DOI : 10.5802/acirm.10
Keywords: Binary expansions, algebraic numbers, diophantine approximation
Rivoal, Tanguy 1
@article{ACIRM_2009__1_1_55_0,
author = {Rivoal, Tanguy},
title = {On the binary expansion of irrational algebraic numbers},
journal = {Actes des rencontres du CIRM},
pages = {55--60},
year = {2009},
publisher = {CIRM},
volume = {1},
number = {1},
doi = {10.5802/acirm.10},
zbl = {06938558},
language = {en},
url = {https://www.numdam.org/articles/10.5802/acirm.10/}
}
Rivoal, Tanguy. On the binary expansion of irrational algebraic numbers. Actes des rencontres du CIRM, Numération : mathématiques et informatique, Tome 1 (2009) no. 1, pp. 55-60. doi: 10.5802/acirm.10
[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547–565. | Zbl | DOI | MR
[2] B. Adamczewski, The many faces of , slides of a talk given at the conference “Diophantine Approximation and related topics” (Tokyo) in march 2009.
[3] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16(3) (2004), 487–518. | DOI | MR
[4] E. Borel, Sur les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247–271. | Zbl | DOI
[5] D. G. Champernowne, The construction of decimals normal in the scale of ten, J. Lond. Math. Soc bf 8 (1933), 254–260. | Zbl | MR | DOI
[6] A. J. Kempner, On transcendental numbers, Trans. Amer. Math. Soc. 17 (1916), 476–482. | Zbl | DOI | MR
[7] M.J. Knight, An “oceans of zeros” proof that a certain non-Liouville number is transcendental, Amer. Math. Monthly 98 (1991), no. 10, 947–949. | Zbl | DOI | MR
[8] D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125–131. | Zbl | DOI | MR
[9] T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), no. 1, 95–111. | Zbl | DOI | MR
[10] T. Rivoal, Convergents and irrationality measures of logarithms, Rev. Mat. Iberoamericana 23.3 (2007), 931–952. | Zbl | DOI | MR
[11] K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. | Zbl | DOI
[12] W. Sierpiński, Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’une tel nombre, Bull. SMF 45 (1917), 125–132. | Zbl | DOI
Cité par Sources :





