@article{RSMUP_1986__76__37_0,
author = {Srivastava, H. M.},
title = {A class of finite $q$-series - {II}},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {37--43},
year = {1986},
publisher = {Seminario Matematico of the University of Padua},
volume = {76},
mrnumber = {881558},
zbl = {0561.33003},
language = {en},
url = {https://www.numdam.org/item/RSMUP_1986__76__37_0/}
}
TY - JOUR AU - Srivastava, H. M. TI - A class of finite $q$-series - II JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1986 SP - 37 EP - 43 VL - 76 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_1986__76__37_0/ LA - en ID - RSMUP_1986__76__37_0 ER -
Srivastava, H. M. A class of finite $q$-series - II. Rendiconti del Seminario Matematico della Università di Padova, Tome 76 (1986), pp. 37-43. https://www.numdam.org/item/RSMUP_1986__76__37_0/
[1] - , Fonctions Hypergéométriques et Hypersphériques; Polynómes d'Hermite, Gauthier-Villars, Paris, 1926. | JFM
[2] , q-Hypergeometric Functions and Applications, Halsted Press (Ellis Horwood Ltd., Chichester), John Wiley and Sons, New York, Brisbane, Chichester and Toronto, 1983. | Zbl | MR
[3] , Les fonctions hypergéométriques d'order supérieur à deux variables, C.R. Acad. Sci. Paris, 173 (1921), pp. 401-404. | JFM
[4] , On Jacobi polynomials, Proc. Cambridge Philos. Soc., 65 (1969), pp. 691-695. | Zbl | MR
[5] , Certain generalized formulas on Kampé de Fériet's functions, C.R. Acad. Bulgare Sci., 33 (1980), pp. 171-174. | Zbl | MR
[6] , Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, London and New York, 1966. | Zbl | MR
[7] , A class of finite q-series, Rend. Sem. Mat. Univ. Padova, 75 (1986), pp. 37-43. | Zbl | MR | Numdam | EuDML
[8] - , A Treatise on Generating Functions, Halsted Press (Ellis Horwood Ltd., Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. | Zbl | MR
[9] - , An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. (2), 12 (1976), pp. 419-425. | Zbl | MR





