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SUR LES RACINES

DE LA

FONCTION SPHERIQUE DE SECONDE ESPECE.

EXTRAIT D’UNE LETTRE ADRESSEE A M. LERCH

PAR M. HERMITE.

Soit X,, = F(x) le polynéme de Legendre du degré n, et R(x) la partie
entiére du produit

I 1 I
F(x)<;+§5—3+‘5—3;+'->7

je poserai, sous la condition que le module de la variable soit supérieur &
I'unité,

Q"(2) = >F(2)log =1 — R(2),

et, dans le cas contraire,

Q*(2)=1F(2)log: > — R(a).

Ces expressions vérifient I'équation différentielle

(x2—1)§£—; —|—2xj—i =n(n+1)y,
et représentent dans tout le plan, sauf sur la circonférence de rayon égal &
P'unité et dont le centre est a l'origine, ce que Heine nomme la fonction
sphérique de seconde espéce. L'Ouvrage classique de l'illustre géométre
en expose les propriétés fondamentales qui sont d’une grande importance,
mais il n’aborde pas I'étude de Iéquation Q”(x) = o, la recherche de ses
racines réelles ou imaginaires. J'ai essayé de traiter la question en em-
ployant le théoréme de Cauchy dont je rappelle I'énoncé.
IV. — Fac. de T. L.t



l.2 HERMITE.

Soit f(z) = o une équation ayant pour premier membre une fonction
holomorphe quelconque ; s1’on pose

flx+iy)=P+iQ,
Q

I'excés du nombre de fois que le rapport 35 passe du positif au négatif, sur

le nombre de fois qu'il passe du négatif au positif en devenant infini,
lorsque la variable z = & + iy décrit dans le sens direct un contour fermé,
est égal au double du nombre des racines contenues a l'intérieur de ce
contour. '

La fonction Q”(x) que nous avons a considérer n’est pas holomorphe,
mais elle le devient par un changement de variable, et lorsqu’il s’agit de la
premiére de ses deux expressions, & savoir

n _ I x +1 .
Q" (z) = F(z)log—— — R(x);
je ferai
41 .
= ¢%,
xr —1
d’ou
e*+1
X = — .
e’ —1
En posant alors, pour abréger,
IS (P, e*+1 N (g AR e*4-1
D(e?) = 5(8 1) F<e3—1>’ M(e?)=(e*—1) R<_ez—1)’

j’aurai deux fonctions entiéres du degré n en e, et par conséquent, sous la
forme voulue, I'équation
z®@(e) —M(e®) =o,

Une premiére remarque permettra de chercher seulement les racines qui
sont dans le demi-plan au-dessus de I'axe des abscisses. Soit, en effet,

) f(3)=32®(e*) —I(e?),
les égalités

F(—2)=(—n"F(z), R(—z)=(—1)""R(z)

donnent immédiatement

f(—a=—L2,
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et 'on voit que les racines étant deux & deux égales et de signes contraires
sont placées symétriquement par rapport & l'origine. Ce point établi, je
ferai usage, pour mon objet, de contours qui seront des rectangles ayant
leurs cotés paralléles aux axes coordonnés. Les cotés paralléles a 'axe des
abscisses seront représentés par les équations

s=kiz+¢, s=(k+1)iTm +¢,
ol k est entier, en faisant croitre  de — @ + a; les autres seront
s=kin + a <+ it, s=kit—a+1it

¢ variant alors de zéro a .
J’ai maintenant a obtenir, dans ces divers cas, le premier membre de
I’équation sous la forme P + ¢Q, puis & calculer pour chacun d’eux ce que

Cauchy nomme I'indice de % Supposons d’abord que & soit pair, on aura
Flkim+t) = (kim+ t) @ (et) — M (&)

et, par conséquent,
P=td(et) —M(et), Q=knd(e),

en observant que les coefficients des fonctions ®(e*) et II(e’) sont réels.

Q

Pour obtenir ensuite I'indice de P entreles limites { = — a,t=+ a, j'aurai
recours a la relation

Q P_
IndF—i—lndﬁ =g,
ol ¢ se déterminera par la régle de Cauchy. Je remarque a cet effet que,
si nous attribuons a ¢ une valeur considérable, I'expression

P_1r, M

Q k= D (et
t , .
7> 1e second terme étant fini, puisque I'exponen-
tielle entre au méme degré dans le numérateur et le dénominateur de la

fraction. En supposant la quantité a trés grande, nous aurons donc aux li-
mites pour { = — @, ¢ =+ a, les signes — et +, par conséquent ¢ = — 1.

se réduit sensiblement a



1.4 HERMITE.

Ce résultat obtenu, écrivons successivement

P _Ien)] (el I(e)
IndQ_Ind[t q)(e,)]_lnd[ (D(el)]_ Ind o

puis revenons a la variable

et
Xr = —
et—1

ce qui donne
II(e!)  2R(x)
®(e) ~ F(z)

On remarquera que la quantité  reste toujours en dehors des limites —1
et +1, de sorte que F(z) ne peut s’annuler, ni la fraction devenir infinie.
L’indice est donc nul et il en résulte qu'entre les limites considérées
t=—a,t=+a, ona

Ind% =—1.

Passons maintenant au cas ot 'entier & est impair, et soit alors

S(kit+t) =P+ iQ,,

en posant
Pi=t@(—et) —M(—e'), Q= kn®(—et).
On trouvera, comme tout & '’hcure, ¢ = — 1 et il faudra obtenir I'indice de
I'expression
I(— et)
D(—et)
que la substitution suivante
. et—1
ST
ramene a EF%E)—) Mais cette variable £ parcourt maintenant lintervalle

compris entre — 1 et + 1, lorsque ¢ croit de — x4 + o : il y a donc n pas-
sages par l'infini qui correspondent aux diverses racines @, b, ..., [ du po-
lyndéme de Legendre. Cela étant, I'égalité

R(E) _ 1 . 1 e 1
F@&)  (—a)F*a)(f—a)  (—0)F*)(E—b) (1—&)F*()(E—10)
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fait voir que ces passages ont lieu du négatif au positif; on a donc

M(—e)

Indm——

n,

et nous en concluons cette seconde relation

Les cotés du rectangle qui nous restent & considérer conduisent aux ex-
pressions

Jkim+ a+it) = (kit + a + it) [(— 1)k ea+it] — I[(—1)Fer—7t],
et
fkin —a+ it) = (kin — a +it) O[(— 1)k e~erit] —M[(— 1)Fe—a+it],

qui prennent pour de grandes valeurs de la constante @ une forme extréme-
ment simple.
Soit d’abord, en développant suivant les puissances descendantes de I’ex-
ponentielle,
D(ef) =ae+...;

la premicre se réduit au seul terme
aa(— 1)"*ere(cosnt + U sinnt),

sin
cos

Q
P
positif au négatif lorsque ¢ croit de zéro a w. Pour obtenir la seconde, on
emploiera les développements de II(¢) et de @ (e*) suivant les puissances
ascendantes de ¢’. En négligeant I'exponentielle e=#+#, la partie réelle P
est une constante, de sorte que I'indice relatif au quatriéme cété du rec-
tangle est nul.

N .y, nt . - . . .
et le rapport  a la quantité = —— qui devient infinie 7 fois en passant du

Les résultats que nous venons d’établir donnent immédiatement I'indice
relatif au contour total du rectangle; en observant que l'indice du cé6té pa-
rallele a la base doit étre changé de signe afin d’avoir égard au sens dans
lequel il est parcouru, on obtient les conclusions suivantes :

1° Lorsque 'entier k auquel correspond la base est un nombre pair 2/,
la somme des indices — 1, n, n + 1 est égale & 2n; 'équation Q*(x) =o
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a donc nracines comprises entre les deux paralléles y = 21, y = (20 +1) 7.

2° Mais si la base correspond & un entier impair £ = 2/ + 1, les indices
étant — n, — 1, n, 1, leur somme est nulle, et il n’existe aucune racine
entre les droites y = (2/+1)mw ety = (20 + 2)=.

L’analyse précédente doit étre légérement modifiée lorsqu'il s’agit de la
portion du plan limitée par ’axe des abscisses et la droite y = =; le long de
Paxe, en effet, la fonction f(x) est réelle et n’a pas la forme P + iQ. Nous
considérerons une paralléle infiniment voisine représentée par I’équation
5=+ i¢, en supposant que ¢ soit infiniment petit et positif. Ayant ainsi

S(B)=f(8) + i f(¢),
Q

I'indice de 3 sera celui de la quantité ﬁ(;)) » qui est égal & — u, sil'on dé-

signe par 1 le nombre des racines réelles de I'équation f(7) = o. L'indice
du contour du rectangle est donc

—pt+nrn+n+1

et sera connu lorsque nous aurons obtenu le nombre . J’emploierai dans
ce but cette expression de Q*(x), la premiére qui se soit offerte, a savoir

I ® dx
Q (x)IEF(év)fx @0 Fz)

Elle montre que cette fonction reste toujours de méme signe et positive,
lorsque la variable est en valeur absolue supérieure & I'unité. On voit aussi
que Q*(x) s’évanouit pour x infini, le développement de I'intégrale suivant
les puissances descendantes de la variable commencant par un terme

1 , « 19 . - .
en ——- Par conséquent, a I'égard de ¢ qui est lié & « par la relation

et 1

—_— )
et—1

on n’a que la racine ¢ = o avec 'ordre de multiplicité¢ 2 + 1. Mais I'indice

(¢
de ff—((;)—)
avoir égard & 'ordre de multiplicité ; le nombre p. est donc égal & I'unité,
et il est établi que la portion du plan que nous venons de considérer
contient n racines comme toutes celles qui sont comprises entre les droites
y=2lr,y=(2l+1)7.

Une derniére remarque nous reste a faire.

représente le nombre des racines réelles qui sont distinctes, sans
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L’équation qui vient de nous occuper a ses racines imaginaires conjuguées
puisqu’elle est & coefficients réels, et ces racines sont deux a deux égales et
de signes contraires. Elles se trouvent donc en nombre pair et représentées
par les quantités g + th, — g + th, dans la région oli nous venons de dé-
montrer que leur nombre est 7, & moins que 'onn’ait g = o. De la résulte,
lorsque n est impair, 'existence d’un nombre impair de racines telles que
z = ih, ol la quantité A est comprise entre les limites 2/w et (2/+ 1)7.
Cest ce qu'il s’agit de reconnaitre.

J’observe, dans ce but, qu’en posant z = ¢{ dans 'expression

e 41
X — — 5
es—1
on en tire
1
[ —.COt'C-'
1 2

La transformée en { de I'équation f(z) = o est donc

5F(1 cot§> —-R<l.cot§> — o,
2 i 2 ) 2

et, si I'on écrit pour un moment
IF(z)=az"+ B2 +...+ 0z, R(z) =ax® 1+ bx"3+...+p,

on l'obtient ainsi sous forme entiére

iz [a(l.cos E>n—1— Bsirﬁg(i cos-§->"_2+. . ]
\¢ 2 2\ 2
— sinc[a<% cosc>n_l+ bsinzc<%cosc>n_3+. ..+ psin®! %] —=o.

2 2 2 2

Faisons maintenant dans le premier membre les substitutions { = 2/,
{=(2l+1)7; en se servant de la condition que 7 est impair, les résultats
seront

’:l+ln
2ra(—1)* 7,  —p(=1)r

et il faut établir qu’ils sont de signes contraires. Remarquant, & cet effet,
que pest la valeur de R(z) pour = o, on est amené a recourir & 'expres-
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ston de M. Christoffel

_2n—1 an—>5 —9
R(z)= 1.n X"_‘_‘-3(n—l)X 5(n )X” 3
Mais cette formule ne conduit pas au but, les polynémesd’indices pairs X,,
X,y X, ... présentant la succession des signes +, —, +, ..., lorsqu’on
suppose = o. Nous emploierons un autre résultat de l'illustre géométre;
je ferai usage de I'équation suivante
X Xn—o—s—t

R,,X.,—X,,RVZZ——:_._—;_'_—;, (s=o0, 1,2, ..., n—v¢—1)

dans le cas particulier de v = o. Elle donne cette expression

XoXny + X; X, s I Xn—lxo’
¥ 2 n
n—1
dont tous les termes ont pour « = o le signe de (— 1) * ; le coefficient «
étant positif, 1l est prouvé que les substitutions § = 2lx, { = (2/+1)=
conduisent, comme nous voulions letabhr, a des résultats de signes con-
traires.

La fonction sphérique de seconde espéce définie a I'intérieur de la circon-
férence de rayon égal a I'unité, dont le centre est & 'origine, par la formule

Q(a) =1

se traite de la méme maniére et par le méme procédé.

. 14+ .
Ainsi, en posant .— = e*, nous obtenons une fonction holomorphe de

S (z) =5®(e') —II(e),

oul'on a
I N - n I
D(es) = —-(e“+1) F(e +1>’ II(e?) = (es+1) R<6”+l>
Soit ensuite,
= kit + ¢, z=kin+ a—+it,

et faisons successivement f(z) =P + {Q. On trouvera en premier lieu,
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suivant que k est pair ou impair, Ind% =—n—1, 0u Ind% = — I; puis,
suivant que la constante @ supposée trés grande est positive ou négative,
Ind% = n ou bien Ind% =o0. A I'égard du nombre p. des racines réelles,

je dois & M. Stieltjes la remarque qu'il résulte d’un théoréme général de
Sturm sur les solutions d’une équation différentielle linéaire du second
ordre, que l'on a w. = n + 1, deux racines consécutives comprenant tou-
jours une racine de X, = o. Clest ce qui résulte aussi de I'expression déja
employée

R(z) A B

I "
F(x)—x—a_'_

x—b x— 1

ou les numérateurs des fractions simples sont tous positifs.
Supposons que l'on ait a <b<c<...<1, et écrivons le premier
membre sous la forme

1 1+ A
—log —X .
2 C1—ux x—a
On voit que la dérivée
I A
+ X 3
1— x? (x—a)?

étant continue et positive, lorsque la variable croit de @ a b par exemple,
I’équation ne peut avoir qu'une seule et unique racine dans cet intervalle; il
en est de méme entre les limites — 1 et @ d’une part, ! et 1 de l'autre. Et
comme, en faisant dans 'expression considérée les substitutions x = a + g,
x =b — ¢, oudestinfiniment petit et positif, on obtient des résultats de signes
contraires, % et — g’, qu'il en est de méme si 'on suppose z = — 1+ &,

x=a — ¢, etenfin x= 1+ ¢, x =1 — ¢, on a ainsi démontré I'existence de
n + 1 racines, placées chacune entre deux termes consécutifs de la suite

—1,a,b,¢, ..., +1.

Ce point établi, et aprés avoir remarqué la relation

s—a==242,

ens

il suffira d’énoncer les conclusions suivantes.
IV. — Fac. de T. I
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L’équation f(5) = o admet n racines qui sont comprises dans l'inter-
“valle des paralléles y = (21 — 1)w, y = 2=, etil n’y en a aucune entre les
droites y = 2lx, y = (2l +1)=, pour l=1, 2, ....

II'n’y a de méme aucune racine dans la région comprise entre une paral-
lele a 'axe des abscisses, & une distance infiniment petite au-dessus de cet
axe, et la droite y = =. »

Enfin, et dans le cas de » impair, il existe, représentées par la forme
£ = ik, un nombre impair de racines ou 7 est renfermé entre les limites

(20-—-1)et 2lz.



