We consider the eigenvalue problem
Keywords: quasilinear elliptic equation, generic existence, variational inequality, rapidly growing operator
@article{COCV_2004__10_4_677_0,
author = {Le, Vy Khoi},
title = {Generic existence result for an eigenvalue problem with rapidly growing principal operator},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {677--691},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {4},
doi = {10.1051/cocv:2004027},
mrnumber = {2111088},
zbl = {1118.35011},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004027/}
}
TY - JOUR AU - Le, Vy Khoi TI - Generic existence result for an eigenvalue problem with rapidly growing principal operator JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 677 EP - 691 VL - 10 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004027/ DO - 10.1051/cocv:2004027 LA - en ID - COCV_2004__10_4_677_0 ER -
%0 Journal Article %A Le, Vy Khoi %T Generic existence result for an eigenvalue problem with rapidly growing principal operator %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 677-691 %V 10 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004027/ %R 10.1051/cocv:2004027 %G en %F COCV_2004__10_4_677_0
Le, Vy Khoi. Generic existence result for an eigenvalue problem with rapidly growing principal operator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 677-691. doi: 10.1051/cocv:2004027
[1] , Sobolev spaces. Academic Press, New York (1975). | Zbl | MR
[2] and, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. | Zbl | MR
[3] , Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102-129. | Zbl | MR
[4] , Optimization and nonsmooth analysis. SIAM, Philadelphia (1990). | Zbl | MR
[5] ,, and, Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. 11 (2000) 33-62. | Zbl | MR
[6] , Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Diff. Equations 10 (1971) 507-528. | Zbl | MR
[7] and, Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8 (1971) 52-75. | Zbl | MR
[8] ,, and, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlinear Diff. Eq. Appl. 6 (1999) 207-225. | Zbl | MR
[9] , Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Amer. Math. Soc. 190 (1974) 163-205. | Zbl | MR
[10] and, On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 132 (2002) 891-909. | Zbl | MR
[11] and, Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. 11 (1987) 379-392. | Zbl | MR
[12] , On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on . Proc. Roy. Soc. Edinb. A 129 (1999) 787-809. | Zbl | MR
[13] and, Bounded Palais-Smale mountain-pass sequences. C.R. Acad. Sci. Paris Ser. I Math. 327 (1998) 23-28. | Zbl | MR
[14] and, Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Ser. A) 69 (2000) 245-271. | Zbl | MR
[15] and, Convex functions and Orlicz spaces. Noorhoff, Groningen (1961).
[16] , and, Function spaces. Noordhoff, Leyden (1977). | Zbl
[17] , A global bifurcation result for quasilinear eliptic equations in Orlicz-Sobolev space. Topol. Methods Nonlinear Anal. 15 (2000) 301-327. | Zbl | MR
[18] , Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts. J. Diff. Int. Eq. 15 (2002) 839-862. | Zbl | MR
[19] and, Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J. London Math. Soc. 62 (2000) 852-872. | Zbl | MR
[20] and, An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 129 (1999) 153-163. | Zbl | MR
[21] , Remarks on inhomogeneous elliptic eigenvalue problems. Part. Differ. Equ. Lect. Notes Pure Appl. Math. 229 (2002) 259-265. | Zbl | MR
[22] and, Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York (1995). | Zbl | MR
[23] , Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3 (1973) 162-202. | Zbl | MR
[24] , Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Brasil Mat. 20 (1990) 49-58. | Zbl | MR
[25] , Variational methods. 2nd ed., Springer, Berlin (1991). | Zbl
[26] , Ljusternik-Schnirelmann theorem for the generalized Laplacian. J. Differ. Equations 161 (2000) 174-190. | Zbl | MR
Cité par Sources :





