In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
Keywords: integer partitions, tilings of $2D$-gons, lattices, sand pile model, discrete dynamical models
@article{ITA_2002__36_4_389_0,
author = {Latapy, Matthieu},
title = {Integer partitions, tilings of $2D$-gons and lattices},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {389--399},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {4},
doi = {10.1051/ita:2003004},
mrnumber = {1965424},
zbl = {1028.05010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003004/}
}
TY - JOUR AU - Latapy, Matthieu TI - Integer partitions, tilings of $2D$-gons and lattices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 389 EP - 399 VL - 36 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003004/ DO - 10.1051/ita:2003004 LA - en ID - ITA_2002__36_4_389_0 ER -
%0 Journal Article %A Latapy, Matthieu %T Integer partitions, tilings of $2D$-gons and lattices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 389-399 %V 36 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003004/ %R 10.1051/ita:2003004 %G en %F ITA_2002__36_4_389_0
Latapy, Matthieu. Integer partitions, tilings of $2D$-gons and lattices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 389-399. doi: 10.1051/ita:2003004
[1] , The Theory of Partitions. Addison-Wesley Publishing Company, Encyclopedia Math. Appl. 2 (1976). | Zbl | MR
[2] , Coherence and enumeration of tilings of 3-zonotopes. Discrete Comput. Geom. 22 (1999) 119-147. | Zbl | MR
[3] , Tilings of zonotopes: Discriminantal arrangements, oriented matroids, and enumeration, Ph.D. Thesis. University of Minnesota (1997).
[4] , The lattice of integer partitions. Discrete Math. 6 (1973) 210-219. | Zbl | MR
[5] and, Introduction to Lattices and Orders. Cambridge University Press (1990). | Zbl | MR
[6] , Algebraic theory of penrose's non-periodic tilings of the plane. Konink. Nederl. Akad. Wetensch. Proc. Ser. A 43 (1981). | Zbl
[7] , Dualization of multigrids. J. Phys. France Coloq (1981) 3-9. | MR
[8] , and, Configurational entropy of codimension-one tilings and directed membranes. J. Statist. Phys. 87 (1997) 697. | Zbl | MR
[9] , and, Fixed-boundary octogonal random tilings: A combinatorial approach. Preprint (1999). | Zbl
[10] , Entropie configurationnelle des pavages aléatoires et des membranes dirigées, Ph.D. Thesis. University Paris VI (1997).
[11] , Rhombic tilings of polygons and classes of reduced words in coxeter groups. J. Combin. Theory 77 (1997) 193-221. | Zbl | MR
[12] and, Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | Zbl | MR
[13] , Tilings of polygons with parallelograms. Algorithmica 9 (1993) 382-397. | Zbl | MR
[14] and, The lattice of integer partitions and its infinite extension, in DMTCS, Special Issue, Proc. of ORDAL'99. Preprint (to appear) available at http://www.liafa.jussieu.fr/~latapy/
[15] , Generalized integer partitions, tilings of zonotopes and lattices, in Proc. of the 12-th international conference Formal Power Series and Algebraic Combinatorics (FPSAC'00), edited by A.A. Mikhalev, D. Krob and E.V. Mikhalev. Springer (2000) 256-267. Preprint available at http://www.liafa.jussieu.fr/~latapy/ | Zbl
[16] ,, and Ha Duong Phan, Structure of some sand piles model. Theoret. Comput. Sci. 262 (2001) 525-556. Preprint available at http://www.liafa.jussieu.fr/~latapy/ | Zbl | MR
[17] , Ordered structures and partitions. Mem. ACM 119 (1972). | Zbl | MR
[18] , Lectures on Polytopes. Springer-Verlag, Grad. Texts in Math. (1995). | Zbl | MR
Cité par Sources :





