We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .
Keywords: partial differential equations, control, calculus of variation, nozzle flow, sensitivity, transonic equation
@article{COCV_2002__8__907_0,
author = {Pironneau, Olivier},
title = {Control of transonic shock positions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {907--914},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002034},
mrnumber = {1932979},
zbl = {1069.35043},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002034/}
}
TY - JOUR AU - Pironneau, Olivier TI - Control of transonic shock positions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 907 EP - 914 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002034/ DO - 10.1051/cocv:2002034 LA - en ID - COCV_2002__8__907_0 ER -
Pironneau, Olivier. Control of transonic shock positions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914. doi: 10.1051/cocv:2002034
[1] ,,, and, A finite element problem issued from fictitious domain techniques. East-West J. Appl. Math. (2002). | Zbl | MR
[2] , and, On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998) 549-570. | Zbl | MR
[3] , Écoulements de fluide : compacité par entropie. Masson, Paris (1989). | Zbl | MR
[4] and, Fluid mechanics. MIR Editions, Moscow (1956).
[5] and, Analytic adjoint solutions for the quasi-one-dimensional euler equations. J. Fluid Mech. 426 (2001) 327-345. | Zbl | MR
[6] , Contrôle d'instationnarités en couplage fluide-structure. C. R. Acad. Sci. Sér. IIb Phys. Mécanique, astronomie 327 (1999) 115-118. | Zbl
[7] and, Shock sensitivity analysis. Comput. Fluid Dynam. J. 9 (2000) 1-15.
[8] , Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). | Zbl | MR
Cité par Sources :






