We investigate the minima of functionals of the form
@article{RO_2002__36_1_95_0,
author = {Kadhi, Fethi},
title = {Generalized characterization of the convex envelope of a function},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {95--100},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {1},
doi = {10.1051/ro:2002007},
mrnumber = {1920381},
zbl = {1003.49016},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro:2002007/}
}
TY - JOUR AU - Kadhi, Fethi TI - Generalized characterization of the convex envelope of a function JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 95 EP - 100 VL - 36 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro:2002007/ DO - 10.1051/ro:2002007 LA - en ID - RO_2002__36_1_95_0 ER -
%0 Journal Article %A Kadhi, Fethi %T Generalized characterization of the convex envelope of a function %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 95-100 %V 36 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro:2002007/ %R 10.1051/ro:2002007 %G en %F RO_2002__36_1_95_0
Kadhi, Fethi. Generalized characterization of the convex envelope of a function. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 95-100. doi: 10.1051/ro:2002007
[1] and, What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal. 27 (1994) 1661-1679. | Zbl | MR
[2] , Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983). | Zbl | MR
[3] , Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992). | Zbl | MR
[4] and, Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl. 110 (2001) 457-466. | Zbl | MR
[5] and, Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 851-855. | Zbl
[6] , Convex Analysis. Princeton University Press, Princeton, New Jersey (1970). | Zbl | MR
[7] , Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987). | Zbl | MR
Cité par Sources :





