@article{RO_2000__34_3_331_0,
author = {Gra\~na Drummond, L. M. and Iusem, Alfredo Noel and Svaiter, B. F.},
title = {On the central path for nonlinear semidefinite programming},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {331--345},
year = {2000},
publisher = {EDP Sciences},
volume = {34},
number = {3},
mrnumber = {1786466},
zbl = {0971.90088},
language = {en},
url = {https://www.numdam.org/item/RO_2000__34_3_331_0/}
}
TY - JOUR AU - Graña Drummond, L. M. AU - Iusem, Alfredo Noel AU - Svaiter, B. F. TI - On the central path for nonlinear semidefinite programming JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2000 SP - 331 EP - 345 VL - 34 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/RO_2000__34_3_331_0/ LA - en ID - RO_2000__34_3_331_0 ER -
%0 Journal Article %A Graña Drummond, L. M. %A Iusem, Alfredo Noel %A Svaiter, B. F. %T On the central path for nonlinear semidefinite programming %J RAIRO - Operations Research - Recherche Opérationnelle %D 2000 %P 331-345 %V 34 %N 3 %I EDP Sciences %U https://www.numdam.org/item/RO_2000__34_3_331_0/ %G en %F RO_2000__34_3_331_0
Graña Drummond, L. M.; Iusem, Alfredo Noel; Svaiter, B. F. On the central path for nonlinear semidefinite programming. RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 3, pp. 331-345. https://www.numdam.org/item/RO_2000__34_3_331_0/
1. , and , Complementarity and nondegeneracy in semidefinite programming. Math. Programming 77 (1997) 111-128. | Zbl | MR
2. and , The non-linear geometry of linear programming. AT & Bell Laboratories, Murray Hill, NJ (1986), preprint. | Zbl
3. and , Nonlinear Programming: Sequential Unconstrained Techniques. Classics in Applied Mathematics, SIAM Publications, Philadelphia (1990). | Zbl | MR
4. and , Interior point trajectories in semidefinite programming (1996) preprint. | Zbl
5. , Classical and generalized central paths with algorithmic applications in linear programming. Ph. D. Thesis, Instituto deMatemâtica Pura e Aplicada, Rio de Janeiro, Brazil (1997).
6. and , Welldefinedness and limiting behavior of the central path. Computational and Applied Mathematics (accepted). | Zbl
7. and On the central path for semidefinite programming. Tecnhical Report ES-473/98, Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (1998).
8. and , On well definedness of the central path. J. Optim. Theory Appl. 102 (1999) 223-237. | Zbl | MR
9. , and , Central paths, generalized proximal point methods and Cauchy trajectories in Riemann manifolds. SIAM J. Control Optim. 37 (1999) 566-588. | Zbl | MR
10. , A new polynomial time algorithm for linear programming, Combinatorica 4 (1984) 373-395. | Zbl | MR
11. , A polynomial algorithm for linear programming, Soviet Math. Dokl 20 (1979) 191-194. | Zbl
11. , and , Limiting behavior of trajectories by a continuation method for complementary problems. Math. Oper. Res. 15 (1990) 662-675. | Zbl | MR
13. , and , Interior-point methods for the monotone semidefinite linear eomplementarity problem in symmetrie matrices. SIAM X Optim. 7 (1997) 86-125. | Zbl | MR
14. , Pathways to the optimal set in linear programming, in Progress in Mathematical Programming-Interior Point and Related Methods, edited by N. Megiddo. Springer-Verlag, New York (1988) 131-158. | Zbl | MR
15. and , Boundary behavior of interior point algorithms in linear programming. Math. Oper. Res. 14 (1989) 97-146. | Zbl | MR
16. and , Interior path following primal-dual algorithms. Part I: Linear Programming. Math. Programming 44 (1989) 27-41. | Zbl | MR
17. and , Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Math. Oper. Res. 21 (1996) 129-148. | Zbl | MR
18. and , On the existence and convergence of the central path for convex programming and some duality results, Comput Optim. Appl. 10 (1998) 51-77. | Zbl | MR
19. , Primal-dual methods. Seminar at CORE, Université Catholique de Louvain (1994).
20. and , Second derivatives for optimization eigenvalues of symetric matrices. SIAM J. Matrix Anal. Appl 16 ( 1995697-718. | Zbl | MR
21. Résolution numérique approchée du problème de programation linéaire par application de la programation logarithmique. Revue Française Recherche Opérationelle 20 (1961) 227-259.
22. A Polynomial-Time Algorithm Based on Newton's Method for Linear Programming. Math. Programming 40 (1988) 59-94. | Zbl | MR
23. , Convex Analysis. Princeton University Press, New Jersey (1970). | Zbl | MR
24. , First and second order analysis of nonlinear semidefinite programs. Math. Programming 77 (1997) 301-320. | Zbl | MR
25. and , On eigenvalue optimization. SIAM J. Optim. 5 (1995) 552-569. | Zbl | MR
26. , An analytic center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. Springer-Verlag, New York, NY, Lecture Notes in Control and Inform. Sel 84 (1985) 866-876. | Zbl | MR
27. and , Positive-Definite Programming, Mathematical Programming: State of the Art, edited by J. R. Birge, K. G. M. Murty, University of Michigan, Ann Arbor, MI (1994) 276-308. | Zbl






