@article{CM_1993__89_3_301_0,
author = {Van den Ban, E. P. and Schlichtkrull, H.},
title = {Convexity for invariant differential operators on semisimple symmetric spaces},
journal = {Compositio Mathematica},
pages = {301--313},
year = {1993},
publisher = {Kluwer Academic Publishers},
volume = {89},
number = {3},
mrnumber = {1255699},
zbl = {0798.58083},
language = {en},
url = {https://www.numdam.org/item/CM_1993__89_3_301_0/}
}
TY - JOUR AU - Van den Ban, E. P. AU - Schlichtkrull, H. TI - Convexity for invariant differential operators on semisimple symmetric spaces JO - Compositio Mathematica PY - 1993 SP - 301 EP - 313 VL - 89 IS - 3 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1993__89_3_301_0/ LA - en ID - CM_1993__89_3_301_0 ER -
%0 Journal Article %A Van den Ban, E. P. %A Schlichtkrull, H. %T Convexity for invariant differential operators on semisimple symmetric spaces %J Compositio Mathematica %D 1993 %P 301-313 %V 89 %N 3 %I Kluwer Academic Publishers %U https://www.numdam.org/item/CM_1993__89_3_301_0/ %G en %F CM_1993__89_3_301_0
Van den Ban, E. P.; Schlichtkrull, H. Convexity for invariant differential operators on semisimple symmetric spaces. Compositio Mathematica, Tome 89 (1993) no. 3, pp. 301-313. https://www.numdam.org/item/CM_1993__89_3_301_0/
[1] : A convexity theorem for semisimple symmetric spaces, Pac. J. Math. 124 (1986), 21-55. | Zbl | MR
[2] : Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. Kon. Nederl. Akad. Wet 90 (1987), 225-249. | Zbl | MR
[3] and : The most continuous part of the Plancherel decomposition for a reductive symmetric space. In preparation.
[4] and : Multiplicities in the Plancherel decomposition for a semisimple symmetric space. In (R. L. Lipsman e.a. eds) Representation Theory of Groups and Algebras, Contemp. Math., Vol. 145, p. 163-180. Amer. Math. Soc., Providence 1993. | Zbl | MR
[5] and : Opérateurs différentiels invariants sur un groupe de Lie, Sém. Goulaouic-Schwartz 1972-73 (1973), Exposé X, p. X.1-X.9. | Zbl | MR | Numdam
[6] : Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces, J. Funct. Anal. 34 (1979), 481-492. | Zbl | MR
[7] : Invariant differential operators and P-convexity of solvable Lie groups, Adv. in Math. 46 (1982), 284-304. | Zbl | MR
[8] : Solvability of invariant differential operators of principal type on certain Lie groups and symmetric spaces, J. d'Anal. Math. 37 (1980), 118-127. | Zbl | MR
[9] and : Convexité pour les operateurs différentiels invariants sur les groupes de Lie, Math. Zeit. 167 (1979), 61-80. | Zbl | MR
[10] : Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106-146. | Zbl | MR
[11] : Analysis on Non-Riemannian Symmetric Spaces, Regional Conference Series in Math. 61, Amer. Math. Soc., Providence 1986. | Zbl | MR
[12] : Spherical functions on a semisimple Lie group, I, Amer. J. Math. 80 (1958), 241-310. | Zbl | MR
[13] : Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math. 86 (1964), 565-601. | Zbl | MR
[14] : The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. 98 (1973), 451-479. | Zbl | MR
[15] : Groups and Geometric Analysis, Academic Press, Orlando 1984. | Zbl | MR
[16] : Invariant differential operators and Weyl group invariants. In (W. Barker and P. Sally, eds.) Harmonic Analysis on Reductive Groups, Bowdoin College 1989, Birkhäuser, Boston 1991, p. 193-200. | Zbl | MR
[17] : Linear Partial Differential Operators, Springer Verlag, Berlin 1963. | Zbl | MR
[18] and : Eigenspaces of invariant differential operators on a semisimple symmetric space, Invent. Math. 57 (1980), 1-81. | Zbl | MR | EuDML
[19] and : Global solvability of the Casimir operators, Ann. of Math. 103 (1976), 229-236. | Zbl | MR
[20] : Invariant differential equations on certain semisimple Lie groups, Trans. Amer. Math. Soc. 243 (1978), 97-114. | Zbl | MR
[21] : Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston 1984. | MR
[22] : Linear Partial Differential Equations, Gordon and Breach, New York 1970. | Zbl
[23] and : Commutative Algebra, Vol. I, Van Nostrand, Princeton 1958. | Zbl | MR






