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ETUDE BIBLIOGRAPHIQUE.

LA

GEOMETRIE REGLER
ET SES APPLICATIONS,

PAR M. G. KOENIGS,

Maitre de Conférences a ’Ecole Normale et a la Sorbonne.

INTRODUCTION.

Dans une branche de la Géométrie qui touche aux points les plus essentiels de
toutes les autres, et dont le développement a été un des termes de 'évolution de
la Science pendant toute la premiére partie de ce siecle, il semble bien difficile de
donner avec certitude le nom de I'inventeur. C’est a Pliicker que 1'on attribue
généralement la gloire de cette invention, et cependant ni Iidée des congruences
de droites, ni méme celle des complexes n’ont recu de lui leur premiére consé-
cration. Tout le monde reconnait que les propriétés des congruences remontent
aux premiéres recherches d’optique géométrique; mais, pour ce qui est des com-
plexes, on parait trop disposé a oublier que Malus les a concus le premier dans
son Traité d’Optique, et qu'il est parvenu dans ce sujet a une proposition capi-
tale, mentionnée ultérieurement par Chasles dans son Rapport sur un intéressant
Mémoire de Transon sur le groupement des droites d’'un complexe en congruences
de normales & une surface. Il est trés remarquable que la proposition de Malus
touche de fort prés a un autre ordre d'idées, dont nous aurons occasion de parler,
et qui a été développé d’une fagon magistrale par M. Sophus Lie.

On trouvera plus loin, dans la partie historique, les citations exactes qui cor-
roborent les affirmations actuelles. Il n’en reste pas moins & Pliicker 'immortel
mérite d’avoir entrevu le role de la droite dans la Géométrie et d’avoir, sinon

III. — Fac. de T. I



2 KOENIGS.

pratiqué, au moins indiqué une méthode pour grouper sous des lois plus élevées
les grands principes de la géométrie projective appelés par Chasles homographie
et dualité.

Mais il n’a pas été donné a Pliicker de cueillir les fruits de sa découverte. Pour
les faire prospérer et mirir, il ne fallait rien moins que le grand talent d’un géo-
meétre universellement estimé et qui s’est également illustré dans I’Analyse.
M. Klein a repris les idées de Pliicker en les appuyant sur les méthodes de I’Al-
gebre moderne. La symétrie et I'élégance de ses résultats, notamment en ce qui
concerne les complexes quadratiques, lui ont attiré & juste titre 'admiration des
géomeétres.

Nous aurons occasion, dans le cours de cette étude, de mentionner d’autres
noms trés justement dignes d’étre cités; mais les travaux de M. Sophus Lie sur
cette branche de la Géométrie méritent une mention particuliére. Cet illustre
géométre a établi les liens les plus étroits entre la géométrie de Plicker et la
théorie des équations différentielles; il a, en quelque sorte, transporté sur le do-
maine transcendant une doctrine qui peut paraitre au premier abord presque
exclusivement algébrique.

Varréterai ici les noms que je veux citer dans cette Introduction, pour ne pas
faire double emploi avec la Notice historique qui accompagne ce Mémoire. 11 est
certain que la Géométrie réglée doit beaucoup a MM. Cayley, Sylvester, Mobius,
Chasles, Battaglini, mais les trois noms de Pliicker, Klein, Sophus Lie, caracté-
risent en quelque sorte trois phases de la doctrine de la ligne droite, et c’est
pourquoi je les ai placés en téte de la présente étude (*).

(') Ce travail est une reproduction partielle d’un Cours que j’ai professé¢ en 1887-1888 au Collége
de France.
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CHAPITRE L.

LES COORDONNEES DE LA LIGNE DROITE; GENERALITES.

Caractére dualistique et projectif de la Géométrie réglée. — Double définition des eoor-
données pliickériennes. — La forme quadratique fondamentale w(z). — La forme polaire.
— Retour aux notions purement dualistiques. — Transformation linéaire. — Faisceau,
gerbe et systéme plan. — Systémes réglés; leur classification.

1. Dés le début de ses recherches, Pliicker lui-méme a insisté sur le double
caractére dualistique et projectif de 'espace réglé.

On peut, dans une figure de Géométrie, ne considérer que les points qui la
composent. En transformant homographiquement, on obtient une figure analogue
définie immédiatement au moyen de ses points. C’est ce que I'on exprime en di-
sant que la transformée homographique d’une figure ponctuelle est une autre
figure ponctuelle.

Si I'on s’était attaché, au contraire, a la considération des plans qui concourent
a engendrer la figure, celle-ci elt été une figure planaire; sa transformée ho-
mographique serait une autre figure planaire. On résumera ces deux remar-
ques en disant que 'espace ponctuel et Uespace planaire sont transformés
respectivement en espaces pE MEME Nom par toute transformation homogra-
phique.

Effectuons, maintenant, une transformation dualistique : par exemple, une
transformation par polaires réciproques; alors toute figure ponctuelle se change
en une figure planaire et toute figure planaire est une figure ponctuelle.

On peut résumer cette double remarque en disant que ’espace ponctuel et
Uespace planaire sont transformés respectivement en espaces de Nom CONTRAIRE
par toute transformation DUALISTIQUE.

Mais on doit se souvenir que la dualité a été placée par Chasles a coté de I’ho-
mographie dés le premier quart de ce siécle, et que les progrés ultérieurs n’ont
fait qu’accentuer I'importance et en méme temps la similitude de ces deux trans-
formations fondamentales. On comprend donc qu'il y ait quelque intérét a trouver
une conception, un mode de définition des figures qui reste inaltéré par suite de
I'une et I'autre de ces transformations.

Si I'on considére dans une figure non plus les points qui la composent, ni
méme les plans qui 'engendrent, mais bien les droites qui entrent dans sa con-
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struction, nous obtenons un nouveau mode de définition que nous caractérisons
en disant que la figure est réglée. La figure réglée vient donc se placer naturelle-
ment a coté des figures ponctuelles et planaires. Mais I’avantage de ce mode de
définition apparaitimmédiatement si I’on observe qu’une droite a pour transformée
une droite par dualité aussi bien que par homographie; car il en résulte aus-
sitot que la transformée d’une figure réglée soit par dualité, soit par homographie,
est une autre figure réglée, ce que I'on peut exprimer en disant que I'espace
réglé se transforme en un espace de méme nom et par homographie et par
dualité.

La théorie des figures réglées est donc en quelque sorte la supréme expression
de la grande évolution géométrique inaugurée par Poncelet, Gergonne et Chasles,
et qui, bien loin de s’arréter, tend au contraire a pénétrer jusque dans la- géomé-
trie transcendante.

Tout théoréeme concernant une figure ponctuelle, planaire ou réglée, pourra s’ap-
peler ponctuel, planaire, réglé. 1l est clair que tout théoréme non réglé donne
lieu 4 une proposition conjuguée, a savoir celle que I'on en déduit par polaires
réciproques. De la le nom de géométrie en partie double qui sert a rappeler
I'habitude qu'ont quelques géometres d’opposer a tout théoréme non réglé son
théoréme conjugué. Par I'emploi des droites ce double énoncé disparait, un seul
suffit pour les deux propositions. On en verra bientot un exemple dans la géomé-
trie de la gerbe et dans celle du systéme plan.

Pour rendre plus claire 1'idée dominante de ce paragraphe, considérons une
courbe dans I'espace. On peut y voir d’abord un ensemble de points dépendant
d’un paramétre, savoir les points de la courbe; on peut y voir aussi un ensemble
de plans dépendant du méme paramétre, a savoir les plans osculateurs; enfin on
peut y voir un ensemble de droites dépendant toujours du méme parameétre, a
savoir les tangentes de la courbe. La connaissance de I'un quelconque de ces trois
ensembles suffit pour définir tous les autres au moyen d’opérations différentielles
faciles a exécuter. Néanmoins, une étude approfondie des transformations géomé-
triques a montré qu’il y avait lieu de les distinguer les uns des autres et de porter
son attention, suivant les cas, tantdt sur I'un, tantdt sur Pautre, bien qu'ils
solent, en fait, inséparables. Représentons donc provisoirement par Ey, Er, E;
I’ensemble des points d’'une courbe, I'ensemble de ses plans osculateurs et 'en-
semble de ses tangentes. Si I'on effectue une transformation homographique,
chacun de ces ensembles se transformera dans un ensemble identique E,,, E7, E),.
Effectuons, au contraire, une transformation dualistique; E, se changera en un
systéeme E et E; se changera dans le systéme Ej, attaché a E7; mais, en revanche,
le systtme E; se changera dans le systtme E;,. Ainsi, il y aura cet avantage a
définir les ensembles attachés a une courbe au moyen de I'ensemble E; des tan-
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gentes, que cctte définition conservera son caractére par dualité aussi bien que
par homographie. Tout théoréme concernant un syst¢éme E,, par exemple, aura
son correspondant dans un systéme Ex; mais, si 'on traduit le théoréme de telle
sorte que le systeme E4 (attaché a E; ) figure seul dans son énoncé, la proposition
se trouvera coincider avec la proposition conjuguée.

On pourrait pareillement définir une surface, non plus par ses points ou ses
plans tangents, mais par ses tangentes; on a été ainsi conduit & des propriétés

nouvelles, qui montrent bien I'avantage de la méthode.

2. Une droite posséde elle-méme deux modes de génération; elle est le licu
d’un point; elle est aussi le lieu d’un plan qui tourne autour d’elle. Pliicker ap-
pelle rayon la droite considérée comme lieu de points, et axela droite considérée
comme lieu de plans. Le mot aze est employé dans tant d’acceptions, et, d’autre
part, la distinction est si peu essentielle que nous ne trouvons pas d’avantage a
recueillir ces locutions. A vrai dire, il importe peu qu’une droite soit considérée
comme lieu de points ou de plans; elle est naturellement I'un et I'autre, et ce n’est
pas, dans tous les cas, a la géométrie réglée a établir une telle distinction; bien
mieux elle doit y étre impuissante, puisqu’elle reste indifférente a toute transfor-
mation dualistique. La distinction établie par Pliicker tient donc plutét & 'imper-
fection de sa méthode, qui ne sut jamais se libérer de la considération encom-
brante de 'espace ponctuel et de 1’espace planaire. Dans les travaux de M. Klein
on ne trouve rien de pareil. Tous les éléments que 'on y rencontre sont dualis-
tiques en euz-mémes, c’est-a-dire se transforment par dualité en éléments iden-
tiques; et telle doit étre notre préoccupation dés le début, en définissant les
coordonnées. Il pourra sembler au premier abord que nous nous écartons de

cette régle; mais nous ne tarderons pas a y rentrer.

3. Considérons un espace ponctuel rapporté a des coordonnées homogénes

onctuelles; solent z,, xs, 3, Z; les coordonnées d’un point z, et
P 3 ) ) s Ly ,
(1) Eiwy+ by + B3+ By, =0

Péquation d’un plan, les quantités &,, &, €3, & seront les coordonnées homogénes
de ce plan, et I'’équation (1) exprime que le point z et le plan § sont unis, c’est-
a-dire que le point est dans le plan.

Prenons deux plans &, 7; ces plans se coupent suivant une droite D, et

Pon pose
(2) ppie=&inr— nikk,

ot p est un coefficient de proportionnalité, les plans menés par la droite D et par
les sommets du tétraédre de référence auront pour équations, en coordonnées
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courantes X;,

* 4+ p1eXo+p13X; +puX,=o,
PuXi+ * 4+ pysXs 4+ pyuX,=o,

'P31X1-+P32X2+ ¥ +puX,=o,
\ P X+ praXo+ pisXs+ X =o.

Si I'on développe le déterminant nul

B B & &
N1 M2 M3 M
0o=A= " ’
B b & &
1 M2 M3 M
on trouve
(4) ' A = 2(p1aPsis + Pr3Pee+ PrPes) =O.

Prenons réciproquement six quantités pya, Pis, Piss Paay Pazs P23, liées par
I'équalion (4), et formons les équations (3) en convenant que pri==— pi, on
vérifie par un calcul facile que les quatre plans (3), en vertu de (4), se coupent
suivant une méme droite D; on vérific encore fort aisément que si par cette
droite on fait passer deux plans &, 7, le binéme (§;, 74— ;) est proportionnel
a pix. Done, six quantités

P12, P13y Pus P3ssy Puey P23y

liées par I’équation
(5) P12 P3s—+ P13 Pr2—+ Pu P23 = 0,

définissent complétement une droite par le moyen des équations (3), oa il est
enlendu que pj; = — pi. Mais nous devons hésiter encore a adopter ces six quan-
tités p pour coordonnées de la droite a cause de I'absence de tout caractére dua-
listique dans la définition de ces quantités. Nous les avons en effet obtenues, par
le moyen des équations (2) et (3), en regardant la droite D comme intersection
de deux ou de plusieurs plans.

Pour lever la difficulté, il suffira de faire appel a la définition corrélative.

Prenons deux points z, y sur la droite : tout point de cette droite sera repré-
senté par les coordonnées

zi=lz;+my

ot /, m sont deux paramétres. Cherchons la trace de cette droite sur le plan
54==0; en posant

(6) Sqik=XiYr— YiZTh,
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ou o est un facteur de proportionnalité, nous trouverons que la droite coupe le
plan z;= 0 en un point de coordonnées

Jaty Ga2s Gaszs Gou (OIl voit que gog= 0)’

on a donc ainsi les quatre points

(0, q12, Gz, qu),
(g215 0, Ga3s Gau)s
(g3, g32, 0, ga),
(gs1y  quzs qusy  O);

en développant le déterminant nul analogue a A

Ty Xy X3 T

Y1 Y2 Y3 Vu

Zy Xy XT3 X

Y1 Yo Y3 Vi

on constatera que I'expression suivante est nulle :

(8) 91293+ G13Gi2+ q1ug23 = 0.

Réciproquement, prenons six quantités q,s, ¢i3, @14, ¢34, ¢a2, ¢23 liées par
I'équation (8); un calcul facile prouve que, grice & la seule condition (8), les
quatre points (7), o I’on suppose gx;= — g, sont sur une méme droite D.

4. Nous voila donc en présence d’un nouveau systéme de coordonnées ¢ de la
droite, ou cette ligne est maintenant considérée comme lieu de points. D’aprés ce
qui a été dit plus haut sur le caractére de dualité que nous devons conserver a
notre exposition, nous n’aurions pas plutdt le droit de choisir le systéme de coor-
données ¢ que le systéme de coordonnées p. Mais heureusement nous n’avons
pas besoin de choisir, ces coordonnées se trouvent étre identiques.

Partons, en effet, de la droite D représentée par les équations (3) et expri-
mons que la droite contient les points x et ¥ ; nous aurons

P12%2 + p13%3 + Pra®y = 0,

P12Y2+ P13 Y3+ Puyie=0;
d’ou 'on conclut

P12 P13 P

= = )
Z3Ye— T, )3 Ty Ya— T2V ZToY3— T3 Y2

c’est-a-dire
P12 _ P13 _ Pus.
g3 g2 923’
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on aurait, de méme,
P21Z1 + Pag®s -+ P&y = 0,
P21 Y1+ Pa3ys—+ Par Y= 0,
d’out
P21 — P23 — Pau s
X3 Yu—Y3%s, Ty Y1 Vel Z1rYs3s— Y123

c’est-a-dire
P2 _ P _ Pe.
g3 g1u 913’

de la troisiéme des équations (3) on tirerait de méme que ces rapports égaux sont

encore €gaux a %, ensuite qu’on a définitivement
12

(9) P2 P15 _ P Psv _ P2 P

EDS g2 23 q12 q13 - ?1—&’

et en rapprochant alors les formules (2) et (6), et en changeant un peu les coef-
ficients de proportionnalité, nous écrirons

rie=p(&1ma— n1fs) = (@3 y— ysan),
ris=p(51mz— &) = o (@ Y2 — yu2a),
ru=pfim—mnk)= a(Zyys— ¥as),
(10)

ra=p (&1 — n3ky) = (21 Y2 — Y1%2),

rie=p (& na— 1 ke) = o (@1 )2 — y13),

\ ras= p (&3 — M2bs) = s (w1 )i — o),

et ce sonl ces quantités 7, susceplibles d’une double signification, que nous adop-
terons pour coordonnées de la ligne droite; ces coordonnées vérifiant la relation
quadratique

(rr) (7)) = 2(rpary, + rigra—- rpryg) = 0.

Cette forme quadratique w (7)joue un réle essentiel. Nous allons établir a son
égard une proposition de la plus haute importance.

3. Cherchons la condition de rencontre des deux droites r, r'; pour cela par-
tons des équations (3), la droite r sera I'intersection des deux plans
| X+ rpXasrp X, =o,

(12)
? — rpXy = ry3 Xy + e X, = o,

et la droite 7" sera 'intersection des deux plans

) (M Xe+r X1, Xy =0,
\I2 <
[ —raXi+r, X+ 75, Xy=o.
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Eliminoos X, et X, entre (12) et (12'): nous Lrouverons

y ! ! ‘l 3 U
(rigriys —risre) X+ (rary, — ri rie) X, =o,

(resryg — rogma)Xs+ (rauris — 3, r12) Xu = 0
la condition de rencontre, nécessaire et suffisante, est donc

(13) { (ri3rys — Py rig) (rey 7'y g — 1y 10)
I <
[ —(ruryy — iy ra)(rasris — rhiyre) =o,
ce qui s’écrit
r (Piaras— i ras) + rig(Fia Py, — iy Ty3)

v, . ’ ’ ’ ’ I
A+ Py r1a(— TisTy, — I3 oy~ P Tyy =+ Ty Ta3) = 0

mais on a
r1e73, 4= Tr13Te—+ 1y a3 = 0,

de plus ry,=-—r4,; on a ainsi

1372, — I'uleg = I'1a '3y,

vy - .
Tiglas —T1aTe3 = T1a T34,
et 'équation (13) devient
r r U ’ ! U
LSTIET) (7']27"34 =T o3 T3l g T3 Pe+ T yg + r“r23) = 0.

! b1 .
Nos calculs supposent que rys et r,, ne sont pas nuls, hypothése sans impor-
tance. La condition cherchée s’écrira donc

(14) TiaTy, - PaThe —= Pi Py ~ Py Ty g = Paa Ty g — rasry, = o.
Mais, si I'on se reporte a I’expression de w (7),
w(r)=2(riarsy —+ rizrie—+ roras),

le premier membre de ’équation (1 eut s’écrire
P q P

1 [dw(r)r, . 0w(r)r, i dw(r) r' ow(r) ” dw(r) . dw(r‘)r,”]:

2
2| orp, 12 ory; 13 ory, M4 Orys 23 ors, or,s

on représente généralement cette expression par le symbole

, 1/ 0w Jw
(.0(7',7‘):; d—,q;rw—l—...—i—a—;;r” 5

la condition de rencontre s’exprimera donc par I’équation

(15) w(r, r')y=o.

1. — Fac. de T. 2
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Ainsi, si l’on construit la FoxMEe roLARE o(r, 1) relative & deux droites
r, r', Uévanouissement de cette forme exprime la rencontre des droitesret 1.

Ce fait présente la plus haute importance : grace a lui nous pourrons désormais
nous affranchir de toutes considérations d’espace ponctuel ou planaire qui ne nous
ont servi jusqu’ici que comme intermédiaires pour parvenir a cette forme quadra-
tique © et a la propriété si remarquable de sa forme polaire. Tout ce qu’il nous
suffit de retenir ici, c’est que si l’on choisit six quantités quelconques ry,, rs,
Ty, Ty Tuay Pay, liées par Uéquation

w(r)=2(rers—+ risre -+ rurs) =o,

une droite se trouve définie (peu importe pour le moment comment la construc-
tion de la droite peut résulter de cette définition) et que, de plus, la rencontre de
deuz droites r, r' sexprime par U'équation w(r,r)=o.

Il est assurément fort digne d’intérét que cette simple notion de la forme (1)
suffise, sans davantage préciser, pour édifier toute la géométrie réglée.

6. Notre premier soin sera de donner une vue plus large sur cette forme w. Si
nous exprimons les parameétres rix en.fonction linéaire de six nouveaux para-
metres x;

(16) rip=— A[],-'i.’l/'i—F..-—'r- A[[;’GZ‘G,

rien ne nous empéche de prendre z,, £, ..., ¢ pour nouvelles variables, le dé-
terminant de la substitution linéaire (16) n’étant pas nul. Ces nouvelles variables
seront liées par une relation quadratique homogéne E(x) = o0, ou la forme E(r)
est la transformée de la forme o(r).

Quant & w(r, 1) sa transformée sera, d’aprés une propriété bien connue des
formes quadratiques, la forme polaire §(z, '). Voici, au surplus, la démonstra-
tion de ce fait. Soient (7ia, Fiyy -ovy Fas)y (Fras Tigy <o r,,) deux systémes de va-
leurs des 7, et (&4, Loy +vvy To)s (Ey Xy +ov, L) les systémes de valeurs corres-
pondantes des z. Le systéme (2, + Az)), (€2 + A&)), ..., (&6 -+ Aa) o k est une
arbitraire, correspondra au systéme (4o Ar'\,), (Pra== M)y ooy (F2s = 00,),
et 'on aura, par suite,

w(r+Ar')=%5tz+ A",
d’ou
(17) w(r)+aw(r, r)X+o(r)\=E =)+ 28(z, ')A +E(2)22

et, identifiant les coefficients de A2, A, 1, on trouve, outre deux relations évidentes,

by

la relation qu’il fallait trouver, & savoir

w(r, ') = 5(1‘7 z'),
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ou, d’aprés la formule (17) méme, on a

0%, o o
2t(z, 2') = (%xq +c—)_;:x2+"'+dxjsx5'

La forme particuliére que nous avions trouvée pour la forme quadratique w(r)
n’a donc rien d’essentiel : une transformation linéaire des paramétres permet de
ramener cette forme 4 une forme quadratique quelconque a six variables (quel-
conque si l'on ne recule pas devant une transformation linéaire a coefficients
imaginaires), et dont le discriminant n’est pas nul. On peut donc énoncer le
théoréme suivant :

A tout systéme de six variables x,, xy, x5, x4, 25, 24, liées par une relation
quadratique £(z) = o, de discriminant non nul, on peut faire correspondre
une droite déterminée de Uespace, la correspondance ayant ce caractére que
Uéquation E(z, x') = o exprime la rencontre de deuz droites z, z'.

Maintenant que nous avons donné toute son ampleur a la notion de cette forme
quadratique fondamentale £(x), nous pouvons pénétrer plus avant dans la théorie
en n'y employant plus désormais que des éléments dualistiques et projectifs.

7. Le premier des éléments dont nous aurons & nous servir, c¢’est le faisceau
plan des droites, c’est-a-dire 'ensemble des droites qui sontissues d’un point dans
un plan; nous appellerons ce point et ce plan les supports du faisceau de droites.

Un faisceau est défini complétement par deux de ses droites a et b; toutes les
autres ont des coordonnées de la forme

(18) > = ha;+ pby,
ou A, u sont des paramétres. En effet, on a d’abord
L) =E(ha+pb)=Et(a))2+2k(a, b)hu+E(b)p2,
etcomme §(a)=o, £(b) = o et E(a, b) = o, & cause delarencontre des droites a
et b, il en résulte

E(ha+ pb) = o;

donc (ha;+ pb;) sont les coordonnées d’une droite x; cette droite fait partie du
faisceau (a, b); en effet, soit d une droite qui coupe a et b, on aura

E(a) d) =o, é(b, d)=07
et, par suite,

§0va+pb, d)=t(a, d)h+ (b, d) p=o.

Les droites représentées par la formule (18) coupent donc toute droite d qui
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coupe a et b; cela ne se peut que si ces droites z sont dans le plan (a, b), comme
on le voit en prenant pour d une droite quelconque de ce plan; de méme, en pre-
nant pour d une-droite quelconque issue du point (@, b), on voit que toutes les
droites (18) doivent passer par le point (a, b). Toutes les droites (18) font donc
partie du faisceau (a, b). Jajoute que, réciproquement, toute droite du faisceau
(a, b) est représentable par les formules (18). En effet, prenons une droite d
quelconque coupant une droite arbitraire 5 du faisceau (@, b); il n’y a qu’une
seule droite de ce faisceau qui coupe d (on ne suppose pas que d soit coupée par
toutes les droites du faisceau), et cette droite unique c’est la droite 5. Or, on peut
déterminer X, 11, de sorte que z coupe d; il suffit de vérifier I'équation

&z, d)=E(a, d) +E(D, d)p. = o;

il y a donc une droite (18) qui coupe d, et, comme toutes les droites (18) font
partie du faisceau, cette droite (18), qui coupe d et fait partie du faisceau, ne peut
étre que la droite z qu’on a prise arbitrairement dans le faisceau (a, b); donc
toute droite du faisceau (a, b) est identique a une droite et a une droite unique
du systeme (18).

En résumé, si lon se reporte aux formules (18), a toute valeur de %: 1 répond
une droite du faisceau (a, b), et réciproquement. Les formules (18) réalisent donc
la représentation du faisceau plan (a, b).

Mais il y a plus, puisque h:p et les droites du faisceau se correspondent uni-
voquement, c’est-a-dire puisque a une valeur de X:y répond une droite unique,
et, inversement, puisqu’a une droite du faisceau ne répond qu’une valeur de A:y,
il en résulte, conformément au principe de correspondance sous sa forme la plus
simple, que, si I'on prend quatre droites «, §, v, 6 du faisceau et que l'on désigne
par p, &, T, v les valeurs correspondantes de A:y, le rapport anharmonique
(2, B, v, 6) des quatre droites sera égal au rapport anharmonique (p, 5, 7, v) des

rapports correspondants
(19) (11 '37 - 3):(9, g3, T, v).

Par exemple, les droites (ha;+ u b;) et (ha;— pb;) forment avec les droites @
et b un faisceau harmonique.

8. Deux droites qui se coupent définissent un faisceau plan; trois droites qui
se coupent forment un triangle ou un triédre. Si clles forment un triangle,
toute droite quiles coupe engendre le systéme des droites d’un plan (systéme
plan). Si elles forment un triédre, toute droite qui les coupe passe par leur point
commun et 'ensemble de ces droites engendre ce que 1'on appelle une gerbe de
droites, c’est-a-dire ’ensemble des droites issues d’un point fixe. La géométrie de
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la gerbe et la géométrie du systéme plan sont réciproques; il ne faut donc pas
s’étonner que la géométrie réglée ait pour toutes deux le méme langage et soit
incapable d’établir entre elles une distinction; il faut, au contraire, y voir un signe
de cette perfection de la géométrie réglée a laquelle j’ai déja fait allusion.
Soient donc a, b, ¢ trois droites qui se coupent: nous dirons de toutes les
droites qui coupent @, b, ¢ qu’elles forment un hyperfaisceau, car il répugne
d’opter pour I'une ou l'autre des expressions de gerbe ou systéme plan qui se
présentent avec des titres égaux; le nom d’hyperfaisceau n’a rien de choquant
et convient bien a ces systémes qui jouissent, comme on va le voir, d’une repré-
sentation analogue a celle des faisceaux. Soient @, b, ¢ trois droites d’un Ayper-
Jaisceau: je dis que 'ensemble des droites du systéme est représenté par les for-

mules
(20) &, = ha;+ wb;+vey,

ot ), i, v sont des paramétres arbitraires. La démonstration est analogue a celle
dont on a fait usage pour le cas du faisceau; je ne la reprendrai donc pas ici
avec détail. On constate d’abord que

E(ha~+ pb+ve)=E(a)l2+E(b) p2+E(c)v2+ 2k(a, b))k +25(b, ¢)uv+ 28(a, ¢) hv

est identiquement nul, ce qui prouve que les quantités z; sont les coordonnées
d’une droite. Ensuite on constate que cette droite z coupe @, b, ¢ et, par suite,
fait partie da systéme; enfin on prouvera que toute droite s du systéme est une
droite (20), en montrant que deux droites d, e quelconques qui coupent s sont
toujours coupées par une droite (20) unique en général.

9. Nous ferons de ces notions des applications incessantes, aprés avoir toute-
fois fait connaitre quelques notions générales sur les systémes réglés.

La droite dépend de quatre paramétres absolus; les droites de 'espace assujet-
ties & wune condition conservent trois paramétres, leur ensemble conslitue un
compLEXE. Deux conditions ne laissent plus que deux paramétres, la droite en-
gendre alors une coxcruence. Trois conditions réduisent a un les parameétres,
la droite engendre alors une striE REGLEE celle série réglée ne forme pas toujours
une surface, car les tangentes d’une courbe plane, par exemple, ne peuvent pas
étre a proprement parler regardées comme formant une surface réglée. 11 y a,
d’ailleurs, un autre inconvénient a parler de surfaces réglées : I’hyperboloide en
tant que surface sert, en effet, de supporta deux séries réglées, etil y aurait pour
nous un inconvénient réel a ne pas séparer ces deux séries, en les confondant
dans le méme nom de surface ou d’hyperboloide. Enfin, quatre conditions déter-

minent une droite ou, pour mieux dire, un ENSEMBLE DE DROITES. 1l y a un grand
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inconvénient & dire, comme on le fait souvent lorsqu’on parle d’un élément géo-
métrique quelconque dépendant de n paramétres, que n conditions définissent
un élément. Cette loculion est vicieuse et revient & nier la théorie des formes bi-
naires. En réalité les n conditions, ici quatre, définissent un ensemble de droites
généralement fini, et ces ensembles jouissent de propriétés intéressantes dont
on perdrait la notion si 'on se contentait de dire que quatre conditions définis-
sent une droite. Pour donner un exemple des plus simples, tiré d’un autre ordre
d’idées, on sait que deux cubiques planes définissent un ensemble de ¢ points
qui jouit de propriétés spéciales, et que deux courbes d’ordres m et n se
coupent en mn points dont 'ensemble présente des propriétés générales aussi
éloignées des propriétés d'un point unique que les propriétés d’une courbe
d’ordre mn le seraient d’une simple ligne droite.

Pour ces motifs nous considérerons donc cing sortes de systémes réglés. D’abord
Vespace réglé, ou I'ensemble de toutes les droites de 'espace, ensuite les com-
plexes, ou systémes a triple indétermination ; les congruences, ou systémes dou-
blement indéterminés; les séries réglées d’indétermination simple, et enfin les
ensembles de droites d'indétermination nulle.

10. La condition pour une droite de faire partie d’un faisceau plan équivaut a
trois conditions, puisque les droites d’un tel faisceau constituent une série ré-
glée; de méme, la condition de faire partie d’un hyperfaisceau équivaut a deux
conditions.

Considérons, dés lors, un complexe de droites; celles de ces droites qui font
partie d'un faisceau plan constituent un ensemble d’indétermination nulle; le
nombre des droites de cet ensemble est ce que 'on appelle le degré du complexe.

Au contraire, les droites d’'un complexe qui font partie d'un hyperfaisceau
forment une série réglée; si I'’hyperfaisceau est une gerbe, on aura Lloutes les
droites du complexe issues d'un point; leur ensemble forme évidemment un céne,

" nous appellerons ce cone le cdne du complexe; tout point de Pespace est ainsi
le sommet d’un céne du complexe. Si, au contraire, 'hyperfaisceau est un sys-
téme plan, on aura toutes les droites du complexe situées dans un plan et elles
y envelopperont une courbe, la courbe du complexe; tout plan contient donc sa
courbe enveloppe du complexe; mais notons que cette courbe est définie par ses
tangentes et pourra quelquefois dégénérer en un ou plusieurs points; nous en
aurons bientdt des exemples.

Tutorkme. — Le degré de tout cdne du complexe et la classe de toute courbe
plane enveloppe du complexe sont égaux et égaux au degré du complexe.

Prenons un point O; pour avoir le degré du cone du complexe de sommet O, il
faut couper ce cone par un plan II mené par O et compter le nombre de droites
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d’intersection ; 'ensemble des génératrices ainsiobtenues n’est autre que 'ensemble
des droites du complexe contenues dans le faisceau (O, IT); le nombre de ces
droites est donc bien égal au degré du complexe.

Méme raisonnement pour la courbe enveloppe relative a un plan II. Pour avoir
la classe de cette courbe, on comptera les tangentes qu’on peut lui mener d’un
point O de II; mais l'ensemble de ces tangentes n’est autre que I’ensemble des
droites du complexe contenues dans le faisceau (O, II); donc la classe de la courbe
est bien égale au degré du complexe.

Je reviendrai plus tard sur ces questions générales; pour le moment, le théo-
réme ci-dessus me suffit.

11. Prenons maintenant une congruence. Passer par un point équivaut a deux
conditions pour une droite; de méme étre dans un plan équivaut a deux condi-
tions. Donc les droites d’une congruence qui sont issues d’un point forment un
ensemble d’indétermination nulle. Le nombre des droites de cet ensemble est
le degré de lacongruence. De méme, les droites d’une congruence qui sont dans
un plan forment un ensemble dont le nombre est appelé la classe de la con-
gruence.

12. Une série réglée étant donnée, on appelle degré de la série le nombre des
droites de la série qui coupent une droite arbitraire. Si les droites forment une
surface réglée, ce degré est justement celui de la surface; si elles enveloppent
une courbe plane, ce degré est justement la classe de cette courbe.

Enfin, on peut appeler degré d’un ensemble fini de droites le nombre des
droites qui le composent.

Je vais débuter en étudiant les complexes du premier degré, ainsi que leurs
systémes communs.
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CHAPITRE TI.

LES COMPLEXES LINEAIRES DE DROITES.

Pole et plan polaire. — Faisceaux du complexe. — Droites conjuguées. — Distribution des
poles et des plans pelaires sur une droite du complexe. — Corrélation normale d’un com-
plexe. — Propriétés des droites conjuguées. — Polaires réciproques par rapport a un
complexe linéaire. — Représentation analytique. — Complexes spéciaux. — Invariant de
M. Klein. — Droites conjuguées.

13. Un complexe est dit linéaire lorsqu’il est du premier degré, c’est-a-dire
P p 8re,
lorsque, parmi les droites d’un faisceau arbitraire, il n’y en a qu'une qui fasse
, , y
partie du complexe. Le cone du complexe se réduit & un plan, et la courbe enve-

loppe dans un plan se réduit & un point (lieu de classe 1). De la ce double théo-
réme :

Les droites d’un complexe linéaires issues d’un point P engendrent un
plan, qu’on appellera le pLaAN poLaIrE du point.

Les droites d’un complexe linéaire tracées dans un plan passent par un
point fixe de ce plan, le foyer ou pOLE de ce plan.

Il existe donc dans I'espace une infinité de faisceaux dont toutes les droites
font partie du complexe; ce sont les faisceaux définis par un point et son plan
polaire, ou, ce qui revient au méme, par un plan et son pole. Nous appellerons
ces faisceaux les faisceaux du complexe linéaire (*).

14. On peut faire découler les propriétés du complexe linéaire d’une proposi-
tion unique, dont la démonstration est des plus aisées.

Considérons l’ensemble d’un plan I et d’un point O situé dans ce plan, le
pole O du plan 1 est dans le plan polaire ' du point O.

Autrement dit, si un point O et un plan II sont uvnis (voir n°® 3), leurs corres-
pondants polaires dans le complexe sont un plan I’ et un point O’ unis. En effet,
la droite OO’ fait partie du complexe, puisqu’elle passe au point O’ et qu’elle est
dans le plan polaire IT de ce point; mais alors elle doit étre contenue dans le

(*) On peut comparer avec ce que nous appelons plus loin, dans le cas général d’'un complexe
quelconque, les faisceaux du complexe.
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plan II'; qui est le polaire du point O de cette droite. Le plan II' contient donc le
point O’. C. Q. F. D.

‘Soient une droite d ne faisant pas partie du complexe; O un point de cette
droite; II un plan mené par cette droite. D’apres le théoréme précédent, le pole
de IT est dans la polaire de O; mais, comme O est un point quelconque de la
droite d, IT un plan quelconque mené par cette droite, on peut conclure que les
poles de tous les plans menés par une droite sont situés dans les plans polaires
de tous les points de cette droite.

Il en résulte immédiatement :

1° Que les polaires de tous les points d’une droite d sont des plans qui se
coupent suivant une méme droite d';

2° Que cette droite d' est le lieu des pdles des plans menés par la droite d.

Le poéle d’un plan mené par d est donc le point ou il perce &', et le pole d’un
plan mené par @' est le point o il perce d. Les droites d et d’ sont ainsi dans une
situation réciproque I'une vis-a-vis de 'autre; on les appelle droites conjuguées.

Les remarques suivantes sont d'un usage fréquent :

Toute droite x, qui coupe deux droites conjuguées d, d', fait partie du
complexe.

Considérons le plan [I(d, ) mené par d et par z, le pole de ce point est & sa
rencontre avec d’, c¢’est-a-dire précisément au point P(d’, z) de rencontre de x et
de d'. La droite 2 du plan II(d, ) se trouve donc passer au pole P(d', ) de ce
plan; il est ainsi acquis qu’elle fait partie du complexe.

Toute droite du complexe, qui coupe une droite d, coupe aussi sa conju-
guée d'.

Considérons, en effet, le plan II(d, x), que 'on peut mener, par hypothése,
par d et par z; la droite z de ce plan, faisant partie du complexe, doit passer au
pole de ce plan. Or ce pole est la trace du plan sur la droite &'; la droite 2 cou-
pera donc d’ en ce point.

Deux couples de droites conjuguées forment quatre droites portées par
une méme quadrique.

Soient, en effet, a, a' et b, &' les deux couples de droites conjuguées, et consi-
dérons la quadrique engendrée par une droite x s’appuyant sur @, @', b. Les géné-
ratrices z de cette quadrique font partie du complexe, puisqu’elles coupent « et ',
et, comme elles coupent b, il faut alors qu’elles coupent aussi &'. Donc «, &', b, '
sont quatre génératrices du second systéme.

Généralement, supposons que les génératrices  d’un systéme d’une quadrique

1II. — Fac. de T. 3
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fassent partie d'un complexe linéaire; considérons une génératrice y du second
systéme, et soit »' sa conjuguée; cette conjuguée est nécessairement une autre
génératrice du méme systeme que y. En effet, toutes les génératrices « coupent y,
et, comme elles font partie du complexe, il faut qu’elles coupent p’. Nous parve-
nons ainsi a ce résultat que, si une quadrique est engendrée par des droites « fai-
sant partie d’'un complexe linéaire, les génératrices du second systéme se trouvent
associées deux a deux en couples de droites conjuguées. Nous donnerons a ces
quadriques le nom de quadriques du compleze.

Faisons, en terminant ce numéro, les remarques suivantes :

Nous avons supposé, au début, que la droite 4 ne faisait pas partie du complexe.
Si elle appartient au complexe, elle est a elle-méme sa propre conjuguée, car elle
est le lieu des poles de ses plans et I’enveloppe des plans polaires de ses points.

Si une droite d ne fait pas partie du complexe, il est impossible qu’elle coupe
sa conjuguée d'; car, si P était le point de rencontre, tout plan mengé par d aurait
son podle au point P, et la droite d, passant par P et tracée dans ce plan, ferait
partie du complexe.

15. Considérons quatre plans II,, IT,, II;, II, menés par une droite ne faisant
pas partie du complexe, et soient Py, P,, P;, P, les poles de ces plans. On obtient
ces pdles en coupant le faisceau des quatre plans par la droite d', conjuguée de d.
Le rapport anharmonique des quatre pdles est donc égal a celut des quatre
plans.

Il est intéressant de démontrer que cette proposition s’étend encore au cas de
plans passant par une droile appartenant au complexe.

Soient, en effet, d une droite du complexe et a, @’ deux droites conjuguées ne
coupant pas d. Considérons la quadrique engendrée par une droite z s’appuyant
sur a, @' et d. Celte quadrique sera une quadrique du complexe, puisque x coupe
les droites conjuguées a et ’. Menons un plan II par la droite d; ce plan coupe
la quadrique, outre d, suivant une génératrice 2 qui vient couper ¢ au point de
contact P du plan IT avec la quadrique. Mais il passe en P deux droites du com-
plexe contenues dans le plan II, savoir d et 2. Donc P est le pole du point II. De
la cette conséquence : le pole d’'un plan mené par d est justement le point de d
ou ce plan est tangent a la quadrique.

Mais on connait le beau théoréme de Chasles sur la distribution du plan tan-
gent le long d’une génératrice rectiligne d’une quadrique. Le rapport anhar-
monique de quatre plans menés par cette génératrice est égal a celui des quatre
points de contact de ces plans avec la surface. J

Il résulte donc de ce théoréme, joint & la remarque précédente, que si, par une
droite d d’un complexe, on méne quatre plans, le rapport anharmonique
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des péles de ces plans est égal & celut des plans euzx-mémes. D’aprés ce théo-
réme, lout complexe linéaire définit sur chacune de ses droites une correspon-
dance homographique entre les points et les plans de cette droite (*). Une telle
correspondance se retrouve fréquemment dans les figures réglées, et j’ai cru utile
de lui attribuer un nom spécial, celui de corrélation anharmonique ou simple-
ment de corrélation. ‘

Nous pouvons donc dire que tout complexe linéaire définit une corrélation sur
chacune de ces droites, a savoir celle qui relie un point de la droite a son plan
polaire; et, pour distinguer cette corrélation de toutes les autres que 'on pourrait
imaginer sur cette droite, je lui donnerai le nom de corrélation normale du
complexe (?).

16. Dans les numéros précédents, nous avons vu qu’un complexe linéaire
fournit un moyen de transformation dans lequel un point a pour transformé un
plan, un plan un point, et une droite une autre droite. Nous allons étendre cette
remarque et obtenir ainsi un résultat qui offre de 'importance a plusieurs points
de vue.

Rappelons tout d’abord ce théoréme, démontré au n° 14:

1. S§7 un point O et un plan 1 sont unis, leurs éléments correspondants
sont un plan ' et un point O', unis eux aussi.

Voici d’autres théorémes ou figurent les droites :

II. S¢ une droite d passe par un point O, sa conjuguée d' est tracée dans
le plan Il polaire de O, et réciproquement.

Ce théoréme est une conséquence immédiate de la définition des droites con-
juguées.

HI. S¢ deux droites a et b se coupent, leurs conjuguées o', b’ se coupent
aussi.

En effet, puisque a et b passent par un méme point O, leurs conjuguées &, ¥/,
en vertu du théoréme précédent, sont dans un méme plan II, polaire de O.

Il résulte immédiatement de la qu’aux droites d’un faisceau correspondent les
droites d'un faisceau; a tous les plans et droites menés par un point O corres-
pondent tous les points et droites tracés dans le plan II', polaire de O.

Nous avons déja dit que I'on donne le nom de gerbe a 'ensemble des plans et

(') Jappellerai dorénavant plan d’une droite tout plan mené par cette droite.
(*) On verra plus loin une extension de cette notion au cas d’un complexe quelconque.
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des droites issus d’un point, et de systéme plan & 'ensemble des points et des
droites d'un plan. On peut donc dire qu’'une gerbe a pour figure correspondante
un systéme plan, et inversement.

Considérons généralement une figure § composée de points, de droites et de
plans, en prenant les éléments correspondants de tous ceux de la figure &, on
engendrera une figure &, que nous dirons étre la réciproque de §. Aux points
en ligne droite de & correspondront des plans de ¥ passant par une droite, et
inversement; aux droites issues d’un point les droites d’un plan, et inversement;
aux plans menés par un point les points d'un plan, et inversement, etc.

A un polyédre & correspondra un polyédre &' dans lequel : 1° les arétes seront

conjuguées des arétes de €; 2° les sommets seront les poles des plans des faces
de @; 3° les plans des faces seront les polaires des sommets de €.
. A une surface S non développable de la figure § considérée comme lieu d’un
point O répondra dans § une surface S’ définie comme enveloppe du plan II',
polaire de O, et le point de contact O' de II' avec la surface S’ sera le pole du
plan’Il tangent en O a la surface S, en sorte que la surface S’ est aussi le lieu des
poles des plans tangents de S. On pourra encore remarquer que le faisceau des
tangentes & la surface S au point O a pour réciproque le faisceau des tangentes
en O a la surface S'. On peut donc définir encore la surface S’ comme 'enveloppe
des droites conjuguées des tangentes de la surface S.

Soit encore une courbe G, que nous pourrons définir soit comme lieu d’un
point O, soit comme enveloppe de la tangente d en ce point, soit comme enve-
loppe du plan IT osculateur en O. Le lieu du péle O’ du plan II est une courbe C':
considérons trois plans osculateurs a la courbe C, II, II,, II; infiniment voisins, et
soient O, O/, O), leurs poles, qui sont trois points de C/, le plan de ces trois
points est le plan osculateur ¢n O’ & la courbe (U, et il a pour péle le point d’in-
tersection des trois plans II, II,, II,, c’est-a-dire le point O.

On pourrait donc encore définir la courbe C/ comme I'enveloppe des plans
polaires des points de la courbe C.

Enfin, prenons deux points voisins O, O, sur la courbe G, la droite d, ou OO,,
a pour polaire I'intersection d’ des plans II', IT|, polaires des points O et O,, et qui
sont deux plans osculateurs voisins dela courbe C'. La droite ¢’ est donc tangente
a la courbe (/. De la ce théoréme qui implique une troisiéme définition de la
courbe C':

Les polaires d' des tangentes d d’une courbe gauche G enveloppent une
courbe gauche C'. '

C’est ici le cas de rappeler les distinctions faites & la fin du n°1; il est clair
que, si'l’on considére les systemes Ep, Efj, E;4 de la courbe, ils se transformeront
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dans les systemes Ef, Ep, E, de la courbe réciproque. J'appellerai dorénavant
développable Vensemble E; des tangentes d’une courbe qui pourra étre gauche
ou plane, ou méme se réduire a un point, comme dans le cas du cone.

Pour résumer la matiére de ce paragraphe, nous dirons qu’un complexe linéaire
permet de réaliser une transformation dualistiqgue de Uespace.

Ce procédé n’a pas échappé a Chasles dans son beau Mémoire Sur la dualité
et U’homographie, qui termine son Apercu historigue. La forme mécanique
sous laquelle I'illustre géométre présente cette transformation est de la plus haute
importance, et, a ce titre, nous aurons a y revenir plus loin avec détail. Nous
verrons aussi dans les applications comment cette méme transformation a trouvé
un emploi trés fécond dans la Statique graphique, grace aux recherches ingé-
nieuses de Maxwell.

17. Avant d’aller plus loin, il convient d’exprimer analytiquement les résultats
que nous venons d’obtenir.
Soient w(x)la forme quadratique fondamentale et

(]) ’ f(xl7x2a-~~7x6)=f('r)=0
I'équation algébrique homogéne en z,, x., ..., ¢, qui, jointe a
(2) w(x)= o,

représente le complexe linéaire considéré.

Je vais prouver que f(x) est lindaire en z,, x4, ..., ;. En effet, soient «, &
deux droites qui se coupent. On a vu au n° 7 que les x; de toute droite du fais-
ceau (a, b) sont de la forme a;A + b;p, ot h; i est arbitraire. En exprimant que
la droite x de ce faisceau fait partie du complexe, on a

S(ayh+byy, ...,a5h -+ bgp) = o.

Ceite équation doit étre du premier degré en h:u, car une seule droite du
complexe fait partie d’un faisceau donné; on doit avoir, par conséquent.

J(@)=AMx+ Aszy+. ..+ Agzs.

Réciproquement, toute équation linéaire en x représente évidemment un com-
plexe linéaire.

18. La condition pour qu’une droite x coupe une droite 5 s’exprime par 1'é-
quation linéaire
ow ow

93, 2 ]

ow
o=2w(5,2)= — &+ 92
6

9z 1
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L’ensemble des droites qui coupent une droite fixe 5 forme donc un complexe
linéaire. Mais on s’apercoit aisément que ce n’est pas la le complexe linéaire le
plus général. Identifions, en effet, une fonction linéaire quelconque des x avec

w(z,z); nous aurons

Jdw ow ow ow

(3) 93 03, 033 034
3 _— = 2 = =...=

Ay Ay As A

On urera de ces équations linéaires en zy, 55, ..., 5¢ les valeurs de ces quan-
tités, ou plutdt de leurs rapports, et, en portant ces valeurs dans w(z), cette
forme deviendra une forme homogeéne quadratique en A,, A,, ..., A,

(4 w(z)=Q(A);

cette forme Q(A) est la forme adjointe de la forme w(z).
Si donc les z; sont les coordonnées d’une droite 3, il faut que Q(A) soit nul.
51 Q(A) est nul, les valeurs des z; tirées des équations (3) sont, d’aprés (4), les
coordonnées d’une droite, et cette droite, d’aprés les équations (3), est coupée
par toutes les droites du complexe linéaire

SA;z;=o.

On donne le nom de complexe spécial a un pareil complexe, et la droite s
en est appelée la directrice ou encore 'axe. Mais, le mot axe ayant été employé
avec tant d’acceptions dans cette méme théorie des droites, le mot directrice
parait préférable.

Lorsque Pexpression Q(A) n’est pas nulle, le complexe linéaire ne posséde pas
de directrice; mais la considération de la forme Q(A) n’en demeure pas moins
intéressante. M. Klein I'appelle I'invariant du complexe. Ce nom d’invariant se
justifie par la remarque suivante :

Si l'on effectue sur les variables x; une transformation linéaire, les coeffi-
cients A; d’une forme linéaire de x; se trouvent transformés, comme on sait,
par la transformation réciproque, et la forme Q(A) est ce que l'on appelle un
contrevariant de la forme w(z); ce qui signific que Q(A) se reproduit, multipliée
par une puissance (la seconde) du déterminant de la substitution directe.

Si, par exemple, on a ramené la forme w(z) au type de Pliicker,

o (z) = 2(Z, 24+ T225+ T3%5),
la forme Q(A) sera la suivante :
Q(A) = 2(A1 Ak+ AgA;;—i— A3A5).

Si, au contraire, on a ramené, comme nous verrons que I'a fait M. Klein, la
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forme w(x) 4 une somme de carrés, savoir

o(x) = K@} + Ky2d +.. .+ Ke22,
on aura
A? A2 A2
QA) = L 4+ 2 - =2
( ) Kl Kg Kﬁ
On ne s’est pas préoccupé, dans le commencement du Chapitre, du cas du
complexe spécial. 1l est clair que, dans ce cas, les droites de 'espace ont toutes
une méme conjuguée, savoir la directrice, et que toutes les propriétés relatives a

la transformation par polaires réciproques se trouvent en défaut.

19. Supposons donc qu’il s'agisse d’un complexe non spécial et soit = une
droite quelconque; cherchons sa conjuguée u. J'observe, a cet effet, que des trois

équations
YA;z; = o,

w(z, z)=o,

w(u,r)=o,

une doit étre la conséquence des deux autres : car toute droite du complexe qui
coupe une droite coupe sa conjuguée et toute droite qui coupe deux droiles con-

Juguées fait partie du complexe.
Pour parvenir aisément au résultat, j’observe que I'on a identiquement

02 Jdw
e — - — 1
Dhvai= X5 5o (O,

et les trois équations que nous avons a considérer peuvent s’écrire

dgdw_o 2z«0w~0 Eu‘dw__
oN; 9z; 7 P Lm0t

(1) En effet, si I'on pose

_ Ow
i~ oz,
on trouve, par définition de la forme adjointe,
w(z)=Q(Z);

il en résulte
do=de=Y ff_;zdz,..
Mais on a aussi )
)
dw = d—z—idzi_z Z,ds,

2w:2 3—:;:2 Z,3;;

2dw =XZ,dz,+ S3,dZ,,

.ct, comme » est homogéne,

d’ou
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d’aprés la remarque déja faite qu’elles doivent se réduire & deux, on doit pouvoir
trouver deux quantités A, ., telles que

(5)

Exprimons que w,, u,, ...

ou

0Q

E:)\Z[—FHM.

0Q
w(ﬁ——)\z> =0

e WA
w(TA-—Q.(L)a—Aa» = 0,

en se souvenant que w(z) = o. On a d’ailleurs

dﬂ)(dﬂ)
0Q oA
2”’(0—A’z> = WZFZAM

w<3—§> = Q(A),

il vient donc

(6)

Q(A)—AZA;5;=o0.

sont les coordonnées d’une droite, on trouvera

Cette équation (6) fait connaitre ), et les équations (5) fourniront les coordon-

nées de la droite « conjuguée de z.

Ce calcul suppose que TA;z; n’est pas nul, ¢’est-a-dire que s ne fait pas partie
ppose q P ) q pas p

du complexe.

La forme symétrique des équations (5) met bien en évidence la réciprocité des

droites s et «.

Il serait facile, en partant des formules (5), de trouver une démonstration algé-

brique des diverses propriéiés des droites conjuguées déja établies géométrique-

ment; nous laissons ce soin au lecteur.

(A suivre.)

d’ou enfin, par soustraction,

. . 0Q
En identifiant avec dw = daz,

et par suite nous avons bien

ow
Yar=yal Ge) _
~Xr—a

dw = Z3,dZ,.

== 7d, on a donc

ow
s _ (%)
i JaZ, 0w
057

i

’

9
ox;

0A;, Oz

02 (A) do



