@article{GAU_1976-1977__4__A13_0,
author = {Gerritzen, Lothar},
title = {On automorphism groups of $p$-adic {Schottky} curves},
journal = {Groupe d'\'etude d'analyse ultram\'etrique},
note = {talk:17},
pages = {1--6},
publisher = {Secr\'etariat math\'ematique},
volume = {4},
year = {1976-1977},
zbl = {0377.14006},
language = {en},
url = {https://www.numdam.org/item/GAU_1976-1977__4__A13_0/}
}
TY - JOUR AU - Gerritzen, Lothar TI - On automorphism groups of $p$-adic Schottky curves JO - Groupe d'étude d'analyse ultramétrique N1 - talk:17 PY - 1976-1977 SP - 1 EP - 6 VL - 4 PB - Secrétariat mathématique UR - https://www.numdam.org/item/GAU_1976-1977__4__A13_0/ LA - en ID - GAU_1976-1977__4__A13_0 ER -
Gerritzen, Lothar. On automorphism groups of $p$-adic Schottky curves. Groupe d'étude d'analyse ultramétrique, Volume 4 (1976-1977), Talk no. 17, 6 p.. https://www.numdam.org/item/GAU_1976-1977__4__A13_0/
[1] . - Über Endomorphismen nichtarchimedischer holomorpher Tori, Inventiones Math., t. 11, 1970, p. 27-36. | Zbl | MR
[2] . - On multiplication algebras of Riemann matrices, Math. Annalen, t. 194, 1971, p. 109-122. | Zbl | MR
[3] . - Zur nichtarchimedischen Uniformisierung von Kurven, Math. Annalen, t. 210, 1974, p. 321-337. | Zbl | MR
[4] . - Unbeschränkte Steinsche Gebiete von P und nichtarchimedische automorphe Formen, J. reine und angew. Math. (to appear). | Zbl
[5] . - Invarianten binärer Formen, "Classification of algebraic varieties and compact manifolds", p. 36-69. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 412). | Zbl | MR
[6] . - Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Annalen, t. 40, 1892, p. 403-442. | MR | JFM
[7] , . - Periods of p-adic Schottky groups, J. reine und angew. Math., t. 262-263, 1973, p. 239-247. | Zbl | MR
[8] . - An analytic construction of degenerating curves over complete local rings, Compositio Math., Groningen, t. 24, 1972, p. 129-174. | Zbl | MR | Numdam
[9] . - p-adic Schottky groups, Thesis, Harvard 1973.
[10] . - Integral matrices. - New York, Academic Press, 1972. | Zbl | MR
[11] . - Über eine spezielle Funktion, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt, J. reine und angew. Math., t. 101, 1887, p. 227-272. | JFM






