@incollection{MSMF_1973__35__57_0,
author = {Becker, Richard},
title = {Deux relations d{\textquoteright}\'equivalence sur un espace $L^1$},
booktitle = {Contributions au calcul des probabilit\'es},
series = {Bulletin de la Soci\'et\'e math\'ematique de France. M\'emoire},
pages = {57--80},
year = {1973},
publisher = {Soci\'et\'e math\'ematique de France},
number = {35},
doi = {10.24033/msmf.115},
mrnumber = {58 #2207},
zbl = {0281.46023},
url = {https://www.numdam.org/articles/10.24033/msmf.115/}
}
TY - CHAP AU - Becker, Richard TI - Deux relations d’équivalence sur un espace $L^1$ BT - Contributions au calcul des probabilités AU - Collectif T3 - Bulletin de la Société mathématique de France. Mémoire PY - 1973 SP - 57 EP - 80 IS - 35 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/msmf.115/ DO - 10.24033/msmf.115 ID - MSMF_1973__35__57_0 ER -
%0 Book Section %A Becker, Richard %T Deux relations d’équivalence sur un espace $L^1$ %B Contributions au calcul des probabilités %A Collectif %S Bulletin de la Société mathématique de France. Mémoire %D 1973 %P 57-80 %N 35 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/msmf.115/ %R 10.24033/msmf.115 %F MSMF_1973__35__57_0
Becker, Richard. Deux relations d’équivalence sur un espace $L^1$, dans Contributions au calcul des probabilités, Bulletin de la Société mathématique de France. Mémoire, no. 35 (1973), pp. 57-80. doi: 10.24033/msmf.115
[1] Thèse 3éme cycle, université de Paris VI, Juin 1971.
[2] On symmetric sequence spaces. Proc. London Math. Soc. (3) 16 (1966) 85-106. | Zbl | MR
[3] Topologische lineare Raume. (Berlin 1960). ou: Topological vector spaces 1 (Springer Verlag 1969).
[4] On homogeneous measure algebras. Proc.N.A.S. Vol. 28. (1942) 108-111. | Zbl | MR
[5] Einige sätze über messbare abbildungen. Ann.math.T.(33). (1932) 574-586. | Zbl | JFM
[6] Bases mathématiques du calcul des Probalités. (Masson 1964) | Zbl
[7] Proc.Sympos.Analysis. (Queen's Univ. Kingston, Ont. 1967) P.83-144. | Zbl
[8] On the representation of doubly stochastic operators. Pacific J. Math. 13 (1963), 1379-89. | Zbl | MR
[9] Orbits of L1 functions under doubly stochastic transformations. Trans. Amer. Math. Soc. 117 (1965) 92-100. | Zbl | MR
[10] Extreme points of some convex subsets of L1 [0,1]. Proc. Amer. Math. Soc. 18 (1967) 1026-1034. | Zbl | MR
[11] Majorized functions and measures. Indag. Math. 30 (1968), 431-437. | Zbl | MR
Cité par Sources :







