
|Cl==1, |[|A]| est évidemment aussi un syst¢tme fondamental de solutions,

car
IBI=1Gl-*><[A[

Si l'on considére plusieurs systémes de 2 solutions indépendantes, ou de Sys-
témes fondamentaux, les déterminants correspondants seront toujours propor-

tionnels.
Tutorime VI. — Lorsque le plus grand diviseur de la matrice
[IB]] dutype n < (m <+ n)
est =1, et que les déterminants d’une matrice
1A]] dutype n < (m+n)
sont proportionﬁels auzx déterminants correspondants de ||B|, on a tou-
jours
A =1Gl <[ B
et la matrice || C|| est unique.
En effet, on obtient pour déterminer Cijty Ciyay -+ -y Cip les équations

ar e = Cinb1 g + Cinba g+ ...+ C;nbps,

k=1,2,...,(m-+n).
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Un déterminant quelconque de la matrice complétée de ce systéme, tel que

bl,i 52,1 bna aja

)

bys by o bn,? aja

2

bi,n+1 b?,n+1 b/L,n+1 Qi n+1

est nul, car d’aprés la proportionnalité supposée entre les déterminants de || A || et
de |

par un certain nombre entier le facteur de proportionnalité.

B}, il est permis de remplacer partout d; x par a; i, 4 condition de diviser aprés

Mais on obtient ainsi un déterminant avec deux colonnes identiques. Donc,
d’apres le théoréme 1V, il existe un systéme et un seul de valeurs c; 1, ¢y ..., Cipn
qui satisfont & la question.

On voit qu'une matrice du type n >< (m -+ n) dont les déterminants (non tous
nuls) sont proportionnels aux déterminants de la matrice || B || formée avec un sys-
téme fondamental (ou avec n solutions indépendantes) est nécessairement com-
posée avec n solutions indépendantes.

Tutoreme VII. — Les déterminants d’une matrice formée par n solutions
indépendantes, du type n < (m + n), sont proportionnels aux déterminants
correspondants de la matrice du type m < (m + n) du systéme indéterminé
donné (1). En particulier, un déterminant d’un systéme fondamental de solu-
tions est égal au déterminant correspondant du systéme (1), divisé par d.

Il suffira de faire voir que le théoréme se trouve vérifié pour un systéme particu-
lier de n solutions indépendantes. Un tel systéme peut se déduire des considéra-
tions du n° 3. Supposons que le déterminant A ne soit pas nul, alors on a le systéme
suivant de 7 solutions indépendantes

Apmts Bamrts ooy Dmmerr,  —A, 0, 0, ... 0,
Ay mvay  Bamae,  oeey Bmmes, o, —A, o, ..., 0,
...... S eeeeeey ey aeeeeay Vs eeeny ey ey o
Ay mns Do many  oovs Bmymtns 0, 0, 0, ..., —A.

En effet, ce sont la bien n solutions, car on a [form. (4) da n° 3]
i Dk = Qoo vk = oo o Qi Amymak — a;,m+kA =o0.

Ces solutions sont indépendantes, car 'un des déterminants est (— A)".

Et si 'on considére maintenant les déterminants de cette matrice qui correspon-
dent aux mn - 1 déterminants que nous avons considérés dans le ne 3, on reconnait
immédiatement qu’ils n’en différent que par le facteur (— 1)?A%~!, et cette propor-

tionnalité s’étend aisément aux autres déterminants.
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Plus généralement, on peut obtenir 7 solutions indépendantes ainsi. Soit

(221 QA1 .m+n
a ' a
my e m,m-+n
D=
Ci,1 C1,m+n
Cn,1 cvs Cnom+n

Puisque tous les déterminants de la matrice donnée ne sont pas nuls, on pourra
choisir les nombres ¢ik, de maniére que D ne soit pas nul. Désignant alors par G, &
le coefficient de ci,x dans D, il est clair que 'on a le systéme suivant de » solu-

tions
Cl,l) sy C1,m+n7
ey ey e s

Cn,h ooy Cn,m+n,

et, d’aprés un théoréme connu, un déterminant quelconque de cette matrice est
égal au déterminant correspondant de la matrice || @: || multiplié par D7—1,

r
9. Nous allons résoudre maintenant le probléme suivant. Etant donnée une

matrice
(1A,

dutype n ><(m -+ n), dont d est le plus grand diviseur, trouver toutes les solutions
de I'équation
IAll=1Cl><IB,

le déterminant | G| étant == d. Il est clair que le plus grand diviseur de [| Bl estr,
etsi'on a trouvé une matrice dont les déterminants sont proportionnels & ceux de
| Al et dont le plus grand diviseur est — I, on pourra la prendre pour [|BJl; 1a
matrice || C|| s’en déduit d’aprés le théoréme VI.

On peut obtenir une telle matrice [|B|l en considérant le systéme indéterminé
dont la matrice est || A||. On cherchera m solutions indépendantes formant une ma-
trice || A’ ||. Ensuite, on cherche un systéme fondamental de solutions du systéme
indéterminé dont la matrice est [ A’]]. La matrice formée par ce systéme fondamen-
tal satisfait évidemment aux conditions.

Mais voici une autre méthode qui sera préférable ordinairement. Divisons
d’abord la premiére ligne horizontale de [[A ]| par le plus grand commun diviseur
des nombres qu’elle renferme, on aura ainsi la matrice

bl,h 61,27 ceey bi,m+n)
Q2,15 A2, ..., A2 m+n,
T N

Anas;  Anay ..o, An,m+n-
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~ Soit maintenant d, le plus grand commun diviseur de la matrice formée avec les
deux premiéres lignes. Je dis que 'on pourra déterminer un nombre z satisfaisant
aux congruences

xby = a,; (mod d,),

i=1,2,...,m—+ n.

Clest ce qui résulte du théoréme V. En retranchant donc de la seconde ligne, la
premiére multipliée par z, elle deviendra divisible par d, et, aprés la division, on
aura une matrice

b1y, by, ..., bl,m+m_

by, b3, ..., byman,

az, 1y, A3,9, +++5 A3 m+ny

et le plus grand diviseur de la matrice des deux premiéres lignes est = 1.
Soit d, le plus grand diviseur de la matrice des trois premieres lignes, les con-
gruences
xby; +ybyi=az,; (mod d5),

(i=1,2,...,m~+n)

admettent encore une solution, d’aprés le théoréme V. En retranchant de la troi-
sitme ligne la premiére multipliée par z et la seconde ligne multipliée par y, on
pourra diviser par d, et, dans la matrice obtenue

bl,l) bl,?) sy bl,m+na
bz,ly b2,27 LI b?,m+lu
b3,17 b3,27 ey bs,m—t—m

A1y Axay ooy A4 mtn,

le plus grand diviseur de la matrice partielle formée par les trois premiéres lignes
est = 1. Il est clair que I'on peut continuer ainsi, on finira par trouver une

matrice
[l bixll =] Bl

i = 1,2, .¢0. 0
)
k=12,...,n+m
dont le plus grand diviseur est =1, et il est clair que ses déterminants seront pro-
portionnels & ceux de || A|[. On peut remarquer que ce procédé donne, dans le cas

m = o, une nouvelle méthode pour la construction d’un déterminant ===1.

Ayant ainsi obtenu une solution particuliére

HAN =Gl ><[Bi,
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il est facile de voir que la solution la plus générale sera comprise dans les for-
mules

A= 1]Coll x< || Boll,
ou

IBo I =1/ E|| x| B,

NG|l =[Cll < E[-1,

[|E|| étant une matrice quelconque du type n >< n dont le déterminant est = 1.
Lorsque || A![ est la matrice de n solutions indépendantes du systéme (1), la ma-
trice || B|| sera composée d’un systéme fondamental de solutions.

10. On peut obtenir la solution du systéme

n ( A& = Qo Ty oo+ A e n T prn = O,

( i=1,2,...,m
encore par une autre méthode, un peu différente de celle que nous avons exposée
dans le n° 4, et qui conduit & un résultat dont nous aurons besoin plus loin.

Nous avens vu, dans le Chapitre II, que par une substitution linéaire de déter-
minant == 1, on peut transformer I'expression

ATy + Ay 99+ o0 A1, m+n%m+n

en d, &, d, étant le plus grand commun diviseur des coeflficients Aity ey Qo g
A Tl'aide de cette transformation, on déduira de (I) un systéme équivalent dont la

matrice affectera la forme

d, o N o
r ! ’
Q9,1 a2,2 s a2,1n+n
e e e e
7 ’ 1
A QAmye oo Ay opane

Les coefficients a, o, @, 5, ..., @, ,,,, ne peuvent pas étre tous nuls, car tous
les mineurs du second degré des deux premiéres lignes seraient nuls: la méme
chose aurait lieu pour la matrice des @ik, e qui est contre I’hypothése admise.
En opérant donc sur les variables z}, Zyy « .y Zpypp, ON pourra transformer en-
core le systéme de maniére & obtenir un nouveau systéme dont la matrice affecte
la forme

d, o o ... o
@y, dy o .. o

" " " "
A3,1 Q3,9 Q3,9 ... Anin

” " " "
Am,1 CUmys Ay oo Apoman

IV. — Fac. de T.

Ne)
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’ ’
2,30 * 0 Lo myne
amené finalement & une matrice de la forme

d, étant le p. g. c. d. de a},, a En continuant ainsi, on sera

[ dy o . o o ... O

S By d2 ... o o ... o

(A) Bst Baa ... o S0 ... O
gm,i pmﬁ e Bm,m-hdm .

Il est clair qu'on aura d =d,dyds. .. dn, et si les nouvelles inconnues sont
Yy Y2y« s ¥myn, la solution la plus générale s’obtient en posant

Yi==Ye=)3s=...= Y, — 0,

tandis que ¥y, Ymyay ++ 0y ¥Yman peuvent prendre toutes les valeurs entiéres de

3

— o0 a —$-o00. ]

On peut simplifier encore le tableau (A). En remplacant d’abord y, par
Y2 — ¢y, il est clair qu'on peut faire en sorte que le coefficient 3, , devient po-
sitif, mais inférieur & d,. En remplacant ensuile y; par ¥3 — ¢ys — c'ys, on peut
assujettir les coeflficients Bs,1, Bs,2 aux limitations

081 < ds, 0SB0 < ds.

On voit, en définitive, qu'il existe toujours une substitution de déterminant = 1,
tel que le systéme transformé a une matrice de la forme particuliére (A), ou les
coefficients d,, ds, ..., dp, sont positifs et

0L B < d; [k=1,2,...,(i—1)]

(voir Henwmire, Journal de Crelle, t. 41, p. 192). On verra facilement que cette
forme réduite (A) est unique. La nature invariantive des coefficients du ta-
bleau (A) s’apercoit aisément. D’abord il est clair que d; est la plus petite valeur
(sauf o) que peut avoir I'expression

AT+ Ao T+ o oy~ Qi m+nZ m+ny
Lyy Lyy vy Lmyn étant liés par les relations

AT+ A o2 oo v & Afin+n L mvrn = O,

k= 1,2,3, .., (E—1)
Ensuite 3, est la plus petite valeur que peut avoir la fonction linéaire

A 1Ty oo+ e+ m+n,
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Ly +uey Zmyn 6tant liés par la relation
A T+ o+ A i n@men = di.
Ensuite 33,4, 33,2 sont les plus petites valeurs de
A3 1 X1+ oo A3 n Lonns
Zyy .« .., Tmyn élant assujettis, dans le premier cas, aux relations

A1 1+ oo+ AU m+nTm+n = dy,

A1 X1+ oo = Qe m+nTm+n = ?'2,1
et, dans le second cas, aux relations

A1 Zy+ oo = A mrnZm+n = 0,

L i A2 1T+ oo+ A2 m+-nTm+n = ds,
ainsi de suite. i

11. Considérons maintenant le syst¢éme non homogéne

(1) AT+ A aTs+ o oo+ Qi m-nTm+n = Ui

(i=1,2, ..., m).

Soit d'le plus grand diviseur de la matrice de ce systéme, d’ le plus grand divi-
seur de la matrice complétée, il est clair que d' divise d. Mais, en éliminant
m — 1 des inconnues, on reconnait que tout déterminant de la matrice complétée,
qui n’est pas en méme temps un déterminant de la matrice non complétée, doit
étre divisible par d. Pour que le systéme (III) admette des solutions, il est donc
nécessaire que I'on ait d = d’. Mais cette condition est aussi suffisante.

Tutorime VIY. — Pour que le systéme (111) admette des solutions, il faut

et il suffit que le plus grand diviseur de la matrice du systéme soit égal au
plus grand diviseur de la matrice complétée.

En effet, dire que le syst¢éme (III) admet une solution, c’est la méme chose
que de dire que le systétme homogéne

UiZog—+ Q) Dy~ Qo Tg~+ o oo+ Qi m+nZm+n= 0

admet une solution ol o= — 1. Or la solution générale du systtme homogéne
est
Xp= po,ifo—l— pl,itl + o+ ﬁn,itn:

i=0,1,2, ..., (m~+n).

En supposant d = d’ les déterminants de la matrice des |[ B;x|| qui renferment
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les coefficients 3o o, By,0y «+ -5 Br,0 sont égaux aux déterminants correspondants
de la matrice du syst¢me homogéne, divisés par d. Mais ces déterminants sont
simplement les déterminants du systéme (I1I), et enles divisant par d on obtient
des nombres dont le p. g. c. d. est = 1. 1l est clair par 1a que le p. g. c. d. de
30,00 B1,09 +++» Ba,0 est aussi =1, et, par conséquent, on peut donner a ¢,
tyy «voy tp des valeurs telles que zy=-—1. On reconnaitrait aussi facilement
la vérité de ce théoréme a l'aide de la méthode de réduction du n° 4. On voit,

d’aprés ce théoréme, que si 'on considére ’ensemble des solutions du systéme

homogeéne (I), la plus petite valeur de x4 (sauf o) est %‘, dy étant le plus grand

. . . ' dy
diviseur de la matrice obtenue en supprimant la 4™ colonne. Cette valear é’ est

donc, dans tout systéme fondamental de solutions

Bi,ly pi,‘n ey gi,m+na

L=1,2, ..o,

lep. g.c.d.de By g Baky «ovy Bujie
1l est clair que pour obtenir la solution la plus générale du systéme non homo-

gene (IMI), i1 suffit d’ajouter a une solution particuliére la solution la plus géné-
rale du systéme homogeéne (I).

12. Si le systeme (I11)admet une solution pour certaines valeurs de w,, w,, . . .,
Um,y 11 ensera de méme encore si 1'on remplace ces nombres par ¢y, 03, ...,
ey OUL

w;=v; (modd), T=1,2, ..., m.

La possibilité ou I'impossibilité du systéme ne dépend donc que des résidus
de wy, uy, ..., wy parrapporta d. Le nombre total de ces systémes de résidus
est de d™, mais pour d™~' de ces systémes seulement, les équations (III) ad-
metlent une solution. Pour le reconnaitre, il suffit de recourir & la transforma-
tion du n° 10, qui donne un syst¢me équivalent de la forme

W =diy,
Uy = By 1,1+ daya,
us= By y1+ Baaya+ dsys,

D R see

Um = Bm,l Y1+ ..o+ pm,m—i}’m—l —+ d/n}’m:
d1 dg o d,,,: d.

. . . d
) ) 9
11 est clair d’abord que u, ne ‘peut voir que T valeurs par rapport au module d.
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A chacune de ces valeurs de w, correspond une valeur déterminée de y, et en-
suile évidemment % valeurs de w«, par rapport au module d. A chaque systéme
de valeurs de u; et uy correspondent ensuite des valeurs déterminées de y, et y,
ct ensuite %valeurs de u; par rapport au module d, ete. Le nombre total des

systémes de résidus de u,, s, ..., Um, par rapport au module , est donc

é><i><...><—[£_—_d'"—‘. G Q. F. D.
d, dy dn
Parmi les valeurs admissibles pour w; figure toujours la valeur u;= o, et si
I’on se donne d’avance

Uy=Us= ... = UL,=0,

les w441y « .., wm ne peuvent plus représenter que d™% systémes de résidus par
rapport au module d. Mais, en raisonnant comme tout a I’heure, on voit que.
parmi ces systémes, il n’y en a que

dm—k
dk-Hy dk+2y ) d/n

= dl dz oo dk > dm—lg_l,

pour lesquels le systéme (III) admet des solutions. Il est clair que dyd, ... dy
est ici le plus grand diviseur de la matrice des & premiéres des équations (1I1).

13. Ces propositions ont lieu encore dans le cas 7 = o, lorsque le nombre des

équations est égal au nombre des inconnues, et nous allons en faire une applica-
tion dans un cas de cette nature.

Prenons un systéme de m?2 nombres entiers

i (Ghk=1,2,....m),
dont le déterminant
.. A= laix
est positif > o.
Si I'on considére les équations
(A) LN S S
9a, ! 9a;, B 0a;,m Fm = i

i=1,2,...,m,

le déterminant est A7~ et, d’aprés ce qu’on vient de voir, il y a A?=V* systémes
de résidus w; par rapport au module A= pour lesquels le systéme (A) admelt
une solution enti¢re. Mais la solution de ce systéme est donnée par les formules

AZ;= @y ; )= Ay jUs+ ...+ Qi U,

i=1,2, ..., m.
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On voit donc que si le systéme a une solution entiére pour un systéme de va-
leurs de wy, ..., &n, il en auraencore une en remplagant u; par ¢;= u; (mod A).
Soit k le nombre des systémes de résidus des u; par rapport au module A, pour
lesquels les équations (A) admettent une solution, un tel systéme en engendrera
évidemment Am(”=2) par rapport au module A”~; donc

2
k > Amim—2) — Alm—1) R

k=A.

Il est clair, du reste, que ce nombre & est simplement le nombre des solutions
des congruences

AU+ Qaf Us—++ oo+ Qi U == 0 (mod A),

et, d’aprés un théoréme que nous renconltrerons plus loin, on peut conclure de la
aussi cette valeur k = A.
Ce résultat peut s’énoncer ainsi :

Tutorime IX. — Il y a exactement A systémes de nombres entiers z;, x,,
«evy Ty qui satisfont aux inégalités

0A
X -+

0l —
~ da;, da; s

Tyt ...+

Ty <A

Jda; \m

(t=1,2, ..., m).

Dans les cas m = 2, m = 3, ce théoréme admet une interprétation géométrique
trés simple. Considérons dans I'espace trois axes rectangulaires OX, OY, OZ et
le réseau de tous les points dont les trois coordonnées x, y, z sont des nombres
entiers. Soient

A (21, y1, 31), B (22,72, 52), C(xs3, 03, 33)

trois points du réseau ; nous supposerans que

ry Y1 4

A=z y2 22

rs Y3 <3

soit différent de zéro et positif. Alors A est le volume d’un parallélépipéde dont
trois arétes sont OA, OB, OC. Soient Oy, A,, B, C, les sommets du parallélé-
pipéde opposés a O, A, B, C.
L’équation de la face OBC est
0A X 0A oA

d_x, +a.7lY+;Z_lZ:0’
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et équation de la face opposée O, B, C, passant par le sommet O, est

Ay Ay, 9B
oxry 0_}’1 031
Les trois inégalités
0A 0A 0A
< — — — Z <A
o= d.Z‘l X + 0}/1 Y -+ dzl < i
0A 0A 0A
< _
O:OJ‘ZX+ 5 2Y+dz2Z<A’
oggA—Xﬁ'— —QAY—e— ‘E 7 <A
Z3 oys 033

expriment donc que le point X, Y, Z est a 'intérieur du parallélépipéde ou sur
I'une des faces passant par O, mais non sur une des faces passant par O,. Le
théoréme IX exprime donc qu’il y a exactement A points du réseau qui satisfont
a ces conditions. Une légére attention suffit pour reconnaitre que, dans ce dénom-
brement, il ne faut compter qu'un des huit sommets du parallélépipeéde : c’est le
sommet O. Quant aux points sur les arétes (mais qui ne sont pas des sommels),
il ne faut compter que les points qui sont sur les (rois arétes passant par O.
Enfin, pour les points sur les faces (mais non sur une aréte), il ne faut compter
que ceux qui sont sur les trois faces passant par O, mais non ceux qui sont sur
les trois autres faces.

Il est clair qu’on obtiendrait le méme nombre A, en comptant tous les points
sur les faces, arétes, sommets, si I'on adopte cette régle de compter un sommet
pour §, un point sur une aréte pour 5, un point sur une face pour 3.

Il serait extrémement facile de démontrer directement ce résultat en prolon-
geant les arétes OA, OB, OC jusqu’en A/, B, C/, de telle maniére que

OA'=£k.0A, OB'= £.0B, 0C'= £.0C,

k étant un entier, et en considérant alors le parallélépipéde avec les arétes OA',
OB/, OC’. Le rapport des volumes des deux parallélépipédes est A%, et I'on recon-
nait aussi que le rapport des nombres des points du réseau a lintérieur des
deux parallélépipédes (comptés d’aprés la régle indiquée) est aussi exactement A3.
Or, d’aprés la définition méme du volume, le rapport du volume et du nombre
des points & 'intérieur du parallélépipéde OA'B'C’ doit tendre vers 1 pour A = oc.
Mais puisque ce rapport ne varie pas, il est toujours = 1.

On peut se placer & un point de vue un peu différent. Considérons dans I'es~

pace le réseau des points dont les coordonnées sont des multiples de %: k érant

un nombre entier. Le volume d’une certaine partie de 'espace peut étre défini
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alors (d’aprés Lejeune-Dirichlet) comme la limite du rapport
M: A3

pour & =00, M étant le nombre des points du résean qui appartiennent & la partie
de l'espace que 'on considére. Adoptant cette définition de volume, on peut
conclure directement du théoréme IX que le volume du parallélépipede OABC
est exprimé par le déterminant A.

On comprendra maintenant que M. Smyth a pu déduire de ces considérations

une démonstration arithmétique de la formule de transformation des intégrales
multiples.

Solutions de quelques problémes sur les matrices.

14. Etant donnée une matrice
g, Ay ooy @pyq ou || A

dutype 1 < (n + 1), dont d est le plus grand diviseur, nous avons vu (Chap.II, 22)
u’on peut trouver toujours une matrice ’

l|6:4l] ou ||B| <2=1,2,...,n >

1,2, ..., +1

Il

du type n (n + 1), telle que le déterminant
A
[ . ‘ —d.

Proposons-nous maintenant de trouver la solution la plus générale de ce pro-
bléme. Il est clair, en divisant tous les éléments de || A || par d, qu'on peut sup-
poser d = 1. Cela étant, si I'on a

Al Al
|G| étant une solution quelconque, nous savons, par le théoréme VI, qu'il existe

toujours une matrice ||E|| du type (n -+ 1)><(n—+1) (et une seule), telle
que

HEE
ot |E| = == 1. Mais il est clair que la matrice ||E|| doit avoirici la forme parti-
culiére

I o o eoe [¢)

P €114 €12 ... €1n

P2 €21 €22 ... €3

Pn €na €na -+ €nn
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Pis P2y - -+, Pr étant arbitraires et |e; x| ===1. Avec celte expression de [|E|],
la formule (1) renferme donc toutes les solutions du probléme et chaque solution
une seule fois. On peut mettre cette solution sous une autre forme en remarquant
que la matrice || E || peut se mettre sous la forme

I o o ... O
. o |
q1 1 O o
0 €14 «eo €1
' TX g2 o 1 o |’
O €pa1 +e+ Cnn
gn O O ... I

G1y g2 + -+, ¢n 6tant des nombres qui peuvent avoir des valeurs arbitraires. En
substituant cette expression dans la formule (1), on obtient sans difficulté la ma-
trice la plus générale || G || qui satisfait au probléme, sous la forme

NGl =1l el < Il i + qiax|l,
||B|| =] bi,x || étant une solution particuliére.

15. Plus généralement, soit

) i =1,2,...,m

lacsll ou (1Al [k:x,z,...,(m+n)]
une matrice donnée du type m < (m + n), dont d est le plus grand diviseur.
Proposons-nous de trouver toutes les matrices

T =1,2,...,00
lewell ou flC] o)

du type complémentaire n >< (m + n) telles que

l‘él:id.

On peut remarquer d’abord qu’on peut supposer d = 1, car nous savons qu’on
peut trouver une matrice ||A’|| du méme type que [|A[|, dont les déterminants
sont proportionnels a ceux de ||A || et dont le plus grand diviseur est=1 (n°9).
Cette matrice || A/ |

étant obtenue, il est clair que les deux conditions
A A’
==xd =+
e == [c]-=
sont absolument équivalentes. Nous supposerons donc d =1, et de plus qu’on
ait obtenu déja une solution particuliére

i =1,2,...,n
sll ou 1B N

IV. — Fac. de T. 10
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Ayant
A A
==+ o
o] ==n |5 =="

on en conclut encore par le théoréme VI

?

HREE

||E|| étant une matrice dua type (m + n) < (m + n) dont le déterminant est === 1.
Mais il est clair que cette matrice || E || doit avoir ici la forme particuliére

1 o oo o (o] . ces o

o 1 . o o . “ e o

o o PN 1 o (o] e (e}
P1a P2 ... Pim €11 €12 ... €1
Pnt Pn2 .+« Pam €ni €na .. €nn.

Cette formule (1) renferme ainsi déja la solution la plus générale du probléme,
mais on peut la mettre encore sous une autre forme en remarquant que la ma-
trice || E|| peut se mettre sous la forme d’un produit

I 0 ... o . ... O I e e . .. ... 0
o I ... . . ... O o 1 o .. ... 0
o0 ... 1 O ... O > o o ... I o 0o ... olly
0 0 ... O €1 ... € 914 912 --- Gim 1 . . . O
0 0 ... O €ny <.+ €nn dna gn2 --- Gam O O ... 1

ot les g; & peuvent avoir des valeurs quelconques. On obtient facilement

€11 cve €1n
”C” =1 X”bi,k“"qi,lal,k"‘ qi,2a2,k+~-~+qi,mam,lc“
€na c.+ Cn.n

I =1,2y...,00
k=1,2,...,(m~+n)]’
ot les e; x doivent satisfaire a la relation | eix| ==1.

Pour obtenir la solution particuliére ||B||, on prendra d’abord une matrice
quelconque || mx || ou || M|| du type n < (m + nr), telle que le déterminant de la
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5]

ne soit pas nul. Par le procédé du n° 9 on pourra, sans changer les m premiéres
lignes, en déduire une autre matrice du méme type (m —+ n) < (m -+ n) et dont

matrice

le déterminant est *=1.

16. Nous avons vu (Chap. II, n° 21) qu’on peut toujours trouver une matrice
du type n < (n +1) dont les déterminants ont des valeurs données, non toutes
nulles. On peut se proposer d’obtenir toutes les matrices qui satisfont & ces con-
ditions, mais nous traiterons directement le probléme plus général :

Trouver toutes les matrices du type m < (m + n) dont les déterminants
ont des valeurs données.

A cause des relations identiques-entre les déterminants, les valeurs données ne
peuvent pas étre quelconques. Adoptons les notations du n° 3 et supposons que
le déterminant A ne soit pas nul : on pourra se borner a considérer les mn + 1 dé-
terminants A, A; ;4. Ces déterminants-la ne peuvent pas méme étre des nombres
arbitraires, il faut que les autres déterminants A’ qu’on en déduit par la for-
mule (5) du n°® 3 soient aussi des entiers. Mais, cela étant, nous allons voir que le
probléme est toujours possible et admet une infinité de solutions.

En effet, prenons d’abord arbitrairement les m premiéres colonnes avec la seule
condition

|air| = A (L, k=1,2...,m),
alors on pourra déterminer les autres colonnes comme au n° 3; il est vrai que ces

autres éléments
Qi m+k = (ai,l Atk + [22%] A2,m+k+- ot aim Am.m+k) tA

ne seront pas des entiers; toujours est-il vrai que la matrice ainsi formée admettra
pour déterminants les valeurs données, qui sont toutes entiéres. En multipliant
les lignes horizontales par A, on obtiendra une matrice dont les déterminants sont
proportionnels aux valeurs données. On peut alors déduire de 1a (par le procédé
du n° 9) une autre matrice dont les déterminants sont encore proportionnels aux
valeurs données, mais dont le plus grand diviseur est 1. Soit

1Bl

cette matrice, si d est le p. g. c. d. de tous les déterminants de la matrice cher-
chée, I'expression la plus générale de cette matrice sera

LGl <1 Bl
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ot ||C|| est une matrice quelconque du type m > m, dont le déterminant est
== d. En prenant en particulier pour les a;x ({,k =1, ..., m) les valeurs sui-
vantes

AP =A2=¢.. = Ap—m—1 =1, Qom,m = A,

air=o, 2k, M

on trouve que les déterminants de la matrice

A o .. O A1,m+1 AI,m+2 oo Ai,m+m
o A ... 0 dymi1 Dagmre oo Bymans

e e e e N
o o ... A Am,m+l Apmomre oo Am,m+n

sont proportionnels aux déterminants de la matrice cherchée; on pourra donc en
déduire la matrice | B||.

Si I'un des déterminants donnés divise exactement tous les autres, on le prendra
pour A; dans ce cas, on peut écrire la matrice || B|| sans aucun calcul.

Une autre méthode pour trouver cette matrice || B|| est la suivante; considérons
le systéme d’équations linéaires homogénes dont la matrice est

Apm+r Bomttr eer Bmmrr — A o e o

A+t Bamrz oo Amomas o —A ... o

...... . A e .

Aym+n Aoman o0 Amoman O o ... —A

La matrice formée par un systéme fondamental de solutions de ces équations
sera une matrice du type m < (m - n); ses déterminants seront proportionnels
aux valeurs données et le plus grand diviseur de cetle matrice est = 1. C’est ce qui
résulte immédiatement des propositions établies précédemment, si 'on se rap-
pelle le théoréme VII et sa démonstration.

17. Soit ||A || =| @i,k || une matrice du type m > (m -+ n), dont le plus grand
diviseur est 3, || G|l = || ¢;,x || une matrice du type complémentaire n < (m + nr),
telle que
i eer Armtn

™ Ama o+ Am,m+n 3 B
C1,1 . C1,m+n
Cnyt +o+ Com+n

Nous savons qu’il existe de telles matrices (voir n® 13).
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Soit ensuite ||B|| =|| b; || une matrice du type n < (m + n), formée par un
systéme fondamental de solutions des équations linéaires homogénes

A1+ oo+ A m+nZm+n = O

(i=1,2, ..., m).

Les matrices || B| et || C|| sont du méme type; & un déterminant A, de la pre-
miére on peut faire correspondre un déterminant A, de la seconde, en supposant
que deux déterminants correspondants sont formés avec n colonnes de méme
rang (et prises dans le méme ordre) dans les deux matrices. Cela étant, on a

ZA[,AcziI,

la sommation s’étendant a toutes les paires de déterminants correspondants. Pour
le montrer, remarquons que le plus grand diviseur de la matrice || B|| est 'unité :

on peut donc former une matrice || D || = || ;x| du type m > (m 4+ n), telle que
dl,l e dl,m—rn
(2) d/n,l e d!lt,m+n —y.

bl,l LI bj‘m+n

bn,ﬂ LI bn,m+n

En multipliant les deux déterminants (1) et (2), il vient

Ai.l cee Am,l (o) . (o}

Al,m e Am,m o . o o R
=3

Ugg oo Ump P10 .. Vpp

Ut «vv Umn $10 «.. Vnpon

Ai,k = O, dz’,l + Ao di,z It i 27 dimH-ny

Vi k = bf,l Ch,q bi,z Clyo +...+ bi,m+/z Clym—+n»
c’est-a-dire

Al,l “en A”ll 91’1 [N “n,1
Al,m oo Aum Yt,n e+ Pun

Or, A, et A; étant deux déterminants correspondants des matrices [A]let|ID [l
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de méme type, on a, d’aprés une propriété élémentaire des déterminants,

)

:EAaAd,

Al,m LECRY Aln,m

Ayg o .. Am,i

et de méme

Y11 .- P

ZEA/,AC.
Mais tous les déterminants A, sont divisibles par ¢; on a donc nécessairement

EAaAdzia, ZAbAc:il, G. Q. F. D.

18. A l'aide de ce résultat, nous pouvons résoudre facilement le probleme
suivant : Etant donnée une matrice ||A || du type m < (m —+ nr), dont le plus
grand diviseur est 3, trouver toutes les matrices || D || du méme type et telles que

ZAaA,[Zia,

A, et Ay étant deux déterminants correspondants des deux matrices. En effet,
déterminons deux matrices ||B|| et [[C]| comme dans le numéro précédent. Si

1 Y1, -+ Pan

nous déterminons ensuite une matrice || D || par la condition

nous savons que celte matrice fournit une solution de notre probléme.
Mais je dis qu’on obtient ainsi toutes les solutions du probleme. Soit, en elfet,

[[D ]| une solution quelcénque, et posons

On en conclut

3] =t = (Ben) = (o),

or on a, puisque || D | est une solution,

Msadg =3,

et, d’apres la proposition du n° 17,

Daosc==r;
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donc
k==*+1.

I est clair par 12 que le probléme proposé est identique avec le suivant que
nous avons déja résolu dans le n° 15 : Trouver toutes les matrices || D ||, telles que

On obtient ces résultats aussi en s’appuyant sur le théoréme VII, car la rela-

EAaAczi‘a.

Or, d’aprés le théoréme cité, le rapport A, : As est constant et égal a =+ 3; donc

EAbAc=il,

et, ensuite, il est évident que les relations

EAaAd:—_i-S, ZAbAd:il

tion (1) du n° 17 peut s’écrire

sont équivalentes.

19. Nous terminerons ces considérations par quelques remarques sur le plus
grand commun diviseur d’une matrice.

Dans le cas d’'une matrice du type 1 >< 7, le plus grand diviseur peut étre défini
aussi comme la plus petite valeur (sauf o) que peut prendre la fonction linéaire

AT+ ATy ...+ ATy,

pour les valeurs entiéres de xy, x5, ..., £,. 1l existe une proposition analogue
pour une matrice || @, || du type m < (m + n). Considérons les m fonctions

linéaires
X;= A\ X1+ Qi o Xy . . Qi m+nT m+n

(i=1,2, ..., m),
et m systémes de valeurs de ces fonctions

App=ap dig+...+ Ak mni,mn

(L, k=1,2,...,m),

le déterminant |A; x| est toujours divisible par 8, le plus grand diviseur de la
matrice || @;x||; mais nous savons, par I'analyse précédente, qu’on peut toujours
choisir les d; 4 de maniére que ce déterminant devient égal a == 3.
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Par conséquent, ¢ est aussi la plus petite valeur (sauf o) que peut avoir le déter-
minant formé par m systémes de valeurs des m fonctions linéaires X;.

20. Soient || a;x|| ou || A|| une matrice du type m =< (m —+ nr), || A, || la matrice
du type m < p formée par p colonnes de || A ||. Nous supposons p << m. Désignons
encore par dj le plus grand diviseur de |[A, ||, et par D le plus grand commun
diviseur de tous les déterminants de || A || qui renferment les p colonnes de || A, ||.
1l est clair que D est est un multiple de d,. Nous allons montrer gue tous les

déterminants de ||A || sont divisibles par le‘)'
I4

Pour simplifier un peu la démonstration, nous supposerons que [[A, | est
formée par les p premiéres colonnes de |[A||. Nous avons a démontrer qu'un

déterminant quelconque A de || A || est divisible par ;) - Si ce déterminant A a un
I4

certain nombre r de colonnes communes avec ||A, ||, nous pouvons encore sup-
poser que ce sont les 7 premiéres colonnes de || A, ||. Cela étant, nous désignerons
un déterminant quelconque de || A|| par le symbole

[)‘l: )\2; ey )‘m]y

olt Ay, Ay, + .+, Ay indiquent les rangs des colonnes de || A || qui figurent dans le
déterminant.
En ajoutant a la matrice une (m + 1) ligne

@iy Aigy  «ve5 Qimtn,

on obtient une matrice du type (m +1) >< (m + r), dont tous les déterminants
sont nuls. En développant un tel déterminant comme fonction linéaire des élé-
ments de la derniére ligne, on aura, par exemple,

[27 37 e Py )‘13 )‘27 "")\m—p+l]al'.l+-"+ [l, 2y ey p— T, )‘17 )‘2? crey )\m—p+1]ai.p

+ 1,2, oo, Py Xy ooy Amepra]as + oo+ [1, 2, o0, p1, My oony A pl@im—pi1 = 0.

Les indices Ay, Ag, ... sont ici et dans la suite toujours > p.

D’aprés notre notation, d), est le plus grand diviseur de la matrice || A, |, formée
par les p premiéres colonnes de || A ||. Il est clair, d’aprés cela, que ce qu’il faudra
entendre par dp_y, dp_s, ..., dy, ce sont les plus grands diviseurs de matrices
que nous pouvons désigner par ||A,_ ||, [|Ap_2]l, - - -, || As]|- Dans I'identité que
nous venons d’écrire, on peut prendre i =1, 2, ..., m.

Si l'on élimine alors entre p des équations ainsi obtenues les quantités qui
multiplient @y, @2, - .., @i p_1, 1l viendra

(1,2, e, P—1, Aty vvvy An—ps1]8p

01, ey Py Rey eeey Mnmpa]Ap i [0, oo Py Ay, e A p JARTPHL =0,
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Ici A, est un des déterminants de 1A,

. et il est clair que A, A'[",, cee AZ“”“
sont tous divisibles par dp_,. Donc

[l, 2, ..., p—1I, l], ey )\m__p+1]A1)

est divisible par D >< d,_,. Mais A, peut étre un déterminant quelconque de 1ALl
par conséquent,
[1,2, -y P—1, A, oooy Apr]dp

est aussi divisible par D < d,_,, c’est-a-dire
[1,2, ooy P—T, Ay ooy Ap—pn]
Dx<dy

dP
En laissant de c6té maintenant la p'*™° colonne de || A ||, on a les identités

est divisible par

[2,3, 32— 1, iy Ray ooy Am—pra] @iy o= [1,2, 0oy p—2, iy gy ey Mon—p2 ] @i p-1
(0,2 ceey P=Ty hgy eeey Amepaa]@id oo [ 2, oo, p—T, 15 ooy Mon—p1] @i dme s = 0

I=1,2, ..., M.
En éliminant entre p — 1 de ces relations les coefficients de a; 1, « .., @i p_»,
il vient
(1,2, .05 p—2, M, ooy Ain—pra]Ap—t

1,2, ey P—T, Agy eoy A ]Ap g+ [1, o, p— 1, Dy ooy Ap JAREP T2 =0,

olt Ap_; est un des déterminants de || Ap_i ]| et ol A;,_,, v AZ’_‘{’*“’ sont tous divi-
sibles par d_». On voit donc que
[l7 2 e, P2, )‘la e )\m-—p+2] Ap——i

D < dp__l > dp-g

est divisible par » et, puisque A,_, peut étre un déterminant quel-

P
conque de ||A,_, ||, on en conclut que

[1,2, ..., p—2, ) ST )\m——p+2]dp—11
doit étre aussi divisible par le méme nombre, c'est-a-dire
[la 2y« P2 )‘lv ceey )\/n—p+2]

Ce . Dxd,- . .. N
est divisible par ~ 222. En continuant ainsi, on reconnait que
P

[1,2, ..., 1, LTI ST )\m—r]
IV. — Fac. de T. I
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. Dxd
est divisible par a, r

proposition énoncée est démontrée.

» et enfin que [Ay, Ao, ..., An] est divisible par ZlD; La

D’aprés la démonstration, on voit facilement que, si 'on suppose que tous les
déterminants de || A || ne sont pas nuls, les déterminants de ||A || qui renferment
les p colonnes de ||A, || ne peuvent pas étre tous nuls, & moins que tous les
déterminants de ||A,| ne soient tous nuls. D et d, sont alors indéterminés tous
les deux.

Corollaire I. — Lorsque d, =1, D est le plus grand diviseur de la ma-

trice || A .

Corollaire 1I. — Lorsque le plus grand diviseur de la matrice ||A || est =1,

on a
D=d,.
21. Considérons une matrice
Bl ou [1&:ll
1 =1,2, ..., 1,
k=1,2,...,(m-+n),

formée par un systéme fondamental de solutions de

A1+ Qi o T2+ o .+ A m+-nTm+n= 0,

I=1,2, ..., m.

Soient || B, || une matrice formée par p des colonnes de ||B|, en supposant

p<n, dple plus grand diviseur de || B,|l. Soient ensuite & le plus grand divi-

seur de la matrice des a; z, et 8, le plus grand diviseur de la matrice obtenue en
supprimant, dans la matrice des a; %, les p colonnes qui correspondent aux
colonnes de || B, ||. Alors on peut énoncer le

Tutorime X. — Le plus grand diviseur dj est égal & 0—8’3-

En effet, soient A, A’, A’ ... les déterminants de ||B]| qui renferment les
p colonnes de || B, ||. Leur plus grand commun diviseur est dp, d’aprés le corol-
laire IT du n° 20. Mais on a d’autre part, d’aprés le théoréme VII,

A=0®:9, A=®":3, A= ®": 3,

®, ®,®", ... étant les déterminants de la matrice des a;x qui correspondent
aux déterminants A, A’, A", .. .. Mais il est évident que ces déterminants ®, @',
®”", ... sont précisément ceux dont le plus grand commun diviseur est 8, d’ott

la relation annoncée.
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Il faut remarquer pourtant que tous les déterminants de la matrice ||B, |
peuvent s’annuler : d,, devient indéterminé alors. Mais il est clair que, dans ce cas,

on a aussi
(D:@’: (D”:.._:O,

en sorte que 3, devient indéterminé en méme temps. Réciproquement, si 8,
devient indéterminé, il en est de méme de dp. 4

Nous avons supposé p << n, mais le théoréme reste encore vrai dans le cas
p = n; on retrouve alors un résultat connu (théoréme VII).

L’énoncé du théoréme se simplifie un peu dans le cas 8 =1, et si I'on se rap-
pelle Pespéce de réciprocité que nous avons signalée dans le n° 5, on verra que,
dans ce cas, p peut avoir une valeur quelconque plus petite ou plus grande
que 7.

Systémes de congruences linéaires.

22. Etant donné un systéme de m congruences entre n inconnues
(1) Xi= a1 &1+...+ Q;n¥p=0 (mod M),

on peut en déduire un systéme équivalent, soit en opérant une substitution de
déterminant ==1 sur les inconnues 2y, s, ..., Zp, soit en remplacant les m
congruences données par m combinaisons

(2) Xé:p,"1x1+pi72X2+...—{—pl",nXmEO (mod M),

T=1,2, ..., M,

le déterminant des entiers p, x étant encore Z=1, en sorte qu’'on peut exprimer
réciproquement les X; par les X.

En étudiant les équations linéaires indéterminées, nous avons employé exclu-
sivement le premier moyen, la substitution de nouvelles inconnues; mais ce n’est
qu’en opérant a la fois par les deux méthodes qu’on peut obtenir la plus grande
simplification possible.

En multipliant, dans le systéme (1), les premiers membres par ¥y, 2, ++ .y ¥m
et ajoutant, on obtient la forme bilinéaire

I =1,2, ..., M
J
k=1,2,...,n
Nous dirons que cette forme bilinéaire correspond au systéme de congruences
donné.
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Une substitution linéaire sur les z, dans le systéme (1), conduira a un systéme
trausformé (1'), et il est clair que la forme bilinéaire qui correspond & ce sys-
téme (1') s’obtient simplement en effectuant directement la méme substitution
sur les x, dans la forme F.

D’autre part, si 'on remplace le systéme (1) par le systéme (2), on constate
que la forme bilinéaire correspondante au systéme (2) s’obtient simplement en
.opérant dans la forme F la substitution

Yi=P1iY1+ PaiYate e Pmi¥m

(i=1,2, ..., m).

On voit par la que pous avons a éludier les différentes formes que peut
prendre la forme F en opérant sur les variables x, y des substitutions de déter-
minants == 1.

23. On appelle, en général, forme en Arithmétique un polynéme homogéne
de plusieurs indéterminées z, ¥, 5, ... a coefficients entiers. Si une telle
forme T prend une certaine valeur m, pour certaines valeurs entiéres des indé-
terminées, on dit qu’elle représente le nombre m.

En effectuant dans F la substitutiop & coefficients entiers

r=a1 2+ by +eci3+...,
y=ay @+ byy +cy3+.. .,

5 =azx + b3y + 35 +. ..,

on obtiendra une nouvelle forme F’, et on dit que F renferme ¥', ou bien
encore F’ est contenue dans F. 11 est clair que tout mombre m qui peut étre
représenté par F peut étre représenté aussi par I, mais la réciproque n’a pas liea
nécessairement. _

Le cas particulier ot le déterminant de la substitution que nous venons d’effec-
tuer est égal & == 1 est le plus important.

On peut alors exprimer réciproquement &', y/, ', . . comme fonctions
linéaires A coefficients entiers de z, y, 3, ... et F est conienue aussi dans I; on
dit alors que les formes F et F’ sont équivalentes.

Il est évident que deux formes équivalentes représentent les mémes nombres.

Ce qui caractérise une forme F dans ces considérations, ce sont ses coefficients;
la notation des inconnues, au contraire, n’a aucune importance et 'on peut ainsi
remplacer dans F' les lettres «/, 3/, &, ... de nouveau par &,y %, .- -

L’un des problémes les plus importants qu'on a & résoudre est maintenant le
suivant : Etant données deux formes F et F', décider si elles sont équivalentes ou
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non. Et, pour compléter la solution, il faudra encore Lrouver, dans le cas ou il y a
équivalence, toutes les substitutions qui transforment F en F'.

Plus généralement, on peut demander & reconnaitre si I’ est contenue dans F,
mais nous nous bornerons ici & ajouter quelques remarques sur les conditions
d’équivalence seulement.

Dans certains cas, la solution compléte de ce probléme se présente sous la
forme suivante :

Pour que la forme F soit équivalente & I, il faut et il suffit que I'on ait
L=1, I,=1j, ey Ip=1j.

Ici 1,, I,, ..., I sont certains nombres qui dépendent d’une maniére déter-
minée des coefficients de la forme F, et I, I, ..., I; dépendent de la méme
facon des coefficients de F'.

On peut dire alors que I, 15, ..., I; forment un systéme complet d’invariants
de la forme F, et, pour que deux formes soienl équivalentes, il faut et il suffit
qu’elles aient les mémes invariants.

On peut étendre facilement ces considérations au cas ou la forme F dépend de
plusieurs séries d’indéterminées, comme cela a lieu pour la forme bilinéaire du
n° 22. Et 'on peut aussi considérer simultanément plusieurs formes F, G, ...

qui dépendent des mémes indéterminées.

24. Pour en donner immédiatement un exemple, considérons m fonctions
linéaires
X;= a1+ a2 X+ .o+ Qi m+nCm-+n

(i=1,2, ..., m),
et un second systéme analogue

A 7 1
X; = am Zxy—+ am Lot ..+ ai,m+nwm+n

(t=1,2, ..., m).

Comment pourra-t-on reconnaitre si les deux systémes sont équivalents ou non,
c’est-a-dire s’il est possible oui ou non de les transformer 'un dans I'autre par une
substitution de déterminant == 1? La réponse est ici immédiate d’aprés les déve-
loppements du n° 10. En effet, nous savons que, par une substitution de déter-
minant == 1, on peut transformer les X; dans les Y;

Y, = di,}’n
Y = Boiy1+ daya,
Y; = p:m.}’r‘- Bs,z,}’ri— ds s,

Y= pm,i}’l et pm,m—l,}’m'—i -+ dm}’ma
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oud,, d,, ...,dn sont des nombres positifs, et
0sBr< d; [k=1,2,..., ({—1].

Ces nombres d;, 8; x forment maintenant un systéme complet d’invariants, et,
pour que deux systémes soient équivalents, il faut et il suffit qu’ils admettent les
mémes invariants.

En effet, si les deux systémes sont équivalents, ils représentent les mémes
systétmes de m nombres, et dés lors leurs invariants sont égaux, car nous avons
remarqué (n° 10) que ces invariants dépendent uniquement des divers systémes
de nombres représentés par les formes linéaires. Cette condition de 'égalité des
invariants est donc nécessaire pour I'équivalence, mais elle esl aussi suffisante
manifestement.

On voit que la solution a été obtenue ici en transformant les formes linéaires
X; dans les Y; qui affectent une forme particuliérement simple. Ce systéme des
Y; pourrait s’appeler un systéme réduit; il est unique et le méme pour tous les
systémes équivalents.

925. Revenons maintenant a la forme bilinéaire
I =1,2, ..., M
k=1,2,...,n
En opérant sur les xx, y; des substitutions de déterminants == 1, on obtiendra

F' =22 a; L TrY i

Nous allons montrer que, parmi ces formes équivalentes, il y en a toujours une,

une forme équivalente

parfaitement déterminée, qui affecte la forme trés simple

61Z1y1+ ez.l'g'}’g—f‘- e EpZpYps

et que nous appellerons la forme réduite. Ici ey, es, ..., ep sont des entiers
positifs, es_, divise e, et p est tout au plus égal au plus petit des nombres m
et n. Ensuite on reconnaitra facilement que la condition nécessaire et suffisante
pour 'équivalence de deux formes bilinéaires consiste en ce qu’elles admettent la
méme forme réduite. On peut donc considérer les nombres ey, e, ..., ep comme
un systéme complet d’invariants de la forme bilinéaire F.
Considérons la matrice
ekl ou [lA]],
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formée par les coefficients de F. Nous désignerons par d, le plus grand commun
diviseur (pris positivement) des coefficients a; 4, par d, le plus grand commun
diviseur des déterminants du second degré tels que

air  aipi
2

Ark  QAp

de méme, par d; le p. g. c. d. des déterminants du troisiéme degré, etc.
Si tous les déterminants du degré p ne sont pas nuls, mais si tous les détermi-
nants du degré p -1 sont nuls, on aura ainsi la suite des p nombres

dy, dy ..., dp,
et nous supposerons alors dp = o. Il est clair que d;_, divise d et nous posons

dy dp
e1=dy, 62'—:0717 R ep*:dpi, €p+k = O.

Ces nombres e sont des entiers, nous les appellerons déja les invariants de F;
nous verrons plus loin que e;_, divise ez; p est tout au plus égal au plus petit des
nombres m et n.

Soit maintenant
[laizll ou [[A']

la matrice formée par les coefficients de la forme F’ équivalente a la forme F, et
dj le p. g. c. d. des déterminants de degré k de cette matrice. Il est clair que tout
déterminant de degré k de la matrice || A’ | est une fonction linéaire et homogéne
de divers déterminants de degré A de la matrice |

A ||. Donc d est nécessairement
divisible par dy et tous les déterminants de degré p - 1 de || A’|| sont nuls. Mais,
pour la méme raison, dj doit étre divisible par d} ; donc

dy = dy,

et tous les déterminants du degré p de || A’|| ne peuvent pas étre nuls. On voit
par 1a que les deux formes bilinéaires équivalentes F et F’ ont les mémes inva-
riants ey, €z, ..., €p.

I.’égalité des invariants est donc une condition nécessaire pour l'équivalence
de deux formes, qu’elle est aussi une condition suffisante; cela résulte ensuite
immédiatement de la proposition que nous avons énoncée déja, d’aprés laquelle la
forme F est équivalente & la forme réduite

eI Y1+ €Z2 Yo+ €EpTpYp.

En effet, d’aprés cela deux formes, dont les invariants sont égaux, sont équiva-
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lentes 4 une méme forme réduite, et, par conséquent, aussi équivalentes 'une a
'autre.

26. Nous avons & montrer maintenant comment on peut opérer cette réduction
de F a la forme réduite. Considérons la matrice

a1, Qr2, aA1,3, .., Qin,
Az,1y  QA22, A23, ..., Qanp,

Ch reny eenes eeay eeeey
Am,ay Am2y Am3y -y Amyne

Par une substitution sur les zx, on peut d’abord réduire la premiére ligne a

817 0, 0, .., O

3, étant le p. g. c. d. de a,,1, @15, - .., @ n. (Il va sans dire que nous n’em-
ployons que des substitutions de déterminants = ==1.)

Si apreés cela 8, divise tous les autres coefficients de la premiére colonne, on
pourra, en remplacant y, par une expression de la forme

Yi+CYet+.oit+=CnYVm,

sans changer y», ..., ¥n, obtenir une matrice transformée de la forme
8y .o o ... o
(A) S 0 bys bys ... by,
( 0 bus bms ... byun

Mais si 8, ne divisait pas les coefficients de la premiére colonne, on pourrait
diminuer ce coefficient 3,, et le remplacer par 3, le p. g. c. d. des coefficients de
la premiére colonne, en opérant une substitution sur les y, et annuler en méme
temps les autres coefficients de la premiére colonne. Si 3, divise maintenant tous
les coefficients de la premiére ligne, on obtiendra encore une matrice de la forme
(A), en remplacant z, par une expression

Xyt Colg—t...+ CrZy,

sans changer z,, ..., z,. Au contraire, si 3, ne divise pas ces coefficients, on
pourra le diminuer encore par une substitution sur les . Il est clair qu’aprés un
nombre fini d’opérations on obtiendra toujours une forme équivalente, dont la
matrice affecte la forme particuliére (A); mais on peut simplifier encore et obtenir
une matrice (A), dans laquelle 8, divise exactement tous les coefficients bix.
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<

En effet, supposons que ¢, ne divise pas exactement un des coefficients bix- 11
suffira de remplacer 24 par x5+ x, pour voir paraitre ce coefficient b, dans la
premiére colonne avec 3,. En reprenant alors les opérations de tout a I'heure, on
obtiendra un Tableau du type (A), mais dans lequel le coefficient 3, a une valeur
moindre. On voit donc qu’on peut diminuer ce coefficient tant qu'il ne divise pas
tous les b; x, et, aprés un nombre fini de transformations, on tombera nécessaire- -
ment sur une forme équivalente & F du type suivant

Xy T xry ... T,
71 e o 0 N 0

Y2 Y bz,z 1’2,3 cae bz,n
NE] o by, b3 ... b3
Ym 0 bma bmy ... bm.n

et dans laquelle le coefficient e, divise tous les autres coefficients b k.
Et il est clair immédiatement que e, est le p. g. .c. d. des coefficients a;x. Si
maintenant les bi r ne sont pas tous nuls, on pourra continuer la méme réduction

en opérant seulement sur les variables .z, ..., Zny Y2y « ooy ¥m. On obtiendra
ainsi une forme équivalente

Xy Iy X3 e Tp
Y1 e, o o . o
Ve (o] €3 (o] PN (o]
¥s3 0 0 ¢33 ... Cia
Ym o O Cm3 .. Cmyn

ol e, est un multiple de ¢, et divise tous les Ci ke

En continuant ainsi, on obtiendra finalement la forme réduite
e Y1+ XYt ...+ epxpyp.

Puisque ¢, , divise ey, il est immédiatement clair que le p. g. c. d. des déter-
minants de degré & de la matrice correspondante & cette forme réduite est

erey ... e, =dyg,
d’ou I'on voit que les e ont bien les valeurs indiquées précédemment.

27. Dans la pratique, et s'il s’agit seulement de calculer les invariants, on

pourra remplacer souvent avec avantage le procédé que nous venons d’indiquer

IV. — Fac. de T. 2
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par le suivant. Aprés avoir obtenu une forme équivalente

z, X ry ... g
¥ | 6 0 [ . o

Y2 o b2,2 by ... b2,n
Y3 o bs,z bz,s cee bs,n
Ym o bm,? bm,?, Cee bm,n

dans laquelle ¢, ne divise pas nécessairement les b, 4, on continuera la méme
transformation sur les indéterminées Zy, ..., Zn, ¥2y « s ¥my ... De cette
fagon, on finira par obtenir une forme équivalente

R .
1 &1y + Cay Yo e~ OpZp ¥ p,

dans laquelle 6, ¢,, ..., 8, sont des nombres positifs, et qu'on pourrait appeler
une forme normale. 11 est clair que le p. g. c. d. des déterminants de degré & de
la matrice correspondante, qui doit étre égal & d, est ici simplement le p. g. c. d.
des divers produits £ a k des nombres

d’ou l'on conclut, d’apres les explications du Chap. I (n°® 8-10), que les inva-
riants ey, €, +.., €, sont simplement les nombres réduits de 8y, s, ..., p.
Ayant ainsi obtenu une forme normale, on en conclut donc sans difficulté les
invariants. On voit aussi que cette forme normale n’est pas unique comme la
forme réduite, mais il existe toujours un nombre fini de formes normales équi-
valentes a4 une forme donnée F.

On peut montrer facilement, d’une fagon directe, que la forme normale est
équivalente a la forme réduite. Considérons pour cela une forme

F= 311‘1,}’1 -+ 52-1'2}'2,
el posons
(8, 8)=d, |8, 8|=m

F'=dx\ y|\+ mzyy;.
On peut maintenant transformer directement F en F' par les substitutions
@y = azi+ By,  yi1=yi+ B,
@y =@y + 32y, ya=vyi+ 8y,
W b — By =1,
(2) ad— By =1.
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En effet, les conditions du probléme sont

(3) Span + 8yyy = d,
(4) 31aB’ -+ 65y8 = o,
(5) 818’ + 858y = o,
(6) 3188+ 8,8 = m.

Pour y satisfaire, on prendra, pour o', ¥/, deux nombres premiers entre eux,

soumis a cette seule restriction que
(31“'> 82Y’) = (317 32) =d.

Cela peut se faire évidemment d’'une infinit¢ de maniéres; le plus simple, c’est
de prendre o/ = v'=1.
On cherchera ensuite deux nombres « et vy qui satisfont a la relation (3), puis

on prendra

’

[~
-
R

en sorte que la relation (5) se trouve vérifiée et en méme temps la relation (1),

car
Oy ax’ + 8y
af — By = - a 2 =

Par suite de ces valeurs de {3 et 3, la relation (6) revient &

8182
d

(Ot’ 8/_ BVYI) = m,

c’est-a-dire elle rentre dans la formule (2), car 8,3, = md. Il suffit donc, pour
achever la solution, de déterminer 3’ et ¢’ par les relations (2) et (4) qui donnent

Il est clair maintenant que, par une application répétée de la transformation
que nous venons d’indiquer, on pourra transformer une forme normale

WXy Y1+ B re Yo+ B2y yp
dans la forme réduite
e Y1+ eyt o E€pTp Yy

28. On peut énoncer le résultat principal que nous venons d’obtenir sous une:
forme un peu différente; mais, pour simplifier, nous supposerons m = et le
déterminant | a; ;| différent de zéro, en sorte que p = n.
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La torme bilinéaire
n n
F =22 airzeyi = X1 y1+ XY+ o+ Xp Yus
1 1
Xi=a; 2+ Qi Ta+ o= A n Ty
est réductible a la forme réduite
F=ex\y)+exyyy+.. .+ e @hy),
par les substitutions
n n
oz =2 €ikTh Vi =2 Sik Y
1 1

Supposons qu’on ait
n n
z; =E PikTh, Vi =2 qihd ke
1 1

Si 'on substitue ces valeurs des y; dans ', le coeflicient de y; esl nécessaire-
ment égal a X; : donc

. Xi=ein,ix,1+eQQ2,ix’2+~'-+ e/zq'z,iz';z
ou bien

() Xi=qiiti+ qaits+...+ qniln,
M b
st I'on pose
(1) ty = e x, ty = ex &y, U t, = e,o),.
On voit donc que toute substitution

X =1 T+ @2 Ta~+ ...+~ AjnTpy

(i=1,2,...,n)

peut étre remplacée par trois substitutions successives, la premiére (I), de déter-
minant == 1 introduisant les variables ¢, ., ..., ¢,, la seconde affectant la forme
particuliére (I1), tandis que la troisiéme

n
(HI) f}'=2pi,kmk
1

a encore un déterminant égal & == 1.
11 est & peine nécessaire de dire que, dans cet énoncé, on pourrait remplacer
. . . . &
les invariants ey, €, ..., ¢, par les coefficients 84, Gay «.., 0, d’'une forme nor-
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male équivalente 3 F. Et le cas p << n n’apporte non plas unc modification; on
aura seulement alors ex = 0 ou & = o pour &£ > p.
Le nombre p que nous avons vu s’introduire dans ’étude de la forme bilinéaire

1=1,2,...,Mm
k=1,2,...,n
s'appelle le rang de la forme bilinéaire ou de la matrice des a; x.

Nous dirons quelquefois aussi que ey, e,, ..., e, sont les invariants de cette
matrice.

29. L'invariant e; a été défini d’abord par le quotient dj:d;_y; M. Smith a
obtenu encore une autre expression remarquable de cet invariant.

Considérons un déterminant quelconque du degré & de la matrice. Divisons ce
déterminant par le p. g. c. d. de ses propres mineurs, soit Ex enfin le p. g. c. d.
de tous les quotients qu’on obtient ainsi; alors le théoréme de M. Smith consiste
en ce quon a

E; = ey.

Pour éviter toute ambiguité, ajoutons que, lorsquun des déterminants de
degré k est nul, on doit adopter toujours la valeur zéro pour le quotient obtenu
en divisant le déterminant par le p. g. c. d. de ses mineurs, méme si ces derniers
étaient tous nuls. ‘

Il convient du reste, dans ces considérations, de regarder zéro comme le
p- 8. c. d. de plusieurs nombres qui sont tous nuls. C’est seulement avec celte
convention que le principe du n° 6 (Chap. I)) reste applicable au cas ol l'on
n’exclut pas la valeur zéro pour les nombres a, b, ¢, ..., (.

Nous allons démontrer d’abord un cas particulier du théoréme de M. Smith.
Supposons nZ m dans la matrice

ay 1 s Qin

Amy -+ Am.n

nous ferons voir que E,, = ¢,,= dy, : d,_,. Nous pouvons supposer que d,, n’est
pas nul, car on aurait, dans le cas contraire, E,, = e,=o0, et I'on peut écrire
(voir n°9)

AN =B ><]| Gl

|| B]| étant une matrice du type m > m, || G || une matrice du méme type que || A ||
dont le plus grand diviseur est I'unité. On reconnait aisément que les matrices || A ||
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et || B|| ont les mémes invariants, car la forme bilinéaire de z, ..., z,, ¥4y +++,
Vm, dont la matrice est || B|| complétée par n — m colonnes de zéros, est équi-
valente & la forme bilinéaire dont la matrice est

| A]l. Nous savons de plus qu’on
peut écrire

e 0 0 ... O
o e
B =fuli>|® @ ° <ol
[0
0 0 0 ... enm
ou |u|=|¢|=:=1, donc
€4 0 0 ... o©
0t 0 e . ... o0
Hul[=t<[lA]l = o > |IDl,
0O 0 0 ... em
[[D[|={¢]| > || G| étant une matrice du type m > n dont le plus grand diviseur

est 'unité.

Si I'on considére les divers déterminants du degré m — 1 de ||A|| qui ren-
ferment m — 1 colonnes données de cette matrice, on constate que le p. g. c. d.
de ces déterminants ne change pas si 'on multiplie la matrice par || «||~'. On en
conclut que le nombre E,, est le méme pour les deux matrices

AL et [lull=t>< |l Al;

il suffira donc de prouver 'égalité E,, — e, dans le cas de la matrice

e, 0 0 ... O
0o €y O

<[ D],
0 0 O ... en

obtenue en multipliant par ey, es, .. ., ey, les m lignes de || D ||.
Soient || 0], [|@2]|, ... les diverses matrices du type m > m contenues dans
D|; 04, ©,, ... leurs déterminants; W; le p. g. c. d. des mineurs de

|©:]| qui
.y . 0; . -
ne renferment pas la derniére ligne; en sorte que g est entier. Enfin, désignons
13
par m; le quotient obtenu en divisant le déterminant de
e o o0 ... o
o €y O

® R

0O 0 0 ... epn
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par le p. g. c. d. de ses mineurs; il s’ensuivra
Em = (wla Ty, W3, .- )

Mais il est clair que le p. g. c. d. des mineurs de (1) est divisible par
eies...em_y=dpn_y, et, d’autre part, ce p. g. c. d. est un diviseur de dp,_, < ¥;
(car dp_y >< W, est le p. g. ¢. d. des mineurs qui ne renferment pas la derniére

. .. e emO; w; [ .
ligne). Donc, ®; divise ¢,,0; et est divisible par 2= = ;—’ On a donc nécessai-
(2

z

rement

et, d’autre part, ¢,, est le p. g. ¢. d. des nombres ¢, 0,;,= w;{3;

(@B, @2B2, . ..) = €pm.
Le nombre E,, = (w,,®,, ...) doit donc étre un multiple de N < ¢, et un
diviseur de ¢,,, ce qui exige
N=1, E,=¢€mn. C. Q. F. D.

A T'aide de ce cas particulier, il est facile d’arriver au théoréme général.

Si, dans une matrice quelconque du type m >< n, on se propose de calculer le
nombre E;, on peut commencer par choisir & colonnes verticales, puis diviser
chacun des déterminants du degré £ de cette matrice partielle du type m < k
(mzk) par le p. g. c. d. de ses propres mineurs. Soit X; le p. g. ¢. d. des
quotients ainsi obtenus; alors, d’aprés ce que nous venons de voir, 2; est le
kitme invariant de la matrice partielle. Par conséquent, X; ne changera pas en
effectuant sur y,, ..., v, une substitution de déterminant == 1. Mais E; est évi-
demment le p. g. c. d. des divers nombres A,, %, ... correspondant aux divers
groupes de & colonnes; donc E; ne change pas par cette substitution sur y,
Y2y +++y Ym. Par le méme raisonnement, on voit que E; ne change pas en effec-
tuant sur les z,, ..., x, une substitution de déterminant Z=1. E; est donc le
méme pour toutes les formes équivalentes a I et, en considérant la forme réduite
ou une forme normale, on constate que E;= ¢;.

30. La nouvelle expression des invariants conduit & plusieurs conséquences
importantes. Soient

€1, €2, ..., €p

les invariants d’une matrice || @; || ou || A||. Supprimons dans ||A|| une colonne ou
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une ligne, désignons par || A’ || la matrice ainsi obtenue, et par
€, €y ..., ey

ses Invariants. 11 est clair que ¢ S p et ensuite ¢, est divisible de e;.
Si, au lieu de supprimer une colonne, on avait multiplié les éléments de cette
? )
colonne par un nombre entier N, les invariants de la nouvelle matrice || A” || seraient

" " "
el, ey, ..., ep,

et e, est divisible par e;. Soient en effet P; le p. g. ¢. d. des déterminants du
degré k de || A || qui ne renferment pasla colonne que I'on change, Q4 le p. g. c. d.
des déterminants qui renferment cette colonne, on aura

d/t‘:(P/z" Qk): d;c: P, dZZ(Pk, NQk)-,
dp—1=(Ppr—1,Qx-1), dj_y=Pp, dj_y=(Pp—1, NQz_1):
donc
di _ (Pry NQi) _ (Pr, NQzy NPr) _ (Pi, Ndi) :<&. N)-
dy dy. d; dy; d/", A
de méme
dr—y =<Pk—1, >
. dr—1 dr—1
Puisque :
Pr Pry ,
—_—— = ej.e
dr’ dp—y ke Ok
est entier, il en est de méme de
gﬁ : ZZ:: =e}: e C. Q. F. D.

Il est facile maintenant d’établir les conditions nécessaires et suffisantes pour

G =22 bzl y;
F =22 gk yie
»
z; =Z € kT
1

yi:ifi,/f.}”k
1

qu’une forme bilinéaire

soit contenue dans une forme

En effet, soient

les deux substitutions qui transforment F en G. On reconnait d’abord que le rang
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de G ne peut pas surpasser le rang de I, car un déterminant quelconque de la
matrice || b; 4 || est une fonction linéaire et homogéne des déterminants de (| i)
Chacune des substitutions qui transforment I en G peut étre remplacée par unc
suite de Lrols substitutions comme au n® 28. Les substitutions de déterminants =+ t

ne changent pas les invariants, mais une substitution telle que
ti= e;x;

a évidemment pour effet de multiplier les invariants par certains nombres entiers.
Les invariants de G sont done divisibles par les invariants correspondants de I,
On reconnait facilement que cette condition, qui est nécessaire, est aussi sulfisante.

Tuatorkme XI. — Pour qu’une forme bilinéaire G soit contenue dans la
Jorme ¥, il faut et il suffit que le rang de G ne surpasse pas le rang de F, et
que les invariants de G soient divisibles par les invariants correspondants de F.

Ce résultat comprend aussi le cas de I'équivalence.

31. Considérons maintenant les systémes de congruences lindaires

{ @i+ a2y +. . iy =u; (mod M)
() i .
(L=1,2,...,n).
Désignons par
e d; i (¢ 172 1)
= 2= =0,2, .., 17
! di»l’ 2 ai—] Pt )

les invariants de la matrice du systéme et ceux de la matrice complétée. Nous
supposons que d, ne soit pas nul.

Posons
Ciz(l\‘lyel'% ‘{i:(l\laii)v

C=cicy...0p. 1‘2‘1’1“(2...‘(”.

alors on peut énoncer

Trarorime X1I. — Pour que le systéme (1) admette des solutions, il faut et il

suffit qu’on ait :
C=T.

St cette condition est satisfaite, le nombre des solutions est exactement = C.

En effet, d’aprés le théoréme VIII, le systéme (I) admettra des solutions seule-

ment dans le cas ot les plus grands diviseurs des deux matrices

I M o o ... 0o ajg ... ap,
o M o ... 0o ay, ... ay,
o o o ... M ap; ... aun

1V. — Fac. de T. 13
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o

et
HPM o o ... 0 iy oo Qi U
o M o ... 0 @, ... A U
o 0o o .. M oay,, ... apn U

sont égaux.

Mais le premier de ces nombres est évidemment égal a

(M2, Ma=tdy, Me=2dy, .. Mdueydy)
:(l’\'l"', M~r—1 ey, 1\']”'"26182 e 1\16162 celCp—1y€1€3 ... en)

=(M, e;)<(M, ey)...<(M, ey)=C,

et le second de ces nombres est pour la méme raison = I'. La premiére partie du
théoréme est ainsi démontrée. Pour obtenir le nombre des solutions dans le cas

C =T, il suffit de se rappeler que, par une substitution de déterminant ==

n
-

ri= D %LV,
1

et, en remplagant les équations (1) par des combinaisons convenables, on peut ob-
tenir un systéme équivalent de la forme

eivi= f; (modM).
Or le nombre des solutions de ce dernier systéme est évidemment
(M, e;) < (M, ey) <...x (M,e,)=C.

Il est a remarquer que y;= (M, ¢;) divise ¢;= (M, ¢;), car ¢; divise ¢;. La con-
dition C =T exige donc qu’on ait

cp =i (l‘:l,'l, cee, R
32. On peut donner au théoréme XII une autre forme en supposant décom-
posé en facteurs premiers le module M. '

Soient u, ag, 24 les exposants des plus haates puissances d'un nombre premier p,

qui divisent respectivement M, dj, 3;. Alors on a

( 1) Uy — Ap—q 2 Ap—y-— “n—2§~ LZag— ay,
(2) : Uy — Ap1 2 Ay g — Up—g 2o e 2 A — Ly,
(3) apZay.

(4 Afp— A fpmy Z % — Ry«
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car nous savons que les rapports
Chvtl Ly Charl e dplOp, epli

sont des entiers.

La condition

(dpy dyy M, dpy g M2, .. M) = (34, 30t M, Spma M2, ..., Mr)
devient maintenant pour chaque nombre premier p qui divise M
(5) (Pa"Y pa,l__,—ﬂx’ Pa"_2+2p,’ e, Pnp‘) e (1]1,,, pa(,,_,+p.’ Pun_2+‘.>p7 RN )nu)'

Supposons que, dans la série (2), le premier terme plus petit que U SOIL oy — g _y;
alors la relation (5), qui exprime la condition nécessaire et suffisante pour que les
congruences admetlent une solution pour le module p¥, devient

%5 = Qg

ct le nombre des solutions est alors p%+(2-b. Cest ce que 'on trouvera par unc
discussion facile en s’aidant des inégalités (1), (2), (3), (4).
D’aprés cela, si I'on avait . > a,— 2,_,, la condition devient o, =a, et le
nombre des solutions est p*. Ainsi, dans ce cas, il suffirait de calculer d,, et 3,,.
On voit facilement que si, dans la série

Ap—=2p2 Qrie | — Ap 2. .. 24— %2 0,

ay— oy est le premier terme égal & zéro, p*+~%, est la plus haute puissance de p
pour laquelle, comme module, le syst¢éme des congruences admet des solutions.

Cest seulement pour préciser les idées que nous avons supposé au n°® 31 quele
déterminant , du systéme (1) n’était pas nul.

Et aussi, a proprement parler, ce n’est pas li une restriction, car, en ajoutant
des multiples de M aux coefficients, on peut toujours faire en sorte qu’il en soit
ainsi.

Mais la plus légére attenlion sulfit pour reconnaitre que le théoréme XI1 est
général et reste vrai méme dans le cas ot 'on aurait dpii= 0, 4 condition seule-
ment de se conformer a notre convention de prendre dans ce cas

Ep+1 = €pra=—=...= €, =0,
et de méme pour les invariants de la matrice complétée.

33. Considérons maintenant le systéme

A Xy~ oo A A n X = Ui (mod M)

(i=1,2, ..., n).
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Désignons comme au n 31 par

d; O

ei= 5—>
d;-y

I

®

o’
~

|
-

]

les invariants de la matrice et de la matrice complétée, puis posons

c;i= (M, e;), vi= (M, z;),
C=cicy...Cn,

= 1Yz Yne

La condition nécessaire et suffisante pour qu’il y ait des solutions est alors en-

core
C=Tr,

mais le nombre des solutions est C>< M™. En effet, on obtient un systéme

équivalent
eivi=fi (modM),

[=1,2 ..., 1
el €ty Yngay o« -y Yupm vEstent arbitraires.
34. Soit enfin le systéme

A Xy~ AT = Uy (modM),

(i=1,2, .., n+m),

et désignons toujours par

. d; .
€= (i=1,2, ..., n)
12 di—1 ’ ) ? k)
8; .
gi= (r=1,2,...,n+1)
0j—1

les invariants de la matrice et de la matrice complétée.
La condition nécessaire et suffisante pour qu'il y ait des solutions s’obtient a

I'aide du théoréme VIII sous la forme

(]\In+m7 I\er—m—ldh ]\In+m-—2d2’ ey Mm d”)

(@) ( = (Mn+m, Mr+m—1g, Mnr+m—2 8y, ..., Mm—1 Sur1)

ou, aprés une réduction facile,

() { M (M, e;) < (M, e3) <...<x (M, en)
| = (M, &)< (M, g5) x<...5< (M, 2p1)-
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Mais, puisque (M, =4) divise (M, ¢4), on a nécessairement
(1) Ea+1=0 (modM).

Par conséquent M3, divise M”*~'d, ., et au lieu de (2) on peut écrire

(1\,1:;4—1';, Mnr+m—td, .. . Mm dn)
= (Mn+m, Mnr+m—t1g,, ..., Mman)’
ce qui revient encore i
(2) C=T,

si’on pose comme précédemment

C=(M, e)x< (M, e)x<. .x<x(M,e,)
F'=(M, e) < (M, e)x...<x (M, ¢,).

Pour qu’il y ait des solutions, les conditions (1) et (2) sont nécessaires et suffi-
santes. Le nombre des conditions s’obtient sans difficulté ; il est égal a C.

35. Les méthodes développées a partir du n° 22 permettent de retrouver avec
facilité la plupart des résultats obtenus dans la premiére Partie de ce Chapitre.
Nous nous bornerons a déduire de cette facon le théoréme VIII sous une forme
plus générale. Considérons donc les équations non homogénes

I A1 X1+ Qi oZa—+. oo A nZp~+ Q1= 0

(i=1,2,..,m)

sans faire aucune hypothése sur m et n. Soient|| A || et || A’|| la matrice du systéme
et la matrice complétée. Sil'on prend k4 des m équations et que 'on considére
tous les déterminants du degré & qu’on peut former avec leurs coefficients, ces
déterminants appartiennent en partie a la matrice ||A’||. Mais, si le systéme (I)
admet une solution, on pourra remplacer les @i nyy par leurs valeurs

— (W T+ @22+ A Zn),

en sorte que chaque déterminant de [|A’|| s’exprime en fonction linéaire homo-
géne des déterminants de || A ||. Dans tous les £ équations, le p. g. c. d. des dé-
terminants de || A || est donc égal au p. g. c. d. des déterminants de || A’ ||. D’ou
Yon conclut que le p. g. c. d. de tous les déterminants du degré £ est le méme
pour les deux matrices [|A]| et || A’]|. Ce sontla des conditions nécessaires pour
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que le systéme (1) admette des solutions. Mais ces conditions ne sont pas Lloutes
indépendantes, comme cela résulte du théoréme suivant :

Tatorime XIII. — Pour que le systeme (1) admette une ou plusieurs solu-
tions, il faut et il suffit que le rang p de || A|| soit égal au rang de || A’|, et
que lep. g. c. d. des déterminants du degré p soit le méme pour les matrices

Al ee [ A"].

Nous avons a démontrer seulement que ces conditions sont suffisantes. Or, par
une substitution

n
Xi= E ai,kvk)
1

el en remplacant les équations (1) par des combinaisons convenables, on peut ob-
tenir un systéme absolument équivalent
s e v+ Uy = o, €399+ Uy = 0, Caey epVp— Up=0,

(11)

( Upiq = 0, Upra =0, Ceey Uy =o0.

Dans cette transformation les rangs de || A || et de || A’ || se conservent, de méme
que les p. g. ¢. d. des déterminants du degré A. Puisqu’on suppose que le rang
de || A’ |l est = p, les déterminants du degré p + 1

€1€2 ... Cpllpyy, €1€3...€pUHtay, ..y €1€3...EpUy,

doivent s’annuler; donc

Upt1 = Upyr ™= ... = U; = 0,

ce qui montre que les équations (11) ne sont pas incompatibles. De plus, les dé-
terminants du degré p de la matrice || A’|| transformée

€1€3...€p, Uge€3...€,, € lUzEz...Cph, ..., €1€3...€p 1Up

doivent étre divisibles par eyey... e, Done wy,us, ... up sont divisibles par’
ey, €y, ..., €p respectivement, en sorte que les équations (II) sont satisfaites par
des valeurs entiéres de ¢y, 9, ..., ¢p. c. Q. F. D.

La plupart des résultats de ce Chapitre sont dus & M. Smith; un seul, le théo-
réme VIII avait été obtenu antérieurement par M. I. Heger. Le méme sujet a été
repris ensuite par M. Frobenius qui a introduit la forme bilinéaire. Le Mémoire
de M. Frobenius contient encore d’autres applications intéressantes a la théorie
algébrique des formes bilinéaires.
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