This contribution extends the notions of roots and periodicity to strings of transfinite lengths. It shows that given a transfinite string, either it possesses a unique root or the set of its roots are equivalent in a strong way.
@article{ITA_2001__35_6_525_0,
author = {Carton, Olivier and Choffrut, Christian},
title = {Periodicity and roots of transfinite strings},
journal = {RAIRO. Theoretical Informatics and Applications},
pages = {525--533},
year = {2001},
publisher = {EDP-Sciences},
volume = {35},
number = {6},
mrnumber = {1922293},
zbl = {1005.68120},
language = {en},
url = {https://www.numdam.org/item/ITA_2001__35_6_525_0/}
}
TY - JOUR AU - Carton, Olivier AU - Choffrut, Christian TI - Periodicity and roots of transfinite strings JO - RAIRO. Theoretical Informatics and Applications PY - 2001 SP - 525 EP - 533 VL - 35 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/item/ITA_2001__35_6_525_0/ LA - en ID - ITA_2001__35_6_525_0 ER -
Carton, Olivier; Choffrut, Christian. Periodicity and roots of transfinite strings. RAIRO. Theoretical Informatics and Applications, Tome 35 (2001) no. 6, pp. 525-533. https://www.numdam.org/item/ITA_2001__35_6_525_0/
[1] and, Periodic-like words, periodicity and boxes. Acta Informatica 37 (2001) 597-618. | Zbl | MR
[2] and, Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris A (1978) 1175-1177. | Zbl | MR
[3] and, Transfinite equations in transfinite strings, 625-649. | Zbl | MR
[4] , Périodes et répétitions des mots du monoïde libre. Theoret. Comput. Sci. 9 (1979) 17-26. | Zbl | MR
[5] , Mots de Lyndon et périodicité. RAIRO: Theoret. Informatics Appl. 14 (1980) 181-191. | Zbl | MR | Numdam
[6] and, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 3 (1965) 109-114. | Zbl | MR
[7] ,, and, A periodicity theorem fro trees. Theoret. Comput. Sci. 1-2 (1998) 145-181. | Zbl | MR
[8] , Allgemeine Mengenlehre. Akademie Verlag (1969). | Zbl | MR
[9] , Linear ordering. Academic Press, New York (1982). | Zbl | MR
[10] , Cardinal and Ordinal Numbers. Warsaw: PWN (1958). | Zbl | MR






