@article{SEDP_1972-1973____A25_0,
author = {Kohn, J. J.},
title = {Boundary regularity of solutions of the inhomogeneous {Cauchy-Riemann} equations},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:24},
pages = {1--9},
year = {1972-1973},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {430317},
zbl = {0267.35036},
language = {en},
url = {https://www.numdam.org/item/SEDP_1972-1973____A25_0/}
}
TY - JOUR AU - Kohn, J. J. TI - Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations JO - Séminaire Goulaouic-Schwartz N1 - talk:24 PY - 1972-1973 SP - 1 EP - 9 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1972-1973____A25_0/ LA - en ID - SEDP_1972-1973____A25_0 ER -
%0 Journal Article %A Kohn, J. J. %T Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations %J Séminaire Goulaouic-Schwartz %Z talk:24 %D 1972-1973 %P 1-9 %I Ecole Polytechnique, Centre de Mathématiques %U https://www.numdam.org/item/SEDP_1972-1973____A25_0/ %G en %F SEDP_1972-1973____A25_0
Kohn, J. J. Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations. Séminaire Goulaouic-Schwartz (1972-1973), Exposé no. 24, 9 p.. https://www.numdam.org/item/SEDP_1972-1973____A25_0/
[1] and : The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Study, Vol. 75, Princeton Univ. Press (1972). | Zbl | MR
[2] : Bemerksverte pseudokonvexe mannifaltigkeiten, Math. Z. 81 (1963), 377-391. | Zbl | MR
[3] : On subelliptic estimates for the ∂-Neumann problem in C2, J. Diff. Geom. (to appear). | Zbl
[4] : L2 estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89-152. | Zbl
[5] : An introduction to complex analysis in several variables, Van Nostrand (1966). | Zbl | MR
[6] : Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. A. M. S. (to appear). | Zbl
[7] : Boundary behaviour of ∂ on weakly pseudo-convex manifolds of dimension 2, J. Diff. Geom. 6 (1972), 523-542. | Zbl
[8] and : Non-coercive boundary value problems, Comm. P. App. Math. 18 (1965), 451-472. | Zbl | MR
[9] and : A pseudo-convex domain not admitting a holomorphic support function, Math. Annalen (to appear). | Zbl | MR
[10] : Coerciveness in the Neumann problem, J. Diff. Geom. 6 (1972), 375-393. | Zbl | MR






