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SUR
CERTAINS DEVELOPPEMENTS EN SERIES TRIGONOMETRIQUES;

Exrtrarr v’une LertrRe b M. LERCH a M. AppELL.

La méthode que vous avez appliquée (') au développement en séries trigo-

7 I} P s 1 . .
—., 'a suggéré quelques considérations que je

prends la liberté de vous communiquer.

nométriques de la fonction

;. C 1aps . de P
La série qui définit la fonction EL—’ de votre Mémoire est contenue dans
la suivante
(1) F(z, s, u)= E ! ,

m=—w|[(x —m)2+ u]%s
dont je vais m’occuper.

Je suppose que les trois quantités x, u, s soient réelles et que la quantité
&(x)? + u soit positive, & («) désignant la plus petite en valeur absolue des
quantités x — m, (m =o, =1, = 2, = 3,...), el que la puissance

[(x —m)2+ u]és

soit prisc dans le sens arithmétique. La formule

o 1
(2) f e—sl(@—m)*+u] zés_l ds — T'(3s)
1
0 [(z—m)+ul”

nous permet de mettre la série (1) sous la forme

il © 1
- -s—1
(3) L(4s) F(z,5,0)= N, f emsitemmn 23 g,
0

m=—x

(1) Journal de Mathématiques pures et appliquées de M. Jordan, année 1886.
1L — Fac. de T. : , C.t



C.2 LERCH.

de sorte que, si nous pouvons démontrer la formule

- * L * L
(4) 2 f e—3Ux—m)*+uy 52 z :f 2 e—3l(x—m)*+u] 52 ds,
0 0
m

m=~

nous aurons |’équation
. - * . x5 | sl %S—l

(5) P(0) 35,0 = [ ey (21208 as,

0

en posant \

®

33(‘, 11) — 2 e‘n:i(m"r+2nw').

m=—w®

La formule de Cauchy et de Poisson relative & la transformation de la
fonction $ nous donne, comme dans votre Mémoire,

. 1 .
(6) a3<‘i” ﬂ):\/v_r;_Ee”3533<x —’>,

TL| T

de sorte que I'équation (5) devient

<

1 Py . {-_-_.'_;
(7) 7 *T(is) F(x,s,u) :f e—“333<x E): 2 ds,
0

ct, si I'intégrale, dans le second membre de cette équation, est égale a la
somme des intégrales des termes de la série

. 5§—3 s—3 nin® 5§ —3
TN e 5.2 2 eI e
—]5 " =e "3t +2 e 3% cosz2nma,
3

(8) e Iy (x

nous aurons ¢videmment

1 s—1 el

—3 s —1 e \

(9) T ZI‘(%S)j(w,s,u):F( . >u 2 +zzc}lgncoszzznx,
n=1
en posant
® -_1-;‘2”5 _“;3
(10) dgn:f ¢ TTE 5T 4s
0

Or, pour que ces conclusions soient permises, on doit prouver que 'éga-
lité (4) subsiste et que la série (8) permet I'intégration & termes.
Mais, d’abord, considérons I'intégrale (5). La fonction & intégrer ne pré-



SUR CERTAINS DEVELOPPEMENTS EN SERIES TRIGONOMETRIQUES. C.3

sentant des singularités qu’aux limites de I'intégration 5 = o, oo, il suffit
de I'étudier au voisinage de ces limites. Pour des valeurs de = infiniment
petites, la fonction & intégrer a, d’aprés I'équation (6), la forme
§—3
Vrewsz T g,

¢ désignant une fonction infiniment petite, et, par conséquent, la seule con-
dition a remplir, pour que la fonction considérée soit intégrable pour des
valeurs infiniment petites de z, est celle que la quantité s — 1 soit positive.
D’autre part, la fonction a intégrer é¢tant donnée par la somme des termes
de la forme

1
e—=Ux—m)*+ul zés—

deviendra infiniment petite pour des valeurs indéfiniment croissantes de z,
et cela aussi quand on la multiplie par une puissance quelconque de z,
et, par conséquent, I'intégrabilité relative a la limite z = oo de la fonction
considérée n’exige aucune condition nouvelle.

Donc Uintégrale (5) aura toujours une valeur finie, si la quantité
s — 1, ainsi que &(x)* + u, est positive.

L’existence de 'intégrale (5) étant démontrée, je vais prouver I'égalité
des deux membres de I'équation (4). La série

1

m

étant uniformément convergente dans chaque intervalle (¢, ..., A) alimites
positives, on aura, d’aprés un théoréme connu,

(a) tha(z)dzzﬁsmw,h),

en pOS&Ilt

A 1
(b) am (6) ,I«) :f e—3l(@—m)i+u] 525 ! ds.
8

Or les termes de la série (1) ne différant de ceux de la série

(¢) 25,,,(0,00)

m
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que par un facteur constant, comme le montre 'équation (2), cette série (c)
est ¢videmment convergente et se compose de termes positifs. Je vais
montrer que la différence

(d) D5 (0,%) = X3 (8, h) = 33 (0,0) &+ 3,8, (, 00)

cst moindre qu’une quantité ¢ donnée arbitrairement, si I'on prend <3,
hzhy, 8, ct by désignant deux quantités positives dépendantes de c.

En effet, les intégrales 4,,(0,8), 5,,(h, %) étant positives et moindres
que 3,(0,%) et la série (c¢) ¢tant convergente, on peut déterminer un
nombre entier r, tel que I'inégalité

! € ! B

5,"(0, 8)< 7’ g)m(/l, °°)< 7

(e) | 2 f 2 k
( (m=r+1,r+2,r+3,...,—r—1,—r—oa,—r—3,...)

subsiste, quelles que soient les quantités positives ¢, 4. D’autre part, on
peut déterminer deux quantités ¢,, /,, telles que, pour chaque valeur de
¢<¢, et de £ A, chacunc des intégrales

3,(0,0), A,(h,e0) (n=o,%1,*+2,£3 ...,%£7r)

. . 13 . I
soit anlndI'C que m) de sorte qu on aura
€ €
f) 20 <p X A<
n=—pr n=—r
et, puisque
© r N
2 Au (0, 0)= 2 3 (0, 6)“‘2 Am(0, ),
u:—w n=—r m
o r ,
2 (ko)=Y 5,1(/1,00)—1—2 8 (hy0)
P=—o n=—r m
(m=r+1n,r+z2 ...,—r—i,—r—2,...),

on en conclut, au moyen des inégalités (¢), (f), que ces quantités sont
moindres que %; d’otur il suit que la quantité () est inférieure a e pour chaque
valeur de 358, A= h,. ¢. Q. F. D.
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Cette propriété de la différence (d) s’exprime par la formule

5:]0i,llzn:w 2 5,,,(6, ]l) :Egm(o, o),

m —=—— ® m

dont le premier membre coincide, d'aprés la formule (a), avee la quantité

h )
_lim f cp(s)d;:f 0 (3)ds,
C=0,h=2.) 5 0

ct il s’ensuit que I’équation (4) est exacte.

Quant & P'équation (9), celle-ci ne peut subsister que si « est positif,
comme on le voit immédiatement. C’est en supposant cette condition rem-
plic que je vais la démontrer.

D’apres I'équation (8), on a

! . = i=3 ® o —us—T 53
I "’I‘(»‘}s)ﬁ(x,s,u):f e~uis ? d:+2f Ee 3 ? cosanmads,
0 0
n=1
et il suffit donc de considérer I'intégrale
® &y Ly Tt 53
(2) ; :f Ee *3? cosanmads.
0

n=1

La fonction & intégrer étant donnée par une série uniformément conver-
gente dans chaque intervalle (o, ..., 4), ot A désigne une quantité positive
quelconque, on a, d’aprés un théoréme connu,

N2 s—3

b ®
3(h) :f ¢ T 57T cosanmads
©)
T2 s—3

® h
—UF——— ——
= E cosznnx/ e 5z ? ds,
0

n=1

et je vais démontrer I'égalité

«® 22

® PR
(7) 3 =3 (o0) = cosgnnxf e T 57 g
Z oo

n=1

™

Japplique, a cet effet, la substitution 5 = /—'_Z £, dont vous avez fait usage
Vu
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pour donner aux coefficients d’une certaine série trigonométrique la méme
forme sous laquelle on les rencontre chez Riemann. Al'aide de cette substi-
tution, il vient

@ T2n? s—3 s—1 © - 1\ s—3

—us——— — wn\ — —mnyfu(t+-) —

(9) Lo, = e - dz:(—_) z f e ( ’)t 2 dt.
0 \/u 0

En décomposant cette derniére intégrale en deux autres prises entre les

limites (o, ..., 1)et(1,...,) et en changeant,dans la seconde, Zen %, il vient
s—1 1 1 s—1 1—s\
(E) an: (g) 2 f e . f(t"‘t)(t 2 +t—‘2—)éit'
Vu 0 !
La série

S| -

ad s—1 1 s—1 1—s
mn\— —mn t+-) [ — f——
Z<_—> F o D ()
Vu

n=1
étant uniformément convergente dans I'intervalle (o, ..., 1), quelle que soit
la quantité s, la série composée des intégrales de ses termes prises entre les

limites (o, ..., 1) sera convergente; or cette série coincide avec la suivante

Y

n=1

dont la convergence est donc démontrée.
En se rappelant 'inégalité

on démontre facilement que 1'équation (y) subsiste, d’ou il suit que I’équa-
tion () est exacte quand on suppose « positif.

L'intégrale &, définie par la formule (10) est une fonction transcendante
entiére de la variable complexe s, et, la série dans le second membre de
I'équation (9) étant absolument convergente pour chaque valeur réelle ou
imaginaire de s, on voit que la différence

1 s—1
(9*) 7 *T(is) §(a, s, u)——I‘(S:l>u_T

est une fonction transcendante entiére de la variable s, résultat remar-
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quable, puisque la fonction § n’était définie que pour les valeurs de s dont
la partic réelle est supérieure a 'unité.
Je me borne maintenant au cas particulier ou la quantité u est zéro. En

remplacant, dans I'intégrale (10), 5 par é, il vient

s+1

© Y _mepry St
(10%) Jg,l:f e * 3z * ds.
0

Si la quantité s est inféricure 4 I'unité ou si elle est négative, cette inté-
grale ne cessera pas d’exister méme quand on y suppose = o ; clle deviendra

®  _mnis _s+1 I — s
Jl»;,:f e z 2 dz:T( 2 (mn)s—t.
0

Je vais montrer qu'on a

(a’) limatlon: w{o;,.

u=0

Nous avons, en effet,
6( _u ) st m( _ st
QL,,——cla',,:f e *— ety 2 a’;—i—/ e ‘——1)8““”"53 * ds,
0 v3

¢ étant une quantité positive. Quand « devient infiniment petit, la seconde
intégrale, dans le second membre, le devient aussi; en prenant ¢ suffisam-
ment petit, la premiére intégrale sera moindre qu'une quantité donnée,
quelle que soit la valeur de & >>o0; donc la différence |, — &, | sera
moindre qu’une quantité¢ donnée arbitrairement pour chaque valeur posi-
tive de z moindre qu’une limite convenablement choisie. C'est ce qu’exprime
la formule (a’).

Quand on suppose la quantité s négative, la série

2:‘ oy = F<I ; S> ﬁ“'i nl'—s

n=1 n=1

est évidemment convergente, et je dis que I'on a

© o
. N v _ \V g
lim » &, = Z o).
u=20

n=1 n=1
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En effet, les quantités &, &, sont positives, et la seconde est la plus
grande, de sorte que &, — &, = d, est positif et moindre que o).

Etant donnée une quantité e aussi petite qu’on veut, on peut déter-
miner un nombre entier 7, tel que I'iégalité

®

S st

n=r+1

subsiste, et I'on aura donc a fortiori

(¢ D A<t

n=r-+1

D’apres la formule (@), on peut déterminer une limite «,, telle que, pour
chaque valeur de z moindre que u,, subsistent les inégalités

€
d”<2_r (n=1,2,...,1),
de maniére que

(b") Y.< g.

n=1

Or il résulte des inégalités ('), (0”) que I'on a

id,l<s

n=1

our chaque valeur de v < u,, et ¢’est ce que montre la formule en question.
p 0
Maintenant, puisque

-
E d,cosanmx EZ d,,

n=1 n=1
on a de méme
-

£
lim » A, cos2nmz :2«%'” COS2nTZ.

u=0

n=1 n=1
Posant donc
- cosa2ntm.xe
(11) b(z,0)= Y ——")

n=1
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nous aurons la formule

1
(9%) T(Ls)lim §(z, s, u):zI‘(I:s>7rs % (z,1—5),
w=0
en supposant la partie réelle de la variable s négative.
Pour les valeurs positives de s supérieures & 'unité et pour les valeurs
réelles de - qui ne sont pas des nombres entiers, on a évidemment

z N I
1% limJ‘xsu:Z———:q)x,s.
) w=0 (2,5, ) |z + m| (2, 9)
m=—w
Cette série définit une fonction analytique de la variable complexe s, que
y ,

je désigne par @ (x, s); mais ce qui précéde ne prouve pas encore que celte
fonction coincide avec celle qui est donnée par 'expression

lim §(z,s, ©) (s négatif),

u=90

qui figure dans la formule (¢?). Sil’on pouvait démontrer I'identité de ces
deux fonctions, I’équation (¢°) nous donnerait

I—Ss
2

(12) I‘(-;s)(l)(x,s):2l‘( )r:s—%io(x,l—s),

formule exacte et que vous pourrez, Monsieur, vérifier en appliquant la

méthode dont s’est servi Riemann dans son Mémoire sur la totalité des

nombres premiers moindres qu'une limite donnée (G ueres, p. 136) (*).
Pour trouver la dérivée de la série (1%), je considére son terme général.

Quand z + m est positif (négatif), la différence

1 1
|z +d—+m| - |+ m]s

(6>0)

(1) La formule (12) est un cas particulier d'une relation donnée par M. Lipschitz dans un
excellent Mémoire inséré au tome 54 du Journal de Borchardt. J’ai établi la méme formule
en m’appuyant sur les résultats de Riemann et de M. Hurwitz, qui en sont des cas limites,
et, n’ayant pas eu connaissance du Mémoire cité, je I'avais publiée au tome XI des Acta
mathematica. Les développements précédents font voir que c’est le Mémoire de M. Appell
qui m’a fait retrouver la formule de M. Lipschitz, de méme qu’il m’a conduit a d’autres
questions sur lesquelles je me réserve de revenir bientot. (Mars 1889.)

III .— Fac. de T. C.2
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sera négative (positive); d’ot il suit que I'on a

I - sgn(x + m)
le+m|s |x+mﬁ'+1’

D

en représentant, avec mon illustre maitre, M. Kronecker, par sgna (signe
de ) I'unité affectée du méme signe que la quantité a.
Done nous avons

(1) D, ®(z,8)=—3s 2

m=—cw

sgn(x + m)
Ix+ m[‘+‘ )

d’ot 1l suit, au moyen de I'équation (1%),

1+ sgn(x + m)
Ix_'_mls—o-l

sP(z,s+1)— D, B(x,s) =s E
ou, en désignant par I2(«) un entier, tel que la différence x — E () soit po-
sitive et moindre que I'unité,

3

s®(z,s +1) — D, ®(x,5) =25 Z

m=—E(x

1
|2 + m |5+ '
)

Posant done

®©

1

13 R(x,s) = E _

(13) (@, ) ]x—|—m|3’
m=—E(x)

nous aurons

sO(z,s+1) =D, ®(x,s) =2sR(x,s +1).

En substitudnt, dans cette équation, les valeurs

—s
”(T) .
O(z,s+1)=—"L 1 2%(z,—s),

r(“;‘)

I—s
2F< 2 ) 1
D, P(z,s)=———"L 7 2D, %b(x,1—5)
(L
)
tirées de la formule (12) et en se rappelant la relation

I—s
T( 2 )__ 2~“\/7—r I

l‘(§-> B 2 cos =2 T'is)

2

\
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et celle qui s’en déduit par le changement de s en s -+ 1, on trouve

(2m)sH [D(z, — ) 1 D .%(x,1—35)
25 R(z, s +1)=— T(s) pop -+ e TEE
sin—z— cos —

En changeant s en — s et en faisant usage des théorémes connus

=
a 2
SINTS

—s0(—s) =T —ys), T(s)T(1—s)=

on trouve, en employant la formule (11),

_77.'S>
2 T(s) cos<2nnx 5 .

(2m)* ns

n=1

(14) R(z,1— )=

Sil'on prend x = g, o < étant deux nombres entiers positifs, la for-

mule (14) nous donne les relations remarquables dues a M. Hurwitz
(Zeitschrift de M. Schlomilch, t. XXVII, p. 86), c’est-a-dire les relations

contenues dans la formule

B
Bi=s f1—s|e, B)= .2_21;5_;_)2 COS(zlﬁan . 7T_2_S>j(sl r, B),

cn posant

f(s[,-,g)zzm.

Vinohrady (Bohéme), le 23 février 1887.



