Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a filter for the orientation-2 predicate, and how a formal and partially automatized verification of this algorithm avoided many pitfalls. The presented method is not limited to this particular predicate, it can easily be used to produce correct semi-static floating-point filters for other geometric predicates.
Keywords: geometric predicates, semi-static filters, formal proofs, floating-point
@article{ITA_2007__41_1_57_0,
author = {Melquiond, Guillaume and Pion, Sylvain},
title = {Formally certified floating-point filters for homogeneous geometric predicates},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {57--69},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {1},
doi = {10.1051/ita:2007005},
mrnumber = {2330043},
zbl = {1133.65010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007005/}
}
TY - JOUR AU - Melquiond, Guillaume AU - Pion, Sylvain TI - Formally certified floating-point filters for homogeneous geometric predicates JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 57 EP - 69 VL - 41 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007005/ DO - 10.1051/ita:2007005 LA - en ID - ITA_2007__41_1_57_0 ER -
%0 Journal Article %A Melquiond, Guillaume %A Pion, Sylvain %T Formally certified floating-point filters for homogeneous geometric predicates %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 57-69 %V 41 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007005/ %R 10.1051/ita:2007005 %G en %F ITA_2007__41_1_57_0
Melquiond, Guillaume; Pion, Sylvain. Formally certified floating-point filters for homogeneous geometric predicates. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 1, pp. 57-69. doi: 10.1051/ita:2007005
[1] , and, Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Appl. Math. 109 (2001) 25-47. | Zbl
[2] , and, Exact geometric computation using cascading. Internat. J. Comput. Geom. Appl. 11 (2001) 245-266. | Zbl
[3] The CGAL Manual, 2004. Release 3.1.
[4] and, Generating formally certified bounds on values and round-off errors, in 6th Conference on Real Numbers and Computers. Dagstuhl, Germany (2004).
[5] and, Efficient exact geometric predicates for Delaunay triangulations, in Proc. 5th Workshop Algorithm Eng. Exper. (2003) 37-44.
[6] and, Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Trans. Graph. 15 (1996) 223-248.
[7] and, LN User Manual. AT&T Bell Laboratories (1993).
[8] ,,, and, Classroom examples of robustness problems in geometric computations, in Proc. 12th European Symposium on Algorithms, Lect. Notes Comput. Sci. 3221 (2004) 702-713. | Zbl
[9] , and, Automatic generation of staged geometric predicates, in International Conference on Functional Programming, Florence, Italy (2001). Also Carnegie Mellon CS Tech Report CMU-CS-01-141.
[10] , Interval methods for systems of equations. Cambridge University Press (1990). | Zbl | MR
[11] , De la géométrie algorithmique au calcul géométrique. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France (1999). TU-0619.
[12] , Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Comput. Geom. 18 (1997) 305-363. | Zbl
[13] et al., An American national standard: IEEE standard for binary floating point arithmetic. ACM SIGPLAN Notices 22 (1987) 9-25.
[14] ,, The exact computation paradigm, in Computing in Euclidean Geometry, edited by D.-Z. Du and F.K. Hwang, World Scientific, Singapore, 2nd edition, Lect. Notes Ser. Comput. 4 (1995) 452-492.
Cité par Sources :






