
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

T.-J. STIELTJES
Étude bibliographique. Sur la théorie des nombres
Annales de la faculté des sciences de Toulouse 1re série, tome 4, no 3 (1890), p. 1-103
<http://www.numdam.org/item?id=AFST_1890_1_4_3_1_0>

© Université Paul Sabatier, 1890, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse »
(http://picard.ups-tlse.fr/~annales/) implique l’accord avec les conditions générales d’utilisa-
tion (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_1890_1_4_3_1_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


ÉTUDE BIBLIOGRAPHIQUE.

SUR LA

THÉORIE DES NOMBRES,
PAR M. T.-J. STIELTJES,

Professeur a la Faculté des Sciences de Toulouse.

CHAPITRE I.
SUR LA DIVISIBILITE DES NOMBRES.

i. L’idee de nombre a son origine dans la consideration de plusieurs objets dis-
tincts.

C’est une notion qui s’attache a cette consideration, ou l’on fait abstraction de
la nature des objets, et qui est, d’après notre conviction intime, indépendante de
l’ordre dans lequel on envisage successivement les objets donnes.

Ce dernier point est essentiel et constitue, a proprement dire, le seul axiome
de toute la science des nombres. Peut-etre meme est-il possible de ramener cet
axiome a quelque chose de plus simple encore.

Si 1’on se rappelle, en effet, que 1’on peut passer d’une permutation a une autre
par une serie de transpositions operees sur deux elements voisins, il semble qu’au
fond il suffit d’adopter l’axiome dans le cas de deux objets.

Mais, sans insister sur cette question, nous nous bornerons a observer que les
relations exprimées par les equations

doivent etre considerees comme des theoremes qui decoulent de l’axiome fonda-
mental qui donne naissance a l’idée de nombre.



2. En comparant un nombre a avec les multiples o, b, 2 b, ... d’un second

nombre b, deux cas peuvent se presenter. Ou bien a est egal a un multiple de b,
alors a est divisible par b, b un diviseur de a, ou bien le nombre a tombe entre
deux multiples consecutifs de b. Dans ce dernier cas, il existe un nombre rn tel

que a == mb + c, c etant positif, mais inferieur a b.

3. Étant donnes plusieurs nombres a, b, c, ..., I, on peut toujours trouver des
nombres qui sont en meme temps divisibles par a, par b, ..., par i. Parmi ces

nombres qu’on appelle communs multiples de cc, b, c, ..., l, il y en a un néces-

sairement qui est le plus petit et qui s’appelle le plus petit commun multiple des
nombres a, b, c, ..., l. 

’

THÉORÈME I. - Le plus petit commun multiple m des nombres cc, b, c, ..., l

divise exactement tout autre commun multiple M de ces nombres.

En effet, si iV1 n’etait pas un multiple de m, la division de M par m donnerait
lieu a une relation

ou nz’ serait positif, mais inférieur a in. Or on reconnait immédiatement que m’
serait encore un commun multiple de cc, b, c, ..., l, ce qui est absurde, puisdu’on
suppose qu’il n’existe pas un tel commun multiple inférieur a ni.

11 est clair qu’on peut énoncer ce théorème encore de cette manière :

THÉORÈME Ia. - Si un nombre M admet pour diviseurs les nombres a, b,
c, ..., , l, le plus petit commun multiple de a, b, c, ..., L sera encore un divi.-

seur de M.

~. Le plus petit commun multiple des nombres

est evidemment au moins egal a a, et il ne peut etre egal à a que dans le cas ou
b, c, ..., l sont des diviseurs de a.

5. Un nombre qui divise a la fois a, b, c, ..., l s’appelle un commun diviseur
de ces nombres. Parmi ces communs diviseurs, il y en a necessairement un, plus
grand que les autres, et qui s’appelle Ie plus grand commun diviseur de a,
b, c, ..., ~

THEOREME II. - Le plus grand commun diviseur d des nombres a, b, c, :.., ,
l est un multiple de tout autre commun diviseur 03B4’ de ces nombres.

Soient, en effet, ~, ~’, d", ... les communs diviseurs des nombres donnes.



Puisque a est divisible par 0, ~’, ~°, ..., il est encore divisible par le plus petit
commun multiple de ~, Of, ..., et il en est de meme pour b, c, ..., I. Par con-

sequent, le plus petit commun multiple de d, ~’, ... est encore un commun di-

viseur de a, b, c, ..., l. Ce plus petit commun multiple est done necessairement
egal a o, et d’, ~", ... sont les diviseurs de ~. L’ensemble des communs diviseurs

de a, b, c, ..., l est identique avec l’ensemble des diviseurs de 3.

6. Pour chercher le p. g. c. d. (p. p. c. m.) de a, b, c, ..., l, on peut diviser
ces nombres en divers groupes, chercher le p. g. c. d. (p. p. c. m. ) des nombres
contenus dans ces groupes, ensuite le p. g. c. d. (p. p, c. des nombres ainsi

obtenus.

On pourra donc ramener le probleme toujours au cas on il a que deux

nombres a et b, et, dans ce cas, l’algorithme d’Euclide conduit de la façon la plus
simple a la connaissance da p. g. c. d. Par une suite de divisions, on obtient les
relations

et est le p. g. c. d. de a et b.

Soit d le p. g. c. d. de a, b, c, ..., l, alors les nombres ..., nil sonU

tous divisibles par Jeur p. g. c. d. est donc nécessairement divisible par .

mais on reconnait immediatement que ce p. g. c. d, est exactement 

Pour abreger, nous emploierons quelquefois les symboles

pour designer respectivement le p. g. c. d. et le p. p. c. m. de a, b, ..., l,..

Onadonc

et de même

De la on peut conclure le lemme suivant qui est souvent utile.

- Soient d le p. g. c. d. (p. p. c. des x nombre,s



e le p. go. c. d. (p. p. c. m.) des 03B2 nombres

alors le p. g. c. d. ( p. p. c. m.) des aQ produits

est de.

En les p. g. c. d. (p. p. c. m.) des divers groupes

sont respectivement ae, a’e, a"e, ..., et le p. g. c. d. (p. p. c. m.) de ces der-
niers nombres est de.

7. La recherche du p. p. c. m. peut se ramener toujours à celle du p. g. c. d.,
et reciproquement.
Le p. p. c. m. de a, b, c est de la forme

donc d doit etre un commun diviseur de bc, ca, ab. Pour avoir le p. p. c. 
il faut évidemment prendre pour d le p. g. c. d. de bc, ca, ab.

THÉORÈME III. - Le p. p. c. m. (p. g. e. d.) de cc, b, c, ..., l est égal au pro-
duit abc.. .l divisé par le p. y. c. d. ( p. p. c. nz.) des produits

y 

8. Dans le cas de deux nombres a eL b, le produit du p. g. c. d, et du p, p. c. m.
est ab. Cette relation n’a plus lieu dans le cas ou l’on a n nombres. Cependant
on peut retablir l’analogie, et il faut, pour cela, considérer, non seulement le

p. g. c. d. et le p. p. c. m., mais une suite de n nombres qui dérivent d’une facon
particuliere des nombres donnes.
Nous allons entrer dans quelques details sur cette théorie, comprise dans des

recherches plus generates de M. Smyth dont nous aurons a parler plus loin.
Considerons n nombres



Prenons deux nombres, par exemple a et b, de ce système et remplacons-les
par leur p. g. c. d. et leur p. p. c. m. On aura ainsi un second système (A1)

En repetant la meme operation sur (At) pour en deduire un sysLeme (A2~, puis
un système (A3)’ ..., on finira toujours par obtenir un système dans lequel deux
nombres quelconques sont eux-memes leur p. g. c. d. et p. p. c. m, ; c’est-a-dire
J’un de ces nombres divise l’autre. Si l’on ordonne les nombres de ce système de-
finitif par ordre de grandeur croissante

elf divise ek+,, et nous dirons que ces nombres forment le système réduit, ek est
le kième nombre reduit. En eflet, on verra que ce système reduit est unique et in-
dependant de la manière dont on a dirigé les operations.

9. Pour facillter un peu le langage, nous dirons que deux nombres ferment un
couple reduit lorsque l’un de ces nombres divise l’autre. II est clair que, si a et

b sont un’couple reduit, les groupes (A) et (A, ) sont identiques; on peut donc se
dispenser de combiner les couples réduits. Si tous les couples de (A) étaient re-
duits, ce groupe serait deja le systeme reduit.
Nous allons faire voir qu’en combinant deux nombres qui ne forment pas un

couple reduit, on augmente toujours le nombre total des couples redults.
Considérons, pour cela, les divers couples réduits de (A). On peut distinguer

les quatre categories suivantes :
I° Les couples redaits f, g qui ne renferment ni a, ni b. It est bien clair que

ces couples réduits se retrouvent dans (A1).
2° Les couples réduits a, f qui renferment Ie nombre a et qui sont tels que b, f

n’est pas un couple reduit. Dans ce cas, au moins un des couples a’, f et h’, f
sera reduit, et ils peuvent l’être tous les deux. En effet, si f divisc a, il est clair

qu’il divise aussi h’, et, si f est multiple de a, il sera aussi multiple de a’. [On
suppose a’= b), b’= ~ a, b ~.~

3° Les couples réduits b, f qui renferment le nombre b et qui sont tels que
a, f n’est pas un couple réduit. II est clair que ce que nous venons de dire pour
Ie second cas s’applique encore ici.

4° Les couples réduits a, f qui sont tels que b, f est en meme temps un couple
reduit. Dans ce cas, on reconnait facilement, que les couples a’, f et ~’, f sont
aussi réduits tous les deux. Il 

. 

suffit d’examiner successlvement les trois hypo-
theses possibles : f divise a et b; f’ est multiple de a et de b; f divise 1’un des
nombres a, b et est multiple de l’autre.



Nous avons ainsi enumere deja dans le systeme (A, ) au moins autant de couples
reduits que dans (A). Mais le systeme renferme encore le couple reduit
r~’, h’, par consequent le nombre des couples reduits du systeme (A, ~ surpasse
au moins d’une unite le nombre des couples reduits de (A).

Par un nombre fini d’opération, on arrivera donc necessalrement a un groupe
de n nombres dont tous les couples sont des couples réduits, et qui est ainsi le

système reduit. Il reste a faire voir que ce système reduit est unique.

10. On constate cl’abord qu’en remplaçant a et b par a’ et b’, on ne change ni
le p. g. c. d., ni Ie p. p. c. m. des nombres du systeme.

Envisageons maintenant les divers produits k à k des nombres (A), pour voir
quelles modificat.ions resultent, pour ces produits, par le remplacement de a et b
par a’ et ~’. ,

Les divers produils k à k se composent :

1° Des produits qui ne renferment ni a, ni b ;
~~~ Des produits qui renferment a et b;

Des produits qui renferment un seul des nombres a et b.

ll est clair que ce sont les derniers produits seulement qui sont affectés par
Ie remplacement de a et b par a’ et b’. Ces produits sont, d’ailleurs, en nombre
pair et peuvcnt etre ecrits ainsi

P, 1’", ... etant les divers produhs k - i a k - i des nombres c, ..., l.

En remplacant Inaintenant a et b par a’ et b’, cela revient évjden1111ent a rem-
placer chaque couple

par son p. g. c. d. et son p. p. c. m. Cette operation, nous l’avons deja remar-
que, n’influe ni sur le p. g. c. d., ni sur le p. p. c. des divers produits k a k.

Par consequent le p. g. c. d. Dk et le p. p. c. m. Mk des divers produits k
à k des nombres (A) ne changent pas en passant aux nombres (A, ). Dk et Mk sont
aussi le p. g. c. d. et le p. p. c. in, des produits k a k du système reduit

c’est-a-dire



De la on conclut les relations suivantes

qui mettent en evidence ce fait que le systeme reduit est unique et donnent
l’expression des nombres reduits en fonction de a., b, c, ..., l. Les relations

reproduisent le theorerne III. Puisqne ek divise on voit que Dk divise

Dh_,, Mk est multiple de Mh._,; on pourrait le démontrer directement
en s’appuyant sur le lemme du nO 6. On voit que Dk ne peut etre égal a a

moins qu’on n’ait D -~-= D 2 _-...= i.

li. et b’ étant le p. g. c. d. et Ie p. p. c. /?Z. et b, le

~. ~. C. ~. et le p. p. c. 

sont respectivement

menze, le p. y. c. d. et le p. p. c. nt. de

soul respectivement

Pour demontrer la premiere partie, on remarque d’abord que le p. g. c. d. de

(.nz, r~) et (lj2, b) est ivideuiment (/7Z, a, b) == (m, a’). Cela étant, pour demontrer
que (m, b’) est le p. p. c. m. de cc) et (m, b), il suffira de faire voir que

cela est evident ; car, d’après le lemme du nO 6, on a

Pour la seconde partie, on remarque d’abord que le p. p. c. m. de 4 nt, ~~ ( et

) est évidemment |m, a, b| = |m, b’|; et ensuite il est clair que



On conclut de ce lemme que ies nombres reduits de

De meme, les nombres reduits de

12. Nous avons considere, dans le n° ~10, les divers produits k a k des nombres
a, b, c, ..., l. Si, au lieu de cela, on avait considere simplement les divers groupes
k a k, non pour en former les produits, mais pour en prendre le p. g. c. d. ou le
p. p. c. m., on serai t arrive aux resultats suivants :

puis aussi

Cette recherche n’ offre aucune difficulte en s’appuyant sur le lemme du nO 11.

13. On dit que deux nombres sont premiers entre eux ( ou bien a est premier
avec ~~ lorsque leur p. g. c. d. est egal a 1’unite; leur p. p. c. m. est alors egal a
leur produit.

LEMME. - On a

En effet, il est clair que

THÉORÈME IV. - Lorsque a et b sont premiers entre eux, tout commun
seur de a et bc est aussi commun diviseur de a et c.

Il suffit évidemment de montrer que



mais cela est evident d’apres le lemme précédent, puisque (a, b) = i par hypo-
these. 

’

On deduit de ce theoreme les consequences suivantes : ~° Si c est aussi premier
avec a, bc est premier avec a. Il est facile de généraliser ce resultat ainsi. Les
nombres

etant tels que chaque nombre a, c~’, ... est premier avec tous les nombres b, b’, ...,
le produit c~a’a"... est premier avec bb’b"..., a"t est premier avec b‘1. 2° Lorsque
bc est divisible par a (a et b étant premiers entre eux), c est divisible par a.

14. On dit que plusieurs nombres a, b, c, ..., l sont premiers entre eux lorsque
deux quelconques d’entre eux le sont. On peut remplacer cette defini tion par la
suivante qui lui est equivalente. Plusieurs nombres a, b, c, ..., l sont premiers
entre eux lorsque a est premier avec b avec cd...l, ..., enfin h avec l.
Le p. p. c. m. des nombres a, b, c, ..., l, qui sont premiers entre eux, est ebal

a leur produit, et, cette propriété est caracteristique. En effet, ayant

il est impossible que deux de ces nombres aient un diviseur commun > i. Car, si
03B4 divise a et b,

est un commun multiple de a, b, c, ..., i.

Un nombre admettant les diviseurs a, b, c, ..., l premiers entre eux, est divi-

sible par leur produit abc.. . l.

On pent dire encore : les nombres a, b, c, ..., l sont premiers entre eux lorsque
le (n nombre réduit en-1 = i. En est le p. p. c. m. des nombres

On a alors aussi

Pour que plusieurs nombres a, b, c, ..., l soient premiers entre eux,’ il ne

suffit pas que leur p. g. c. d. soit égal a 1’unite, il faut que le p. g. c. d. des

produits

soit égal a 1’nnite. (Voir le théorème III et la fin du nO 10.)



Le p. g. c. d. des nombres m, a, b étant l’unité, on a

En d’après le lemme du n° 6,

d’apres Fhypothese.
Plus particulierement, on aura

lorsque a et b sont premiers entre eux. Ce résultat peut se généraliser immédia-
tement ainsi.

THÉORÈME V. - Les nombres a, b, c, ...; I étant premiers entre eux, ojt a

Remarque. - Ce résultat est compris aussi comme cas particulier dans les

propositions obtenues dans le n° 11. En effet, le ni~’n’e nombre reduit de

c’est-a-dire leur p. p. c. m. est egal a

En supposant a, b, c, ..., l premiers entre eux, on retrouve le théorème ci-dessus.
On peut en tirer la consequence que voici. Les nombres a, b, c, ..., l eLant pre-

miers entre eux, un diviseur 03B4 de leur produit peut etre toujours mis d’une seule

façon sous la forme

ou a’ divise a, b’ divise b, ..., l’ divise l. En si cette decomposition en fac-

teurs est possible, a’ doit diviser a et S, et par consequent ( cc, d ).
Mais, d’apres le theoreme V, on a

d’ou il est clair que la decomposition est possible, et d’une seule maniere.
D’autre part, on obtient toujours un diviseur de abc...l, en multipliant un

diviseur quelconque a’ de a par un diviseur b’ de b, etc.



On pent donc conclure :

THÉORÈME VI. - Les nonibres a, b, c, ..., I étant premiers entre eux, on
obtient tOllS les diviseurs de leur pnoduit abe... l, et chaque diviseur une seule
fois, en multipliant chaque diviseur de a par chaque diviseur de b, ..., 
chaque diviseur de l.

Corollaire. - En désignant par f(m) le nombre des diviseurs de n2 (ou la

somme de ces diviseurs, ou la somme de leurs puissances), on a

lorsque a, b, c, ..., l sont premiers entre eux.

15. Tout nombre a (excepte 1’unite) a au moins les deux diviseurs a et I . Tout

nombre qui n’admet pas d’autres diviseurs s’appelle nombre premien. Nous ne
compterons pas l’unité parmi les nombres premiers : les plus petits nombres pre-
miers sont

Tout nombre qui n’est pas premier est dit composé. Un nombre compose a est
toujours egal a un produit bc dont les facteurs sont > i tous les deux.

Soient p un nombre premier, a un nombre quelconque ; si p ne divise pas a,
a et p seront premiers entre eux.

Lorsqu’un nombre premier p divise le produit abc... l, /? doit diviser au moins
un des facteurs a, b, c, ..., l; car, dans le cas contraire, p serait premier avec a,
avec b, ..., avec l, par consequent premier avec abe...l et ne pourrait diviser
ce produit.

THÉORÈME VII. - Tout nombre composé admet un diviseur premier.

En effet, il est clair que le plus petit diviseur, surpassant 1’unite, d’un nombre
compose, est necessairement un nombre premier.
THÉORÈME VIII. - Tout nombre compose est égal cz un produit de facteurs

premiers ou, comme on dit, il est decomposable en facteurs premiers. Celte
decomposition ne peut se faire que d’une seule manière.

En effet, mettons le nombre composé a sous la forme d’un produit

de facteurs > 1, de toutes les manieres possibles. Le nombre de ces facteurs sera
toujours inférieur a n, en supposant 2n > a. Parmi ces produits égaux a a, il y
en aura done un, au moins, dans lequel le nombre des facteurs est le plus grand.



Soit

un tel produit, it est clair que tous les facteurs sont des nombres premiers; car,
si par exemple pi était composé, on pourrait obtenir un produit egal et

renfermant k + t facteurs.

Remarque. - Il est clair qu’on obtient toujours par un nombre fini d’essais
les divers produits egaux à a que nous considérons. Il suffit d’ecrire les nombres

de prendre leurs divers produits un a un, deux a deux, ..., n - I a rz -1 i (avec
repetitions’) et de ne conserver que ceux de ces prodnits qui sont egaux a Cl.
La premiere partie du theoreme se trouve ainsi demontree; quant a la seconde

partie, supposons deux decompositions en facteurs premiers

Il est clair que c~, doit diviser le et~ par consequent un des
nombres p1, p2, ... : donc q1 i est égal a un de ces nombres, par consequent

On en conclut

Le theoreme étant ainsi completement démontré, on voit qu’on pent meltre un
nombre quelconque, et cela d’une seule maniere, sous la forme

p, ~, r, ... etant des nombres premiers distincts, oc, ~, y, ... des nombres quel-
conques.
On peut deduire ce theoreme aussi du theoreme VII.

16. Pour que deux nombres soient divisibles l’un par l’autre, il faut et il suffit L

qu’en ayant decompose les deux nombres en facteurs premiers le diviseur n’ait

pas d’autres facteurs premiers que le dividende, et que ces facteurs ne figurent
pas dans le diviseur avec de plus grands exposants que dans le dividende. Cela
est evident d’après ce qui precede.
A l’aide de ce resultat, on peut reconnaitre immediatement la verite de tous les

Lheoremes que nous avons obtenus sur le p. p. c. m., le p. g. c. d., etc., en sup-
posant tous les nombres decomposes en facteurs premiers. Nous n’insisterons

pas sur ce sujet, cependant on doit remarquer que ce n’est la, a proprement



parler, qu’une espece de verification; cela devient sensible surtout lursdu’il s’agit
de propositions plus compliquees, comme celles du n° ~~ sur les nombres reduits.
Mais nous devons expliquer encore comment on obtient immediatement les nom-
bres réduits de a, b, c, .... L, lorsqu’on a decompose ces nombres en facteurs
premiers.

Supposons done

Pour plus de symetrie, nous avons introduit partout les memes nombres premiers
..., pk, ce qui peut se faire en admettant pour les exposants aussi la va-

leur o.

Considerons les exposants de pi

Supposons qu’en les écrivant par ordre de grandeur croissante on ait

Alors on aura

C’est ce qn’on verifie directement en remarquant, par exemple, que

est bien, avec ces valeurs de e,, ez, ..., e,t, le p. g. c. d. des produits k a k des num-
bres a, b, c, ..., l. On vérifie encore sans peine les expressions des ek quc nous
avons obtenues dans le n° 12.

Les diviseurs de sont

leur nombre est x -~- i leur somme



(1n nombre quelconque

admet done

diviseurs, et leur somme est

17. Decomposer un nombre donne en facteurs premiers, c’est un probleme
dont la solution exige un grand nombre de tatonnements. On a imagine de nom-
breux artifices pour abreger le travail; mais, quoi qu’on fasse, cette decomposi-
tion est, en impraticable pour un nombre un peu grand. Aussi serait-il,
par exemple, a peu pres impossible d’obtenir de cette facon le p. g. c. d. de deux
nombres de douze a quinze chiffres ; l’algorithme d’Euclide conduit sans trop de
peine au but.
On voit par la que ce n’est pas seulement en se placant an point de vue 

rique qu’on peut exiger de ne pas faire intervenir la decumposition en nombres
premiers dans des questions ou ces nombres premiers ne figurent pas expressé-
ment.

11 y a une infinite de nombres premiers. En effete p etant un nombre premier,
on peut toujours trouver un nombre premier plus grand que p. Soit, pour le
montrcr,

le produit de tous les nombres premiers qui ne surpassent pas p. Mettons le

nombre P d’une facon quelconque sous la forme d’un produit de deux facteurs

alors il est clair que le nombre N = A + B n’est divisible ni par 2, ni par 3, ...,
ni par p. En decomposant donc N en facteurs premiers, on trouvera nécessaire-
ment des nombres premiers qui surpassentp.
Remarquons avec M. Cayley que, si l’on prend A = P, B = i , les nombres

N + 2, ..., N + p - i sont tous composes; J d’ou l’on voit que la diffé-
rence de deux nombres premiers consecutifs peut surpasser un nombre donne.

18. Voici une proposition dont on a besoin quelquefois. II est toujours pos-
sible de mettre le p. p. c. m. des nombres a, b, c, ..., l sous la forme d’un pro-
duit



dont les facteurs sont premiers entre eux et divisent respectivement a, b, c, ...,
l. Adoptons les notations du n° 16, le p. p. c. m. est 

’

Ecrivons les nombres a, b, c, ..., l l’un au-dessous de l’autre. Écrivons ensuite
]e facteur p~~ a cote d’un des nombres a, b, c, ..., I qu’il divise (un au moins de
ces nombres est divisible par pi~~. Faisons de meme pour ~~~=, .. pk. Alors on
prendra pour a’ le produit des nombres qu’on aura ecrits a cote de a i

lorsque aucun nombre ne se trouverait a cote de a), de meme pour b’, c’, ..., I’.

Il est clair qu’on obtiendra toujours au moins une solution; elle est unique dans
le cas ou, parmi les nombres a, b, ..., I, il n’y en a qu’un seul divisible, soit par

soit par etc. Dans le cas contraire, le probleme admet toujours plusieurs
solutions.

19. On peut toujours obtenir une solution, sans decomposer les nombres a,
b, c, ..., l en facteurs premiers et uniquement a l’aide de l’algorithme d ’Euclide.

Mais, pour abréger, nous nous bornerons au cas de deux nombres a et b, d’où
il est facile, du reste, de remonter au cas general. Soit (a, b ) -. d, et calculons

a’ et h’ seront premiers entre eux, puisque a d et b d le sont ; d sera done divisible

par Jeur produit, soit

et puis

En continuant ainsi, on finira toujours par arriver a un couple

car

On aura alors



et, pour le p. p, c. m.,

Les nombres  sont premiers entre eux, et, a’, ... , etant des diviseurs

~le «, b’, h", ..., des diviseurs de ~’, il est clair que les deux facteurs

sont premiers entre eux. Ensuite est premier avec chacun de ces facteurs,
car’

En prenant done

on aura ni =r AB, A et B seront premiers entre eux, puis A divise a et B divise h.
l’lus généralement, si l’on a = pq, p et q etant premiers entre eux, on pourra
prendre .

Si l’on suppose a et b decomposes en facteurs premiers, on verra facilement que

est le produit des puissances de nombres premiers qui figurent dans la decomposi-
tion de a avec des exposants plus grands que dans la decomposition de b, tandis
que est le produit des puissances de nombres premiers qui figurent aveclemême
exposant dans les decomposi tions de a et de b. Lorsqu’on a d(k) > 1, on obtient
Loujours deux solutions au moins, en prenant soit p -_.1, q = soit p = "J

r/ _ ~ . Mais, dans ce cas, il peut arriver que le probleme admet encore d’autres
solutions, et cela a lieu lorsque cl(k) est divisible par plus d’un nombre premier.



Mais, pour obtenir ces solutions, il faut absolument recourir a la decomposition
de en facteurs premiers : l’algorithme d’Euclide seul ne peut pas les faire

connaitre.

20. En jetant maintenant un coup d’0153il sur le chemin que nous avons par-

couru, on reconnaitra que la theorie de la divisibilite des nombres repose sur ce

fait, qu’étant donnes deux nombres a et b, un peut toujours determiner un nom-
bre m, tel que

Si l’on considere les nombres complexes a + bi(i = y, on peut établir une
relation analogue, et de la decoule, pour ces nombres, une théorie de la divisi-
bilité parfaitement analogue a celle des nombres ordinaires. Nous aurons a revenir
plus tard sur cette question et d’autres de la meme nature.

Les propositions les plus essentielles sur la divisibilite des nombres se trouvent
dans les Elements d’ Euclide,. notamment on y trOl1ve : l’algorithme pour la

recherche du plus grand commun diviseur, la proposition qu’un produit ne peut
, etre divisible par un nombre premier, a moins qu’un des facteurs ne le soit, la

proposition qu’il y a un nombre infini de nombres premiers.



CHAPITRE Il.

~ 

DES CONGRUENCES.

1. Si la difference des deux nombres a et b est divisible par un nombre «

et b sont dits congrus par rapport a le diviseur M est appelé le module; a et
b sont résidus l’un de suivant le module Pour exprimer cette relation,
on ecrit, d’après la notation de Gauss,

cette formule est une congruence. ll y a avantage, dans cette théorie, a admettre,

pour a et b, non seulement les valeurs entières positives, mais aussi les valeurs
entieres negatives.

Si r est le reste de la division de a par M, on a

le reste r est ordinairement un des nombres

mais on pourrait le prendre aussi entre - ~~ et -~- ~~~; d’ou il suit que tout nombre
a un resida qui ne surpasse pas en valeur absolue la moitié du module. C’est la

le résidu minimum.

2. Nous allons indiquer ici les propriétés les plus elementaires des congruences,
il sera a peine necessaire d’insister sur les demonstrations. Si l’on n’indique pas
le module, il sera sous-entendu que ce module est toujours M.

Si l’on a

on aura ainsi

De meme, on aura

et plus généralement



Ainsi

etant un polynome a coefficients entiers, on aura

3. Supposons qu’on ait

ce qui signifie que - b) est divisible par M; soit

m d(a - b) sera divisible par .? , et, puisque m d e!. , sont premiers entre eux, a - b
sera divisible par , : done .

On peut donc diviser les deux membres d’une congruence par un nombre a

condition de diviser en meme temps le module par le p. g. c. d. de in et M. On
aura a appliquer cette proposition le plus souvent dans les cas particuliers sni-

est premier avec M, alors d = I; 20 nl divise alors d = In.

Supposons encore qu’on ait

En multipliant la seconde congruence par a’, il vient, en faisant aLtention a la
premiere,

done

ou d = (b, M) .- (a, M), car il est clair que des nombres congrus ont même

p. g. c. d. avec le module.

Si deux nombres sont congrus suivant le module M, ils scront congrus encore
en prenant pour module un diviseur de M. Si deux nombres sont congrus suivant
plusieurs modules A, B, C, ..., L, ils seront, congrus encore en prenant pour mo-
dule le p. p. c. m. de ces nombres



Le cas particulier le plus interessant est celui ou les modules A, B, C, ..., L sont
premiers entre eux, alors M = ABC...L.

4. On peut distribuer l’ensemble des nombres entiers en M classes, en consi-
derant deux nombres comme appartenant a la meme classe ou non, selon qu’ils
sont congrus ou non suivant le module M. En prenant dans chaque classe un
nombre, on obtient un groupe de nombres, qu’on appelle un système complet
de résidus. Un tel système jouit évidemment de la propriété qu’un nombre quel-
conque est congru a un et a un seul de ses nombres. Un nombre quelconque a

pris dans une classe peut être considéré comme représentant la classe entiere qui
se compose des nombres a + = o, + 1, ± a, + 3, .... On designe ainsi
souvent la classe par un quelconque des nombres qu’il renferme, et l’on peut ainsi

remplacer un nombre par un nombre congru.
Tous les nombres d’une classe ont le meme p. g. c. d. avec le module M, et ce

p. g. c. d. pent être un diviseur quelconque d de M.
On peut, d’après cela, discribuer les classes en familles, en considérant diverses

classes comme appartenant a une meme famille, si elles ont le meme p. g. c. d.

avec le module lfl.

Combien de classes ; a-t-il qui sont premieres avec NI? Il est clair qu’il y en a
autant qu’on trouve parmi les nombres

des nombres qui sont premiers avec M. Nous designerons ce nombre par 9(M),
en sorte que ,

Le nombre des classes qui ont avec M le p. g. c. d. d est évidemment le nleme

que celui des nombres du groupe (A) qui ont d pour p. g. c. d. avec faudra

done chercher parmi les nombres

Or, pour que Ircl, = d, il faut et il suffit que k soit premier avec ~~ ~ . Le nom-
bre cherché indique done combien, parmi les nombres

il y en a qui sont premiers avec ce nombre est 03C6( d 
.



LI y a ainsi 03C6 ( 7 ) classes qui ont d pour p. g. c. d. avec M, Ie nombre total des
classes étant M, on a

d parcourant tous les diviseurs de M. Il est clair qu’on peut ecrire cette relation
plus simplement ainsi

11 est facile de deduire de la la valeur de ~(M).

5. Supposons plus généralement que deux fonctions numeriques f et F soient
liées par la relation

d parcourant tous les diviseurs de M. Nous allons exprimer réciproquement la
fonction f au moyen de F.

Soit

la decomposition de M en facteurs premiers. On obtient 1’ensemble des diviseurs d
de 31 en developpant le produit

et nous pouvons ecrire d’une maniere symbolique

On doit developper le produit du second membre et remplacer ensuite chaque
terme d par f (dO. En remplaçant M par M;p (donc x par 03B1 - y? on aura

En retranchant, il vient, si l’on fait usage dans le premier membre de la meme
notation symbolique



En remplaçant M par M et retranchant, il vient ensuite

En continuant ainsi, on obtient finalement

c’est repression cherchee; on peut 1’ecrire plus explicitement

On rencontre souvent des fonctions numeriques qui jouissent de la propriété

lorsque a et b sont premiers entre eux (voir Chap. I, n° 14). Il est clair qu’une
telle fonction est parfaitement determinee connait sa valeur pour les

puissances des nombres premiers, mais ces valeurs-la peuvent être prises arbi-
trairement.

On voit facilement que, si la foncLion f qui figure dans la relation (i) jouit de
cette propriété (3), on aura aussi, a et b étant premiers entre eux,

et l’on reconnait maintenant par les formules (2) ou (2’) que, réciproquement, si
deux fonctions f et F sont liées par la relation (y, et si la fonction F satisfait a
la relation (4), la fonction f satisfera a la relation analogue (3).

Le theoreme, souvent utile, de ce numero est du a M. Dedekind (Journal de

Crelle, t. 54, p. 21). On 1’etablit ordinairement par une simple verification. En

exprimant au second membre de ( ~’) partout la fonction F par la fonction f, on
constate qu’il ne reste que le terme f(M): tous les autres termes se détruisent.

6. En revenant au cas particulier de la fonction ~.~(!’~I), F(1~1) = lfT, on trouve

Ayant = lorsque cc et b sont premiers entre euY, on peut remar-



quer que, a étanl impair, on a, a cause de c~ ( 2 ) = r ,

A l’exception = ~.~ ~2) = I, est toujours pair.

7. Dans la theorie des nombres, on se propose, sur les congruences, des pro-
hiemes analogues a ceux qu’on traite en Algehre sur les equations.

Ainsi on pose la question de trouver les nombres x qui satisfont a une cun-

gruence, telle que

on le premier membre est un polynome a coefficients entiers en x.
Si l’on satisfait a cette congruence en faisant x = ro, xo est une racine de la

congruence. Il est clair que tout nombre congru a suivant le module l~r satis-

fera alors aussi a la congruence, mais on a l’habitude de ne pas considérer comme
dinerentes ces solutions. Aussi, si l’on dit qu’une congruence admet k racines,
cela veut dire k racines incongrues, ou encore, ce qui revient au même, l’en-
semble des nombres qui satisfont a la congruence se repartit en k classes. ll

est clair, d’après cela, qu’on obtient toutes les racines d’une congruence, en es-
sayant successivement tous les nombres d’un systeme complet de residus, par
exemple les nombres

mais ce moyen devient impraticable des que M est un peu grand.
Si tous les coefficients du polynome f (x) sont divisibles par la congruence

cst identique, un nombre quelconque y satisfait. La congruence est impossible
evidemment lorsque tous les coefficients de f (x) sont divisibles par M, a l’exception
du terme independant de x.

Il est clair, du reste, qu’il est permis de remplacer un coefficient quelconque de
f(x) par un nombre congru suivant le module M.

8. Considerons la congruence du premier degre

Supposons d’abord a premier avec M. Pour voir si la congruence admet des ra-
cines, mettons pour x successivement les valeurs

ou, si l’on veut, valeurs quelconques formant un systeme complet de residus.
Il est clair que les valeurs correspondantes de ax + b sont incongrues, car la re-



lation

exige qu’on ait ax i ay ou encore x - y, puisque a est premier avec M.
Les valeurs de ax + b forment donc egalement un. système complet de residus,

et, parmi ces valeurs, il y en a donc une qui est congrue avec o. La congruence
proposee admet donc une racine.

Supposons maintenant (a,1~I~ = d. Dans ce cas, il est clair que b doit etre di-
visible par d; dans le cas contraire, la congruence est impossible evidemment.
Admettant donc que b soit divisible par d, la condition imposee à x revient a
celle-ci

Puisque a et M sont premiers entre eux, nous savons qu’il existe une seule racined d

par ra pp ort au module M . d . Soil xo cette racine, l’ensemble des valeurs de x qui sa-

tisfont a la question est comprise dans 1’expression

Mais il est clair que, suivant le module M, ces nombres se repartissent en d classes,
car les d nombres .

sont incon g rus suivant le module M, ~ mais un nombre quelconque est

congru, suivant le module 11~, avec un de ces d nombres.

THÉORÈME I. - La congruence

est possible seulement lorsque best divisible par d = (a, M). Si cette condition
se trouve satisfaite, elle admet exactement d racines.

On voit que cet enonce renferme aussi le resultat particulier qui a lieu pour
d,=1. .

9. Il nous reste a donner une methode pour trouver effectivement, sans trop de

peine, la racine de la congruence



tl est clair que nous pourrons nous borner au cas où a et M sont premiers entre
eux, puisque Ie cas general se ramene immediatement a ce cas particulier. Ensuite
iI suffira de considerer la congruence

car, la racine de cette congruence étant obtenue, il suffira evidemment de la mul-

tiplier par - b pour obtenir la racine de la congruence proposee. Le probleme
revient donc a satisfaire a 1’equation indéterminée

On developpe en fraction continue Ie rapport M: a ou, ce qui revient au meme,
on applique a a et M l’algorithme d’Euclide. On peut alors exprimer de proche en
proche comme fonctions lineaires homogenes de a et M tous les restes obtenus et
finalement Ie p. g. c. d. lui-meme qui est i. Comme ce mode de calcul est encore

utile dans d’autres circonstances, nous allons l’expliquer avec details.
Supposons qu’on ait une suite de nombres N, N,, N2, ... lies par les relations

alors on peut exprimer successivement N par N, f et N2, par N2 et N3, ...,

Introduisons un symbole

determine par les relations

alors on aura generalement



Il est clair qu’on aura aussi

et, si l’on substitue ces valeurs dans la premiere relation (i), on obtient une

expression de N par N~ qui doit etre identique avec (3). D’ou l’on conclut

ce qui donne un nouveau moyen pour obtenir par recurrence la valeur du symbole.
A l’aide de ces relations (a) et ~ ~ ~, on demontrera facilement cette formule

En joignant a 1’equation (3) celle-ci

on a deux equations; d’ou l’on pourra tirer la valeur de Nk en function de N et
N,. Mats cette valeur s’obtient aussi directement, car on obtient de proche en

proche

Généralement,

En comparand cetLe valeur de Nk avec celle tiree de (3) et (6), on a

Ce sont la les formules dont nous aurons besoin; nous en donnons encore quelques
autres qui sont quelquefois utiles. On a

Substituant ces valeurs dans (3), on a l’expression de N par Nk+l et 

expression qu’on peut obtenir aussi en remplacant k par ~~ + l dans la meme for-
mule. On trouve, par comparaison,



Enfin nous ajouterons la relation suivante

qui, pour /’== ~ = i, reproduit la formule (8) et, pour s = o, la formule (g).

10. Pour appliquer ces relations a la solution de 1’equation

on prendra N = M, N, ~ a. Comme ces nombres sont premiers entre eux, on
finira par trouver i, == o, de maniere qu’on ait

On peut done prendre

Si l’on fait le calcul de la maniere ordinaire, le dernier quotient ak est au moins
~ 

egal a 2, et l’on peut le remplacer par les deux quotients ak- i et i, de maniere
que le nombre total des quotients est a volonte pair ou irnpair. Il est a peine
besoin de dire que

On voit sans peine que, xo, y0 étant une solution particulière de

la solution la plus generale sera renfermee dans les formules

ll 1 est clair aussi que 1’equation indéterminée



sera impossible si c n’est pas divisible par d = (a, b ). Mais, si cette condition est
satisfaite, il y a toujours une infinite de solutions. Soit xo, yo une solution par-
ticulière, la solution la plus générale sera

11. Nous allons considérer maintenant le problème suivant, qui se rencontre
très souvent : :

Trouver lOllS les nombres x qui satisfont acc systeme sui()anl de n con-

gruences

Soit M le p. p. c. m. des modules A, B, C, ..., L, il est clair que, si la valeur

x = xo satisfait aux conditions, il en sera de même de toutes celles comprises dans
la formule

Reciproquement, si 1’on a deux solutions xo et x,, la difference x~ doit etre

divisible par M, puisqu’elle est divisible par A, par B, ..., par L. Il resulte de la

que, parmi les nombres 
-

formant un système complet de residus pour le module M, il y en aura tout au

plus un qui satisfait aux conditions, et nous pouvons dire :
Si le probleme propose adrnet des solutions, ces solutions seront toutes ren-

fermees dans la formule

ou a est un nombre determine de la serie o, i, ...,1VI -1.

Mais, si aucun des nombres o, i, ..., M - i ne satisfait au probleme, on sera

assure que le probleme est impossible et n’admet aucune solution.

Supposons maintenant d’abord que A, B, C, ..., L soient premiers entre eux,
alors ABC... L. Si l’on divise maintenant chacun des nombres

par A, par B, ..., par L, on obtiendra en tout M systemes de 
résidus qui seront

tous différents. Mais, d’autre part, on ne peut donner a a que A valeurs, B va-

leurs, etc., en sorte que le nombre total des systèmes de residus possibles est M.



En divisant done les nombres

par A, B, C, ..., L, on obtiendra effectivement toas les systèmes possibles de re-
sidus, et chaque système une seule fois.

THÉORÈME lI. - Les modules A. B, C, ..., L étant premiers entre eux, le

des congruences

admet toujours des solutions, renfermées lOlltes dans la formule

12. Lorsque les modules A, B, C, ..., L ne sont pas premiers entre eux, est

plus petit que le produit A.BC... L.
Or il y a toujours A, B, C, ..., L systemes de residus possibles (si l’on prend

x, ~, y, ..., ~, arbitrairemenL). Mais le probleme ne sera possible que si le système
x, ~3, ~~, ..., X se trouve parmi les M systemes de residus qu’on obtient en divisant t
les nombres

par A, B, C, ..., L. On voit done que, dans ce cas, le probleme ne sera pas pos-
sible toujours : il faudra, pour cela, que x, ~, ..., i, satisfassent a certaines con-
ditions que nous enoncerons plus bas. Mats toujours, lorsque le probleme est

possible, la solution est donnee par une formule

d3. Revenons au cas ou A, B, C, ..., L sont premiers entre eux pour voir com-
Jnent on obtiendra la solution x - a 

Puisqu’on doit (modA), on posera

et il viendra

La premiere congruence donnera

on substituera cette valeur dans les autres congruences, etc.



On remplacera cette méthode souvent avec avantage par la suivante indiquée
par Gauss.

Determinons d’ahord les nombres auxiliaires a’, N’, ..., ~,’ par les congruences

alors on aura

On verifie, en effet, immediatement que cette valeur de x satisfait aux congruences
proposees, et il est facile de s’apercevoir que cette methode revient a resoudre la
question successivement dans les cas particuliers ou l’un des residus x, (~, ..., ),

est 1 et ou tous les autres sont o. On compose ensuite la solution generale avec
ces solutions particnlieres. 11 est clair que cette méthode sera surtout avantageuse
lorsqu’on aura a resoudre le meme système pour diverses valeurs des residus 
(3, ..., a, les modules A, B, ..., L restant les memes. Les memes nombres x’,
~’, ..., ~’ servent alors pour les diverses solutions.

14. Revenons main tenant au cas general ou les modules A, B, ..., L ne sont
pas premiers entre eux. On peut d’abord poser comme tout a l’heure

et la seconde congruence deviendra

11 faudra done que 03B2 - 03B1 soit divisible par (A, B) = d. Si cette condition n’est pas
satisfaite, le systeme n’admet aucune solution. Mais, si elle est satisfaite, on aura

et, par consequent



et cette congruence remplace maintenant les deux premieres x - x 

(modB). On remarquera que le module -"y- est bien Ie p. p. c. m. de A et B.
On pourra combiner maintenant la congruence

avec la troisieme

et. ainsi de suite. Il est clair qu’on arrivera de cette facon toujours, soit à s’assurer
que le problème est impossible, soit a trouver la solution sous la forme

si elle existe.

Cette methode, toutefois, a 1’inconvenient de ne faire souvent eonnaitre 1’ltll-

possibilité du probleme qu’après de longs calculs qui ont ete inutiles alors. On
ne peut remedier a cet inconvenient qu’en donnant Ie moyen de reconnaitre a
priori la possibilité ou l’impossibilité du problème. C’est la l’objet du théorème
suivant. : :

THEOREME III. - Pour que le système des congruences

admette des solutions, il faut et il suffit que les différences

soient di,,’isibles respectivement par

Que ces conditions sont necessaires, cela est clair d’après ce qui precede. Pour
montrer qu’elles sont suffisantes, nous supposerons que la proposition est exacte
dans le cas de n - i congruences, et ferons voir qu’elle est alors exacte aussi dans
le cas de n congruences. Puisqu’on sait que, dans le cas n = 2, le theoreme est
vrai, il sera ainsi démontré généralement.
En la proposition etant vraie pour n - i congruences, on pourra rem-

placer les n - i premieres congruences par celle-ci

et le systeme complet par



Ici M’ ~ A, B, C, ..., K ~. Or, d’a~res notre hypothese,

son divisibles par

respectivement, et il est clair que

sont divisibles par A, B, C, .... K respectivement, done aussi par (L, A),
(L, B), ..., (L, K) respectivement. On par la que la difference 

’ ’

est divisible par (L, A), par (L, B), ..., par (L, K) et, par consequent) aussi par
le p. p, c. m. de ces nombres qui est (L, (Chap, T, n° il). Mais cette divisi-
bilite de 03BB - t par est precisement la condition necessaire et suffisante
pour que les congruences (1) et par la aussi les congruences proposées admettent
une solution.

On peut demontrer ce theoreme aussi en faisant voir qu’il y a exactement
NI systemes de residus (X, ~, . , ., ~ qui satisfont aux conditions exigees. 

15. On peut reduire le cas general au cas ou A, B, ..., L sont premiers entre
eux. Pour cela, mettons le p. p. c. m. M des modules sous la forme

où A’, B’, C’, ..., L’ sont premiers entre eux et divisent respectivement A, B,
C, ..., L (Chap. 19).

Il est clair que les solutions du problème propose saLisferont aussi aux con-
gruences

mais ce dernier système admet, nous le savons, toujours des solutions renfermees
dans la formule

Si done on s’est assure prealablement que le probleme propose admet des solu-
tions, ces solutions sont encore renfermees dans la formule precedente. Mais, si

l’on ne savait pas si oui ou non le système propose admet des solutions, cette va-
leur pourrait ne pas satisfaire aux conditions imposees, qui se-
raient alors incompatibles.



Considérons, par exemple, le système

On a ici M = 23. 32. 5 . ~ , i r .1 g = 526 G8o et ABCD : M - 44 ~ . Don c, si les
residus 3i, 22, 50, 33~ avaient ete pris au hasard, il aurait qu’une chance
sur 44 ~ i que le probleme soit possible. 11 convient done de s’assurer d’abord si le
probleme est possible ou non. Or, les nombres

etant divisibles respectivement par

le probleme est possible. La decomposition de M

permet maintenant de remplacer les congruences donnees par celles-ci

En appliquant maintenant la methode de Gauss, les nombres auxiliaires x’, ~~,
y’, 03B4’ se déterminent par les congruences

d’ou

et, finalement,



’~~. Soient

les 03C6 (a) nombres premiers avec a et ne surpassant pas a,

les ? (b) nombres premiers avec b et ne dépassant pas b,

les 03C6 (ab) nombres premiers avec ab et ne surpassant pas ab. Il est clair clue
tout nombre y est aussi premier avec a et avec b, et sera par consequent con-
gru avec un des nombres x suivant le module a, et congru avec un des nombres
suivant le module b. Mais, si nous supposons maintenant a et b premiers entre
eux, nous savons aussi qu’en prenant arbitrairement un des nombres 03B1 et un

des nombres ~, il y a toujours au-dessous de ab un nombre et un seul qui leur
sera congru suivant les modules a et b, respectivement ; et ce nombre, etant pre-
inier avec a et avec b, sera premier avec ab et figurera done parmi les nombres v.
Ensuite deux nombres v, y’ donnant toujours deux systemes de residus différents,
on conclut

C’est la relation que nous avons deja rencontrée (nO 6) et qui conduit imine-
diatement a la determination de la fonction c?, car on voit facilement que

17. Considérons maintenant une congruence quelconque

et supposons

les facteurs A, B, C, ..., L étant premiers entre eux.
Il est clair que chaque racine de la congruence (i) satisfera aussi aux con-

gruences

Donc, si une de ces dernieres congruences n’admet pas de racines, il en est de
même de la congruence (t).



Soient x une racine de (mod A), une racine de f (x) ~ o

(modB~, etc., enfin À une racine o (modL).
Alors on saura trouvertonjours un nombre t, satisfaisant aux congruences

et ce nombre t est parfaitement determine aux multiples de M près.
Mais il est clair qu’on aura

done aussi f(t) - o 
On conclut de la que Ie nombre des solutions de la congruence (i) est égal au

produit des nombres des solutions des congruences (2).
On peut evidemment prendre pour A, B, ... , L des puissances de nombres

premiers.

18. On comprend bien, d’après ce qui precede, que dans la théorie des con-

gruences de degre superieur, on s’est surtout occupe des cas ou le module est un
nombre premier ou une puissance de nombre premier. On ne connaît presque
aucun theoreme general sur les congruences par rapport a un module compose.

Ici, ou il s’agit seulement de donner Jes premiers elements d’une theorie que
nous devons developper plus tard, nous nous bornerons a considerer le cas d’un
module premier. Lagrange a obtenu dans ce cas quelques propositions tres

simples, mais fondamentales.
Considerons donc la congruence

I) etant un nombre premier. Le degre n de cette congruence est le degre de la

plus haute puissance de x qui figure dans f(x ), avec an coefficient non divisible
Du reste, il n’y aurait aucun inconvenient a supposer ce coefficient egal

al i, car, s’il est a, on pourra toujours multiplier la congruence par un nombre b
tel que ab == i La congruence obtenue est evidemment equivalente a la
congruence proposee.

Soil maintenant x = x une racine de la congruence. En divisant ! f (x~ par
;r - 0~, on aura

f, (x) etant un polynome du degre n - i ~a coefficients entiers.



La congruence donnee peut done s’écrire

ou bien, puisque par est divisible 

Si la congruence proposee admet encore d’autres racines , y , ..., on doit
avoir

donc f, (03B2) = (y) === o, etc., puisque, par hypothèse, 03B2 2014 03B1, 03B3 2014 a ne sont

pas divisibles par p. On voit donc que ces racines i~, y, ... sont aussi racines de
la congruence

qui est du degré n - r . .
La congruence du premier degré admet toujours une racine : on peut donc con-

clure qu’une congruenee du second degre admet tout au plus 2 racines, une con-
gruence du troisième degré tout au plus 4 racines ; généralement on peut enon-
cer le

THÉORÈME IV. -- Une congruence de degré n rapport à ccn module

premier admet tout au plus n racines.

Et nous pouvons ajouter encore :

THÉORÈME V. - Les racines de lcz congruence de n

étant 7, 03B2, 03B3, ..., , 03BB, on a identiquement

, f, (x) étant mt polynôme en x tel que la congruence

n’admet aucune racine.

On en dedait encore facilement le

THÉORÈME VI. - Si la congruence de degré n



admet /? racines et qu’ on a

alors les congruences

des degrés n, et n2 (n1 + n2= n) admettront respectivement n, et ucc-

cines. 
°

19. Pour donner, des a present un exemple de la fecondite de ces principes,
considerons avec Lagrange le polynôme

En changeant x en x -~-1, on aura aussi

Or, il est clair que ces denx polynomes sont congrns entre eux suivant le mo-
dule p, que nous supposerons premier, car leur difference est

En écrivant done que les coefficients des mèmes puissances de x sont congrus
(modp), on a

On remarque ici que les coefficients du binome p, , p ~~’ ~ I~ ~ I’ (~ - I) " " I 1.2 
.. 

I,z... ~~ l~ >
sont tous des entiers divisibles par p : : on peut les négliger. La seconde con-
gruence montre alors que A, - o modp, ensuite la troisième que o modp, etc.,
jusqu’a 1’avant-dernierey qui montre que = o. Donc



et la derniere congruence donne ensuite

Si l’on se rappelle la signification de Ap_,, on a le

THÉORÈME DE p étant un nombre 

toujours divisible par p.

Ensuite nous avons d’après (y, (2) et (3) la congruence identique

Mais, parmi les p nombres consecutifs x, x + i, ..., x + I) -1, il y en a tou-
jours un divisible par p; done

est toujours divisible par p. En supposant x = a non divisible par p, on a le

THÉORÈME DE FERMAT. - a étant un nombre entier non divisible par l.o

est toujours divisible par p.

Autrement, la congruence (mod p) admet les p - ~ i racines

I, r~ , 3....~-I. .
Le theoreme de Fermat est un des theoremes les plus importants de la theorie

des nombres; nous Je retrouverons dans le Chapitre IV, ou nous Lraiterons parti-
culierement des résidus des puissances et de la theorie des congruences hi-

nomes.

20. Les systèmes de plusieurs congruences du premier degre a plusieurs in-
connues se présentent maintenant naturellement a notre attention. mais nous con-
sacrerons a ce sujet important le Chapitre 11I tout entier. Ici nous nous borne-
rons a traiter une question élémentaire et dont on a souvent besoin. La theorie
des equations indeterminees est liée evidemment tres etroitement a la theorie des
congruences; nous discuterons ici l’équation indeterminee

a,, ..., et ic étant des nombres donnés, x,, x2, ..., étant des in-

connues qui doivent avoir des valeurs entieres. Il est clair d’abord que u doit etre



divisible par Ie p. g. c. d.

..

Mais, pour que d ait une valeur déterminée, il faut supposer que les coeffi- 
,

cients a2, .. ,, ne soient pas tous nuls. Ce sera la la seule restriction a

laquelle nous soumettons les donnees du probleme. Maintenant, si u est divisible
par d, le problème admet toujours des solutions. Cette proposition est vraie dans
le cas n == i~ et il est tres facile, en partant de la, et. a l’aide d’une induction, de
m ontrer qu’elle est vraie generalement.

. Mais nous suiirons une autre voie qui nous donnera en meme temps toutes les
solutions du probleme. Mais ici une explication est necessaire, si les valeurs

satisfont a la relation (i); de meme que les valeurs

ces deux solutions seront considerees comme distinctes si les différences

ne sont pas toutes nulles. Il importe de bien observer cette convention; ainsi,
meme dans le cas ou = o, les solutions

seront considerees comme distinctes, tant que k n’est pas nul.
Les coefficients a,, ..., n’étant pas tous nuls, on supposera que a, n’est

pas nul. On pourra determiner alors deux nombres 03B1 et Y satisfaisant a la con-

dition

et ces nombres seront premiers entre eux, en sorte qu’on pourra ensuite deter-
miner deux nombres ~ par la condition

On pourra prendre du reste ~ == 2014 a2 : (a,, a2)’ J==-{-r~ : ; (a,, a.~); c’est la

une remarque dont nous profiterons tout a !’heure.



Posons

1’equation (i) deviendra

Il est clair que ces equations (i) et (2) sont equivalentes en ce sens, que si

J’une des equations est impossible, l’autre le sera; et que, si l’on connait une

solution de l’une de ces equations, on en deduira une solution de l’autre. A deux
solutions distinctes d’une de ces équations correspondent toujours deux solutions
egalement distinctes de l’autre.

Remplacons maintenant de la même manière les inconnues x’1 et X3 dans (2)
par deux nouvelles inconnues x’~ et x3, en posant

on obtiendra une transformee encore équivalente 

On peut continuer ainsi, en operant maintenant sur x’3 et x~~ etc. Apres n
transformations, on aura la transformee equivalente que voici

et Fon obtient les expressions de x,, ..., au moyen de substitutions suc-

cessives sous la forme 
’

Ces formules donneront toutes les solutions du prohleme, si l’on prend pour
x" x’2, x3, .. ,, x’n+1 toutes les solutions de (4). Mais on remarque que, si l’on

prend pour 03B2 et 03B4 les valeurs que nous avons indiquées plus haut, on a o.



En appliquant done toujours le meme precede, on aura aussi

Mais alors les solutions de (4) sont en evidence ; il faut évidemment que u soit
divisible par d, et l’on obtient toutes les solutions de (4) en prenant d,
eL en donnant a

tontes les valeurs de a -E- x.

VII. - On obtient toutes les solutions de l’équation indétermi-
née y), et chaque solution, une selllefois, en posant x(n)1 = ic; d dans les for-
mules (5) et en faisant parcourir a x’2, ..., x’n+1 toutes les valeurs enlières

de - x ~z + x.

On voit sans difficult[ qu’en procédant comme nous l’avons indiqué, les coef-
ficients a22, a33, ..., ont les valeurs suivantes :

21. Cette solution donne lieu a quelques remarques utiles. Il est clair qu’en
ajoutant les equations (5) apres les avoir multipliées par a,, ..., les

coefficients de x’2, x3, ... , s’annulent. On a ainsi des relations homo-

genes entree a2, ..., qui déterminent les rapports de ces quantités. En
supposant

on aura

Mais il est clair qu’on a

donc, generalement,



En muJtipliant donc, par exemple, la derniere ligne horizontale du determi-
nant D par d, on obtient un determinant dont les mineurs ont les valeurs a, ,

..., cc,t+, . 
On voit par la que L’on. peut toujours déterminer n lignes de

n + i nombres entiers telles qu’en ajoutant une (n + ligne et formant
le déterminant, les coefficients multipliés dans ce déterminant par les dif-
férents termes de la ( n + I)ième ligne, soient des nombres donnés.

C’est la une proposition donnée par Hermite (Journal de Cnelle, t. 40,
p. 264), qui en a fait une application tres importante.

22. En cherchant 1’expression de x~’L’, xi, ..., , xn~~ comme fonctions linéaires
de x,, x2, ..., xn+1, on trouve d’abord, a cause de b2 = b3 = ... = = o,

e t ensuite on reconnait que les expressions cherchees se presentent sous la

forme

Le determinant des fonctions linéaires au second membre est évidemment = I,
comme cela a lieu pour les équations (5), car les determinants des deux systèmes
sont réciproques et en meme temps des nombres entiers. Ces déterminants sont
donc, tous les deux, soit = + i, soit =- i , mais il est facile de voir que c’est la
premiere valeur qui a lieu.
On voit done que, etant donnes les nomhres entiers

on pourra trouver toujours n lignes de n + i nombres entiers, telles gce’en les
ajoutant à la ligne donnée, on obtient un determinant egal arc p. g. c. d. de
a ~ , az, , ... , .

C’est la un résultat dont on a souvent besoin. La question a ete posée et reso-
lue par Hermite (Journal de Mathématiques appliquées, t. XIV, 
Nous verrons, dans le Chapitre III, qu’il est extrêmement facile de déduire d’une
solution particulière de ce problème toutes les solutions possibles.



23. Il convient de considerer plus particutierement le cas u = o,

Si l’on a m solutions de cette equation

nous dirons que ces solutions sont indépendantes, lorsque les determinants de

degre m dont les elements sont puises dans cette matrice (et que nous appelle-
rons les determinants de ces solutions) ne sont pas tous nuls. Il est clair qu’nn
système .de solutions independantes se composera tout au plus de n solutions, car,
les nombres a,, an, ..., an+I n’étant pas tous nuls, le determinant de n + I
solutions est toujours nul. On peut representer une solution par un simple sym-
boJe (K, ) qui represente ainsi n + nombres entiers, pris dans un ordre deter-
mine.

On peut deduire des solutions (Ki), (K.y, ..., ’I une nouv.ell.e solution

dont les elements sont

Nous dirons qu’un systeme de solutions (li,), (K2), ..., (K,n) forme un

système fondanzental de solutions, dans le cas ou l’on obtient toutes les solu-
tions de 1’equation proposée, et chaque solution, une seule fois, en donnant à
t,, , t2, ..., tm toutes les valeurs entieres a + ~ dans [’expression

L’existence deces systèmes fondamentaux ne fait pas de doute ; nous avons
obtenu déjà (théorème VII) un système fondamental compose de n solutions.

THÉORÈME VIII. - Un système fondamental de solutions se compose néces-
sairement de n solutions indépendantes.

D’abord, les solutions qui composent un système fondamen tal K2, ...,
Km) sont nécessairement indépendantes. En effet, dans Ie cas contraire, on sait

existe une relation identique



les ilt, . , ., n’étant pas tous nuls. On obtiendrait done la solution

non seulement en prenant

mais encore en prenant

ce qui est contraire a la definition d’un systeme fondamental.
Et en second lieu, on a necessairement m = n. En effet, la supposition de //~  n

est inadmissible, car il en resulterait que m + i solutions quelconques ne pour-
raient jamais etre indépendantes. Or, Ie système fondamental que nous avons
obtenu se compose effectivement de n solutions independantes, dont les determi-
nants le n° 21) sont ak : d (k = 1, 2, , .. , n -t- i).

24. On s’assure facilement que jt solutions independantes quelconques
( K,), (K2), ..., (Kn) ne forment pas toujours un système fondamental de solu-
tions. Car si l’on cherche a représenter une solution quelconque par

on trouve bien toujours des valeurs déterminées pour t,, t2, ... , tu, mais ces

valeurs seront en general fractionnaires.

THÉORÈME IX. - Un système de n solutions indépendantes, tel que le plus
grand commun diviseur de ses determinants

est = I, forme icn fondamental de solutions.

En effet, si l’on cherche a représenter par

une solution quelconque b f, b2, ..., on obtient, pour determiner t,, t.>, ...,

tll, un système de n + I equations linéaires, mais ces equations sont compatibles
a cause de la relation

On pent donc, pour determiner les inconnues, faire abstraction d’une quelconque
de ces équations, et l’on obtient ainsi n + i systemes de n equations dont les de-
terminants sont M2, ..., La valeur de tk se pre sentera done sous la



forme

p1,p2, ..., étant des nombres entiers. Mais, si lavaleur fractionnaire irreductible

de tk est s divisera M2, ..., On a done s = I, c’est-à-dire tk a une

valeur entière et les solutions indépendantes (K1, K2, ..., Kn) forment un sys-
time fondamental, ce qu’il fallait démontrer. 11 est clair que les determinants de
n solutions indépendantes sont proportionnels a a,, a2, ..., (voir nO 21).

THÉORÈME X. -- Les déterminants d’urz système fondamental de solutions
sont, abstraction faite des signes,

Designons par (A,), (A2)’ ..., (An) le systeme fondamental particulier que
nous avons obtenu et dont les determinants sqnt ak ; d(k =1, 2, ..., n + I). Alors
(K, ), (K2), ..., etant un autre système fondamental, on aura

On voit par la qu’un determinant quelconque ak: d, du systeme fondamental
(A, ), (A2)’ ..., ~A,t) est egal au determinant t correspondant du systeme fonda-
mental (K, ), (K2), (Kn ) multiplie par

On a done necessairement 0 + 1 .

La liaison des divers systemes fondamentaux est evidente. On voit que chaque
système fondamental fournit une solution du problème que nous avons considere
dans le n° 21.

25. La methode la plus simple pour obtenir un systeme fondamental de solu-
tions se fonde sur la remarque suivante.

Supposons que l’un des coefficients a,, a2, ..., an+i soit égal a

par exemple an+i = d..A..lors il est clair que, pour avoir toutes les solutions de



l’équation indéterminée

il suffit de donner a x2, ..., rn des valeurs entieres quelconques et a la

valeur ( entière aussi) qui en est une consequence. On a donc, dans ce cas, immé-
diatement un systeme fondamental de solutions correspondant a la solution gene-
rale

Si le cas particulier que nous avons considere ne se presente pas, soit a, le

coefficient non nul, dont la valeur absolue est la plus petite. En posant

on aura une equation transformee

Par un choix convenable de k1, k2, ..., k,t on pent faire en sorte que le plus
petit coefficient de 1’equation transformee soit moindre que a, ou meme ne sur-
passe pas ; En continuant ainsi, on tombe finalement sur une equation dont
un des coefficients est d et dont on peut ecrire immediatement un système fon-
damental de solutions auquel correspondra un systems fondamental de solu-

tions de l’équation proposee. Cette methode, qui s’applique également a

l’équation

se trouve dans un Mémoire posthume d’Euler..Jacobi l’a rappelée a l’attention des
geometres dans un Mémoire egalement posthume (Journal de Crelle, t. 69, p. 2 i).

26. Les nombres a, b, c, ..., l etant premiers entre eux et

nous savons que Ie plus grand commun diviseur des nombres " ? 7; ? ’ -’? y est

= i. N étant un nombre quelconque, on pourra donc toujours satisfaire a l’équa-
tion



c’est-a-dire on aura

On verra facilement que la fraction N abc...l peut se mettre d’une seule ma-

niere sous la forme

E etant un entier positif ou négatif et

La solution de 1’equation indéterminée ax 2014 My =1 I a ete donnée en Europe,
pour la premiere fois, par Bachet de Méziriac (Problèmes plaisants et délectables,

qui se font par les nombres. 2e edition; ; I624. . 5e edition, par Labosne; I884).
Les anciens géomètres hindous, Bhascara et Brahmegupta connaissaient aussi

déjà la solution de ce problème.
Le problème du n° 11 se trouve trait£ complètement dans d’anciens Livres d’A-

rithmétique chinois. On y trouve non seulement la méthode de Gauss (n° 13),
mais aussi Ja reduction du cas general au cas oil les modules sont premiers entre
eux ( n° ~~). On peut voir sur cette question

BIERNATZKI, Journal de Crelle, t. 52.

J. BERTRAND, Journal des Savants, 1869..
MATTHIESSEN, Journal de Crelle, t. 9i . .

La fonction a ete considérée pour la premiere fois par Euler. Les 
moires d’Euler sur l’Arithmétique ont ete réunis en deux volumes (Leonhardi
Euleri Commentationes arithmetic0153 collect0153. Petropoli , I849). Nous citerons
toujours cette edition; la fonction 03C6 se rencontre dans le Mémoire Theoremata
arithmetica nova methodo demonstrata, 1759 (tome 1, p. 274). La démonstra-
tion d’Euler est reproduite dans le tome II de l’Algèbre de Serret. Le théorème

a Gauss (Disquisitiones arithmetic0153, 1801, art. 39; tome I
des OEuvres complètes).

Les théorèmes de Lagrange sur les congruences se trouvent dans le Mémoire :
Nouvelle méthode pour résoudre les problèmes indéterminés en nombres en-
tiers (OEuvres, t. II) et la demonstration des théorèmes de Fermat et de Wilson,
OEuvres, t. III, p. 425. . 

’

La consideration d’un système fondamental de solutions d’une ou de plusieurs
equations indéterminées est due a H.-J. Stephen Smyth (Philosophical Tran-
sactions of the Royal Society for the year I 86I; vol.151 ).



Nous indiquerons ici les principaux Ouvrages d’un caractere general sur la
theorie des nombres : ;

GAUSS, Disquisitiones arithmetic0153 (OEuvres, t. I). Il y a une traduction française par
Poullet-Delisle.

LEGENDRE, Théorie des nombres, 3e edition.

Report on the theory of Numbers (British Association for the advancement .

of Science, I859, 1860, I86I, 1862, 1863, I865).

(7esL la un resume extremement important sur toutes les parties de la théorie
des nombres auquel nous aurons a emprunter beaucoup de choses.

LEJEUNE-DIRICHLET, Vorlesungen über Zahlentheorie, herausgegeben von R. Dedekind.
Dritte Auflage, 1879.

SERRET, Traité d’Algèbre, 5e edition, t. II.



CHAPITRE III.
EQUATIOUS LINÉAIRES INDÉTERMINÉES, SYSTÈMES DE CONGRUENCES

. LINÉAJRES.

1. Considérons le système des congruences

le determinant forme avec les coefficients des inconnues, puis
xik le coefficient de aik dans 0. On obtient immédiatement

Supposons que 0 soit premier avec Ie module M, alors cette dernière relation
determine une valeur unique de Xi par rapport au module 1~1; et ensuite il est fa-
cile de voir que les valeurs de x,, x2, ..., x,t ainsi obtenues satisfont bien aux

conditions proposees. En effet, on trouve

et, puisque 0 est premier avec on peut diviser par 0. 
Le système des congruences admet done une solution unique dans le cas parti-

culier que nous considerons. On peut ajouLer que les valeurs de x,, ..., x,t

satisf eront encore a la relation

SL 

En effet, il est facile de voir que cette derniere congruence peut s’écrire sous
cette forme

2. Les resultats precedents sont ceux qui s’offrent immediatemeent lorsqu’on
poursuit l’analogie evidente qui existe entre la theorie des coneruences et la



theorie des equations. Mais si 0394 n’est pas premier avec M, une etude pl us appro-
fondie est necessaire. Elle a ete faite pour la premiere fois par M. H.-J.-S. Smith,
et nous allons exposer sa theorie. Les considerations suivantes interviennent

non seulement. dans des questions de la théorie des nombres, mais elles sont en-
core utiles dans beaucoup de theories d’anaiyse pure; aussi plusieurs résultats
isoles ont ete ohtenus anterieurement par d’auLres geometres.
Nous commencerons par étudier les equations lineaires indeterminees, mais i1

convient d’abord de fixer le sens de quelques expressions dont nous ferons usage.
En adoptant une expression introduite, croyons-nous, par 1VT. Sylvester, nous

appellerons matrice un Tahleau de forme rectangulaire

contenant quantites donnees, et nous dirons que cette matrice est dll type
n X m. Si l’on a un systeme quelconque d’équations linéaires, les coefficients des
inconnues constituent la matrice de ce système. Si les equations ne sont pas ho- .

mogenes, on peut ajouter a cette matrice une derniere colonne formee par les

termes connus. On obtient ainsi la matrice complétée du système. Les mêmes

expressions s’emploieront dans le cas d’un systeme de congruences. Les elements
aik seront toujours des nombres entiers.

Les determinants d’une matrice sont les determinants de degre le plus eleve
que Fon peut former avec les lignes ou les colonnes de la matrice ; ainsi, dans le
cas ~2, ces determinants renferment n2 elements et leur nombre est

Le plus grand diviseur d’une matrice est le plus grand commun diviseur des
determinants de cette matrice, en supposant que ces determinants ne soient pas
tous nuls. Dans le cas n1 = n, ce plus grand diviseur est le determinant meme du

systeme des n2 elements.
Nous designerons une matrice souvent par Ie symbole

et, dans le cas ou elle est du type n X n, A sera le determinant. Deux matrices

des types m x + n) et n x (/7/ + n) sont de types complémentaires. 11 est



clair que ces matrices ont le meme nombre de determinants, et l’ on peut faire

correspondre a chaque determinant de II un determinant de ~ B ~ et récipro-
quement, de la maniere suivante.

En ecrivant la matrice ~B~ en dessous de la matrice obtient une ma-

trice

qui sera du type (nz + n ) x (n2 + n) et a un determinant de ~ on fera cor-
respondre le determinant de If B ~ avec lequel il se trouve multiplie dans le deter-
minant des (ni + n~? elements

Souvent il a pas d’interet a faire attention au signe d’un determinant d’une
inatrice, mais dans le cas actuel il convient de faire en sorte que le produit des
determinants correspondants se retrouve avec son signe dans le determinant des
+ n)2 elements.

3. Les determinants d’une matrice ne sont pas independants; il existe en ~e-
neral un grand nombre de relations identiques entre eux. Nous allons nous rendre
compte d’abord de la nature de ces relations et du nombre des determinants qui
sont independants. On pourra considerer dans ce numero les elements de la ma-
trice comme des quantites arbitraires. Considerons la matrice

du type /7Z X + ~a ). Le nombre des determinan ts est

mais nous allons montrer qu’il y en a seulement mn + t qui sont indépendants.
Tous les determinants peuvent s’exprimer a l’aide de mn + i d’entre eux.

Soit

Ie determinant forme par les In premieres colonnes de la matrice. Le determinant t
obtenn en remplacant dans A la colonne par la ?n colonne de la matrice
sera designe par 0394i,m+k. On déduit ainsi de 0394 nzn nouveaux determinants, i



variant de i à rn, lt de i a n. On pourra les disposer dans le Tableau

Les mn +I determinants 0, sont independants; on peut trouver une
matrice pour laquelle ces determinants ont des valeurs données d’avance. Prenons
d’abord arbitrairement les elements aik de ~, avec la seule restriction de vérifier
la relation (2). On a ainsi les nz premieres colonnes de la matrice. On peut de-
terminer ensuite la rn colonne par la condition que les determinants

0394i,m+k(i = I, 2, .... m) prennent des valeurs données. En effet, on obtient ainsi
nt. equations lineaires pour determiner

Le determinant de ce systeme est a"Z-~, mais, en le resolvant, on trouve simple-
ment

La verification de ces valeurs est du reste immédiate, et l’indépendance des
+ i determinants A, est manifeste.

Considérons maintenant un autre determinant d’ de la matrice. Il contiendra

k colonnes appartenant aox n dernieres colonnes de la matrice (I~ ~ z~; soient

les rangs de ces colonnes. Les autres j~z - k colonnes de 3’ appartiendront aux
n? premieres colonnes de la matrice, c’est-a-dire, ce sont des colonnes de A. Soient

les rangs des colonnes de 0394 qui ne figurent pas dans d’. En remplaçant alors
dans d’ les elements par leurs valeurs (4), on obtient, a l’aide des propriétés
élémentaires des determinants, la formule



Ainsi tous les determinants de la matrice s’expriment rationnellement aa moyen
des + t determinants d, On voit que 0394’ est egal a un determinant mi-
neur du degre k, puise dans la matrice (3 ), divise par 3k ’f. Le nombre des deter-

minants tels que ~’ est

Équations linéaires indéterminées.

4. Considérons d’abord le système linéaire et homogène

Nous supposerons que ces equations sont linéairement independantes, c’est-
a-dire que tous les determinants de la matrice de ce systeme ne snnt pas nuls. Le

plus grand diviseur de la matrice a alors une signification precise, soit d ce plus
grand diviseur.
Le moyen que nous emploierons pour trouver toutes les solutions en nombres

entiers consiste dans 1’introduction de nouvelles inconnues.

Au lieu de x,, ..., on peut introduire de nouvelles inconnues, en

posant

Les c/,/f seront des nombres entiers, etnous n’emploierons que des substitutions
dont le determinant = + I .
On peut alors exprimer réciproquement les x’i par des fonctions linéaires a coef-

ficients entiers des xi, et, comme nous ne considerons que les solutions en nombres
entiers, le systeme transforme sera absolument equivalent au système donne,
c’est-a-dire a deux solutions distinctes d’un des systemes correspondront toujours
deux solutions egalement distinctes de l’autre. 

’

Parmi les determinants de la matrice de ( I~ qui ne sont pas nuls, il y en aura

au moins un dont la valeur absolue est le plus petit. Nous pouvons supposer, en
adoptant la notation du n° 3, que A soit ce determinant minimum. Supposons
d’abord que tous les determinants soient divisibles par 0394. Alors il est clair
que l’on obtient la solution la plus generate de (J) en donnant a ...,

des valeurs entieres absolument quelconques et en determinant ensuite



X t, ... , par les formules

On voit, du reste, par la formule (5) du n° 3, que, lorsque A divise tous les
il divisera tous les determinants de la matrice, en sorte que l’on doit avoir

A==±:6/.

Mats supposons que 0394 ne divise pas tous les et, par exemple, ne

divise pas 03941,m+1. Alors, on peut toujours trouver un entier c tel que la valeur ab-
solue de

soit inferieure a celle de A. La substitution de determinant + i

transformera alors le systeme (I) dans un autre systeme dans lequel un des deter-
minants est 03941,m+1 -c0394. Le determinant minimum du système transforme est donc

plus petit (en valeur absolue) que ~. Si ce determinant minimum ne divise pas
tous les autres determinants, on pourra encore le diminuer par le meme precede.
Il est clair que 1’on finira par trouver un systeme transforme dans lequel le deter-
minant minimum divise tous les autres determinants, et dont on peut ecrire alors
immediatement la solution la plus generale. Cette solution renferme, comme nous
l’avons vu, n indéterminées auxquelles on peut donner toutes les valeurs entieres
de - oo a + oo.

THÉORÈME I. - On obtient toutes les solutions du système (1), et chaque solu-
tion une seule fois, par les formules

en , t,, ..., , tll toutes les valeurs entières de - x a +~.

11 est clair qu’en substituant les expressions ( II) dans le sysLeme (I), les coeffi-
cients de t, , t2, ..., tn doivent s’annuler.

On obtiendrait donc encore des solutions de (I) en donnant a t,,, ..., tll des va-

leurs fractionnaires. Mais il est clair que l’on ne peut jamais obtenir, de cette

facon, une solution de ( I) en nombres entiers, car toute solution entière corres-

pond a un systeme unique de valeurs entieres de t,, , ..., 



Pour obtenir, dans un cas donne, la solution generate sous la forme (II), il sera

plus pratique de proceder autrement. On cherchera, par exemple, par la me-
thode d’Euler (Chap. II, 25), la solution générale de

qui renfermera m + n- I indéterminées, puis on introduira ces valeurs dans la
seconde equation

etc., jusqu’a ce que l’on ait epuise les ni relations donnees.
Si l’on transforme, comme nous l’avons fait, le systeme (1), il est clair que tout

determinant du systeme transforme est une fonction lineaire a coefficients entiers
des determinants de (I), et reciproquement. On voit par la que le plus grand di-
viseur des deux matrices est le meme et, par consequent, dans le precede que nous
avons employe plus haut, on trouvera finalement un systeme dont la matrice a un
determinant minimum egal a ± d.

5. Considérons r solutions du système (I)

que nous designerons quelquefois aussi par de simples lettres A2, ..., Ar. Ces
solutions sont indépendantes si tous les determinants de degrés r ne sont pas
nuls. Il est clair que l’on peut trouver tout au plus n solutions independantes, car,
puisque toutes les solutions sont comprises dans les formules (II) (n° 4) qui ne
renferment que n indéterminées, n + I solutions ne sont jamais independantes.
En multipliant les solutions precedentes par it, ~~7 - - ’? tr et en ajoutant, on ob-
tient une nouvelle solution

dont les elements sont

Nous dirons que les solutions

forment un système fondamental de solutions, lorsque l’on obtient toutes les
solutions possibles, et chaque solution une seule fois, en donnant a It, , t.,, ..., t,.



les valeurs entières de - co a L’existence de ces systemes fondalnentaux de
solutions ne fait pas de doute, car nous savons, par le theoreme I, que

est un tel 

THÉORÈME II. - Un système fondamental de solutions Se compose de n solu-
tions indépendantes.

Ce theoreme est une generalisation du théorème VIII du Chapitre II; la demon-
stration est exactement la meme.

La matrice formee par n solutions independantes, ou par un systeme fondamen-
tal de solutions, est du type n X (na + n), donc du type complémentaire de la
matrice du systeme (1).

Considerons la matrice du systeme (1) et la matrice furmee par n solutions in-
dépendantes

Les relations qui existent entre ces nombres se reduisent a ceci : que la somme
obtenue en multipliant les elements d’une quelconque des m premieres lignes par
les elements correspondants d’une des n dernieres lignes est nulle.
On voit donc qu’il y a une réciprocité complete entre les deux matrices, et si

l’on considère le systeme indetermine

ies nombres

en donneront m solutions indépendantes.
D’après ce que nous avons dit dans le n° 2, on pent faire correspondre a chaque

determinant de la matrice ~ al,k ~un determinant de la matrice ~03B1i,k ~ d’un 
tème de jz solutions indépendantes.

THÉORÈME III.- La matrice d’un système fondamental de solutions a l’unité
pour plus grand diviseur.



Considérons, en les formules

qui renferment la solution la plus generate. Il est clair d’abord que

car, si ces nombres etaient tous divisibles par c > i, on trouverait une solution

entiere en posant t, == - ? ce qui, on le voit facilement d’après ce que nous avons
dit plus haut, est contraire a la nature d’un systeme fondamental de solutions.

Ensuite, je dis que les determinants de la matrice

ont aussi i pour plus grand commun diviseur. Car si ces determinants etaient tous
divisibles par c > i, c ne divisera pas tous les elements de la premiere ligne, par
exemple c ne diviscra pas ~, ~~; mais alors on Lrouverait encore une solution

entiere en posant

ce qui est impossible.
Ensuite, je dis que le plus grand commun diviseur de la matrice

, 

est encore = r . Car si ce plus grand diviseur était c > 1, c ne diviserait pas, par
exemple, le determinant

et, en posan t

on trouverait encore une solution entiere, ce qui est impossible.
Il est clair que l’on peut continuer ainsi, pour arriver au theoreme enonce.



6. En cherchant a exprimer une solution quelconque

par un système fondamental de solution on est amené a determiner n incon-

nues t, , t2, , .., tn par m + n equations

On sait d’avance qu’il existe une solution unique et en nombres entiers; ce sys-
teme lineaire doit donc presenter certaines circonstances particulieres. Nous allons
montrer qu’elles se réduisent a ceci : d’abord le plus grand diviseur de la matrice du

systeme est = I, ensuite tout determinant de la matrice completee est nul, car cette
matrice completee se compose de n + I solutions.

THÉORÈME IV. -- Un système de na + n équations entre n inconnues

admet toujours une solution unique et en nombres entiers, lorsque le plus
grand diviseur de la matrice du système est =1 1 et que tous les déterminants

de la matrice complétée sont nuls.

Nous ajouterons un théorème analogue sur les congruences.

THÉORÈME V. - Un système de rrt + n congruences entre n inconnues

admet toujours une solution unique, lorsque le plus grand diviseur de la ma-
trice du système est premier avec M et que tous les determinants de la matrice

complétée sonl - o (mod 

Il suffira de démontrer ce dernier théorème; nous pouvons écrire les congruences
données ainsi

les Ai etant des fonctions lineaires en t1, ..., Considerons le determinant mini-

mum A de la matrice de ce systeme. Si 0394 divise tous les autres determinants, il sera

premier avec M d’après notre hypothese. Les n congruences correspondantes ad-
mettront alors une solution unique et cette solution satisfera aussi a toutes les

autres congruences (voir le nO 1).



Mais si

ne divise pas tous les autres determinants, il ne divisera pas, par exeinple, le

determinant

Mais alors on pourra remplacer le systeme donne par le systeme equivale nt

et ce nouveau systeme aura, pour une valeur convenable de c, un determinant mi-
nimum plus petit que A. On pourra ainsi diminuer le determinant minimum j usqu’a
ce qu’il soit devenu egal au plus grand diviseur de la matrice donnee. Il divisera

alors tous les autres determinants et l’on est ramene au cas que nous avons consi-

dere d’abord.

Le theoreme IV peut se demontrer d’une facon toute semblable, ou encore par le
raisonnement que nous avons fait dans la demonstration du théorème IX (Cha-
pitre II).
Nous indiquerons encore une autre demonstration du theoreme V.
Si 1’on ecrit

on P, Q, R, ... sont des puissances de nombres premiers distincts, on reconnait

facilement que les congruences données admettent une solution unique, par rapport
a chacun des modules P, Q, R, ..., d’ou l’on peut conclure qu’elles en admettent
aussi une par rapport au module M.

7. Multiplication des matrices. - Soit 
’

ou ~~ A ~~ une matrice du type n x ~m + n), (na > o),

ou II C II, une matrice du type n X n, nous representerons par



une matrice du meme type que ~~ A (~ et dont les elements sont

Lorsque C, ~! est encore du type n X n, nous ecrirons

et il est facile de voir que

Mais on ne peut pas permuter les deux matrices dans un produit, et si l’on con-
sidere un produit de plusieurs facteurs

on suppose toujours que toutes les matrices ~~ Ck ~I sont du type ~2 ~ n : seule la

matrice A II peut etre du type n ~ (m + n), le produit est toujours du meme type

que ~~ A ~ .. 
-

Il est clair que, lorsque

tout determinant de ~ A’ ~ est égal au determinant correspondant de ~ A ~ multiplie
par le determinant C I, Les determinants correspondants et ~, A’ I) seront
proportionnels et si, en particulier, le plus grand diviseur de I. est = 1, le plus
grand diviseur de ~ A’~ sera la valeur absolue de C |.
Dans le cas oii le determinant

nous designerons par ~ C~-1 la matrice

Yi,k etant le coefficient de dans le determinant ~ C ~.



On voit que

et de la relation

on peut conclure

8. Soit ~A~ la matrice formée par n solutions independantes, matrice
formee par un systeme fondamental de solutions.

Puisque les solutions de II peuvent se deduire du systeme fondament.al ~I B I ,
cela revient, avec notre nouvelle notation, a dire que

Il est clair que le plus grand diviseur de est = + C ~, el,, dans le cas

| C| = -!-1, II A ~ est évidemment aussi un système fondamental de solutions,
car

Si l’on considere plusieurs systemes de n solutions independantes, on de sys-
temes fondamentaux, les determinants correspondants seront toujours propor-
tionnels.

THEOREME VI. - Lorsque le plus g~rand diviseur de la matrice

est =1, et que les déterminants d’une matrice

sont proportionnels aux determinants correspondants de ~ B ~, o!i a 

jours

et la matrice (I C ~ est unique.

En effet, on obtientpour determiner ci,2, ..., ci,n les equations



Un determinant quelconque de la matrice completee de ce systeme, tel que

est nul, car d’après la proportionnalite supposee entre les determinants de ~ A II et
de ~ B~, il est permis de remplacer partout hi,k par cci,k, a condition de diviser après
par un certain nombre entier le facteur de proportionnalite.

Mais on obtient ainsi un determinant avec deux colonnes identiques. Donc,
d’après le theoreme IV, il existe un systeme et un seul de valeurs ci,,, ci,2, ..., 
qui satisfont a la question.
On voit qu’une matrice du type n X + n) dont les determinants (non tous

nuls) sont proportionnels aux determinants de la matrice II formee avec un sys-
teme fondamental (ou avec n solutions independantes) est nécessairement com-
posee avec /? solutions independantes.
THÉORÈME VII. - Les déterminants d’une matrice formée par n solutions

indépendantes, du type n X (m + rz), sont proportionnels aux determinants
correspondants de la matrice du type m X (m + n) dcc système indéterminé
donné (I). En particulier, un déterminant d’un système fondamental de solu-
tions est égal au déterminant correspondant du système (I), divise par d.

11 suffira de faire voir que le theoreme se trouve vérifié pour un systeme particu-
lier de n solutions independantes. Un tel systeme peut se deduire des considera-
tions du n° 3. Supposons que le determinant A ne soit pas nul, alors on a le systeme
suivant de n solutions indépendantes

En effet, ce sont la bien n solutions, car on a [form. (4) du no 3]

Ces solutions sont independantes, car l’un des determinants est (- ~~’Z.
Et si l’on considere maintenant les determinants de cette matrice qui correspon-

dent aux mn + I déterminants que nous avons consideres dans le no 3, on reconnait
immediatement qu’ils n’en different que par le facteur (- et cette propor-
tionnalite s’étend aisément aux autres determinants.



Plus generalement, on peut obtenir n solutions indépendantes ainsi. Soit

Puisque tous les determinants de la matrice donnée ne sont pas nuls, on pourra
choisir les nombres c,,A, de manière que D ne soit pas nul. Désignant alors par C,,A
Ie coefficient de dans D, il est clair que l’on a Ie système suivant de /? solu-
tions

et, d’après un theoreme connu, un determinant quelconque de cette matrice est
égal au determinant correspondant de la matrice ~ ai,k ~ multiplie par 

9. Nous allons resoudre maintenant le probleme suivant. Etant donnee une
matrice

du type n x (m + n ), dont d est le plus grand diviseur, trouver toutes les solutions
de 1’equation

le determinant ) C ~ etant ± d. Il est clair que le plus grand diviseur de )j B est i.
et si 1’ on a trouve ~ une matrice dont les determinants sont proportionnels ’ I a ceux de ’

dont le plus grand diviseur est = i, on pourra la prendre pour ln
matrice ~C~ s’en deduit d’apres le theoreme VI.
On peut obtenir une telle matrice en considerant le systeme indetermine

dont la matrice est ~~ A )j. On cherchera m solutions independantes formant une lna-
trice ~ A’ ~. Ensuite, on cherche un système fondamental de solutions du systempmdetermine dont la matrice est jf A’ La matrice formee par ce systeme fondamen-
tal satisfait evidemment aux conditions.

Mais voici une autre methode qui sera preferable ordinairement. Divisons
d’abord la premiere ligne horizontale de ~~ A II par le plus g rand commun diviseur
des nombres renferme, on aura ainsi la matrice



~ Soit maintenant d, le plus grand commun diviseur de la matrice formee avec les
deux premieres lignes. Je dis que l’on pourra determiner un nombre x satisfaisant
aux congruences

C’est ce qui resulte du theoreme V. En retranchant donc de la seconde ligne, la
premiere multipliée par x, elle deviendra divisible par d1 et, apres la division, on
aura une matrice

et le plus grand diviseur de la matrice des deux premieres lignes est = i.
Soit d2 le plus grand diviseur de la matrice des trois premieres lignes, les con-

gruences

admettent encore une solution, y d’après le theoreme V. En retranchant de la troi-
sieme ligne la premiere multipliee par x et la seconde ligne multipliee par y, on
pourra diviser par d2 et, dans la matrice obtenue

le plus grand diviseur de la matrice partielle formee par les trois premieres lignes
est == I . 11 est clair que l’on peut continuer ainsi, on finira par trouver une
matrice

dont Ie plus grand diviseur est = i, et il est clair que ses déterminants seront pro-
portionnels a ceux de ~ A ~. On peut remarquer que ce procédé donne, dans le cas
ni = o, une nouvelle methode pour la construction d’un determinant _--. ± I .

Ayant ainsi obtenu une solution partlculiere 
’



it est facile de voir que la solution la plus generale sera comprise dans les for-
mules

It E ~~ etant une matrice quelconque du type n X n dont le determinant est -~-1.
est la matrice de n solutions independantes du systeme (I)., la ma-

trice )~ B ~ sera composee d’un systeme fondamental de solutions.

10. On peut obtenir la solution du système

encore par une autre methode, un peu différente de celle que nous avons exposee
dans le n° 4, et qui conduit a un résultat dont nous aurons besoin plus loin.
Nous avons vu, dans le Chapitre II, que par une substitution lineaiue de deter-

minant + I , on peut transformer l’expression 
.

en d, x~, d, etant le plus grand commun diviseur des coefficients a, ~,, ..., 
A Faide de cette transformation, on deduira de (I) un système equivalent dont la

matrice affectera la forme

Les coefficients ai,2, a2,3, . . ., ne peuvent pas etre tous nuls, car tous
les mineurs du second degre des deux premieres lignes seraient nuls; la même
chose aurait lieu pour la matrice des ai,k, ce qui est contre l’hypothèse admise.
En operant donc sur les variables x1, x3, . , ., on pourra transformer en-
core le systeme de maniere a obtenir un nouveau systeme dont la matrice affecte
la forme



d2 etant le p. g. c. d. de a;,2, a2,3, ..., a~,m~,~. En continuant ainsi, on sera

amene finalement a une matrice de la forme

Il est clair qu’on aura d = d, d2 d3 ... d"t, et si les nouvelles inconnues sont
y,, ~2? - ’ ’ ,Ym+n, Ia solution la plus generale s’obtient en posant

tandis ym+2, ..., ym+n peuvent prendre toutes les valeurs entières de
2014oo a 

On peut simplifier encore Ie tableau (A). En remplaçant d’abord y2 pat
~2 2014 il est clair qu’on peut faire en sorte que Ie coefficient i devient po-
sitif, mais inférieur a d2. En remplaçant ensuite y3 par y3 2014 cy2 - c’y2, on peut
assujettir,les coefficients limitations

On voit, en definitive, qu’il existe toujours une substitution de determinant ± i,
tel que le systeme transforme a une matrice de la forme particuliere (A), ou les

coefficients d,, d2, ~ ,, d"t sont positifs et

(voir HERMITE, Jour’nal de Crelle, t. 41, p, I92). On verra facilement que cette
forme reduite (A) est unique. La nature invariantive des coefficients du ta-

bleau (A) s’apercoit aisement. D’abord il est clair que di est la plus petite valeur
(sauf o) que peut avoir l’expression

x,, xz, . , . étant lies par les relations

Ensuite ~2~, est la plus petite valeur que peut avoir la fonction lineaire



Xi’ ..., etant lies par la relation

Ensuite ~~~,? ~3,2 sont les plus petites valeurs de

xi, ..., x"t+n étant assujettis, dans le premier cas, aux relations

et, dans le second cas, aux relations

ainsi de suite.

H. Considerons maintenant le système non homogene

Soit d le plus grand diviseur de la matrice de ce systeme, d’ le plus grand divi-
seur de la matrice completee, il est clair que d’ divise d. Mais, en eliminant
ni - ~ des inconnues, on reconnait que tout determinant de la matrice completee,
qui n’est pas en meme temps un determinant de la matrice non completee, doit
etre divisible par d. Pour que le systeme (III) admette des solutions, il est donc

necessaire que l’on ait d = d’. Mais cette condition est aussi suffisante.

THEOREME VItI. - Pour que le système (III) adnlctte des solutions, il faut
et il su/fit que le plus grand diviseur de la matrice du système soit égal au
plus grand diviseur de la matrice complétée.

En effet, dire que le systeme (III) admet une solution, c’est la meme chose

que de dire que le systeme homogene

admet une solution ou xo ~ -1. Or la solution generate du systeme homogene
est

En supposant d == d’ les determinants de la matrice des ~03B2i,k~ qui renferment t



les coefficients ~i,o? ’ ’ ’? sont egaux aux determinants correspondants
de la matrice du systeme homogène, divises par d. Mais ces determinants sont
simplement les determinants du systeme (III), et en les divisant par d on obtient
des nombres dont le p. g. c. d. est === i . Il est clair par la que le p. g. c. d. de

~o,o, ~ ~ ~ , est aussi = i, et, par consequent, on peut donner a to,

..., , tm des valeurs telles que On reconnaitrait aussi facilement

~ 

la verite de ce theoreme a l’aide de la methode de reduction du n° 4. On voit,

d’apres ce théorème, que si l’on considere 1’ensemble des solutions du systeme

homogene (I), la plus petite valeur de xk (sauf o) est dk d, dk étant le plus grand
diviseur de La matrice obtenue en supprimant la colonne. Cette valeur ‘~~~ est
done, dans tout systeme fondamental de solutions

11 est clair que pour obtenir la solution la plus generate du système non homo-
gene il suffit d’ajouter a une solution particuliere la solution la plus gene-
rale du système homogène (I).

12. Si Ie système (III)admet une solution pour certaines valeurs de u1, u2,...,
il en sera de même encore si l’on remplace ces nombres par v1, v2, ...,

La possibilité ou l’impossibilité du systeme ne depend done que des residus
de ..., par rapport a d. Le nombre total de ces systemes de residus

est de dm, mais pour de ces systemes seulement, les equations (III) ad-
inettent une solution. Pour le reconnaitre, il suffit de recourir a la transforma-

tion du n° 10, qui donne un systeme equivalent de la forme

II est clair d’abord que itl ne ’peut voir que ,- valeurs par rapport au module d.



A chacune de ces valeurs de ic, correspond une valeur determinee de y, et en-

suite évidemment d d2 valeurs de tc2 par rapport au module d. A chaque système
de valeurs de ic, et ic? correspondent ensuite des valeurs déterminées de y, 
et ensuite -,- valeurs de rc~ par rapport au module d, etc. Le nombre total des

~3

systemes de residus de ic2, .. , , icm, par rapport au module cd, est donc

Parmi les valeurs admissibles pour ui figure toujours la valeur iii= o, et si

J’on se donne d’avance

les ..., um ne peuvent plus représenter que systemes de résidus par
rapport au module d. Mais, en raisonnant comme tout a l’heure, on voit que,
parmi ces systernes, il n’y en a que

pour lesquels le systeme (III) admet des solutions. 11 est clair que d, d_> ... dk
est ici le plus grand diviseur de la matrice des k premieres des equations (III).

13. Ces propositions ont lieu encore dans le cas n == o, lorsque le nombre des
equations est egal au nombre des inconnues, et nous allons en faire une applica-
lion dans un cas de cette nature.

Prenons un systeme de nombres entiers

dont le determinant

est positif > o.
’Si l’on considere les equations

Ie determinant est et, d’apres ce qu’on vient de voir, il y a 0394(m-1)2 systèmes
de residus i~l par rapport au module pour lesquels le systeme (A) admeL
une solution entire. Mais la solution de ce systeme est donnee par les formules



On voit donc que si le systeme a une solution entiere pour un systeme de va-
leurs de u,, ..., um, il en aura encore une en remplaçant ui par ui (mod 0394).
Soit k le nombre des systemes de residus des u~ par rapport au module A, pour
lesquels les equations (A) admettent une solution, un tel systeme en engendrera
evidemment par rapport au module ~"t-’ ; donc

11 est clair, du reste, que ce nombre k est simplement le nombre des solutions
des congruences

et, d’après un théorème que nous rencontrerons plus loin, on peut conclure de la
aussi cette valeur k = 0394.

Ce résultat peut s’énoncer ainsi :

THÉORÈME IX. - lly a exactement 0 systèmes de nombres entiers x1, x2,

..., xm qui satisfont aux inégalités

Dans les cas m = 2, ni = 3, ce theoreme admet une interpretation geometnque
tres simple. Considirons dans l’espace trois axes rectangulaires OX, OY, OZ et
le reseau de tous les points dont les trois coordonnees x, y, z sont des nombres
entiers. Soient

trois points du reseau ; nous supposerons que

soit different de zero et positif. Alors A est le volume d’un parallelepipede dont
trois aretes sont OA, OB, OC. Soient 01, At, Bt, C, les sommets du parallele-
pipede opposes a 0, A, B, C.

L’équation de la face OBC est



et l’équation de la face opposee 0, Bj C, passant par le sommet 0, est

Les trois inegalites

expriment done que le point X, Y, Z est a 1’interieur du parallelepipede ou sur
l’une des faces passant par 0, mais non sur une des faces passant par Le

théorème IX exprime donc qu’il y a exactement A points du reseau qui satisfont
a ces conditions. Une legere attention suffit pour reconnaitre que, dans ce denom-
brement, il ne faut compter qu’un des huit sommets du parallelepipede : c’est le
sommet O. Quant aux points sur les aretes (mais qui ne sont pas des sommets),
il ne faut compter que les points qui sont sur les trois aretes passant par O.

Enfin, pour les points sur les faces (mais non sur une arete), il ne faut compter
que ceux qui sont sur les trois faces passant par 0, mais non ceux qui sont sur
les trois autres faces.

11 est clair qu’on obtiendrait le même nombre 0394, en comptant tous les points
sur les faces, aretes, sommets, si l’on adopte cette regle de compter un sommet
pour t, un point sur une arete pour - un point sur une face pour-

Il serait extremement facile de demontrer directement ce resultat en prolon-
geant les aretes OA, OB, OC jusqu’en A’, B’, C’, de telle maniere que

k etant un entier, et en considerant alors le parallélépipède avec les aretes UA’,
OB’, OC’. Le rapport des volumes des deux parallelepipedes est k3, et l’on recon-
nait aussi que le rapport des nombres des points du reseau a 1’interieur des

deux parallélépipèdes (comptes d’après la regle indiquée) est aussi exactement 
Or, d’apres la definition meme du volume, le rapport du volume et du nomhre

des points a l’intérieur du parallelepipede O-X’ B/ C/ doit tendre vers i pour k == oc..
Mais puisque ce rapport ne varie pas, il est toujours == 1.
On peut se placer a un point de vue un peu different. Considérons dans l’es-

pace le reseau des points dont les coordonnees sont des multiples de I k /r etant

un nombre entier. Le volume d’une certaine partie de l’espace peut être défini



alors (d’apres Lejeune-Dinchlet) comme la limite du rapport

pour k == 00, M étant Ie nombre des points du réseau qui appartiennent a la partie
de l’espace que l’on considère. Adoptant cette définition de volume, on peut
conclure directement du théorème IX qne te volume du parallélépipède OABC:

est exprime par Ie determinant A.
On comprendra main tenant que M. Smyth a pu déduire de ces considerations

une demonstration arithmétique de la formule de transformation des intégrales
multiples.

Solutions de quelques sur les 

14. Etant donnée une matrice ’ 

.

du type i X ( n + I), dont d est le plus grand diviseur, nous avons vu (Chap. Il, 22)
qu’on peut trouver toujours une matrice 

°

du type n ( n + I), telle que le determinant

Proposons-nous maintenant de trouver la solution la plus generale de ce pro-
bleme. Il est clair, en divisant tous les elements de ~ A ~ par d, qu’on peut sup-

i . Cela etant, si l’on a

étant une solution qiielconque, nous savons, par Ie théorème VI, qu’il existe
tonjours une matrice du type (n+I) (n+I) (et une seuIe), telle

que

E II === -!-- I . Mats il est clair que la matrice ~ E II doit avoir ici la forme parti-
culière



p2, ..., p,~ etant arbitraires et ~ ~ _-~- I. Avec cette expression de ~~ 
la formule (i) renferme done toutes les solutions du problème et chaque solution
une seule fois. On peut mettre cette solution sous une autre forme en remarquant
que la matrice ~~ E ~~ peut se mettre sous la forme

q2, -’ -? qn etant des nombres qui peuvent avoir des valeurs arbitraires. En
substituant cette expression dans la formule (~~, on obtient sans difficult£ la ma-
trice la plus générale ~C~ qui satisfait au probleme, sous la forme

‘~ B ~) = ~) etant une solution particulière.

Plus generalement, soit

une matrice donnee du type m x (m + n), dont d est le plus grand diviseur.
Proposons-nous de trouver toutes les matrices

du type complementaire n x (m + n) telles que

On peut remarquer d’abord qu’on peut supposer d = i, car nous savons qu’on
peut trouver une matrice du meme type que dont les determinants

sont proportionnels a ceux de ~~ et dont le plus grand diviseur est =1 I (nO 9).
Cette matrice ~A’~ etant obtenue, il est clair que les deux conditions 

-

sont absolument equivalentes. Nous supposerons donc d = i, et de plus qu’on
ait obtenu deja une solution particuliere



Aya n t

on en conclut encore par le theoreme VI

~E~ étant une matrice du type (m + n) X (m + n ) dont le determinant est = + 1.
Mais il est clair que cette matrice ]] E II doit avoir ici la forme particuliere

Cette formule (t) renferme ainsi deja la solution la plus generale du problème,
inais on peut la mettre encore sous une autre forme en remarquant que la ma-

trice ~ E~ peut se mettre sous la forme d’un produit

ou les peuvent avoir des valeurs quelconques. On obtient facilement

ou les doivent satisfaire a la relation j == ±: I.

Pour obtenir la solution particuliere ~~ B ~~, on prendra d’abord une matrice

quelconque ~~ mi,k ~~ ou J~ du type n ~ (m + n), telle que le determinant de la



matrice

ne soit pas nul. Par le precede du n° 9 on pourra, sans changer les m premieres
lignes, en deduire une autre matrice du meme type ~n2 + n) x (nz + n) et dont
le determinant est -~-1.

16. Nous avons vu (Chap. II, n° 21) qu’on peut toujours trouver une matrice
du type n X ~n --I- J) dont les determinants ont des valeurs donnees, non toutes
nulles. On peut se proposer d’obtenir toutes les matrices qui satisfont a ces con-
ditions, mais nous traiterons directement le probleme plus general : ;

Tiouver toutes les matr~ices du type m X ~m -~- n) dont les determinants
ont des valeurs données.

A cause des relations identiques.entre les determinants, les valeurs donnees ne
peuvent pas etre quelconques. Adoptons les notations du n° 3 et supposons que
le determinant A ne soit pas nul : on pourra se borner a considerer les mn + I de-
terminants ~, ~~~"t+k. Ces determinants-la ne peuvent pas meme etre des nombres
arbitraires, il faut que les autres determinants 0’ qu’on en deduit par Ia for-

mule (5) du n° 3 soient aussi des entiers. Mais, cela etant, nous allons voir que le
problème est toujours possible et admet une infinite de solutions.
En eiet, prenons d’abord arbitrairement les m premières colonnes avec la seule

condition

alors on pourra determiner les autres colonnes comme au nO 3; il est vrai que ces

autres elements

ne seront pas des entiers ; toujours est-il vrai quela matrice ainsi formee admettra
pour determinants les valeurs donnees, qui sont toutes entières. En multipliant
les lignes horizontales par A, on obtiendra une matrice dont les determinants sont
proportionnels aux valeurs donnees. On peut alors deduire de la (par le precede
du n° 9) une autre matrice dont les determinants sont encore proportionnels aux
valeurs donnees, mais dont le plus grand diviseur est I . Soit 

.

cette matrice, si d est le p. g. c. d. de tous les déterminants de la matrice cher-
chee, l’expression la plus generate de cette matrice sera



C ~~ est une matrice quelconque du type m X m, dont le determinant est

= + d. En prenant en particulier pour les = I, ... , m) les valeurs sui-
vantes

on trouve que les determinants de la matrice

sont proportionnels aux determinants de la matrice cherchee; on pourra done en
deduire la matrice ~I B ~I.

Si l’un des determinants donnes divise exactement tous les autres, on le prendra
pour d; dans ce cas, on peut écrire la matrice ~ B~ sans aucun calcul.
Une autre methode pour trouver cette matrice ~~ B It est la suivante ; considerons

le systeme d’equations linéaires homogenes dont la matrice est

La matrice formee par un systeme fondamental de solutions de ces equations
sera une matrice du type m X (m + n) ; ses déterminants seront proportionnels
aux valeurs donnees etle plus grand diviseur de cette matrjce est === i. C’est ce qui
resulte immediatement des propositions etablies précédemment, si l’on se rap-

pelle le théorème VII et sa demonstration.

17. Soit ~~ A ~~ == ~~ ai,k (~ une matrice du type m X (m + n), dont le plus grand
diviseur est 0, ~~ C ll == ~~ une matrice du type complementaire r2 X ( m + n ),
telle que

Nous savons qu’il existe de telles matrices (voir nO 15).



Soit ensuite ~ = ~bi,k~ une matrice du type n X (m + ja), formee par un
systeme fondamental de solutions des equations lineaires homogenes

Les matrices [[ B~ et ~ C II sont du meme type; a un determinant 0394b de la pre-
miere on peut faire correspondre un determinant Ac de la seconde, en supposant
que deux determinants correspondants sont formes avec n colonnes de meme
rang (et prises dans le meme ordre) dans les deux matrices. Cela etanty on a

la sommation s’etendant a toutes les paires de determinants correspondants. Pour
le montrer, remarquons que le plus grand diviseur de la matrice ~~ B ~~ est 1’unite :
on peut donc former une matrice ~D~ = ~ di,k ~ du type m  (m + n), telle que

En multiptiant les deux determinants (i) et (2), il vient

c’est-a-dire

Or, ~~ et ~~ etant deux determinants correspondants des matrices ~) et 1



de meme type, on a, d’après une propriete elementaire des determinants,

et de meme

Mais tous les determinants ~~ sont divisibles par d; on a donc necessairement

~1~. A l’aide de ce risultat, nous pouvons resoudre facilement le prohlenie
;ui;ani : Étant donnee une matrice ~ A ~ du type ni X (m + n), dont le plus
grand diviseur est ~, trouver toutes les matrices (~ D II du meme type et telles que

3a et 3d etant deux determinants correspondants des deux matrices. En effet,
déterminons deux matrices ~ B ~ et ~ C ~ comme dans le numéro precedent. Si
nous déterminons ensuite une matrice ~D~ par la condition

nous savons que ceLte matrice fournit une solution de notre problème.
dis qu’on obtient ainsi toutes les solutions du problème. Soit, en effet,

II 1) ,~ une solution quelconque, et posons

On en conclut t

or on a, puisque ~D~ est une solution,

et, d’après la proposition dn n° 17,



done

Il est clair par la que le probleme propose est identique avec le suivant que
nous avons deja resolu dans le n° 15 : Trouver toutes les matrices jj D ~~, telles quo

On obtient ces resultats aussi en s’appuyant sur le theorerne VII, car la rela-
tion (I) du n° 17 peut s’écrire 

.

Or, d’après le theoreme cite, le rapport 0394a : 0394b est constant et egal a 4- o; done

et, ensuite, il est evident que les relations

sont equivalentes.

19. Nous terminerons ces considerations par quelques remarques sur le plus
grand commun diviseur d’une matrice.
Dans le cas d’une matrice du type x n, le plus grand diviseur peut etre défini

aussi comme la plus petite valeur (sauf o~ que peut prendre la fonction lineaire

pour les valeurs entieres de x2, ... II existe une proposition analogue
pour une matrice ~ ai,k ~ du type m X (m + n). Considérons les m fonctions

lineaires

et m systemes de valeurs de ces fonctions

le determinant J est toujours divisible par 03B4, le plus grand diviseur de la
matrice ~ai,k~; mais nous savons, par l’analyse précédente, qu’on peut toujours
choisir les di,k de maniere que ce determinant devient egai a + S.



Par consequent, ~ est aussi la plus petite valeur (sauf o) que peut avoir le deter-
minant forme par m systemes de valeurs des m fonctions lineaires X~.

20. Soient [) ou ~~ A I] une matrice du type X ( m -f- n ), ~~ Ap ~~ la matrice
du type formee par p colonnes de Nous supposons p  m. Désignons
encore par dp le plus grand diviseur de ~~ Ap ~I, et par D le plus grand commun
diviseur de tous les determinants de ~~ A II qui renferment les p colonnes de ~~ Ap ~~.
11 est clair que D est est un multiple de dp. Nous allons montrer que tous les

determinants de ~ A ~ sont divisibles par D .

Pour simplifier un peu la demonstration, nous supposerons que ~Ap ~ est

formee par les p premieres colonnes de ~A~. Nous avons a démontrer qu’un
determinant quelconque A est divisible . Si ce determinant d a un
certain nombre ,. de colonnes communes avec ~ Ap ~, nous pouvons encore sup-
poser que ce sont les r premieres colonnes de ~ Ap ~. Cela étant, nous désignerons
nn determinant quelconque de ~~ A ~~ par le symbole

ou ~,,, a.~, ... ? Àm indiquent les rangs des colonnes de ~~ A ~~ qui figurent dans le
determinant.

En ajoutant a la matrice une + ligne

on obtient une matrice du type (m -j-1) x (m + n), dont tous les determinants
sont nuls. En developpant un tel determinant comme fonction linéaire des ele-
ments de la derniere ligne, on aura, par egemple,

Les indices ~,,, ),2, ... sont ici et dans la suite toujours > p.
D’apres notre notation, dp est le plus grand diviseur de la matrice ~Ap~, formée

par les p premieres colonnes de ~~ A If. Il est clair, d’apres cela, que ce qu’il faudra
entendre par dp_.,, dp_2, ..., d,, ce sont les plus grands diviseurs de matrices

que nous pouvons designer par ~ Ap_, ~, ~ Ap-2~, ..., ~ A1 ~. Dans l’identité que
nous venons d’ecrire, on peut prendre i = I , z, ... , m.

Si l’on éJimine alors entre p des equations ainsi obtenues les quanti tes qui
multiplient ai,1, ai,2, ..., ai,p-1, il viendra



Ici OP est un des determinants de II et il est clair que t1 p, ~~p, , , ,, 

sont tous divisibles par dp_~. Donc

est divisible par D x Mais Op peut être un determinant quelconque de ~ Ap ~;
par consequent,

est aussi divisible par D X d p-t, c’est-a-dire

est divisible par 
D 

 dp-1 dn.P
En laissant de cote maintenant la colonne de ~~ A ~1, on a les identites

En eliminant entre p - i de ces relations les coefficients de ... ~ 

il vient

ou est un des determinants de ~ et ou Op_~, ..., ~p=p+? sont tous divi-
sibles par dp_2. On voit donc que

est divisible par D dp-1 dp-2, dp et, puisque peut être un determinant quel-

conque de ~ Ap-1~, on en conclut que

doit etre aussi divisible par le meme nombre, c’est-a-dire

est divisible par 
D x d’’=2, En continuant ainsi, on reconnait gued j,



est divisible et enfin que [03BB1, 03BB2, ..., est divisible par D . . La
proposition enoncee est demontree.

D’apres la demonstration, on voit facilement que, si l’on suppose que tous les

determinants de sont pas nuls, les determinants de ~I A ~~ qui renferment
les p colonnes de ~ Ap () ne peuvent pas être tous nuls, a moins que tous les

determinants de ~Ap ( ne soient tous nuls. D et dp sont alors indéterminés tous
les deux.

Corollaire I. - Lorsque dp = i, D est le plus grand diviseur de la ma-

trice .

Corollaire II. - Lorsque le plus grand diviseur de Ia matrice ~~ A ]) est =1,

on a

21. Considérons une matrice

formee par un systeme fondamental de solutions de

Soient ~ Bp ~ une matrice formée par p des colonnes de ~ B ~, en supposant
p  n, dp le plus grand diviseur de ~ Bp ~. Soient, ensuite 03B4 le plus grand divi-
seur de la matrice des ai,k, et ~p le plus grand diviseur de la matrice obtenue en
supprimant, dans la matrice des ai,k, les p colonnes qui correspondent aux
colonnes de ~~ Bp ~~. Alors on peut enoncer le

THEOREME X. - Le plus grand diviseur d p est égal a 03B4p 03B4 .

En effet, soient ~, d’, d", ... les determinants de II B II qui renferment les
p colonnes de ~ Bp ~. Leur plus grand commun diviseur est dp, d’après le corol-
laire II du n° 20. Mais on a d’autre part, d’après le theoreme VII,

(D, 0~’, (~’r, ... etant les determinants de la matrice des ai,k qui correspondent
aux determinants d, ~rr~ , . , , Mais il est evident que ces determinants ~’,
", ... sont précisément ceux dont le plus grand commun diviseur est Op, d’ou
la relation annoncee.



II faut remarquer pourtant que tous les determinants de la matrice ~Bp II
peuvent s’annuler : dp devient indéterminé alors. Mais il est clair que, dans ce cas,
on a aussi

en sorte que ~p devient indetermine en meme temps. Reciproquement, si ~p
devient indetermine, il en est de même de dp.
Nous avons suppose p  n, mais le theoreme reste encore vrai dans le cas

p = n; on retrouve alors un résultat connu (theoreme VII).
L’énoncé du theoreme se simplifie un peu dans le i, et si Fon se rap-

pelle l’espèce de reciprocite que nous avons sjgnalée dans le n° 5, on verra que,
dans ce cas, p peut avoir une valeur quelconque plus petite ov plus grande
que n.

Systèmes de congnuences linéaires.

22. Etant donne un systeme de m congruences entre n inconnues

on peut en deduire un systeme equivalent, soit en operant une substitution de
determinant + I sur les inconnues x,, x2, ... xn, soit en remplacan t les m

congruences donnees par m combinaisons

le determinant des entiers pi,k etant encore + t, en sorte qu’on peut exprimer
reciproquement les Xi par les X~.
En etudiant les equations lineaires indéterminées, nous avons employe exclu-

sivement Ie premier moyen, la substitution de nouvelles inconnues; mais ce n’est
qu’en operant a la fois par les deux methodes qu’on peut obtenir la plus grande
simplification possible.
En multipliant, dans le systeme (y, les premiers membres par y,, y2, ... 

et ajoutant, on obtient la forme bilinéaire

Nous dirons que ceLte forme bilinéaire correspond au systeme de congruences
donne.



Une substitution linéaire sur les x, dans le systeme (i), conduira a un systeme
transforme (i’), et il est clair que la forme bilinéaire qui correspond a ce sys-
tème (I’) s’obtient simplement en effectuant directement la meme substitution
sur les x, dans la forme F.

D’au tre part, si l’on remplace le systeme (i) par le systeme (2), on constate

que la forme bilineaire correspondante au systeme (2) s’obtient simplement en

operant dans la forme F la substitution

On voit par la que nous avons a étudier les différentes formes que pent

prendre la forme F en operand sur les variables x, y des substitutions de deter-
minants + 1.

23. On appelle, en general forme en Arithmétique un polynome homogène
de plusieurs indeterminees x, y, ,~, . , . a coefficients entiers. Si une telle

forme F prend une certaine valeur m, pour certaines valeurs entieres des indé-

terminees, on dit qu’elle représente le nombre m.
En effectuant dans F la substitution a coefficients entiers

on obtiendra une nouvelle forme F’, et Fon dit que F renferme F’, ou bien

encore F’ est contenue dans F. Il est clair que tout nombre m qui peut etre

represente par F’ peut être represente aussi par F, mais la reciproque n’a pas 
lieu

necessairement.

Le cas particulier on le determinant de la substitution que nous venons d’effec-
tuer est egal a + i est le plus important.
On peut alors exprimer reciproquement x’, y’, z’, .. . comme fonctions

lineaires a coefficients entiers de x, y, z, ... et F est contenue aussi 
dans F’; on

dit alors que les formes F et F’ sont équivalentes.
. Il est evident que deux formes equivalentes representent les memes nombres.

Ce qui caracterise une forme F dans ces considerations, ce sont ses coefficients ;
la notation des inconnues, au contraire, n’a aucune importance et l’on peut ainsi

remplacer dans F’ les lettres x’, y’, z’, ... de nouveau par x, y, z, ...

L’un des p roblemes les plus importants qu’on a a resoudre est maintenant 
le

suivant : Etant donnees deux formes F et F’, decider si elles sont equivalentes ou



non. Et, pour completer la solution, il faudra encore trouver, dans le cas on il y a

equivalence, toutes les substitutions qui Lransforment F en F’.
Plus généralement, on peut demander a reconnaitre si F’ est contenue dans F,

mais nous nous bornerons ici a ajouter quelques remarques sur les conditions
d’equivalence seulement.
Dans certains cas, la solution complete de ce probleme se presente sous la

forme suiva.nte :

Pour que la forme F soil équivalente a F’, il faut et il suffit que l’on ait

Ici Ii, I2, ..., Ik sont certains nombres qui dependent d’une maniere deter-
minee des coefficients de la forme F, et I’1, Ii, ... , Ik dependent de la meme
façon des coefficients de F’.
On peut dire alors que I,, 1?, ..., Ik forment un systeme complet 

de la forme F, et, pour que deux formes soienL équivalentes, il faut et il suffit

qu’elles aient les memes invariants.
On peut etendre facilement ces considerations au cas ou la forme F depend de

plusieurs series d’indeterminees, comme cela a lieu pour la forme bjlinéaire du
n° 22. Et l’on peut aussi considérer simultanement plusieurs formes F, G, ...

qui dependent des memes indéterminées.

24. Pour en donner immédiatement un exemple, considérons m fonctions

lineaires

et un second systeme analogue

Comment pourra-t-on reconnaitre si les deux systemes sont equivalents ou non,
c’est-a-dire s’il est possible oui ou non de les transformer l’un dans l’autre par une
substitution de determinant + i? La reponse est ici immediate d’après les deve-

loppements du n° 10. En effet, nous savons que, par une substitution de deter-
minant + i, on peut transformer les Xi dans les Yi



. ou d,, d2, , .., dm sont des nombres positifs, et

Ces nombres di, forment maintenant un systeme complet d’invariants, et,

pour que deux systemes soient equivalents, il fau t. et il suffit qu’ils admettent les
mêmes invariants.

En effet, si les deux systemes sont equivalents, ils representent les mèmes

systemes de m nombres, et des lors leurs invariants sont egaux, car nous avons ,

remarque (n° 10) que ces invariants dependent uniquement des divers systemes
de nombres representes par les formes lineaires. Cette condition de l’égalité des
invariants est done necessaire pour 1’equivalence, mais elle est aussi suffisante

manifestement.

On voit que la solution a ete ohtenue ici en transformant les formes linéaires

Xi dans les Yi qui affectent une forme particulièrement simple. Ce systeme des
Yi pourrait s’appeler un systeme réduit; il est unique et le même pour tous les

systemes equivalents.

25. Revenons maintenant a la forme bilineaire

En operant sur les xk, y~ des substitutions de determinants ± i, on obtiendra
une forme equivalente

Nous allons montrer que, parmi ces formes equivalentes, il yen a toujours une,
parfaitement determinee, qui affecte la forme tres simple

et que nous appellerons la forme réduite. Ici e,, e2, ..., ep sont des entiers

positifs, ek_, divise ek, et p est tout au plus égaL au plus petit des nombres m
et n. Ensuite on reconnaitra facilement que la condition necessaire et suffisante

pour l’équivalence de deux formes bilineaires consiste en ce qu’elles admettent la
meme forme reduite. On peut donc considerer les nombres e,, e2, ..., , ep comme

un systeme complet d’invariants de la forme bilineaire F.
Considérons la matrice



formee par les coefficients de F. Nous designerons par d~ le plus grand commun
diviseur (pris positivement) des coefficients ai,k, par d2 le plus grand commun
diviseur des determinants du second degre tels que

de même, par d3 le p. g. c. d. des determinants du troisième degre, etc.
Si tous les determinants du degre p ne sont pas nuls, mais si tous les determi-

nants du degre p -f- i sont nuls, on aura ainsi la suite des p nombres

et nous supposerons alors dp+k = o. Jl est clair que divise dk et nous posons

Ces nombres e sont des entiers, nous les appellerons deja les inçariants de F;
nous verrons plus loin que divise ek; p est tout au plus egal au plus petit des
nombres m et /?.

Soit maintenant

la matrice formee par les coefficients de la forme F’ équivalente a la forme F, et
dk le p. g. c. d. des determinants de degré k de cette matrice. II est clair que tout
determinant de degre k de la matrice II A’ ,/ est une fonction lineaire et homogene
de divers determinants de degre k de la matrice ~) A Donc dk est nécessairement
divisible par c~k et tous les determinants de degre p + i de II sont nuls. Mais,
pour la meme raison, dk doit être divisible par d~.; donc

et tous les determinants du degré p de ~ A’ ~ ne peuvent pas être nuls. On voit
par la que les deux formes bilinéaires equivalentes F et F’ ont les memes inva-
rian ts e2, ... e p. 

’

L’égalité des invariants est, done une condition necessaire pour 1’equivalence
de deux formes, qu’elle est aussi une condition suffisante ; cela resulte ensuite
immédiatement de la proposition que nous avons enoncee deja, d’après laquelle la
forme F est equivalente a la forme reduite

En elfet, d’après cela deux formes, dont les invariants sont égaux, sont équiva-



lentes a une meme forme réduite, et., par consequent, aussi equivalentes l’une a
l’autre.

26. Nous avons a montrer maintenant comment on peut operer cette reduction
de F a la forme reduite. Considerons la matrice

Par une substitution sur les xk, on peut d’abord reduire la premiere ligne a

03B41 etant le p. g. c. d. de a1,1, a,1 2, ... a, ,n. (Il va sans dire que nous n’em-
ployons que des substitutions de determinants ==± i.)

Si apres cela ~, divise tous les autres coefficients de la premiere colonne, on
pourra, en remplacanty, par une expression de la forme

sans changery2, ..., obtenir une matrice transformee de la forme

Mais si ~, ne divisait pas les coefficients de la premiere colonne, on pourrait
diminuer ce coefficient ~,, et le remplacer par le p. g. c. d. des coefficients de
la premiere colonne, en operand une substitution sur les y, et annuler en meme
temps les autres coefficients de la premiere colonne. Si 32 divise maintenant tous
les coefficients de la premiere ligne, on obtiendra encore une matrice de la forme
(A~, en remplacant x, par une expression

sans changer ~2? ’ ’ ’? xn. Au contraire, si ~2 ne divise pas ces coefficients, on
pourra le diminuer encore par une substit.ution sur les x. Il est clair qu’après un
nombre fini d’opérations on obtiendra toujours une forme equivalente, dont la
matrice affecte la forme particuliere (A) ; mais on peut simplifier encore et obtenir
une matrice (A), dans laquelle ~, divise exactement tous les coefficients bi,k.



En eifet, supposons que ~, ne divise pas exactement un des coefficients 1L

suffira de remplacer xk par xk + x,, pour voir paraitre ce coefficient dans la

premiere colonne avec d, . En reprenant alors les operations de tout a l’heure, on
obtiendra un Tableau du type (A), mais dans lequel le coefficient o, a une valeur
moindre. On voit donc qu’on peut diminuer ce coefficient tant qu’il ne divise pas
tous les bi,k, et, apres un nombre fini de transformations, on tombera nécessaire-
ment sur une forme equivalente a F du type suivant

et dans laquelle le coefficient e, divise tous les autres coefficients bi,k.
Et il est clair immediatement que e, est le p. g. c. d. des coefficients ai,h. Si

maintenant les bi,k ne sont pas tous nuls, on pourra continuer la meme réduclion
en operant seulement sur les variables x2, ..., y?, . , , On obtiendra
ainsi une forme equivalente

ou e2 est un multiple de e~ et divise tous les c/ /i.
En continuant ainsi, on obtiendra finalement la forme reduite

Puisque ek 1, divise il est immediatement clair que le p. g. c. d. des deter-
minants de degré k de la matrice correspondante a cette forme reduite est

d’oii l’on voit que les ek ont bien les valeurs indiquees precedemment.

27. Dans la pratique, et s’il s’agit seulement de calculer les invariants, on
pourra remplacer souvent avec avantage Ie precede que nous venons d’indiquer



par le suivant. Apres avoir obtenu une forme équivalente

dans laquelle I, ne divise pas necessairement les bi~k, on continuera la meme
transformation sur les indeterminees x.,, ... , y~, ... , ~.~"~, .... De cette

facon, on finira par obtenir une forme equivalente

dans laquelle bi, d~, ..., ~~, sont des nombres positifs, et qu’on pourrait appeler
une forme normale. Il est clair que le p. g. c. d. des determinants de degré k de .

la matrice correspondante, qui doit etre egal a d,,, est ici simplement le p. g. c. d.
des divers produits k a k des nombres

d’ou l’on conclut, d’apres les explications du Chap. I (nOS 8-10), que les inva-

riants e,, e2, ..., ep sont simplement les nombres réduits de d,, 03B42, ..., 03B4p.
Ayant ainsi obtenu une forme normale, on en conclut donc sans difficult£ les

invariants. On voit aussi que cette forme normale n’est pas unique comme la
forme réduite, mais il existe toujours un nombre fini de formes normales equi-
valentes a une forme donnee F.

On peut montrer facilement, d’une facon directe, que la forme normale est

équivalente a la forme reduite. Considérons pour cela une forme

et posons

On peut maintenant transformer directement F en F’ par les substitutions



En les conditions du probieme sont

Pour y satisfaire, on prendra, ~~’, deux nombres premiers entre eux,
soumis a cette seule restriction que

Cela peut se faire evidemment d’une infinite de manieres; le plus simple, c’est
de prendre a’= v~== t.
On cherchera ensuite deux nombres 03B1 et y qui satisfont a la relation (3), puis

on prendra 
’

en sorte que la relation (5) se trouve vérifiée et en meme temps la relation (y,
car .

Par suite de ces valeurs de ~ et S, la relation (f~) revient a

’ 

c’est-a-dire elle rentre dans la formule ( 2 ), car ~, ~z = rn d. Il suffit donc, pour
achever la solution, de determiner 03B2’ et 03B4’ par les relations (2) et (4) qui donnent

Il est clair maintenant que, par une application repetee de la transformation
que nous venons d’indiquer, on pourra transformer une forme normale

dans la forme reduite

28. On peut enoncer le resultat principal que nous venons d’obtenir sous une’
forme un peu différente; mais, pour simplifier, nous supposerons /??=:/? et ]e
determinant different de zero, en sorte que p = n.



La forme bilinéaire

est réductible a la forme réduite

par les substitutions

Supposons qu’on ai t

Si l’on substitue ces valeurs des ,yi dans F’, le coefficient de yi est, nécessaire-
ment égal a Xi donc

ou bien

si l’on pose

On voit donc que toute substitution

pent etre remplacee par trois substitutions successives, la premiere (I), de deter-
minant + i introduisant les variables t,, t2, ..., tn, la seconde affectant la forme

particuliere (II), tandis que la troisieme 
’

a encore nn determinant égal a ± i .
11 est a peine necessaire de dire que, dans cet enonce, on pourrait remplacer

les invariants e i, , e2, ..., ell par les coefficients’ d,, ~.~, ..., d,t d’une forme nor-



male équivalente a F. Et le cas p  n n’apporte non plus. unc modification ; on
aura seulement alors ek = o ou §/f = o pour k > 1.~.
Le nombre p que nous avons vu s’introduire dans ]’étude de la forme hilineaire

s’appelle le rang de la forme bilineaire ou de la matrice des ai,k.
Nous dirons quelquefois aussi que e~, e‘, ..., ep sont les invariants de cette

matrice.

29. L’invariant ek a ete défini d’abord par le quotient ; M. Smith a

obtenu encore une autre expression remarquable de cet invariant.
Considerons un determinant quelconque du degré k de la matrice. Divisons ce

determinant par le p. g. c. d. de ses propres mineurs, soit Ek enfin le p. g. c. d.
de tous les quotients qu’on obtient ainsi; alors le theoreme de M. Smith consiste
en ce qu’on a

Pour eviter toute ambiguite, ajoutons que, lorsqu’un des determinants de

degre k est nul, on do it adopter toujours la valeur zero pour le quotient obtenu
en divisant le determinant par le p. g. c. d. de ses mineurs, meme si ces derniers .
etaient tons nuls.

Il convient du reste, dans ces considerations, de regarder zero comme le

p. g. c. d. de plusieurs nombres qui sont tous nuls. C’est seulement avec ceLte
convention que le principe du nO 6 (Chap. I) reste applicable au cas ou 1’on

n’exclut pas la valeur zero pour les nombres a, b, c, ... , , t.

Nous alJons demontrer d’abord un cas particulier du theoreme de M. Smith.
Supposons n ? m dans la matrice

nous ferons voir que ?w== Nous pouvons supposer que dm n’est

pas nul, car on aurait, dans Ie cas contraire, et l’on peut écrire

(voir nO 9)

~) B ~~ etant une matrice du type nz une maLrice du meme type que ~) A ~~
dont le plus grand diviseur est 1’unite. On reconnait aisement que les matrices !) A II



et ~B~ ont les memes invariants, car la forme bilinéaire de x,, ..., y,, ... ,

ym, dont la matrice est II complétée par n colonnes de zeros, est equi-
valente a la forme bilinéaire dont la matrice est II A ~. Nous savons de plus qu’on
peut ecrire

~ D ~ == it v ~ ~ C ~ étant une mat-rice du type in X n dont le plus grand diviseur
est 1’unite.

Si l’on considere les divers determinants du degre m - i de ~~ A ~~ qui ren-
ferment i colonnes donnees de cette matrice, on constate que le p. g. c. d.
de ces determinants ne change pas si 1’on multiplie la matrice On en

conclut que le nombre Enl est le meme pour les deux matrices

il suffira donc de prouver l’égalité Em = em dans le cas de la matrice

obtenue en multipliant par e,, e2, ... em les m lignes de II D ~~.
Soient I~ ~~ I~, ~~ ~2 ~ , ... les diverses matrices du type m X ni contenoes dans

D ~~; 0,, 0~, ... leurs determinants ; Wi le p. g. c. d. des mineurs de ~~ Ul ~) qui
ne renferment pas la dernière ligne ; en sorte que 0398i 03A8i est entier. Enfin; designons
par ny/ le quotient obtenu en divisant le determinant de



par le p. g. c. d. de ses mineurs ; il s’ensuivra

Mais il est clair que le p. g. c. d, des mineurs de (I) est divisible par

e, e~ .. = et, d’autre part, ce p. g. c. d. est un diviseur de dm_, X Wi

(car d"t_, 03A8i est le p. g. c. d. des mineurs qui ne renferment pas la dernière

ligne). Donc, mi divise et est divisible par = 03C9i 03B1i. On a donc necessai-

rement 
l l

et, d’autre part, em est le p. g. c. d. des nombres r~i j~l

Le nombre E",= (03C91, 03C92, ...) doit donc être un multiple de N X em et un

diviseur de e"t, ce qui exige

A l’aide de ce cas particulier, il est facile d’arriver au theoreme general.
Si, dans une matrice quelconque du type ni X n, on se propose de calculer le

nombre Ek, on peut t commencer par choisir k colonnes verticales, puis diviser
chacun des determinants du degre k de cette matrice partielle du ’type nz X k

(m > k ) par le p. g. c. d. de ses propres mineurs. Soit 03BBi le p. g. c. d. des

quotients ainsi obtenus; alors, d’après ce que nous venous de voir, )..i est le

kieme invariant de la matrice partielle. Par consequent, ~,~ ne ch.angera pas en
effectuant sur y,, ..., une substitution de determinant ± I. Mais Ek est evi-
demment le p. g. c. d. des divers nombres 03BB1, 03BB2, ... correspondant aux divers
groupes de k colonnes ; done Ek ne change pas par cette substitution sur y,,

... , , ym. Par le meme raisonnement, on voit que Ek ne change pas en effec-
tuant sur les x,, ..., , x,t une substitution de determinant ± I . Ek est donc le
meme pour toutcs les formes equivalentes a F et, en considerant la forme reduite
ou une forme normale, on constate que ek.

30. La nouvelle expression des invariants conduit a plusieurs consequences
importantes. Soient

les invariants d’une maLrice il ou ~~ ~. ~~. Supprimons dans ~I A ~I une colonne ou



une ligne, designons par ~~ A’ ~~ la matrice ainsi obtenue, et par

ses invariants. 11 est clair que et ensuite e’k est divisible de eA..
Si, au lieu de supprimer une colonne, on avait multiplie les elements de cette

colonne par un nombre enlier N, les invariants de la nouvelle matrice II A" ~~ seraient

et ek est divisible par ek. Soient en effet Pk le p. g. c. d. des determinants du

degre k de ~~ A II qui ne renferment pas la colonne que l’on change, Qk le p, g. c. d.
des determinants qui renferment cette colonne, on aura

donc

de meme

Puisque

est entier, il en est de meme de

Il est facile maintenant d’etablir les conditions nécessaires et suffisantes pour
qu’une forme bilineaire

soit contenue dans une forme

En effet, soient,

les deux substitutions qui transforment F en G. On reconnait d’abord que le rang



de G ne peu t pas surpasser le rang de F, car un déterminant t quelconque de la .

matrice IJ II est une fonction lineaire et homogène dcs déterminants de II I.
Chacune des substitutions qui transforment F en G peut etre relnpiacee par unc
suite de trois substitutions comme au n‘~ 28. Les substitutions de determinants + I
ne changent pas les invariants, mais une substitution telle que

a évidemment pour effet de multiplier les invariants par certains nombres entiers.
Les invariants de G sont done divisibles par les invariants correspondants de Ii .
On reconnait facilement que cette condition, qui est nécessaire, est aussi suffisante.

THÉORÈME XI. - Poun qu’une forme bilinéaire G soit contenue dans lcc

forme F, il faut el il suffit que le de G ne surpasse pas le rang de F, et

que les invariants de G soient divisibles par les invariants correspondants cle F.

Ce résultat comprend aussi Je cas de 1’equivalence.

31. Considérons maintenant les systèmes de congruences linéaires

Designons par

les invariants de la matrice du systeme et ceux de la inatnce complétée. Nous
supposons que dn ne soit pas nul.

Posons "

alors on peut enoncer

THEOREME XII.- Pour que le système (I) admette des solotions, il faut el il
suffit qu’on ait .

Si celte condition est satisfaite, le nombre des solutions est exactement = C.

En effet, d’après Ie theoreme VIII, le systeme (I) admettra des solutions seule-
ment dans le cas ou les plus grands diviseurs des deux matrices



sont egaux.
Mais le premier de ces nombres est evidemment égal a

et le second de ces nombres est pour la meme raison = F. La premiere partie du
théorème est ainsi demontree. Pour obtenir le nombre des solutions dans le cas

(A = r, il suffit de se rappeler que, par une substitution de determinant -r- i

et, en remplacant les equations (I) par des combinalsons convenables, on peut ob-
tenir un système equivalent de la forme

Or le nombre des solutions de ce dernier systeme est evidemment

11 est a remarquer que Yi.--_ (M, ~~) divise ci= ei), car 2i divise con-

dition C = r exige donc qu’on ait

32. On peut donner au theorenle XII nne autre forme en supposant décom-

pose en facteurs premiers le module 111. 
’

Soient , ak, xh. les exposants des plus hautes puissances d’ un nombre premier p ,

qui divisent respectivement M, dk, 03B4k. Alors on a



car nous savons que les rapports

sont des enliers.

La condition

devient maintenant pour chaque nombre premiere qui divise M

Supposons que, dans la série (2), le premier terme plus petit que  soit 
alors la relation ( ~), qui exprime la condition necessaire et suffisante pour que les
congruences admettent une solution pour le module p , devient

et le nombre des solutions est alors px6+cTt--6o, C’est ce que l’on trouvera par unc
discussion facile en s’aidan t des inegalites ( 1 ), (2), (3), ( 4 ) .

>j’apres cela, si l’on avait  > an- x"_,, la condition devient x" = cc" et le

nombre des solutions est Ainsi, dans ce cas, il suffinait de calculer d" et o".
On voit facilement que si, dans la serie

cch.- 03B1k est le premier terme égal a zero, est la plus haute puissance de p
pour laquelle, comme module, le système des congruences admet des solutions.

C’est seulement pour preciser les idees que nous avons suppose au n° 31 que le
determinant dn du système (I) n’était pas nul.

Et aussi, a proprement parler, ce n’est pas la une restriction, car, en ajoutant
des multiples de M aux coefficients, on peut toujours faire en sorte qu’il en soit
ainsi.

Mats la plus legere attention sulfiL pour reconnaitre que le theoreme XII est
general et reste vrai meme dans le cas ou l’on aurait o, a condition seule-
ment de se conformer a notre convention de prendre dans ce cas

et de même pour lcs invariants de la matrice completee.

33. Considerons maiutenant le systeme



Designons comme au n° 31 par

les invariants de la matrice et de la matrice complete, puis posons

La condition necessaire et snffisante pour qu’il y ait des solutions est alors en-
core 

’

mais le nombre des solutions est C X En eiet, on obtient un système

equivalent

et vn+1, cn+2,..., vn+m restent arbitraires.

34. Soit enfin le systeme

et designons toujours par

les invariants de la matrice et de la matrice completee.
La condition necessaire et suffisante pour qu’il y ait des solutions s’obtient a

j’aide du theoreme VIII sous la forme

ou, apres une reduction facile, y



Mais, puisque (M, divise (~1I, on a necessairement

Par consequent divise d,t+,, et an lieu de (03B1) on peut écrire

ce qui revient encore a

si l’on pose comme precedemment

Pour qu’il y ait des solutions, les conditions (i) et (2) sont necessaires et suffi- .

santes. Le nombre des conditions s’obtient sans difficult£ ; il est egal a C.

35. Les méthodes developpees a partir du n° 22 permettent d.e retrouver avec
facilite la plupart des résultats obtenus dans Ja premiere Partie de ce Chapitre.
Nous nous bornerons a deduire de cette facon le theoreme VIII sous une forme

plus generale. Considérons donc les equations non homogenes

sans faire aucune hypothèse sur m et rz. Soient f A ~ et ~ A’ matrice du système
et la matrice completee. Si l’on prend k des m equations et que l’on considere
tous les determinants du degre k qu’on peut former avec leurs coefficients, ces
determinants appartiennent en partie a la matrice ~ A’ ~. Mais, si le système (I)
admet une solution, on pourra remplacer les par leurs valeurs

en sorte que chaque determinant de s’exprime en fonction lineaire homo-
gene des determinants de ~ A ~. Dans tous les k equations, le p. g. c. d. des de-
terminants de ~ A If est donc égal au p. ,g. c. d. des determinants de (’ A’ ~. D’ou
l’on conclut que le p. g. c. d. de tOllS les determinants du degré k est le même
ponr les deux matrices et Ce sont la des conditions nécessaires pour



que le système (l) admette des solutions. Mais ces conditions ne sont pas toutes

indépendantes, comme cela résulte du théorème suivant :

THÉORÈME XIII. - Pour que le système (I) admette une Oll plusieurs solu-
tions, il faict et il suffit que le rang p de ~ A ) so it au rang de ~ A’ ~, et
que le p. . g. c. d. des déterminants du degré p soit le même pour les matrices
~A~ et ~A’ ~.

Nous avons a démontrer seulement que ces conditions sont suffisantes. Or, par
une substitution

et en remplacant les equations (I) par des combinaisons convenables, on peut ob-
tenir un systeme absolument equivalent

Dans cette transformation les rangs de ~ et de ~~ se conservent, de meme

que les p. g. c. d. des determinants du degre A~. Puisqu’on suppose que le rang
de j) est == p, les determinants du degree + i

doivent s’annuler ; donc

ce qui montre que les equations (II) ne sont pas incompatibles. De plus, les de-

lerminants du degree de la matrice ~A’~ transformée

doivent etre divisibles par e, e2 ... ep. Donc u1, u2, . , . , up sont divisibles par
e~, ~2? ’ ’ ’ ? ep respectivement, en sorte que les equations (II) sont satisfaites par
des valeurs entières de v,, ..., vp . c. Q. F. D.

La plupart des resultats de ce Chapitre sonL dus a M. Smith; un seul, le theo-
reme VIII avait ete obtenu antérieurement par I. Heger. Le même sujet a ete

repris ensuite par Frobenius qui a introduit la forme bilineaire. Le Memoire
de M. Frobenius contient encore d’autres applications intéressantes a la theorie

des formes bilinéaires.
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