In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.
Keywords: decomposition method, semigroup, Trotter formula, Cauchy abstract problem
@article{M2AN_2002__36_4_693_0,
author = {Gegechkori, Zurab and Rogava, Jemal and Tsiklauri, Mikheil},
title = {High degree precision decomposition method for the evolution problem with an operator under a split form},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {693--704},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {4},
doi = {10.1051/m2an:2002030},
mrnumber = {1932309},
zbl = {1070.65562},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2002030/}
}
TY - JOUR AU - Gegechkori, Zurab AU - Rogava, Jemal AU - Tsiklauri, Mikheil TI - High degree precision decomposition method for the evolution problem with an operator under a split form JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 693 EP - 704 VL - 36 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2002030/ DO - 10.1051/m2an:2002030 LA - en ID - M2AN_2002__36_4_693_0 ER -
%0 Journal Article %A Gegechkori, Zurab %A Rogava, Jemal %A Tsiklauri, Mikheil %T High degree precision decomposition method for the evolution problem with an operator under a split form %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 693-704 %V 36 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2002030/ %R 10.1051/m2an:2002030 %G en %F M2AN_2002__36_4_693_0
Gegechkori, Zurab; Rogava, Jemal; Tsiklauri, Mikheil. High degree precision decomposition method for the evolution problem with an operator under a split form. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 693-704. doi: 10.1051/m2an:2002030
[1] , Note on product formulas for operators semigroups. J. Funct. Anal. 2 (1968) 238-242. | Zbl
[2] , Semigroup product formulas and addition of unbounded operators. Bull. Amer. Mat. Soc. 76 (1970) 395-398. | Zbl
[3] and, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (1996) 343-383. | Zbl | Numdam
[4] , Difference schemas with decomposition operator for Multidimensional problems. JNM and MPh 2 (1962) 311-319.
[5] , Increased precision order economical schemas for the solution of parabolic type multidimensional equations. JNM and MPh 9 (1969) 1319-1326.
[6] , and, Sequential-Parallel method of high degree precision for Cauchy abstract problem solution. Tbilisi, in Reports of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 14 (1999). | MR
[7] , On application of local one dimensional method for solving parabolic type multidimensional problems of 2m-degree. Proc. Acad. Sci. GSSR 3 (1965) 535-542.
[8] and, On modeling multidimensional quasi-linear equation of parabolic type by one-dimensional ones. Proc. Acad. Sci. GSSR 60 (1970) 537-540. | Zbl
[9] and, On modeling of third boundary value problem for the multidimensional parabolic equations of an arbitrary area by one-dimensional equations. JNM and MPh 14 (1974) 246-250. | Zbl
[10] and, Some problems of plates and shells thermo elasticity and method of summary approximation. Complex Anal. Appl. (1978) 173-186. | Zbl
[11] , Fractional steps method of solving multidimensional problems of mathematical physics. Nauka, Novosibirsk (1967) 196 p.
[12] and, The norm estimate of the difference between the Kac operator and the Schrodinger semigroup. Nagoya Math. J. 149 (1998) 53-81. | Zbl
[13] , Functional analysis. Springer-Verlag (1965).
[14] , The theory of perturbations of linear operators. Mir, Moscow (1972) 740 p. | Zbl
[15] , Linear equations in Banach space. Nauka, Moscow (1971), 464 p. | Zbl
[16] and, Estimation of exactitude of summarized approximation of a solution of the Cauchy abstract problem. RAN USSR 275 (1984) 297-301. | Zbl
[17] , Split methods. Nauka, Moscow (1988) 264 p. | Zbl | MR
[18] , On the error estimation of Trotter type formulas in the case of self-Adjoint operator. Funct. Anal. Appl. 27 (1993) 84-86. | Zbl
[19] , Semi-discrete schemas for operator differential equations. Tbilisi, Georgian Technical University press (1995) 288 p.
[20] , Difference schemas theory. Nauka, Moscow (1977), 656 p. | Zbl | MR
[21] and, Additive schemas for mathematical physics problems. Nauka, Moscow (1999). | Zbl | MR
[22] , Quelques méthodes de décomposition en analyse numérique. Actes Congrés Intern. Math. (1970) 311-319. | Zbl
[23] , On the product of semigroup of operators. Proc. Amer. Mat. Soc. 10 (1959) 545-551. | Zbl
Cité par Sources :





