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SUR LES
FORMULES GENERALES DE LA MECANIQUE CELESTE,

PAR M. H. ANDOYER.

1. Nous nous proposons d’exposer dans ce travail une méthode permet-
tant d’obtenir, pour représenter le mouvement des corps célestes, des for-
mules purement trigonométriquos, ne renfermant, par conséquent, aucun
terme séculaire. :

Ce n’est pas la premicre fois que I'on poursuit un semblable but, et parmi
beaucoup de travaux récents sur ce sujet, qu'il serait impossible de rappe-
ler tous, il faut citer spécialement les recherches de M. Gryldén et celles de
M. Lindstedt, reprises et généralisées par M. Tisserand dans un Mémoire
sur le probléme des trois corps (Annales de I’Obsercatoire de Paris,
tome XVIII, Mémoires).

S'il est possible de caractériser en quelques mots les diverses méthodes
suivies par ces éminents géométres, on peut dire que M. Gyldén cherche @
obtenir, par I'introduction des fonctions elliptiques, une premiere approxi-
mation (remplacant celle fournie par le mouvement elliptique, par exemple,
s'il s’agit du mouvement de translation des planétes ou de leurs satellites)
sur laquelle puissent se greffer des approximations successives convergentes,
tout en permettant d’éviter la présence du temps en dehors des signes sinus
et costnus; M. Lindstedt emploie plus directement la méthode des approxi-
mations successives convenablement modifiée; enfin M. Tisserand s’appuie
sur la méthode bien connue de Delaunay, généralisée et adaptée au pro-
bléeme des trois corps. Tous ces procédés conduisent d’ailleurs aux mémes
résultats : M. Tisserand (') I'a montré, dans un cas particulier, pour les mé-

(1) Sur une équation différentielle du second ordre qui joue un réle important dans la
Mécanique céleste (Annales de la Faculté des Sciences de Toulouse, t. II).
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thodes de M. Gyldén et de M. Lindstedt ("). Ne peut-on pas se proposer
alors d’arriver directement & ces résultats en s’appuyant sur la méthode des
cocfficients indéterminés, employée par Laplace dans sa Théorie de la
Lune? La forme des intégrales a obtenir est, en effet, facile & prévoir; leurs
coefficients seront déterminés par des équations qui s’écriront pour ainsi
dire immédiatement, et qui seront aisées a résoudre par approximations
successives.

C’est 'application de ce procédé que nous développons bri¢vement dans
ce travail, quidoit étre considéré comme un commentaire des méthodes em-
ployées par Laplace dans la Mécanique céleste, principalement dans la
Théorie de la Lune et celle des Satellites de Jupiter. Bien entendu, les
séries purement trigonométriques obtenues ne représentent réellement le
mouvement des corps célestes que sil’on admet leur convergence. Clest la
une difficulté inhérente au probléme, et que nous laisserons de coté, nous
bornant & constater la légitimité pratique des résultats obtenus, au moins
pour un certain temps.

2. Nous nous appuierons presque constamment sur un principe que sug-
gerent la théorie connue des équations différentielles linéaires a coefficients
périodiques, ainsi que les recherches de MM. Lindstedt et Poincaré sur une
équation différentielle particuliére que 1’on rencontre dans la Mécanique
céleste (*). 1l suffit de se reporter aux Mémoires auxquels nous faisons ici
allusion, pour constater que ce principe est une simple généralisation des
résultats qui y sont contenus, et se convaincre que la seule application de la
_méthode des coefficients indéterminés combinée avec celle des approxima-.
tions successives suffit a sa vérification.

Voici ce dont il s’agit :

Soit un systéme d’équations différentielles f, = o, f, = o, ... a plusieurs
inconnues &,, &, ..., la variable indépendante étant ¢; les premiers mem-
bres sont développés suivant les puissances positives des inconnues (suppo-

(1) Ajoutons que M. S. Newcomb arrive & des résultats du méme ordre dans son impor-
tant Mémoire : On the general integrals of planetary motion (Smithsonian contribu-
tions to Knowledge, t. XXI, 1876).

(2) LiNnpsTEDT, Beitrag sur Integration der Differentialgleichungen der Stérungs—
theorie (Mémoires de I’ Académie Impériale des Sciences de Saint-Pétersbourg, 7° série,
t. XXI). PoiNcARE, Sur une méthode de M. Lindstedt (Bulletin astronomique, t. 111,
1886).
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sées petites par rapport aux coefficients) et de leurs dérivées, et on fait
I'hypothése qu’ils ne contiennent aucun terme indépendant des inconnues;
les coefficients se composent de parties constantes et de séries trigonomé-
triques procédant suivant les cosinus ou sinus des sommes des multiples de
divers arguments N, =n,t+{,, Ny=nyt+1,, ...; nyyngy ..., Iy, ...
désignant des constantes.

De plus, on suppose que les équations ne changent pas, si I'on change le
signe de ¢, et de {,, ,, ..., en méme temps que celui de certaines des incon-
nues que nous appellerons z,, z,, ...; celles dont il est inutile de changer le
signe seront représentées par yy, Ya, .. ..

Enfin, imaginant, d’autre part, les coefficients ordonnés par rapport a
des quantités m,, m,, ... petites du premier ordre, on suppose que, dans
'une au moins des équations, le coefficient de la premiére puissance d’unc
quelconque des inconnues, ainsi que d’une quelconque de ses dérivées,
contienne une partie constante d’ordre inféricur a Iordre des parties pério-
diques des cocefficients de la méme quantité dans I'ensemble des équations,
4 moins que dans chacune des équations le coefficient de cette quantité ne
soit purement périodique; d’ailleurs les coefficients ¢tant supposés généra-
lement d’ordre zéro, leurs parties périodiques sont au moins du premicer
ordre.

Ceci posé, si I'onréduit ces équations a former un systeme linéaire a coef-
ficients constants, en supprimant tous les termes qui n’ont pas la forme
correspondant & un tel systéme, on pourra les intégrer aisément; entre
autres opérations, il faudra former Iéquation caractéristique; les racines
distinctes et non nulles de cette équation (racines caractéristiques) seront
égales et de signe contraire deux & deux; nous les supposerons imaginaires
dela forme = g,y — 1, = goy—1, ....

Alors la méthode des coefficients indéterminés, combinée avec celle des
approximations successives, permettra de déterminer des valeurs de «,,
&, ..., verifiant les équations primitives et de la forme suivante :

Y= 2 Yipope-shkoka ) cos(py Ny +paNo+ .o+ ky Gy + ky Gy + ..0),
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OU Py, Pay -« -, kyy kyy ... sont des entiers pouvant prendre toutes les valeurs
possibles; d’ailleurs, pour la symétrie des formules, nous supposerons (et
nous conscrverons cetle hypothése dans tous les cas analogues)

Yfll’x,]’:v sk kg ) — Y‘—Pp —Pa2 »~~;"/~‘n—/‘2,-~),
................................... N
Z'lphpﬂv-u;kl-k:wn) — Z(I—Pn—l’s»w;—kn—".y -i’

Les Gy, Gy, ... sont des arguments de la forme g, ¢ + @, 2,0 + @, ...,
@, @y, ... ¢lant des constantes arbitraires, tandis que g,, 2., ... sont des
constantes déterminées par la suite méme des approximations, ct dont les
premiéres valeurs approchées sont g, g,, ... ou, plus généralement,
g4+l + oo+ 80 hyong+hoyny+ ..o +g,, ..., les L étant
des entiers fixés arbitrairement, de la facon la plus convenable, suivant les cas.

Si maintenant ¢, ¢,, ... désignent des constantes arbitraires, petites par
rapport aux coefficients des équations (puisque nous avons fait la méme
hypothése sur les inconnues), un coefficient quelconque Yprre-ikba-) pap

exemple, sera de la forme elf"lelfs! ... y/prro-ifehad oo dernier facteur étant
une séric ordonnée suivant les puissances paires des ¢, et, par suite, de la
forme 232"/'5?’_,7‘2 e Vit B gy gy ... Gtant des entiers positifs ou

nuls. Ces coefficients ne dépendent que des cocfficients des équations, et
sont cux-mémes ordonnés par rapport aux quantités m,, m,, .... Aucun
terme des inconnues ne pouvant d’ailleurs étre indépendant des constantes
&y &y .., d’aprés la forme supposée aux équations, on voit que les coeffi-
cients tels que yif7= "% seront nuls. Ajoutons encore que les quantités
g1y Qe --- sont de la méme forme que les quantités y\»*: on peut

éerire g, == 2 &€ .. Zlaguage . -+ Lonfin, dans chaque cas particulier, on

précisera, de la facon qui sera la plus convenable, la signification des con-
stantes ¢, €, ..., en remarquant que 'on peut choisir pour ¢, I'un quel-
conque des coefficients Y{Pur»-ith00-) gy Zipepe-it0%) ap ainsi des autres
(exception faite naturellement pour ceux de ces coefficients qui seraient
nécessairement nuls, ou d'un degré supérieur au premier par rapport aux
constantes g,, €, ...). 4

En terminant, il n’est pasinutile d’insister sur ce que nous entendons, en
disant que les formules ainsi trouvées pour lesinconnues vérifient les équa-
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tions. Cela veut dire que l'on peut pousser assez loin le calcul de ces for-
mules, qui sont des séries procédant suivant les puissances des quantités
My, My .y €4y Eay -+ -y POUL que, apros substitution dans les premiers membres
des équations, les résidus soient d’un ordre aussi élevé que I'on voudra par
rapport & ccs mémes quanlités, considérées comme petites du premier ordre.

1l va sans dire que ce principe peut tomber en défaut, si les circonstances
sont telles que les approximations successives soient divergentes; mais alors
des solutions de la forme précédente sont impossibles.

3. Nous allons maintenant examiner séparément les problémes principaux
que 'on rencontre dans la recherche du mouvement du Soleil, des planctes
et de leurs satellites, supposés solides ct soustraits a toute influence exté-
ricure. 1l serait plus général d’embrasser ce probleme tout d'un coup, etl'on
n'y rencontrerait guere plus de difficultés: il est préférable, pour la simplicité
et la facilité de 'exposition, de le diviser, ainsi qu’on le fait d’habitude, en
un certain nombre de problémes particuliers, et de s’aider de la solution de
ces problémes pour compléter ensuite celle de la question générale. Ce sont
les principaux de ces problémes particuliers que nous nous proposons de
passer cn revue.

Le premier qui s'offre est la recherche du mouvement relatif autour du
Soleil, supposé réduit & son centre de gravité (toute la masse ¢tant concen-
trée en ce point), des centres de gravité des huit grands systémes planétaires
(les masses de ces systémes étant de méme supposées concentrées en ces
points), sous l'action du Soleil et sous leur action réciproque. Pour simpli-
fier le langage, nous dirons le Soleil ou les planctes, en parlant des points
que nous venons de définir.

M, sera la masse du Soleil; M,, M,, ..., M,, ..., M seront les masses des
planétes Mercure, Vénus, ..., Neptune (enréalité des systémes planétaires
correspondants); (M,) désignera le point de masse M;. Nous rapporterons
les coordonnées des planétes & trois axes rectangulaires de directions fixes,
passant par (M,): (My)xz, (M,)y, (M,)z; le plan des zy étant le plan de
Iécliptique moyen de 1850,0, par exemple, et Paxe des - étant dirigé vers
I’équinoxe de printemps moyen correspondant. Siz;, y;, 5; sont les coordon-
nées de (M;), nous ferons
;= r;cosv;\1— s%,

yi=r;sine; 1 — s},

S; =TSy .
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iy viy S; ¢lant le rayon vecteur, la longitude et le sinus de la latitude
de (M,).

En désignant par f le coefficient d’attraction, les équations relatives a (M,)

seront
v d2(ryy  f(M,+M,;) OR;
S ar r ”‘Qf(dRi)—"inj—O,
dv? v dir; f(M,+ M) 1 ds? 1 JR;
— 2y _ "t __ ) ! hatl itk
(l Sl) dt? r; de? I’? + 1 —.S‘? de? r; d",‘ -
I il__s, .dv? “ 2 6_}'7_1 ‘i‘i S; ds? 1 JR;
1 — s} di? der U ri(1—s?) de dt+(1—s$)2gﬁ_-r_?7i_v:—o’
ou
(dﬁl) = (%l;—l dl’i—l- %’%ﬁ dVi—I— (?(% dS,'
et

Pli - 2 Rij’
J
1 2 Vi 25
Ri;=1IM; ; (@i — @)+ (3 — ¥+ (50— 5)1] 5 — DL EVVIE S5,

3
ry

La premicre équation a été écrite sous la forme qui nous servira dans la
pratique; tant qu’il s’agira, au contraire, d’exposer la théorie, nous la sup-
poserons différentiée, afin de faire disparaitre le signe f qui y figure.

L’observation nous apprend que chaque planéte (M;) tourne autour
du Soleil dans le sens direct, avec une vitesse angulaire moyenne con-
stante 7;, et que si 'on définit une nouvelle constante a; par la relation
nia; =f(M, +M,;), la distance de (M;) au Soleil reste toujours voisine
de a;.

Faisons donc 7, = a;(1 +¢;), ;= N;+ A; ot N;= n,;# + ¢,, ¢; étant une
constante. Les équations deviennent

az T, n? 2 r; OR;
dt2(Pi+;Pi>— ,+pi—a;zf(d"‘f)*a?a—r,.~°’

2)< ' dli>2 1 dPp; n} 1 ds? [ dR,-:O

T e A T (ivpy | t—si de 7 O

. 2\ 2
2
T —s? de* +S’.<ni+~¢7t_> +(l+p,~)(l——s?) dt dt +(l—s,?)2 et r} ds;

Les premiers membres de ces équations (la premiére étant supposée dif-
férentice, ainsi que nous I'avons dit) peuvent étre aisément développés sui-

2 dp; ds; S; ds? 1 dR;
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vant les puissances des inconnues (qui sont petites par rapport aux coeffi-
cients) et de leurs dérivées, en se servant du développement des fonctions
perturbatrices R;; que nous donnerons plus loin. Alors, comme les parties
périodiques des coefficients ne dépendent que des différences des arguments
N, deux a deux, que la troisitme équation ne contient aucun terme indé-
pendant des s; ou de leurs dérivées, et qu’enfin les équations ne changent
pas en changeant les signes de ¢, des N, et en méme temps des A;, on aper-
coit aisément que 'on peut déterminer, par la méthode des coeflicients
indéterminés combinée avec celle des approximations successives, et sans
introduction de nouvelles constantes arbitraires, des valeurs de p; et A; qui,
avec ’hypothése s, = o, vérifient les équations, et dépendent des constantes
arbitraires n; et ¢;.
Appelons p; et X ces valeurs; elles seront de la forme

pi= 3, pirore-1cos (pyNy + psNs + ...),

)\Il: 2 )\’i(p“pi””) Sin(P1Nl +P2N2+ . .),

les p étant des entiers quelconques, mais vérifiant la relation 2 p=o,ecn

raison de la forme des parties périodiques des coefficients.

On obtiendra aisément les coefficients ordonnés par rapport aux masses
perturbatrices M, ..., et 'on voit immédiatement que la partie principale
de piPer==) ou APvP»-) est de I'ordre du produit M;M;..., ou M;, My, ...
désignent les masses, autres que M;, telles que les indices correspondants
Pjs Pj's - - - solent non nuls. Quant & g,*"~, c’est un coefficient du premier
ordre.
~ Revenons maintenant & nos équations, dont nous n’avons que des solu-
tions incomplétes, et faisons-y la substitution

”

pi=p; + 29}‘!’1'%'“) cos(piNy + P No+ oo+ p X+ pady +..0),
L= 4 Dy Mrere-)sin (p Ny pa Ny o pu Ny pady ).

Développons alors les premiers membres comme précédemment. Il est
clair qu’ils ne renferment plus aucun terme indépendant des inconnues, ni
aucun terme ne dépendant que des A; (leurs dérivées non comprises ), puis-
que, d’aprés ce qui précéde, p; = o, A; = consl., s, = 0, sont des valeurs des
inconnues vérifiant nos nouvelles éqnations.
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On voit alors que 'on peut appliquer & ce nouveau systéme le principe
énoncé plus haut. Notons seulement que les parties périodiques des coeffi-
cients ne dépendent que des différences des arguments N; deux a deux, et
que les équations ne changent pas si I'on change les signes de ¢, des N, et
en méme temps des; et des s;. Si alors nous réduisons le systéme & la forme
linéaire a cocfficients constants, on voit immédiatement qu’il se subdivise
en deux : l'un qui correspond aux s;, et qui donne des racines caractéris-
tiques ne différant de = n;y/— 1 que de quantités du premier ordre (*);
l'autre, qui correspond aux p; et A;, dont les racines caractéristiques non
nulles ne différent aussi de == n;y/— 1 que de quantités du premier ordre.
Comme, d’ailleurs, a chaque racine caractéristique correspondent deux nou-
velles constantes arbitraires, et que nous avons déja comme constantes les
n; et les g;, on voit qu’en procédant comme il a été expliqué on obtiendra
des solutions renfermant le nombre total de constantes arbitraires néces-
saire.

Remarquons encore que les deux premicres équations ne renferment que |
des termes de degré pair par rapport aux s;, landis que la troisi¢me ne ren-
ferme que des termes de degré impair par rapport aux mémes quantités. En
vertu de cette remarque et de ce que nous avons dit plus haut, on voit que
les arguments, introduits par I'intégration, pourront se partager cn deux
groupes : I'un, G, G, ..., correspondant aux p; et A;;; Vautre, H\, H,, .. .,
correspondant aux s;; et tels que si 'on pose, comme nous devons le faire,

pi = 2 piPers i dngh s rirt s cos (py Ny 4= pa Ny + o+ g1 G+ o+ r H 400,

)\;{: 2 )\‘;,(pn 2341 g% i PLTE ) gl (Pl N, +P2Ng R qllGl1 I ,./1 H’l +...),

§; = 2 siPupsigigheireried sin (py Ny 4 poNy + .o+ ¢ G+ o= P H L),

Zr’ soit pair dans les arguments des deux premiéres formules, et impair

dans ceux de la troisitme. D’ailleurs, en vertu de la forme des coefficients
9’

périodiques des équations, on a Zp =o.

Les arguments G, H; peuvent étre mis respectivement sous la forme

(') Remarquons, une fois pour toutes, que le mot ordre s¢ rapportera toujours aux masses
perturbatrices, tandis que le mot degré s’appliquera aux constantes (telles que plus haut
&1, 9, .. .) introduites par l'intégration. -
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(n; — gt +e— oy (n;— h)t +¢; — Sy, les @, 3; étant des constantes
arbitraires, et les g;, &, des quantités du premier ordre. Si alors nous fai-
sons G, = g;! + ©;, H;= h;t+ 5, on pourra substituer ces nouveaux argu-
ments aux précédents, et écrire

" X . .
Pi= Z pirersidesre-deos(p Ny + .. 4+ q,Gy+ ... 1 Hy),
= Z 2ipepifeeire-d sin (py Ny + .o+ ¢, Gy + ... Hy),

\ . . .
$; — z S[(pl‘pﬂ'""[]H""lhu-) sin (P1N1+ e+ q‘G‘_|_ .. ,'11-11)‘

Dans ces arguments on aura évidemment la relation 2 (p+q-+r)y=o,
en vertu de la relation Z P = o qui existait dans les formules précédentes.

Dailleurs, dans les deux premiéres formules, on a toujours Zr pair et im-
pair dans la troisiéme.

Cette substitution est d’autant plus avantageuse, que les valeurs des
racines caractéristiques correspondant aux équations réduites A la forme
linéaire & coefficients constants doivent subir, comme nous le verrons plus
tard, des corrections du premier ordre (bien que le principe ne tombe pas
en défaut), et que, par suite, les diverses quantités g, sont inséparables les
unes des autres, et qu’il en est de méme des diverses quantités /,.

Si maintenant nous considérons les valeurs de ei» A, MOUS voyons que
nous pourrons les mettre aussi sous la forme

pr= 2 pifreidie gy i) cos (PyNy 4o 4 gy Gy 4. 4+ riHy),

he= 3 WP s teesriresd sin(pNy+ ..+ ¢, Gy 4y H),
formules auxquelles il convient de joindre
I E Sgpl....;1/1,...;7~1,...) Sin(p, N'1 4+ ..+ qul + ..+ r Hi)’

et sur lesquelles on doit faire les mémes remarques que ci-dessus, au sujet
des arguments qui y figurent. :

Nous sommes donc finalement en droit d’appliquer la méthode des coef-
ficients indéterminés combinée avee celle des approximations successives &

la recherche de quantités p;, A, s;, ayant la forme précédente, et vérifiant
IV. — Fac. de T. K.2
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les équations fondamentales (A). Les séries que I'on obtient ainsi ne sont
peut-étre pas convergentes, mais elles sont réellement ordonnées suivant les
puissances positives de petites quantités, et certainement utilisables pendant
une certaine période de temps, les erreurs dues a leur emploi tombant au-
dessous de celles que peuvent nous révéler les observations.

La forme des coefficients peut d’ailleurs étre facilement fixée en s’ap-
puyant sur ce qui a été dit plus haut et en jetant un simple coup d’ceil sur
les équations que nous allons écrire maintenant : on y remarquera, en par-
ticulier, que dans les équations relatives & (M,) les termes indépendants des
masses perturbatrices ne dépendent que des coordonnées de (M,); et
aussi que les masses perturbatrices ne peuvents'introduire en dénominateur
dans les coefficients inconnus des coordonnées de (M,), que si ces coeffi-
cients correspondent & des arguments dans lesquels le coefficient du temps
est du premier ordre ou ne differe de n que d’une quantité du premier
ordre, ou bien encore si ces coefficients dépendent d’autres coefficients tels
que ceux dont nous venons de parler.

Cela étant, nous pouvons prendre pour les constantes arbitraires les
coefficients des cos (N, — G;) dans p, [(M;) est la Terre], ainsi que les coef-
ficients des sin(N; — H;) dans s,; soient ¢, &, ..., 0, ¥, ... ces deux
groupes de constantes. Alors, on se convainc aisément qu'un coefficient
tel que gipwpe-iodn-srors) sera de la forme

N - L _aqh T (Propareess Guoei Ty, o)
el Ll MM E Mgt ¥indt ... i(?lqafzqg,..“;zra.;r'g,...) .
M;, M, ... étant les masses autres que M;, telles que les indices correspon-
e 1 ’ 1 - . .
dants pj, py, ... soient non nuls, et ¢, g,, ... étant des entiers positifs ou
nuls; les nouveaux coefficients p; ne dépendent plus des constantes ¢, v, et
ils sont ordonnés par rapport aux masses perturbatrices, leurs parties prin-
cipales étant d’ordre zéro. 11 en est de méme pour les coefficients de A, et

de s;.
Cette régle est générale, mais certains coefficients peuvent étre nuls ou
d’un ordre supérieur & celui indiqué. Ainsi, pff#)#*) sera du premier

ordre.
Enfin, les g; (et de méme les 4;) auront une forme analogue

291 o2q% 'y 0202
E eed: . .onl Ny L Singy s 2
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les nouveaux coefficients ainsi introduits étant ordonnés par rapport aux
masses perturbatrices, et leurs parties principales étant du premier ordre.

4. Développons actuellement les premiers membres des équations (A)
en séries trigonométriques procédant suivant les cosinus ou sinus des ar-
guments qui figurent dans les valeurs de p;, A;, s;, valeurs que nous suppo-
sons connues, a I’exception des coefficients qui sont & déterminer. En éga-
lant ensuite a zéro, dans chacun de ces premiers membres, le coefficient
du cosinus ou du sinus d'un méme argument, nous obtiendrons une série
d’équations qui, résolues par la méthode des approximations successives,
nous fourniront les valeurs des coefficients inconnus, et aussi des quantités
gieth,.

Pour abréger I'écriture, nous remplacerons I'ensemble d’indices
(PisP2y-+3 iy oy ---3 74y Tay...) par le seul indice (p), toutes les fois
qu’aucune ambiguité n’en résultera; siP'un des indices, p; par exemple, a
besoin d’étre désigné plus particuliérement, les autres restant indéterminés,
nous écrirons (p, p;) pour remplacer I'ensemble d’indices.

L’argument p,N, +p,N, +...+¢,G,+...+r,H,+... sera repré-
senté en abrégé par V% ; le coefficient du temps, dans cet argument, sera
désigné park, =p,h,+ ... +~q, g+ ... +rh, + ...

Soit alors
c—= Z cP) cos VP, ¢ — 2 c'p) COSV(p);
s= Z sP) gin V(»), = Z s'P) ginV(r),
s . , . _ _
sil’on suppose, ainsique nous'avons dit,que ¢V =¢P), ..., sP= — s=P

on pourra écrire

cc' — Z c’(P')c(P-*P')COSV(p),

cs — 2 cP) sp=t) gin Vo),

ss! — — 2 s'(ph) g(p—p") cos V),

les nouvelles séries étant soumises & la méme condition, que nous supposons

toujours remplie, et le signe E s'étendant & toutes les combinaisons des in-

dices (p) et (p').

Il nous est facile maintenant d’effectuer le développement proposé. Bor-
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nons-nous d’abord aux parties des premiers membres indépendantes des
forces perturbatrices. La premiére des équations (A) nous donne (a une
constante pres qu’il est inutile d’écrire, & cause de la constante additive
contenue dans f (dR;), de sorte que I'on ne devra pas, dans cette équation,
se préoccuper de ce qui correspond a I'’hypothése V' = o),

Z cos VP [(nf — k) pi’ — (nE+1h5) o7 o P+ npi ol P ol ]

La seconde donne

2k kg WP (1on] o k) o o P

E cosVP { 4 (Bn? + kfx) P;,P) — (6n?+ £2) pgp')p(ilz—p')+ ZIlikpn )\i',m S(lp'-l)/lj s([},_p/.

+ (nikpky_p) s PP
et la troisieme

5 (nf — KD 25 ki WPSP P 4 ey WAL S
3 sinve |

— PN sipP o . (p") () (PI—P") g(P=p')
2kpkp_ppds; +2kpy_prkp_p PP 83

-2 A (P o(pI=p") o(P=p')
+(ltpn+kp’-p"ﬁp—p')sip sPPsiPmr

Arrivons maintenant au développement des expressions qui dépendent
des fonctions perturbatrices R;;.

R;; peut aisément se développer en série trigonométrique procédant sui-
vant les cosinus des multiples de (¢; — ¢;); les coefficients sont eux-mémes
des séries ordonnées suivant les puissances de s; et s;, avec cette remarque
que tous les termes sont de degré pair par rapport a 'ensemble de ces deux
quantités, qui figurent d’ailleurs symétriquement dans ces séries; quant
aux coefficients de ces séries, ce sont des fonctions de 7; et r; faciles a cal-
culer. Nous pouvons donc écrire, en désignant par g un entier quel-
conque,

Riy= W, cosp(vi—0;) [+ b (57 57) + S ses; + ... ],

ot les w, ... ne dépendent que de r; et 7;.

Faisons r; = a;, r; = a;; les &, ... deviendront des fonctions A, ... de
a;et a;. Faisons, en outre,

kl .1/
gz g O A
n—" J. Y L]
dat' da;

A

i,k

—~——
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nous pourrons écrire

1 c (W)
—Ry= Y cosu(Ni—N) | A,
i
) (W)
+ A pi+ A,‘:hpj

i, Jo
) 1A (B 1-’- (W Y
A:Wlopl A(lp‘ltpipj A 0 ]2 PJ Alo ]o()\l )\J)
(
B, (5 5) Ol
( ( W hop2 41 W 3
+% All:)lopi 3 At!:)z.Pi pit+ % A:ﬂpp p; + Az,. 1391

- % ()\l - )\1) <Ail|,"lopl + Aln ]lpj)

+3 (82+S )(B(t!:)lop'—l_B(ul p_,)—i—S,SJ(C“ I«Pl—-f Llo)hpj> _

los

— 2 sinp(N;— N;) % AP (L —1y)
+p (= 1) (AE e+ AL 0))
H AP.) ()\ —}])3—‘—{”'()" —)\/)<l A(P:)]o H Aiij:)hppf A‘lloj‘hp/)

Zo+Jo
+ (A — A (ABY. (s34 s2) +CY, s:8;)

iy Jo ‘o:Jo

r IR;;
)
a} Or;

ceront A, B, C, ..., en posant

aura un développement tout pareil, sauf que I¥, G, H, ... rempla-

Ay,

dls'+k”F‘,
k=2 kn tj
) .« et F i — A a

dai ) ik

Fu=a I GaFaa)
i J

De méme pour% d;:_"’; cette fois, les lettres L, M, N, ... remplacent A, B,
i i

C, ..., en posant

I dA,J

a; da;’

i QF -+ K Lij

R et Ly o =af "al FF Ik
L 7

Ll'j:

Enfin, en remplacant encore B, C, ... par Q, R, ..., et posant

&t /c// s AQ

Ql!_——. ijr ey et Q,-kryl»ku:a,» (ll da"'da"" DR

on aura (en se bornant aux termes du second ordre, trés faciles a compléter
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d’ailleurs)
1 R, s: (Qit), -+ Qe+ Q) p))
e 2 cospt(N; —N;) “ w w
' ! +sj(Rlalo R wilPi Rt ,le)+~-

— 2 sinp (No—N) | (= 2) Q¥ s + R, ) + ... |.

Introduisons maintenant dans ces fonctions les valeurs de g;, A, s;, Ry
A;, s;sous la forme que nous leur avons donnée, et nous aurons finalement

1 .
—Ry= DAY, cosp(N:—N,) + D H, cos Vo,

i

Al
ou
_ (I ) 1AW (P! (PI=D) (P, pimpii—U pj—p’j 1L}
H,= ‘li‘:/op P pi—th, pi+it ~+ Alalo P P\ PimPi— PPy
() , Di— ey i) 1 A (W) (p,(p'—pm) A
+ Aif:iip(/p pi=o pj+it 4+ Ah,h ol p; ™
(@) . (p, -+ 1AW ey (pr—pn)
-+ f‘Azf; (Ai— A))\ P pimthpj+. —+ Alhh PP g )
-+ 1 A(PL) (9:20) (p'-p") L)
, B . lmlsp P
| A;Wl p(.P’)p(iP"PvPi—Pi—H’Pi‘Pﬂ'Uv) (
3]0 (pMy A(pI—pM »
+ FpAY oo (i — ) )
. A(u (p’)p (»)
iy (W) (P A (p'—p!) Y SAN
-+ All:]l s ()\l ll) ”)
4 Ai‘”} P‘p,)P‘(»)
0 /2 1 fw) (p") (p/_.pr/) — (»)
A(p.) p”()\ )\ )(»J —+ EIJ’A}::], P (l )\) »
+ {J" i ]opi ’ i J 1— ]
v + 1 (J‘?A?‘”]o (p" ()\‘ — )\j)(P P J()\i_ )\j) (»)
+ AP r;ﬂ)(;\ — ;)0
lo 11 () ) 1—p) (»)
LAWY o (O — W) (B — D)
() —_ J P () (») -
—|— 1&10 lu()\ / ) ()\ )\ ) + 3Ai:)]°()\ _}\ )(p//)()\ ____)\ )(pr p//)()\ __)\ )|n)
1B s, () — ‘B‘l“’, PN skpi=p g, (>)
i Jo ©lo
LR (P (P1=PN . (»)
Cg)]os(p” ) - Blo,hp/ Si Si
1R, otpNg. | 1 () L)\ P (PP o (2)
B s s ) — TpBY (A=) s,

(W) (2" oPT=P" ¢ . ()
— Gl piP"s §;
_ C(p-) (p")s(p'—p")s (»)
1
(] (p") o P1=p") ¢ . (»)
- P'Ci‘,,‘,()‘i—‘;\j)p i Sj
LR, P gpr=Pn g (2)
— B s 8
. ABM™ g (p'—}l”) (»)
Blovhp S
(pl) o(p'—p") ¢ (»)
— LB, (=2 s s,
B S R .Y

(1) Le signe (») indique que I'indice est le méme que celui du facteur correspondant de
la premiére ligne.
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OR;,
dl'i

Le développement de % est le méme avec les lettres F, G, H, .. .;
i

celui de —I~ (2(? est le méme avec les lettres L, M, N, .. ..
Quant au développement de ﬁ%f (dR;;), il se déduit de celui de

1 . . e . P
— R;; de la fagon suivante, que l'on justifie immédiatement en remarquant
I

que (dR;;) estla différenticlle de R;; obtenue en ne faisant varier que les
coordonnées de (M;) : soit a K®pP' . AP ... 57 ... cos V¥ un terme de

[ . . .. .
P R;j, dans lequel on met en évidence I'indice u, et les coefficients de g;,
2

. 1
A;y s;5 la fonction = f (dR,;) renfermera un terme correspondant, obtenu
i

en multipliant le précédent par le facteur

pritky A Ak kL
kl)

Quant au développement de d I, ce sera (limité aux termes du second

ordre)

e

- %B— = Esmvmg QY sippitrivt 4 Qs p! P—p’~m—vl--wi—p}+w
r;y

) »
A+ R s, ) G QW s,

o jo ]2

_!_HQW-) S“")()\ — )(»,

L

4+ R(p-) s(pllp (»)

215 ]o

-+ R(W S(P/)P (»)

L0, J1

HR(H) (p" ()\l,_ )\j) (»

o ]a

TR .

Les premiers membres des équations fondamentales (A) se trouvent

C , . (1) (0
ainsi développés et mis sous la forme E AP cos Vo), 2 AP cos ViR,

(3) . , . - ' . ' .
E AP sin V), Les équations que 'on obtient en égalant a zéro les di-

vers coefficients A’ nous fourniront les valeurs de tous les coefficients in-
connus qui figurent dans les expressions des p;, A;, s;, ainsi que des quan-
tités gi7 hi'

L’étude de ces équations fera I'objet d’un travail ultérieur.
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5. Il peut étre avantageux de représenter les coordonnées (M;) sous la
forme qui convient au mouvement elliptique

¢;=0; 4 2¢;sin(o; — ¢;) + Le? sin2(o; — ;) +. ..

— tsin%i;sin2 (o, — ¢;) + .. .,
e?
;= oy [l+ ;l — €; COS(O‘;—(P,‘)——%E?COS2(O'L'— (P,) -+ .. .] 5
s; = sini; [sin(o; — ;) + ¢; sin(20;— o, — §;) + e;sin(g; — o) +...7,

ol %y ¢4 @4, 1y Y, sont des constantes dont la signification est bien connue
et ol o; désigne lalongitude moyenne v,z + 8, 8, étant une constante, etv,
¢tant liée & o, par la relation vie! = £ (M, -+ M,).

Ces mémes coordonnées continueront, ainsi que leurs dérivées pre-
miéres, a s’exprimer comme dans le mouvement elliptique, si'on détermine
%y G4y €1y 9y Uiy P de la fagon bien connue que nous allons rappeler.

Supprimons, pour un instant, l'indice (7), et faisons

h=esing, p=sin¢siny,

l=ecosy, g=sinicosy;

les équations qui déterminent o, &, 2, {, p, ¢ seront

do 2 @
dt ~ v dg’ .
l .
do'_u_f___d_li_‘_ \/]—6" IL@—‘_IE)-q—tdnggcoll( ?ﬁ_ﬁ_(@)
TP R (R ) ol verJi—e \Uop T 15 )
i
Ny S Niper- @+l‘a“géc°“< R d_f_{)
A= a0 (i) 97 sai—a Vop 7o)
(B) | & ot
dl Vi—e* dR Ii=e&  or  ang g cotd (p o 0R>
—_— = — =<5 — - e =5 J»
dt var  dh va2(1+\/l —e?) Og voy/1— e dp dq
i
dp cosi ﬁ_ptanggcottcﬂj ld‘[_{ /ld_R_>
de vat\/1—e? 09 vot\/1— ¢ \00 oh Ly
I3
dq cosi OR TWPEZCOML R IR dR)
—— = = = — = l—‘ h— >
dt va\/1—e? Op va\/1— e <d'7 dh {

R étant exprimée al'aide des «, o, &, I, p, g etv étant pour a *y/£(M,+ M).
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D’autre part, ces mémes quantités «, o, A, [, p, ¢ peuvent étre facilement
exprimées a l'aide de r, ¢, s et de leurs dérivées 7/, ¢/, s'. On trouve

d’abord

2

R R e (TR
a r f(M,+ M)
Puis, en posant
. s s(1—s?)v/
= P ———————————— = — ———————
V(t— s?)202 572 V(1 — )20 4 52

\

nous aurons

p =P sine — Qcosy, sin?i = P2 4- ¢, sinZsin(v —¢)=Q,
q =P cos¢ + Q siny, sinicos (¢ — ) =P,

et, grace & ces derniéres formules, on exprimera aisément sin” i cosn (¢ — ),
et sin"zsinn (¢ — ¢) en fonction entiére de P et Q.
Posant encore

A= +M)<r2r V=5,

1]
B= f(Mo+M)Q \/*— \/ )2 2+52]—f(Mo—|—M)\/1—52’
- 1 o IS AP —BQ
—f(Mo—i—M)?r r's Pa— [(1—s2)2 02 4 52 4+ £ (Mo + M)s ‘W
H:B-C—Q.a L—=A-+ _(L,

I+ coste 1+ COS¢

nous aurons

h =H sinv — L cosy, =M+ 1L*=A*+B>+ esin(v — o)=L,

{ =Hcosv + L sine, ecos(v— o) =H,

et, grice a ces derniéres formules, on exprimera aisément e” cosn (¢ — g)et
e"sinn (v — ) en fonction entiére de H et L.
Enfin une formule connue permet d’exprimer s;; en voici les premiers
termes
c=v¢v—2esin(¢v —o)+2e* sin2(v—o)+...,

+ isin?isin2 (v —d)+.. ..

Par 'examen de ces formules et leur comparaison avee celles qui four-
IV. — Fac. de T. K.3
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nissent les coordonnées, on voit que nous pouvons poser

g, = n;t+¢; + 2 a'P sin V(p),

a;=a; —I—ZO{&IHCOSV([’),

les arguments V® étant les mémes que ceux qui figurent dans p; et A;.
Nous aurons ensuite

hi= 2 R sin(N; + V),

l; = 2 I cos (N; -+ V),

les V? étant les mémes arguments que précédemment. En outre 2" = 17",
De méme, enfin,

Pi= X, P sin(N; + Vi»),

gi= Y, ¢ cos(N; + V),

les V¥ ¢tant les mémes arguments que ceux qui figurent dans s;. En outre,
(p) __ P)

Pi =494 -

Drailleurs, d'une facon générale, les coefficients qui figurent dans ces
formules seront, quant a la forme, soumis aux mémes lois générales que les
coefficients des arguments correspondants dans p;, A, s;.

Mais, plus particuliérement, les équations (B) nous montrent, par leur
forme, que dans A;, l;, p;, q; les seuls termes d’ordre zéro correspondront

aux arguments V® de la forme V®? — —— N; 2 (9+Gy + r,,H,), la con-
dition E (g + ) =1 étant toujours remplie, et en remarquant que, dans

h;etl, Er est pair, et impair au contraire dans p; et ¢,.

Si I'on veut intégrer les équations (B) indépendamment des équations
(A), ce qui pourra se faire d’une facon tout a fait semblable a celle que
nous avons exposée plus haut, on pourra prendre comme constantes arbi-
traires les coefficients des cosinus ou sinus des angles G, ou H,, dans les
valeurs de Ay, I;, p;, 5, par exemple. Tout ce que nous avons dit au sujet
de la forme des coefficients subsistera en substituant ces constantes a
celles précédemment adoptécs.
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Les équations nous montrent encore que dans a;, et o; les termes d’ordre
zéro ne peuvent correspondre qu’aux arguments V% que nous appellerons
a longue période, c’est-a-dire tels que le coefficient &, du temps dans ces
arguments soit du premier ordre; ces arguments seront par conséquent

de la forme 2 (9xGy +r,,H,), avec E (¢q+r)=oet 2 r pair.
Nous avons admis implicitement, malgré la forme de la seconde des équa-
tions (B),
dGi
m' =V;+ ...,
que o; ne contenait pas de termes d’ordre négatif; sans quoi nos approxi-
mations successives deviendraient manifestement divergentes, et nous ne

pourrions trouver des solutions de la forme que nous nous sommes pro-

posée.
Cette hypothese est légitime; en effet, la fonction 2 R ?fﬁ’ expri-
v;o; do; dt
mée en fonction des a, g, ... ne contient que des termes périodiques ot
tigure o;. Si donc on y substitue, a la place des a, s, ..., leurs parties

d’ordre zéro qui, dans notre hypothése, ont la forme indiquée précédem-
ment, cette fonction ne contiendra encore que des termes périodiques dans
les arguments desquels figurera N,. Nous en concluons qu’en réalité o, ne

contient aucun terme périodique d’ordre zéro; v, = ai—% VE(M, +~ M;) n’en
contiendra pas davantage, et par suite n’introduira pas dans o; de termes
d’ordre négatif. ,

Que «; ne contienne pas de termes & longue période d’ordre zéro, c’est le
théoréme de l'invariabilité des grands axes, limité a la premiére puissance
des masses.

Une remarque analogue doit étre faite a propos de l'intégration des équa-
tions (A). Il suffit de les examiner un instant pour voir qu'a priori la
fonction / (dR;) semble devoir introduire dans %, des termes d’ordre néga-
tif. Il n’en est rien cependant, et pour la méme raison que précédemment.
En effet, d’apreés le principe méme de la méthode de la variation des con-
stantes, la définition de (dR;), etla facon dont ¢ figure dans les formules du
mouvement elliptique, on a (dR;) = v; ‘% dt. Le raisonnement fait plus
haut s’applique alors sans modification, et montre qu’il n’y a pas de termes
a longue période du premier ordre dans (dR;).
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Voici encore quelques formules qui nous serviront plus loin. Soient [en
supprimant l'indice (Z)], «,, vy, 5, ... les ensembles de termes a longue
période qui figurent dans a, v, g, ..., y compris pour «, et v, les parties
constantes de « et v, et pour g, les deux termes n¢ + ¢. Substituons dans R,
a la place des différents «, o, ... qui y entrent, les,, 5,, ... correspondants,
et soit R, la fonction ainsi obtenue. Appelons, d’autre part, «,, v,, 5, ...
les parties du premier ordre des différences o« — a,, v—v,, ¢ —q,, ..
(différences qui ne renferment que des termes périodiques et non a longue
période), nous aurons, d’apres les équations (B), a des termes pres du se-
cond ordre,

— 2 JR,
oz1—fdt H:;o_a—o ()—cro]:l’
2 dR, Vi—e? < ()RO 0R0>
= vy dt -+ de|l | — =— 220 A RN
gy U/Jl / [[ Vo Oty 00(0 Vofxo(l—i—\/——l—e) 07— 0 d[o
+tan«r cotl0< oR, i IR >]]
NN )
vealyr—e *ap, 7o 0q,
hy = dt \/:?odﬂo ho\/l—eg JR,
1 — ‘)ofxo dlo v ocg (1 —l-\/[___e‘o-’) dO’o
0‘59. ; 17
. {, tang S cotzO< ﬂ{_o+ R >JJ
voag\/l—eg Po op, 7o 0q
we | al|oVizg R WVi—eg  dR
1 ___ *)()0(3 dho uoag (I+\/I—— 82) dO’o
lzolang cotz(,< oR, ., R >]]
N e A ’
vaiyi—ea \ ' 0P 79,
| a LM@__M@RO L, o)
h= | v \/1—62 990 Voao\/l—€§ do, ® Ok, PN |
dt cosi, oR, 9o tang ® coti, <0Ro / oR, _ 0R>
- —_ . \ ,
91 LL voaly1i—el 9p, vy o2 \/I_eg dg, oh, oh

les doubles crochets indiquant que les quantités qui y sont renfermées doi-
vent étre réduites a leurs termes périodiques, et non & longue période.
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D’ailleurs, au premier ordre prés, «, = a,v, = n; par suite, a des termes
pres du second ordre

v, =

N

SRR
R

et comme, a4 la méme approximation,

2 JR
O(]:c—z; d[ [[-&;{;):I],

on voit que 'on peut écrire le premier terme de o, sous la forme sui-

3 R,
JE— 2 —_— .
aszdt [[dgo]]
6. Le théoréme de l'invariabilité des grands axes subsiste, lorsque 1'on
porte 'approximation jusqu’a la seconde puissance des masses. Nous allons

démontrer le théoréme qui lui correspond dans notre théorie, ¢’est-a-dire
que nous allons faire voir que a; ne contient pas de termes a longue période

vante

. . . 2 JdR; .
d’ordre un. Nous montrerons, a cet effet, que la fonction T T" ne conticnt
iy i

pas de termes & longue période d’ordre deux. La fonction (dR;) = v; R e

do;
jouit d’ailleurs de la méme propriété; les deux démonstrations sont tout i
J prop ;

fait analogues; nous nous contenterons de donner celle relative a cette der-

- . JR; , . . .
niére fonction v; 5. Elle sera calquée sur la démonstration ordinaire du
i

théoréme de Poisson (Tisserann, Mécanique céleste, t. 1).

Remarquons d’abord que tout ce que nous avons dit jusqu'ici sapplique
aussi bien (quelle que soit d’ailleurs la méthode employée) au cas ou l'on
adopterait le systéme de coordonnées suivant :

Mg Ml

M,
Try=X;; Lo =Xy -+ — Xy; Ty—= X3+ — Xy+ — X3
1 2 1

N[l Mz M1
Y1—= Y15 )’2:Y2+EY1; Ys=¥s+ — Y+ —¥u; L

[*2 1
M, M M

N 5y = By + — Zj; By =2y — 2y 4+ — z,; .
M1 2 |3

avec u; = M, + M, +~ ... 4+~ M,.
Si, en effet, r} = x7 + y; + 2/, les équations qui déterminent x,, y;, z

13
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seront
dzx,- M M X; i
de? f( 0 i) rl-'} b}

V étant une méme fonction perturbatrice facile 4 former, quel que soit
I'indice (7). Les arguments N, G, H restent les mémes que ceux définis pré-
cédemment; les coordonnées r;, v;, s; des points (X, y;, 2;) s’expriment
par des formules analogues, dont les coefficients sont soumis, quant a la
forme, aux mémes lois. Ceci résulte des expressions que I'on obtient pour les
nouvelles coordonnées en fonction des anciennes, comme aussi de la forme
de V. |

D’autre part, si I'on choisit une planéte donnée pour le point (x,,y,, 2,),
les éléments des deux mouvements seront les mémes dans les deux cas, ainsi
que les composantes des forces perturbatrices. Donc, tout théoréme démon-
tré avec I'emploi du nouveau systéme, pour un point quelconque (X;,y:,2;),
et qui ne se rapportera qu'aux coordonnées ou éléments du mouvement de
ce point, ou encore aux dérivées partielles de V par rapport aux coordon-
nées ou éléments de ce point, pourra étre transporté tel quel dans I'ancien
systéme & une planéte quelconque, en introduisant les coordonnées ou élé-
ments de cette planete, ou les dérivées partielles de la fonction perturbatrice
R correspondant a cette plancte par rapport aux coordonnées ou éléments
de cette plancte, a la place des quantités analogues qui figuraient dans
I'énoncé du théoréme obtenu tout d’abord.

En conséquence, et pour ne pas multiplier les notations, revenant au

. . . , . JR;
premier systéme, il nous suffit de démontrer que la fonction v; dTl ne con-
i

tient pas de termes a longue période du second ordre, en supposant toute-
fois que la fonction perturbatrice R, reste la méme pour toutes les planétes.
Nous supprimerons alors I'indice (¢), et nous remplacerons les indices
(j), --., correspondant aux autres planétes, par un, deux, ..., accents.
Nous reportant alors aux formules établies plus haut, nous voyons que,
a des termes pres du troisieme ordre, on a

! J’R, + 2R,
1+ daodpopl 02,0, q1

vi[i—-v ()Bo v QB—O—I—V mROc -+ ()‘ZRO oy + 02R0 hy + dZRO
Jdz — ° ds, ' 9, ‘N2 ' dggda, ' 0g,0hy ' 05,01,
“ %R, o & 2R, o

dgy0a, ' dg,do, !
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. JR . \ .
Le premier terme v, 3?" ne contient aucun terme & longue période, nous
0
Pavons déja vu.

Ry est, a un facteur pres,

)
v 5
IR,
de .
oo | [5]]
Devant la parenthése, on peut faire (toujours en négligeant le troisicme
ordre) v, = n, et & des facteurs prés les termes peuvent étre écrits de la fa-

con suivante. Les termes de la premié¢re colonne fournissent d’abord les

termes sulvants :

G e[ aman S e 5]

Tous les termes qui restent forment ensuite, ainsi que le montre la forme
des équations (B), des couples tels que celui-ci :

0 (0R, R, 0 [0R, f IR,
a(rbo)f [[“mﬂ"” m(ﬁ). [[“ a5, | |

b,, ¢, ¢tant deux quelconques des quantités o,, o,, ..., ou bien deux des
quantités o, d,, ... et P, étant une fonction de a,, Ay, ..., oy, /), ..., ct ne
renfermant, par suite, que des termes a longue période, ce qui montre que
I'on peut écrire, au lieu de I'expression précédente, et a la méme approxi-

mation,

A 1WA o I A o INRR R 1 O

Enfin remarquons que, F, étant une fonction des diverses quantités «,,

, . . . sin
Ty -+ -y Oyy Tyy - -+, S1 cette fonction est mise sous la forme 2 | e v,

0 cos
. dF, . ‘e Y TSI v
pour obtenir ==2, il suffira de prendre la dérivée de z Fw - V? par rap-
0

port a N; puisque, a part N, N’, ... qui sont les premiers termes de o,
Tyy - -+, les quantités a,, G, ..., @, 0,, ... Ne contiennent que des termes
a longue période, indépendants par conséquent des arguments N.

Cela étant, examinons de plus prés les différents termes que nous avons
mis de coté, et montrons qu'au degré d’approximation fixé ils ne contien-

nent aucun terme a longue période.

JR, . .
1° —fdt [[ ]] ou, puisque %’ ne contient pas de termes a longue
0

periode, 56_00 f ‘;ff:d
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a ()R

()o'o

2 S® sin VP, Le terme considéré devient
27
kp

Si k, est d’ordre un, k, étant nécessairement d’ordre zéro, les indices
(p') et (p — p’) sont nécessairement distincts. Alors, au terme

_ kL S §(p=p) ip V(P
»

SPIS(r—P) gin VP, Leur somme contient

on peut accoupler le terme — - =

p—pr

k

le facteur — + 1 — 1
kp' kp—p’ kp’kp—p

les coefficients S sont du premier ordre. Le terme considéré ne peut donc

: elle est donc d’ordre trois, puisque %, et

contenir de termes a longue période du second ordre.

o 2 ar([22]] w3

Appelons ¢ le coefficient de '\I dans V(P’. Le terme considéré devient, a
un facteur pres,

——> comme plus haut.

s

9 g §p—pn sin Vi

k2 .
P

Si k, est d’ordre un, (p') et (p — p’) sont distincts, et ¢ est nul; on peut

alorsaccoupler les termes comme plushaut : < kzq = —k—) SEStP=Pgin Vi)
3,
. . LK) A
sera un de ces couples; il contient encore en facteur k,, d’ot1 la méme con-
clusion que plus haut.

Une démonstration identique s’applique aux termes

0*R, . dRo]
s, J [ 5
3° Arrivons enfin aux groupes dont nous avons donné le type plus haut.
Soient, par exemple,

OR, 7 _ oR, 77 _ o B
[[?)b_o]] _E B cos Vo), Hd_co]] __Z C(P) sin V), P°—2 P cosV (P,

Nous pourrons écrire, a un facteur numérique pres, 'expression considérée
sous la forme

2 P Cp/=p1) Blp—P) <q A_ 7 _9=9 > sinV(r),
-

kp-p'+p"
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Sinous avons affaire 4 un terme & longue période, k, est d’ordre un; ¢
est nul; en oulre, ¢’ est toujours nul, et le terme écrit a en facteur
ky-+bkp py.p="ky+ k. Ork, estaussid’ordre un; donc le terme devient
du troisiéeme ordre comme plus haut.

Les théorémes annoncés sont ainsi complétement démontrés.

7. Les problémes qui nous restent a traiter sont I'étude du mouvement
des petites planétes, étude du systéme de Jupiter et 'étude du systéme de
la Terre.

Du premier, nous n’avons que quelques mots a dire. On supposera nulles
les masses des petites planétes, ct 'on cherchera leur mouvement sous I'ac-
tion du Soleil et des centres (M;). Ce sera donc un probleme en tout sem-
blable & celui que nous venons de traiter, mais plus simple : tous les
résultats sont intuitifs aprés les développements que nous venons de
donner.

Avant d’aborder les deux autres questions, il convient de parler d’une
facon générale du mouvement d’un corps autour de son centre de gravité.

Soient G le centre de gravité d’un corps solide de masse m, GX, GY,
GZ ses axes d’inertie principaux; appelons A, B, C les moments d’inertie

correspondants, et nous supposerons A<B<C. Soient ¢, ¢, » les angles
d’Euler définissant la position de (GXYZ) par rapport aux axes fixes, et
comptés a la facon ordinaire, que précise la figure sphérique ci-dessus.
Nous emploierons les variables suivantes :

u=0+1Y,

—=sinw siny, ¢ = sinw cosy,

IV — Fac. de T. K.4
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de sorte que nous aurons

N b .
cos(xX)= cosocosd — cosw sino siny =  cosu + ————— (csinu— bcosu)
( ) ¢ ¥ ¢ ‘-P I+ COS®w ( ’
/)\{ - . . . b )
cos — coso sindy + cosw singocosy = sinu — ——— (csinu—bcosu
(rX) ¢SS 9 cosy [+ cosw( ’
/\\. . . .
cos(zX) = sinwsing = csinu—bcosu,
//‘\\ b .
cos(2Y) =— sing cosy — cosw cos¢ siny =— sinu + ———— (ccosu+bsinu),
[+ COS®
-3 . . c .
c0s(yY) =— sing siny + cosw cosg cosy = cosu — ———— (ccosu—+ bsinu),
I+ COSw
AN . .
cos(sY) = sinwcoso = ccosu-+ bsinu,
cos(xrZ) = sinw siny = b,
PO .
cos(yZ) = — sinw cosy =—c,
N
cos(32) = cosw —

Si alors on fait

dy

— sino sin -+ cos dw
p=sinw 8¢ 7, *ar’

. v . dw
q = sinw cos¢ — — sing 77>
r— /qu @
_COSJ)EZ—}_dt’

la force vive du corps sera

3

(@*—p*) + Cr?,

2T=Ap*+ Bg*+ Cr*= A———-.—-: B (p2+q3) +

et l'on a
dp | det ([ de  dbY:
s, Al derde T aP @
P +qi=sinto o5+ om = P XS )
s va [, AV de? . de dy . - .
q*—p __<sm © dl?)coschwzsmm% Tt sin2¢ = Q cos2u — P sin2y,
dc_cdb
dy  do _du dt dt

r— COSw —- + - = e
de T de T dt T L\ i— e
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avec e
db dc db dc db c>
ao _ % ao ac 12y (p2? ac
0= db _de 2<bdt Cdt><bdt+cdt> (b “( dat Tar ,
o ae ae \/I—‘bz—CQ([—y—\/:bi_cz) (I—bz——-cg)(I—}-\/I——-b?——CZ)?
dc ab db dc db dc)2
ad ao av ac %% %
p o, db de 2<ba’t+cdt><bdt+cdt> N 2bc< di " du _
T Tde di Vi—b—c(iryi—br—c) (—b—c)(+yi—b—c)

Soit maintenant (72') un autre corps, pour lequel les quantités corres-
pondantes seront désignées par les mémes lettres accentuées. Appelons &la
distance GG, et soient X, Y, Z les coordonnées de G’ par rapport aux
axes GX, GY, GZ; de méme, X', Y’, Z' les coordonnées de G par rapport
aux axes G'X’, G'Y’, G'Z’. Le potentiel d’attraction entre ces deux corps
sera

{ ! 14 ! N\ .
Vgm0 A —B) _@i[<c J‘-j—“)zz s _x-z)]

| o 403 P
/ / A
-+ 4_”&_5 (2 CI__ A/-~— Br)_ g_g_;’ [<C/_ A _|2_ ]5‘—>Z,2 —+ ]3_2__\_ (37/2_Xl'2)i|
U UTPR .

Les termes écrits sont suffisants : les parallaxes des corps 'un par rapport
a 'autre sont, en effet, pratiquement petites, ct elles ne figurent d’ailleurs
dans V qu’a des puissances paires, si les corps sont constitués symétrique-
ment autour de leurs centres de gravité, et 'on peut admettre qu’ils sont
pres de l'étre.

En outre, un quelconque des corps que nous considérerons est assi-
milable & un ellipsoide admettant pour axes les axes d’inertie relatifs &4 son
centre de gravité, et composé de couches ellipsoidales, coaxiales, homo-
genes, les excentricités des couches allant en croissant du centre & la péri-
phérie, et restant d’ailleurs fort petites; il est alors facile de voir que
I'errcur commise sur V en se bornant aux termes éerits est de 1'ordre du
carré des excentricités; la vérification de ce fait n’offre aucune difficulté.

Les équations du mouvement de (m) autour de son centre de gravité,
en tenant compte de la forme des deux corps (m) et (m'), sont alors

di| 7da\ | T ou du T 2ot > ) ou T3 WYLX”]’

du
()

d[ aT ‘l oT oV 3fm’[(C_A+B>0(Z?) B—A o
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d JdT 7 aT oV 3fm’ A+B\Jd(7Z*) B—A ¢
- _— — L — — —_ 72 2
@i | 7ap 9 =6 = a5 |7 o T Y =X
ol ==
| \de /|
dI JT 7] JoT oV 3fm’ A-+B\0Jd(Z*) B—A 0
- oYy __ v A T 4 e 2 2
dt de’ de  dc 20° g 2 dc 2 dc (¥ X):I"
al =
| \d¢ ) ]

Supposons que les coordonnées de G’ par rapport a des axes paralléles
aux axes fixes et passant par G soient

x =dcoslcosb,
¥y =2d sinlcos9,
—9d sin¥,

~
=

on aura

7. =38(bcoslcosd — csinlcosh + sinfy1— b —¢?),

X = 8[c056 cos({— u) + (¢ sinu — bcosu) <sin9+ —M_:———g_s_m_l cos@)],

2

1+\Vi— b —¢?

Y —=d|cosOsin(l— u) + (ccosu + b sinu)( sinf + beosl—cesinl g
1y — 02— ¢?

d’ou, en négligeant les termes du troisi¢éme ordre en b ou ¢,

2 2

Y2—X2= 62§—00529<1— % — %) cos2 (! — u)
+ 2sinfcosf[bcos(l—2u)+csin({— 2u)]

— 3sin?
'——éz)—sig[(bz-—c?)cosau—2bcsin2u]

et de méme

2?=9?]sin%*0 + 2 sinf cos (b cos! — csinl)

[(&*— c*) cosal{— 2 bcsinal]

1-—3511]-9(b2+c:,) N cos?f
2 2

Les corps célestes tournent sur eux-mémes avec une vitesse sensiblement
constante ; nous poserons & = J + u,, ou J sera un argument de la forme
jt + u,, j et u, étant des constantes. Si alors on développe les équations
précédentes suivant les puissances des inconnues «,, b, c et de leurs dé-
rivées, et qu'on néglige les termes du deuxiéme ordre par rapport a ces



(€)
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quantités, elles prendront la forme

2 'R __ A
dd;:i:“zfé? B 5 Aﬁ——acos%)sinz(l—u)

+ 4sinfcosO[bsin(l—au) — ccos({—2u)]l,

é_—_}—_l_%g?_l_)_c.@ . B—A d/db szJ—dcs'an
2 de? Jdtﬁ— 2 cTt(?ﬂCO dt !
!
— 3f?: g(c—A_'_B)[zsinGcochosl
20 2

+ b(1— 3sin%0) + cos?0(bcos2!— csinal)] -
B—A

[2sinfcosbcos({—2u)

+ bcos*fcosa(l-—u)+ (1—3sin28)(bcos2u — csina2u)]f,

A+Bdc .db B—Ad/db i 2J—|—(—{fcoszJ
s adr YA T T a\a " T &
!
— Szfg: g(C_A"'_B)[——zsinGcos@sinl

2

~+ ¢(1—3sin?0) — cos?f(bsin2!l+ ccos2!)]

B—A
-+

[2sinfcosfsin(l— 2u)

\ + ccos?fcos2(l—u)— (1— 3sin?6)(bsin2u + ccosau)]g,
ot il faut encore remplacer « par J + u,, dans les seconds membres.

Ces équations sont les mieux appropriées au probléme qui nous occupe,
puisqu’elles supposent I'existence d’un seul fait incontestable : la rotation
des corps célesles sur eux-mémes. Dans certains cas, elles pourront étre

‘remplacées cependant par un autre systéme plus avantageux en pratique.

Si, en effet, par la considération méme des équations (C) on peut assigner
aux inconnues %, Y, » une forme déterminée, savoir :

\.lJ:F—FH'Jl,
o=J—F+ o,

0 == Wy + O
avec

F = ft + ¢,

S Yo, w, désignant des constantes, et Yy, 94, , des séries purement trigo-

nométriques, il y aura avantage, lorsque  sera assez considérable, a dé-
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terminer directement les inconnues ¢, ¢, w, les équations convenant a ce cas,
et que nous allons donner maintenant, ne demandant pas de développements
en série suivant les puissances de .

Ces équations s’obtiennent immédiatement par la méthode de Lagrange
en prenant pour variables {, ¢, w. On peut les écrire ainsi

do dy
C_<dt +cos<o2z>

_|__B;é sin2o( sin® ay*  dw? o ad dw A
i N 29 C il ) %mwdt T C0s29 _0—@,

A+B 2y dy do dy
— (smm—d—,—f—zcosmm dt>—0—<dt+coswm>

B—Ard sine cos 2 g 2 o
- dt @ Y Ty

— COS il—qf sinw sin 2 ‘ﬂ—i— OSZ’d—-m "_—I— 'ﬂ—-COS ﬂ
Qg \Mnesin2e g, o2y —smm<d¢ “9 )

dy? . dy (do dy
<d1_ dﬁ)—i—(}slnw;l;(%—i—cow?l;)
_B—A

A dy dw
— smwsmchd —|—c052q>d)

-+ cos @ sinw cos2 ﬂ——sino @ *0V~
COSO gy \ B oS¢ 7 At )| T w

Ces équations ne nous serviront que dans le cas de la Terre; on peut alors,
pour simplifier les formules, faire A = B. Cette hypothese est d’antant plus
acceptable que, dans ce cas, B— A est certainement une trés petite quantité
par rapport a G — A, et que, en outre, tous les termes ol figure B — A en
facteur sont des termes périodiques, dont la période est voisine d'un jour
ou d’unc fraction de jour; dans les formules finales, ces termes acquiérent
de grands diviseurs et deviennent tout a fait négligeables.
Pour calculer les seconds membres, il suffit ici de calculer Z*; or on a

7 = d[cosOsinwsin (Y — () + sinf cosw],

N 1— 3sin?0 .
72— o2 [sxnl’@+ B sin?w

+2sinfcosfsine coswsin(P — /) — L cos?fsin?w cos2 (Y — l)];
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les équations a employer pratiquement deviennent ainsi

r — const., 6—2% :r—cosw%%,
LA dw dw dy
Asinw ar Crm +2Acos<od—t T
4
—_—_—%%15(C——A)[zsin@cosecosmcos(gb—l)
(@) + cos?0sinw sin2 (Y — )],
d?w .dy . dy?
A?l,—2 -+ Cr sine —= — Asinw cosw I
I
= 3:(;? (C—A)[(1— 3sin%?8) sinw cosw
+2sin@cos@(cos%—sini’m)sin(q/——l)

' — cos*0sinw cosw cos2 (Y — {)].

8. Occupons-nous maintenant de I'étude du systéme de Jupiter, en te-
nant compte de I'action du Soleil, de celle des centres (M;), et de la forme
méme de Jupiter. Les satellites seront considérés comme des points, et la
rapidité du mouvement de rotation de Jupiter sur Jui-méme nous permettra
de supposer A = B, d’autant plus que les observations ne donnent pas de
valeur appréciable pour cette quantité.

Nous appellerons m, m*), m®, m®, m les masses de Jupiter et de ses
quatre satellites. Les axes de coordonnées gardant toujours des directions
fixes, z, y, z seront les coordonnées du centre de gravité (m) de Jupiter
par rapport au Soleil, et ¥, y®, =@ seront les coordonnées de (m™“) par
rapport a (m). A chacun de ces corps correspondront d’ailleurs des quan-
tités r ou r®, définies comme les r; par rapport aux (M;).

On aura d’abord, par les propriétés du centre de gravité,

i) )

ce qui permettra de calculer x, y, z aisément quand on connaitra z®, .
Les équations du mouvement des satellites sont toutes pareilles a celles
que nous avons données pour le mouvement des (M;); mais la fonction per-
turbatrice R® sera composée un peu autrement que R;. Elle renfermera
plusieurs parties; d’abord, les fonctions perturbatrices R provenant de
l'action des autres satellites, et en tout semblables aux R;; considérées an-



K.32 H. ANDOYER.

térieurement; puis R}’ provenant de I'action du Soleil

. —1 (i) () gz
Rs)”:fMog[(w—l-.z‘”))‘l-;-,,,] 2+xflf Yy +s %’

r3

puis R’ (k5 5) provenant de I'action de (M)

1
R(k“:‘- M, [(.Z’ — T+ x”))?—l—. . ] * 4

rofes

(x — )2t +. .. !
[(z— 2p)?+...]

enfin RY, provenant de la forme de Jupiter et qui sera, en appliquant ici &
Jupiter les notations du paragraphe précédent relatives au corps (m),

. 3f(m+m“')C A
RY=—3 —(oy [(1’”“’—Cy"’+¢l—bz—c-"‘”)2——(r“’)q]

Aux équations ainsi obtenues, il faudra joindre celles du mouvement de
Jupiter sur lui-méme, qui deviennent ici

c_l_c:_cdb
r—@ —+ ——-d—t—_._?ﬂ = const
azb dc
A — O+
fm() _ ) ' )
=— —(C A)Z (r(‘))3 25 cos @ 4 b+ bcos2v¢d —c sin2p®d) 4.,
d*c db
At—iﬁ +Cr8; —+...

:—— C—A — 25 sine® 4+ ¢ — b sina v —ccos20®) 4. . .,
G

en n’écrivant que les termes du premier ordre par rapport a b, ¢ et aux
s, et en supposant que I'indice (7) puisse étre effacé, c’est-a-dire que le
signe X s’applique non seulement aux satellites, mais aussi au Soleil.

Ce systéme d’équations sera intégré par un procédé identique a celui que
nous avons exposé au n° 3. Posant r® = a®¥(1 + p®), ¢= N+ A", on
intégrera aisément sans introduire de nouvelles constantes. Soient ',

', ¢ les valeurs ainsi trouvées, et, par exemple,

pl(i): 2 p'((."f_'p(i)“”)cos(. . .+P(i) N(i) .. .),
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Faisons maintenant

ph=p"® —I—Z o po,. g €OS[. o A p A (NO VD) ], L.

On obtiendra de nouvelles équations ne renfermant aucun terme indépen-
dant des nouvelles inconnues, et auxquelles nous pourrons appliquer notre
principe fondamental.

Il y aura toutefois une différence avec le cas du mouvement des (M;).
Les observations nous enseignent, en effet, que N — 3N® 4+ 2 N® — 7 est
une quantité nulle, ou au moins qui tombe au-dessous de toute grandeur
appréciable : nous introduirons donc cette hypothése dans nos équations,
en nous réservant de voir si les conséquences la justifient. Il en résulte clai-
rement que les constantes arbitraires e, ¢®, ™, qui figurent dans nos in-
tégrales incomplétes o', ..., vérifieront la relation ¢V — 3e® 4 2¢®) =,

Par suite, on ne pourra pas dire des nouvelles équations aux incon-
nues p"@, ... qu'elles ne renferment aucun terme ne dépendant que des
A9 comme nous le disions au n° 3 : ces équations contiendront, au con-
traire, des termes ne dépendant que des A”), mais qui ne dépendront toute-
fois que de la combinaison A" — 31" 4+ 2A"®), Le principe ne cesse pas
d’étre applicable, comme on le vérifie sans difficulté; mais on voit que, en
réduisant le systéme & la forme linéaire a coefficients constants, il s'intro-
duira un argument de plus que si la relation NV — 3N® 4 2 N® = o n’avait
pas été supposée vérifiée : le nombre total de constantes arbitraires néces-
saire se trouvera donc encore atteint, et la réalité du coefficient du temps
dans cet argument de libration prouvera que ’hypothése faite estlégitime.

Nous ne nous étendrons pas davantage sur la forme des coefficients des
séries trigonométriques qui représentent les inconnues, nisur le développe-
ment des équations, ni sur les propriétés de la fonction (dR®) analogues a
celles de (dR;). Il n’y aurait qu’a suivre la voie tracée dans ’étude du mou-
vement des (M,;), et il vaut mieux réserver ces détails par une étude plus
particuliére. Disons seulement que b et les 5@ seront des séries de cosinus,
tandis que ¢, les A® et les s seront des séries de sinus, et remarquons que

™ o . .
b se change en ¢, et ¢ en — b quand on recule de ;‘ I'origine des longitudes,
de sorte que les coefficients des séries qui représentent b et c sont les mémes,

au signe pres.

9. Il nous reste a dire quelques mots sur I’étude du systéme de la Terre,
1V. — Fac. de T. K.5
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en réservant aussi les détails pour une étude plus particuliére. Nous tiendrons
compte de 'action du Soleil, de celle des centres (M,) et de la forme de la
Terre et de la Lune.

m, m’ désigneront les masses de la Terre ct de la Lune; «, y,  seront les
coordonnées du centre de gravité (m) de la Terre par rapport au Soleil, et
«'y ¥, %' seront les coordonnées du centre de gravité (m’) de la Lune par
rapport a (m). A chacun de ces corps correspondront, d’ailleurs, des quan-

tités 7, 7, ..., A, A’, ... sur la définition desquellesil est inutile de revenir.
On aura d’abord

...............

Les équations du mouvement de (m') seront faciles a écrire. La fonction
q
perturbatrice R’ se composera de R; provenant de I'action du Soleil
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puis de R (k 5 3) provenant de I'action de (M)
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puis de R} provenant de la forme de la Terre (pour laquelle on suppose
A =B)
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enfin de R” provenant de la forme de la Lune
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ou X', Y, Z’ sont les coordonnées de (/n) par rapport aux axes principaux
d’inertie de la Lune.

Les équations du mouvement de la Terre et de la Lune s’obtiennent aisé-
ment al’aide des équations (C), en tenant compte pour la Terre de I'action
du Soleil et de celle de la Lune; pour la Lune, de celle de la Terre seule
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(celle du Soleil est en effet beaucoup plus petite que celle de la Terre, quine
donne clle-méme directement que des inégalités extrémement petites).
D’ailleurs, les observations nous montrent que les constantes arbitraires en-
trant dans b et ¢ ont des valeurs telles qu’elles permettent pour la Terre
I’emploi des équations ().

Le systéme d’équations ainsi formé sera intégré toujours suivant le méme
procédé ; remarquons seulement que dans ce cas, comme dans le précédent,
il s'introduira un argument de libration (on s’en rend compte de la méme
fagon) provenant de ce qu’on doit supposer dans les équations N'=1J’, en
vertu des observations.

N. B. — Page 22, ligne 26; lire : ..... reste la méme pour toutes les planétes a un fac-
teur constant prés.



