We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.
Keywords: entropy methods, Lyapounov functionals, reaction-diffusion equations
@article{M2AN_2009__43_1_151_0,
author = {Bisi, Marzia and Desvillettes, Laurent and Spiga, Giampiero},
title = {Exponential convergence to equilibrium via {Lyapounov} functionals for reaction-diffusion equations arising from non reversible chemical kinetics},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {151--172},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {1},
doi = {10.1051/m2an:2008045},
mrnumber = {2494798},
zbl = {1155.35312},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2008045/}
}
TY - JOUR AU - Bisi, Marzia AU - Desvillettes, Laurent AU - Spiga, Giampiero TI - Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 151 EP - 172 VL - 43 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2008045/ DO - 10.1051/m2an:2008045 LA - en ID - M2AN_2009__43_1_151_0 ER -
%0 Journal Article %A Bisi, Marzia %A Desvillettes, Laurent %A Spiga, Giampiero %T Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 151-172 %V 43 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2008045/ %R 10.1051/m2an:2008045 %G en %F M2AN_2009__43_1_151_0
Bisi, Marzia; Desvillettes, Laurent; Spiga, Giampiero. Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 151-172. doi: 10.1051/m2an:2008045
[1] , , , , , , , and , Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35-43. | Zbl | MR
[2] and , From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881-912. | Zbl | MR
[3] and , Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779-798. | Zbl | MR
[4] and , Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). | MR
[5] , and , Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161-1175. | Zbl | MR
[6] and , Asymptotic -decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113-142. | Zbl | MR
[7] and , Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847-875. | Zbl | MR
[8] , About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma 7 (2007) 81-123. | Zbl | MR
[9] and , Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157-176. | Zbl | MR
[10] and , Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304-312. | Zbl | MR
[11] and , Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). | Zbl | MR
[12] and , On the spatially homogeneous Landau equation for hard potentials 25 (2000) 261-298. | Zbl | MR
[13] , Multicomponent Flow Modeling1999). | Zbl | MR
[14] , and , Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819-8833. | Zbl | MR
[15] , On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369-377. | Zbl | MR
[16] , and , Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968). | Zbl
[17] , On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360-370. | Zbl | MR
[18] , Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887-905.
[19] , Kinetic Theory and Fluid Dynamics2002). | Zbl | MR
[20] and , Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667-706. | Zbl | MR
[21] , Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501-517.
Cité par Sources :






